Synthesized b0 for diffusion distortion correction (Synb0-DisCo)
Diffusion magnetic resonance images typically suffer from spatial distortions due to susceptibility induced off-resonance fields, which may affect the geometric fidelity of the reconstructed volume and cause mismatches with anatomical images. State-of-the art susceptibility correction (for example,...
Saved in:
Published in | Magnetic resonance imaging Vol. 64; pp. 62 - 70 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
01.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Diffusion magnetic resonance images typically suffer from spatial distortions due to susceptibility induced off-resonance fields, which may affect the geometric fidelity of the reconstructed volume and cause mismatches with anatomical images. State-of-the art susceptibility correction (for example, FSL's TOPUP algorithm) typically requires data acquired twice with reverse phase encoding directions, referred to as blip-up blip-down acquisitions, in order to estimate an undistorted volume. Unfortunately, not all imaging protocols include a blip-up blip-down acquisition, and cannot take advantage of the state-of-the art susceptibility and motion correction capabilities. In this study, we aim to enable TOPUP-like processing with historical and/or limited diffusion imaging data that include only a structural image and single blip diffusion image. We utilize deep learning to synthesize an undistorted non-diffusion weighted image from the structural image, and use the non-distorted synthetic image as an anatomical target for distortion correction. We evaluate the efficacy of this approach (named Synb0-DisCo) and show that our distortion correction process results in better matching of the geometry of undistorted anatomical images, reduces variation in diffusion modeling, and is practically equivalent to having both blip-up and blip-down non-diffusion weighted images. |
---|---|
AbstractList | Diffusion magnetic resonance images typically suffer from spatial distortions due to susceptibility induced off-resonance fields, which may affect the geometric fidelity of the reconstructed volume and cause mismatches with anatomical images. State-of-the art susceptibility correction (for example, FSL's TOPUP algorithm) typically requires data acquired twice with reverse phase encoding directions, referred to as blip-up blip-down acquisitions, in order to estimate an undistorted volume. Unfortunately, not all imaging protocols include a blip-up blip-down acquisition, and cannot take advantage of the state-of-the art susceptibility and motion correction capabilities. In this study, we aim to enable TOPUP-like processing with historical and/or limited diffusion imaging data that include only a structural image and single blip diffusion image. We utilize deep learning to synthesize an undistorted non-diffusion weighted image from the structural image, and use the non-distorted synthetic image as an anatomical target for distortion correction. We evaluate the efficacy of this approach (named Synb0-DisCo) and show that our distortion correction process results in better matching of the geometry of undistorted anatomical images, reduces variation in diffusion modeling, and is practically equivalent to having both blip-up and blip-down non-diffusion weighted images. Diffusion magnetic resonance images typically suffer from spatial distortions due to susceptibility induced off-resonance fields, which may affect the geometric fidelity of the reconstructed volume and cause mismatches with anatomical images. State-of-the art susceptibility correction (for example, FSL's TOPUP algorithm) typically requires data acquired twice with reverse phase encoding directions, referred to as blip-up blip-down acquisitions, in order to estimate an undistorted volume. Unfortunately, not all imaging protocols include a blip-up blip-down acquisition, and cannot take advantage of the state-of-the art susceptibility and motion correction capabilities. In this study, we aim to enable TOPUP-like processing with historical and/or limited diffusion imaging data that include only a structural image and single blip diffusion image. We utilize deep learning to synthesize an undistorted non-diffusion weighted image from the structural image, and use the non-distorted synthetic image as an anatomical target for distortion correction. We evaluate the efficacy of this approach (named Synb0-DisCo) and show that our distortion correction process results in better matching of the geometry of undistorted anatomical images, reduces variation in diffusion modeling, and is practically equivalent to having both blip-up and blip-down non-diffusion weighted images.Diffusion magnetic resonance images typically suffer from spatial distortions due to susceptibility induced off-resonance fields, which may affect the geometric fidelity of the reconstructed volume and cause mismatches with anatomical images. State-of-the art susceptibility correction (for example, FSL's TOPUP algorithm) typically requires data acquired twice with reverse phase encoding directions, referred to as blip-up blip-down acquisitions, in order to estimate an undistorted volume. Unfortunately, not all imaging protocols include a blip-up blip-down acquisition, and cannot take advantage of the state-of-the art susceptibility and motion correction capabilities. In this study, we aim to enable TOPUP-like processing with historical and/or limited diffusion imaging data that include only a structural image and single blip diffusion image. We utilize deep learning to synthesize an undistorted non-diffusion weighted image from the structural image, and use the non-distorted synthetic image as an anatomical target for distortion correction. We evaluate the efficacy of this approach (named Synb0-DisCo) and show that our distortion correction process results in better matching of the geometry of undistorted anatomical images, reduces variation in diffusion modeling, and is practically equivalent to having both blip-up and blip-down non-diffusion weighted images. |
Author | Blaber, Justin Rogers, Baxter Resnick, Susan M. Schilling, Kurt G. Hansen, Colin Williams, Owen Anderson, Adam W. Nath, Vishwesh Newton, Allen Landman, Bennett A. Huo, Yuankai Shafer, Andrea T. |
AuthorAffiliation | 3) Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN 5) Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 2) Department of Electrical Engineering, Vanderbilt University, Nashville, TN 4) Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 1) Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN |
AuthorAffiliation_xml | – name: 1) Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN – name: 4) Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD – name: 2) Department of Electrical Engineering, Vanderbilt University, Nashville, TN – name: 5) Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN – name: 3) Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN |
Author_xml | – sequence: 1 givenname: Kurt G. surname: Schilling fullname: Schilling, Kurt G. email: kurt.g.schilling.1@vumc.org organization: Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States of America – sequence: 2 givenname: Justin surname: Blaber fullname: Blaber, Justin organization: Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN, United States of America – sequence: 3 givenname: Yuankai surname: Huo fullname: Huo, Yuankai organization: Department of Electrical Engineering, Vanderbilt University, Nashville, TN, United States of America – sequence: 4 givenname: Allen surname: Newton fullname: Newton, Allen organization: Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States of America – sequence: 5 givenname: Colin surname: Hansen fullname: Hansen, Colin organization: Department of Electrical Engineering, Vanderbilt University, Nashville, TN, United States of America – sequence: 6 givenname: Vishwesh surname: Nath fullname: Nath, Vishwesh organization: Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN, United States of America – sequence: 7 givenname: Andrea T. surname: Shafer fullname: Shafer, Andrea T. organization: Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America – sequence: 8 givenname: Owen surname: Williams fullname: Williams, Owen organization: Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America – sequence: 9 givenname: Susan M. surname: Resnick fullname: Resnick, Susan M. organization: Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America – sequence: 10 givenname: Baxter orcidid: 0000-0002-5666-2797 surname: Rogers fullname: Rogers, Baxter organization: Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States of America – sequence: 11 givenname: Adam W. surname: Anderson fullname: Anderson, Adam W. organization: Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States of America – sequence: 12 givenname: Bennett A. surname: Landman fullname: Landman, Bennett A. organization: Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States of America |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31075422$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9v1DAQxS1URLeFD8AF7bEcEsZ2vE6EhEDLX6kSB0DiZjnOmM6StYudrbR8ehy2VNBDOfnJfr8Z670TdhRiQMYec6g58NWzTb1NVAvgXQ2qBmjvsQVvtaxU2zVHbAFaQqWF-nrMTnLeAIASUj1gx5KDVo0QC_by0z5MF5jpJw7LHpY-puVA3u8yxVBUnmKaZuliSuh-y7PC9FC9pryOTx-y-96OGR9dn6fsy9s3n9fvq_OP7z6sX51XTq30VLXYuaH1ou8H0WmtufdaadsNvQLbSMuVRUDRy3KD2otW6cbDSjeN9H2HQp6yF4e5l7t-i4PDMCU7mstEW5v2Jloy_74EujDf4pVZtbIpcZQBZ9cDUvyxwzyZLWWH42gDxl02QkjeQasaWaxP_t51s-RPbMXADwaXYs4J_Y2Fg5mrMRtTqjFzNQaUKdUURt9iHE12DrR8l8Y7yecHEku-V4TJZEcYHA40V2KGSHfS3S3ajRTI2fE77v_D_gJg8ryB |
CitedBy_id | crossref_primary_10_1007_s11604_024_01710_4 crossref_primary_10_1002_jmri_29538 crossref_primary_10_1016_j_bspc_2023_105762 crossref_primary_10_1371_journal_pone_0236418 crossref_primary_10_1016_j_nicl_2022_103244 crossref_primary_10_1136_jnnp_2023_331531 crossref_primary_10_1162_nol_a_00075 crossref_primary_10_52294_001c_123922 crossref_primary_10_1371_journal_pone_0280892 crossref_primary_10_1016_j_neuroimage_2021_118830 crossref_primary_10_1088_1361_6560_ad94c7 crossref_primary_10_1002_hbm_26239 crossref_primary_10_1038_s41380_023_02321_7 crossref_primary_10_1111_jon_12965 crossref_primary_10_1212_NXI_0000000000001058 crossref_primary_10_1002_jmri_29248 crossref_primary_10_1093_bib_bbaa310 crossref_primary_10_1162_netn_a_00276 crossref_primary_10_1186_s41747_025_00570_5 crossref_primary_10_1016_j_psychres_2024_115966 crossref_primary_10_1017_S1355617724000626 crossref_primary_10_1093_bjr_tqae150 crossref_primary_10_1212_WNL_0000000000206862 crossref_primary_10_1016_j_neuroscience_2024_07_026 crossref_primary_10_3389_fnins_2024_1353306 crossref_primary_10_1016_j_heliyon_2024_e34699 crossref_primary_10_1161_STROKEAHA_124_047449 crossref_primary_10_1002_hbm_26662 crossref_primary_10_1016_j_mri_2022_05_016 crossref_primary_10_1002_mrm_29851 crossref_primary_10_3389_fradi_2024_1385742 crossref_primary_10_1016_j_mri_2019_07_004 crossref_primary_10_1016_j_nicl_2025_103737 crossref_primary_10_1002_jnr_70004 crossref_primary_10_1016_j_mri_2023_06_016 crossref_primary_10_1002_hbm_26659 crossref_primary_10_1212_WNL_0000000000209306 crossref_primary_10_1016_j_sleep_2022_12_002 crossref_primary_10_1016_j_pscychresns_2024_111915 crossref_primary_10_1109_TMI_2021_3134496 crossref_primary_10_1016_j_jpain_2024_104536 crossref_primary_10_2463_jjmrm_2022_1754 crossref_primary_10_1016_j_neuroimage_2025_121034 crossref_primary_10_1109_TMI_2021_3059726 crossref_primary_10_1002_hbm_26491 crossref_primary_10_1007_s00221_023_06545_5 crossref_primary_10_1109_JBHI_2023_3240508 crossref_primary_10_1016_j_biopsych_2024_06_014 crossref_primary_10_1002_alz_14343 crossref_primary_10_1007_s10334_024_01182_7 crossref_primary_10_1016_j_nicl_2022_103097 crossref_primary_10_1016_j_mri_2024_01_008 crossref_primary_10_1002_hbm_70042 crossref_primary_10_1016_j_bja_2024_12_036 crossref_primary_10_1162_imag_a_00353 crossref_primary_10_1073_pnas_2207025120 crossref_primary_10_1016_j_neuroimage_2022_119168 crossref_primary_10_1093_braincomms_fcad290 crossref_primary_10_1093_cercor_bhac492 crossref_primary_10_1007_s00406_023_01683_x crossref_primary_10_3389_fnins_2024_1385847 crossref_primary_10_1016_j_nicl_2024_103711 crossref_primary_10_1016_j_nicl_2023_103444 crossref_primary_10_1016_j_nicl_2024_103679 crossref_primary_10_1002_ana_27180 crossref_primary_10_1007_s00415_024_12511_0 crossref_primary_10_1088_1361_6560_ac60b9 crossref_primary_10_1007_s00415_022_11399_y crossref_primary_10_1093_cercor_bhac410 crossref_primary_10_1093_brain_awad085 crossref_primary_10_1002_ana_26911 crossref_primary_10_1016_j_mri_2019_12_006 crossref_primary_10_1016_j_media_2023_102744 crossref_primary_10_1016_j_nbas_2023_100067 crossref_primary_10_1007_s00066_023_02120_7 crossref_primary_10_1016_j_cmpb_2023_107597 crossref_primary_10_1016_j_nicl_2022_103279 crossref_primary_10_3389_fninf_2022_883223 crossref_primary_10_5334_tohm_904 crossref_primary_10_1093_brain_awad117 crossref_primary_10_1002_alz_14162 crossref_primary_10_1002_dad2_12468 crossref_primary_10_3389_fneur_2024_1440294 crossref_primary_10_1093_brain_awac265 crossref_primary_10_1177_02841851211056471 crossref_primary_10_1016_j_compbiomed_2024_109334 crossref_primary_10_1002_hbm_26064 crossref_primary_10_1002_acm2_13121 crossref_primary_10_1002_hbm_70135 crossref_primary_10_1002_alz_14371 crossref_primary_10_1162_imag_a_00387 crossref_primary_10_1093_cercor_bhac035 crossref_primary_10_1007_s10278_022_00721_9 crossref_primary_10_3389_fnins_2022_824431 crossref_primary_10_1016_j_neuroimage_2022_119571 crossref_primary_10_1038_s43856_024_00452_8 crossref_primary_10_1002_hbm_26697 crossref_primary_10_1162_neco_a_01623 crossref_primary_10_1016_j_nicl_2021_102696 crossref_primary_10_1007_s00429_020_02185_5 crossref_primary_10_1093_braincomms_fcae139 crossref_primary_10_1002_mds_29578 |
Cites_doi | 10.1016/S1053-8119(03)00336-7 10.1109/TIP.2018.2820424 10.1016/j.media.2016.10.005 10.1016/j.neuroimage.2012.02.054 10.1002/jmri.21836 10.1016/j.neuroimage.2004.07.051 10.1016/j.media.2017.05.004 10.1007/978-3-642-02498-6_55 10.1109/TMI.2014.2340135 10.1002/mrm.10200 10.1016/j.neuroimage.2013.05.057 10.1016/j.mri.2008.03.005 10.1002/mrm.22024 10.1109/ICCV.2017.244 10.1093/gerona/63.12.1416 10.1148/radiology.161.2.3763909 10.1016/j.neuroimage.2011.09.015 10.1016/j.neuroimage.2009.11.044 10.1002/mrm.22318 10.1109/TMI.2018.2876633 10.1016/j.neuroimage.2015.06.078 10.1002/jmri.20032 10.1109/TMI.2003.815867 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3 10.1002/mrm.20261 10.1002/(SICI)1522-2594(199906)41:6<1206::AID-MRM17>3.0.CO;2-L 10.1007/BF02594607 10.1088/0031-9155/30/4/009 10.1016/j.neuroimage.2014.11.042 10.1186/2197-7364-2-S1-A31 10.1007/978-3-030-00928-1_60 10.1002/(SICI)1522-2594(199912)42:6<1123::AID-MRM17>3.0.CO;2-H 10.1109/42.836368 10.1002/nbm.781 10.1007/978-3-319-46630-9_15 10.1002/mrm.1910340111 10.1007/978-3-319-68127-6_2 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.mri.2019.05.008 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1873-5894 |
EndPage | 70 |
ExternalDocumentID | PMC6834894 31075422 10_1016_j_mri_2019_05_008 S0730725X18306179 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCATS NIH HHS grantid: UL1 TR002243 – fundername: NIBIB NIH HHS grantid: R01 EB017230 – fundername: NCRR NIH HHS grantid: UL1 RR024975 – fundername: NIBIB NIH HHS grantid: T32 EB001628 |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29M 3O- 4.4 457 4CK 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABDPE ABFNM ABGSF ABJNI ABMAC ABMZM ABNEU ABOCM ABUDA ABWVN ABXDB ACDAQ ACFVG ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AIVDX AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEI HMK HMO HVGLF HZ~ IHE J1W KOM M29 M41 MO0 N9A O-L O9- OAUVE OGIMB OI~ OU0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSQ SSU SSZ T5K WUQ XPP Z5R ZGI ZMT ~G- ~S- AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS EFLBG G8K LCYCR RIG AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c567t-8e9cd8f2bbd297771ff757a9db50a43a15ae0e2b39dbe7f28574f067443fb9e23 |
IEDL.DBID | .~1 |
ISSN | 0730-725X 1873-5894 |
IngestDate | Thu Aug 21 14:04:12 EDT 2025 Thu Jul 10 19:54:18 EDT 2025 Thu Apr 03 06:59:04 EDT 2025 Thu Apr 24 23:04:23 EDT 2025 Tue Jul 01 01:55:24 EDT 2025 Fri Feb 23 02:22:54 EST 2024 Tue Aug 26 16:33:44 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Diffusion MRI Distortion correction Image synthesis Conditional generative network Echo planar imaging |
Language | English |
License | Copyright © 2019 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c567t-8e9cd8f2bbd297771ff757a9db50a43a15ae0e2b39dbe7f28574f067443fb9e23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5666-2797 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6834894 |
PMID | 31075422 |
PQID | 2231908543 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6834894 proquest_miscellaneous_2231908543 pubmed_primary_31075422 crossref_primary_10_1016_j_mri_2019_05_008 crossref_citationtrail_10_1016_j_mri_2019_05_008 elsevier_sciencedirect_doi_10_1016_j_mri_2019_05_008 elsevier_clinicalkey_doi_10_1016_j_mri_2019_05_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Magnetic resonance imaging |
PublicationTitleAlternate | Magn Reson Imaging |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161(2):401–7. doi abs/2016arXiv161107004I. PubMed PMID: [10784280]. (bb0260) 2018 Zeng, Constable (bb0070) 2002; 48 Lee, Carass, Jog, Zhao, Prince (bb0170) 2017 PubMed PMID: 25433212; PubMed Central PMCID: [PMCPMC4286283]. Sotiropoulos SN, Jbabdi S, Xu J, Andersson JL, Moeller S, Auerbach EJ, et al. Advances in diffusion MRI acquisition and processing in the Human Connectome Project. NeuroImage. 2013;80:125–43. doi Novikov, Fieremans, Jespersen, Kiselev (bb0015) 2016 (bb0105) 1994 Tao, Fletcher, Gerber, Whitaker (bb0095) 2009; 21 Zhang, Miao, Mansi, Liao (bb0255) 2018 abs/2018arXiv180508841C. Irfanoglu MO, Modi P, Nayak A, Hutchinson EB, Sarlls J, Pierpaoli C. DR-BUDDI (Diffeomorphic Registration for Blip-Up blip-Down Diffusion Imaging) method for correcting echo planar imaging distortions. NeuroImage. 2015;106:284–99. doi Brock, Donahue, Simonyan (bb0275) 2018 Mori, van Zijl (bb0020) 2002; 15 Zaitsev, Hennig, Speck (bb0075) 2004; 52 Jog, Roy, Carass, Prince (bb0175) 2013; 2013 Cohen JP, Luck M, Honari S. Distribution matching losses can hallucinate features in medical image translation. ArXiv e-prints [Internet]. 2018 May 01, 2018. Available from Andersson JL, Skare S, Ashburner J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage. 2003;20(2):870–88. doi Morgan, Bowtell, McIntyre, Worthington (bb0110) 2004; 19 Smith, Jenkinson, Woolrich, Beckmann, Behrens, Johansen-Berg (bb0125) 2004; 23 Huo Y, Xu Z, Bao S, Assad A, Abramson RG, Landman BA. Adversarial synthesis learning enables segmentation without target modality ground truth. ArXiv e-prints [Internet]. 2017 December 01, 2017. Available from PubMed PMID: [25055381]. abs/2017arXiv170801155W. Pluim JP, Maintz JB, Viergever MA. Mutual-information-based registration of medical images: a survey. IEEE Trans Med Imaging. 2003;22(8):986–1004. doi Mori S, Crain BJ, Chacko VP, van Zijl PC. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol. 1999;45(2):265–9. [Epub 1999/02/16. PubMed PMID: 9989633]. Dar, Yurt, Karacan, Erdem, Erdem, Çukur (bb0265) 2018 Techavipoo, Okai, Lackey, Shi, Dresner, Leist (bb0065) 2009; 30 Burgos, Cardoso, Modat, Punwani, Atkinson, Arridge (bb0160) 2015; 2 Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. Fsl. NeuroImage. 2012;62(2):782–90. doi Zhu J-Y, Park T, Isola P, Efros AA. Unpaired image-to-image translation using cycle-consistent adversarial networks. ArXiv e-prints [internet]. 2017 March 01, 2017. Available from PubMed PMID: 23702418; PubMed Central PMCID: [PMCPMC3720790]. PubMed PMID: 28533050; PubMed Central PMCID: [PMCPMC5896773]. Porter, Heidemann (bb0240) 2009; 62 PubMed PMID: [12906253]. Roy, Chou, Jog, Butman, Pham (bb0080) 2016; 2016 Burgos N, Cardoso MJ, Thielemans K, Modat M, Pedemonte S, Dickson J, et al. Attenuation correction synthesis for hybrid PET-MR scanners: application to brain studies. IEEE Trans Med Imaging. 2014;33(12):2332–41. doi abs/2018arXiv180607777W. Roy, Carass, Jog, Prince, Lee (bb0210) 2014; 9034 Chen M, Carass A, Jog A, Lee J, Roy S, Prince JL. Cross contrast multi-channel image registration using image synthesis for MR brain images. Med Image Anal. 2017;36:2–14. doi Ferrucci L. The Baltimore Longitudinal Study of Aging (BLSA): a 50-year-long journey and plans for the future. J Gerontol A Biol Sci Med Sci. 2008;63(12):1416–9. PubMed PMID: 19126858; PubMed Central PMCID: [PMCPMC5004590]. abs/2017arXiv170310593Z. Wu, Chang, Walker, Lemaitre, Barnett, Marenco (bb0055) 2008; 11 Taylor DG, Bushell MC. The spatial mapping of translational diffusion coefficients by the NMR imaging technique. Phys Med Biol. 1985;30(4):345–9. PubMed PMID: [4001161]. Andersson, Skare (bb0045) 2010 Chen, Wyrwicz (bb0060) 1999; 41 PubMed PMID: [14568458]. (bb0140) 2010 Kybic J, Thevenaz P, Nirkko A, Unser M. Unwarping of unidirectionally distorted EPI images. IEEE Trans Med Imaging. 2000;19(2):80–93. doi Zhang Z, Yang L, Zheng Y, editors. Translating and segmenting multimodal medical volumes with cycle-and shapeconsistency generative adversarial network. Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. ArXiv e-prints [internet]. 2016 November 01, 2016. Available from abs/2017arXiv171207695H. Wolterink JM, Dinkla AM, Savenije MHF, Seevinck PR, van den Berg CAT, Isgum I. Deep MR to CT synthesis using unpaired data. ArXiv e-prints [Internet]. 2017 August 01, 2017. Available from Jezzard, Balaban (bb0040) 1995; 34 Cao X, Yang J, Gao Y, Wang Q, Shen D. Region-adaptive deformable registration of CT/MRI pelvic images via learning-based image synthesis. IEEE Trans Image Process. 2018. doi PubMed PMID: 29994091; PubMed Central PMCID: [PMCPMC6165687]. Venkatraman VK, Gonzalez CE, Landman B, Goh J, Reiter DA, An Y, et al. Region of interest correction factors improve reliability of diffusion imaging measures within and across scanners and field strengths. NeuroImage. 2015;119:406–16. doi Xue R, van Zijl PC, Crain BJ, Solaiyappan M, Mori S. In vivo three-dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine. 1999;42(6):1123–7. [PubMed PMID: 10571934]. PubMed PMID: [21979382]. Welander P, Karlsson S, Eklund A. Generative adversarial networks for image-to-image translation on multi-contrast MR images - a comparison of CycleGAN and UNIT. ArXiv e-prints [internet]. 2018 June 01, 2018. Available from Huang H, Ceritoglu C, Li X, Qiu A, Miller MI, van Zijl PC, et al. Correction of B0 susceptibility induced distortion in diffusion-weighted images using large-deformation diffeomorphic metric mapping. Magn Reson Imaging. 2008;26(9):1294–302. doi Huo, Xu, Moon, Bao, Assad, Moyo (bb0250) 2018; 38 PubMed PMID: 19944768; PubMed Central PMCID: [PMCPMC2819607]. Cao X, Yang J, Gao Y, Guo Y, Wu G, Shen D. Dual-core steered non-rigid registration for multi-modal images via bi-directional image synthesis. Med Image Anal. 2017;41:18–31. doi PubMed PMID: 22401760; PubMed Central PMCID: [PMCPMC3653420]. PubMed PMID: 18499384; PubMed Central PMCID: [PMCPMC2612638]. Chang, Chuang, Lin, Wang, Huang, Chung (bb0150) 2013; 3 Irfanoglu MO, Walker L, Sarlls J, Marenco S, Pierpaoli C. Effects of image distortions originating from susceptibility variations and concomitant fields on diffusion MRI tractography results. NeuroImage. 2012;61(1):275–88. doi PubMed PMID: 27816859; PubMed Central PMCID: [PMCPMC5239759]. PubMed PMID: [3763909]. Choi, Choi, Kim, Ha, Kim, Choo (bb0270) 2017 Irfanoglu, Walker, Sammet, Pierpaoli, Machiraju (bb0100) 2011; 14 Ordidge R. The development of echo-planar imaging (EPI): 1977-1982. MAGMA. 1999;9(3):117–21. PubMed PMID: [10628684]. PubMed PMID: 26146196; PubMed Central PMCID: [PMCPMC5519407]. Holland D, Kuperman JM, Dale AM. Efficient correction of inhomogeneous static magnetic field-induced distortion in Echo Planar Imaging. NeuroImage. 2010;50(1):175–83. doi Gallichan, Andersson, Jenkinson, Robson, Miller (bb0145) 2010; 64 Porter (10.1016/j.mri.2019.05.008_bb0240) 2009; 62 10.1016/j.mri.2019.05.008_bb0050 Andersson (10.1016/j.mri.2019.05.008_bb0045) 2010 10.1016/j.mri.2019.05.008_bb0090 10.1016/j.mri.2019.05.008_bb0135 10.1016/j.mri.2019.05.008_bb0130 10.1016/j.mri.2019.05.008_bb0010 Chang (10.1016/j.mri.2019.05.008_bb0150) 2013; 3 10.1016/j.mri.2019.05.008_bb0215 Roy (10.1016/j.mri.2019.05.008_bb0080) 2016; 2016 Smith (10.1016/j.mri.2019.05.008_bb0125) 2004; 23 (10.1016/j.mri.2019.05.008_bb0105) 1994 10.1016/j.mri.2019.05.008_bb0280 10.1016/j.mri.2019.05.008_bb0085 Zhang (10.1016/j.mri.2019.05.008_bb0255) 2018 10.1016/j.mri.2019.05.008_bb0200 Zeng (10.1016/j.mri.2019.05.008_bb0070) 2002; 48 10.1016/j.mri.2019.05.008_bb0245 10.1016/j.mri.2019.05.008_bb0005 10.1016/j.mri.2019.05.008_bb0120 Chen (10.1016/j.mri.2019.05.008_bb0060) 1999; 41 10.1016/j.mri.2019.05.008_bb0165 Morgan (10.1016/j.mri.2019.05.008_bb0110) 2004; 19 10.1016/j.mri.2019.05.008_bb0205 Jezzard (10.1016/j.mri.2019.05.008_bb0040) 1995; 34 Roy (10.1016/j.mri.2019.05.008_bb0210) 2014; 9034 Burgos (10.1016/j.mri.2019.05.008_bb0160) 2015; 2 Gallichan (10.1016/j.mri.2019.05.008_bb0145) 2010; 64 10.1016/j.mri.2019.05.008_bb0030 10.1016/j.mri.2019.05.008_bb0195 Brock (10.1016/j.mri.2019.05.008_bb0275) 2018 10.1016/j.mri.2019.05.008_bb0190 10.1016/j.mri.2019.05.008_bb0035 10.1016/j.mri.2019.05.008_bb0235 10.1016/j.mri.2019.05.008_bb0115 Wu (10.1016/j.mri.2019.05.008_bb0055) 2008; 11 (10.1016/j.mri.2019.05.008_bb0140) 2010 10.1016/j.mri.2019.05.008_bb0230 10.1016/j.mri.2019.05.008_bb0155 Mori (10.1016/j.mri.2019.05.008_bb0020) 2002; 15 Dar (10.1016/j.mri.2019.05.008_bb0265) 2018 Techavipoo (10.1016/j.mri.2019.05.008_bb0065) 2009; 30 Choi (10.1016/j.mri.2019.05.008_bb0270) 2017 Tao (10.1016/j.mri.2019.05.008_bb0095) 2009; 21 Irfanoglu (10.1016/j.mri.2019.05.008_bb0100) 2011; 14 10.1016/j.mri.2019.05.008_bb0180 Jog (10.1016/j.mri.2019.05.008_bb0175) 2013; 2013 10.1016/j.mri.2019.05.008_bb0025 Zaitsev (10.1016/j.mri.2019.05.008_bb0075) 2004; 52 10.1016/j.mri.2019.05.008_bb0225 Novikov (10.1016/j.mri.2019.05.008_bb0015) 2016 10.1016/j.mri.2019.05.008_bb0185 Huo (10.1016/j.mri.2019.05.008_bb0250) 2018; 38 10.1016/j.mri.2019.05.008_bb0220 Lee (10.1016/j.mri.2019.05.008_bb0170) 2017 (10.1016/j.mri.2019.05.008_bb0260) 2018 |
References_xml | – reference: . PubMed PMID: [10784280]. – volume: 48 start-page: 137 year: 2002 end-page: 146 ident: bb0070 article-title: Image distortion correction in EPI: comparison of field mapping with point spread function mapping publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine – reference: . PubMed PMID: 23702418; PubMed Central PMCID: [PMCPMC3720790]. – reference: . PubMed PMID: [25055381]. – year: 2018 ident: bb0275 article-title: Large scale GAN training for high fidelity natural image synthesis publication-title: arXiv preprint arXiv:180911096 – reference: Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161(2):401–7. doi: – reference: . PubMed PMID: [21979382]. – reference: - abs/2017arXiv170801155W. – year: 2018 ident: bb0260 article-title: More knowledge is better: cross-modality volume completion and 3D+ 2D segmentation for intracardiac echocardiography contouring publication-title: International conference on medical image computing and computer-assisted intervention – volume: 2 start-page: A31 year: 2015 ident: bb0160 article-title: CT synthesis in the head & neck region for PET/MR attenuation correction: an iterative multi-atlas approach publication-title: EJNMMI Phys – start-page: 10133 year: 2017 ident: bb0170 article-title: Multi-atlas-based CT synthesis from conventional MRI with patch-based refinement for MRI-based radiotherapy planning publication-title: Proc SPIE Int Soc Opt Eng – volume: 34 start-page: 65 year: 1995 end-page: 73 ident: bb0040 article-title: Correction for geometric distortion in echo planar images from B0 field variations publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine – reference: Zhu J-Y, Park T, Isola P, Efros AA. Unpaired image-to-image translation using cycle-consistent adversarial networks. ArXiv e-prints [internet]. 2017 March 01, 2017. Available from: – reference: Welander P, Karlsson S, Eklund A. Generative adversarial networks for image-to-image translation on multi-contrast MR images - a comparison of CycleGAN and UNIT. ArXiv e-prints [internet]. 2018 June 01, 2018. Available from: – volume: 21 start-page: 664 year: 2009 end-page: 675 ident: bb0095 article-title: A variational image-based approach to the correction of susceptibility artifacts in the alignment of diffusion weighted and structural MRI publication-title: Inf Process Med Imaging – reference: - abs/2018arXiv180508841C. – volume: 30 start-page: 699 year: 2009 end-page: 707 ident: bb0065 article-title: Toward a practical protocol for human optic nerve DTI with EPI geometric distortion correction publication-title: Journal of magnetic resonance imaging: JMRI – volume: 2016 start-page: 146 year: 2016 end-page: 156 ident: bb0080 article-title: Patch based synthesis of whole head MR images: application to EPI distortion correction publication-title: Simul Synth Med Imaging – reference: - abs/2016arXiv161107004I. – reference: Sotiropoulos SN, Jbabdi S, Xu J, Andersson JL, Moeller S, Auerbach EJ, et al. Advances in diffusion MRI acquisition and processing in the Human Connectome Project. NeuroImage. 2013;80:125–43. doi: – reference: . PubMed PMID: [14568458]. – volume: 11 start-page: 321 year: 2008 end-page: 329 ident: bb0055 article-title: Comparison of EPI distortion correction methods in diffusion tensor MRI using a novel framework publication-title: Med Image Comput Comput Assist Interv. – reference: Mori S, Crain BJ, Chacko VP, van Zijl PC. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol. 1999;45(2):265–9. [Epub 1999/02/16. PubMed PMID: 9989633]. – volume: 64 start-page: 382 year: 2010 end-page: 390 ident: bb0145 article-title: Reducing distortions in diffusion-weighted echo planar imaging with a dual-echo blip-reversed sequence publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine – reference: Irfanoglu MO, Modi P, Nayak A, Hutchinson EB, Sarlls J, Pierpaoli C. DR-BUDDI (Diffeomorphic Registration for Blip-Up blip-Down Diffusion Imaging) method for correcting echo planar imaging distortions. NeuroImage. 2015;106:284–99. doi: – year: 2010 ident: bb0140 article-title: A variational approach for the correction of field-inhomogeneities in EPI sequences publication-title: SPIE Medical Imaging – reference: Irfanoglu MO, Walker L, Sarlls J, Marenco S, Pierpaoli C. Effects of image distortions originating from susceptibility variations and concomitant fields on diffusion MRI tractography results. NeuroImage. 2012;61(1):275–88. doi: – reference: Holland D, Kuperman JM, Dale AM. Efficient correction of inhomogeneous static magnetic field-induced distortion in Echo Planar Imaging. NeuroImage. 2010;50(1):175–83. doi: – reference: - abs/2017arXiv171207695H. – reference: . PubMed PMID: 22401760; PubMed Central PMCID: [PMCPMC3653420]. – volume: 2013 start-page: 350 year: 2013 end-page: 353 ident: bb0175 article-title: Magnetic resonance image synthesis through patch regression publication-title: Proc IEEE Int Symp Biomed Imaging – reference: Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. Fsl. NeuroImage. 2012;62(2):782–90. doi: – reference: . PubMed PMID: 29994091; PubMed Central PMCID: [PMCPMC6165687]. – volume: 38 start-page: 1016 year: 2018 end-page: 1025 ident: bb0250 article-title: SynSeg-Net: synthetic segmentation without target modality ground truth publication-title: IEEE Trans Med Imaging – reference: Huang H, Ceritoglu C, Li X, Qiu A, Miller MI, van Zijl PC, et al. Correction of B0 susceptibility induced distortion in diffusion-weighted images using large-deformation diffeomorphic metric mapping. Magn Reson Imaging. 2008;26(9):1294–302. doi: – reference: Venkatraman VK, Gonzalez CE, Landman B, Goh J, Reiter DA, An Y, et al. Region of interest correction factors improve reliability of diffusion imaging measures within and across scanners and field strengths. NeuroImage. 2015;119:406–16. doi: – volume: 3 start-page: 73 year: 2013 end-page: 81 ident: bb0150 article-title: Correction of geometric distortion in Propeller echo planar imaging using a modified reversed gradient approach publication-title: Quant Imaging Med Surg – reference: Andersson JL, Skare S, Ashburner J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage. 2003;20(2):870–88. doi: – reference: . PubMed PMID: 28533050; PubMed Central PMCID: [PMCPMC5896773]. – year: 1994 ident: bb0105 article-title: Correction of geometric distortion in echo planar images publication-title: Proceedings of 2nd annual meeting of the SMR – year: 2018 ident: bb0265 article-title: Image synthesis in multi-contrast MRI with conditional generative adversarial networks publication-title: arXiv preprint arXiv:180201221 – year: 2010 ident: bb0045 article-title: Image distortion and its correction in diffusion MRI publication-title: Diffusion MRI: theory, methods, and applications – reference: Cohen JP, Luck M, Honari S. Distribution matching losses can hallucinate features in medical image translation. ArXiv e-prints [Internet]. 2018 May 01, 2018. Available from: – volume: 41 start-page: 1206 year: 1999 end-page: 1213 ident: bb0060 article-title: Correction for EPI distortions using multi-echo gradient-echo imaging publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine. – reference: . PubMed PMID: 27816859; PubMed Central PMCID: [PMCPMC5239759]. – reference: Kybic J, Thevenaz P, Nirkko A, Unser M. Unwarping of unidirectionally distorted EPI images. IEEE Trans Med Imaging. 2000;19(2):80–93. doi: – reference: - abs/2017arXiv170310593Z. – reference: . PubMed PMID: [12906253]. – year: 2018 ident: bb0255 article-title: Task driven generative modeling for unsupervised domain adaptation: application to X-ray image segmentation publication-title: arXiv preprint arXiv:180607201 – start-page: 1711 year: 2017 ident: bb0270 article-title: Stargan: unified generative adversarial networks for multi-domain image-to-image translation. arXiv preprint – year: 2016 ident: bb0015 article-title: Quantifying brain microstructure with diffusion MRI: theory and parameter estimation. Eprint arXiv – reference: Burgos N, Cardoso MJ, Thielemans K, Modat M, Pedemonte S, Dickson J, et al. Attenuation correction synthesis for hybrid PET-MR scanners: application to brain studies. IEEE Trans Med Imaging. 2014;33(12):2332–41. doi: – reference: . PubMed PMID: 25433212; PubMed Central PMCID: [PMCPMC4286283]. – reference: - abs/2018arXiv180607777W. – reference: Huo Y, Xu Z, Bao S, Assad A, Abramson RG, Landman BA. Adversarial synthesis learning enables segmentation without target modality ground truth. ArXiv e-prints [Internet]. 2017 December 01, 2017. Available from: – reference: . PubMed PMID: 19944768; PubMed Central PMCID: [PMCPMC2819607]. – volume: 15 start-page: 468 year: 2002 end-page: 480 ident: bb0020 article-title: Fiber tracking: principles and strategies – a technical review publication-title: NMR Biomed – volume: 23 start-page: S208 year: 2004 end-page: S219 ident: bb0125 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: NeuroImage. – volume: 9034 year: 2014 ident: bb0210 article-title: MR to CT registration of brains using image synthesis publication-title: Proc SPIE Int Soc Opt Eng – reference: Ordidge R. The development of echo-planar imaging (EPI): 1977-1982. MAGMA. 1999;9(3):117–21. PubMed PMID: [10628684]. – reference: Cao X, Yang J, Gao Y, Wang Q, Shen D. Region-adaptive deformable registration of CT/MRI pelvic images via learning-based image synthesis. IEEE Trans Image Process. 2018. doi: – reference: . PubMed PMID: 26146196; PubMed Central PMCID: [PMCPMC5519407]. – reference: . PubMed PMID: 18499384; PubMed Central PMCID: [PMCPMC2612638]. – volume: 14 start-page: 174 year: 2011 end-page: 181 ident: bb0100 article-title: Susceptibility distortion correction for echo planar images with non-uniform B-spline grid sampling: a diffusion tensor image study publication-title: Med Image Comput Comput Assist Interv – volume: 19 start-page: 499 year: 2004 end-page: 507 ident: bb0110 article-title: Correction of spatial distortion in EPI due to inhomogeneous static magnetic fields using the reversed gradient method publication-title: J Magn Reson Imaging – reference: Wolterink JM, Dinkla AM, Savenije MHF, Seevinck PR, van den Berg CAT, Isgum I. Deep MR to CT synthesis using unpaired data. ArXiv e-prints [Internet]. 2017 August 01, 2017. Available from: – reference: . PubMed PMID: [3763909]. – volume: 62 start-page: 468 year: 2009 end-page: 475 ident: bb0240 article-title: High resolution diffusion-weighted imaging using readout-segmented echo-planar imaging, parallel imaging and a two-dimensional navigator-based reacquisition publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine – reference: Cao X, Yang J, Gao Y, Guo Y, Wu G, Shen D. Dual-core steered non-rigid registration for multi-modal images via bi-directional image synthesis. Med Image Anal. 2017;41:18–31. doi: – reference: Chen M, Carass A, Jog A, Lee J, Roy S, Prince JL. Cross contrast multi-channel image registration using image synthesis for MR brain images. Med Image Anal. 2017;36:2–14. doi: – reference: Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. ArXiv e-prints [internet]. 2016 November 01, 2016. Available from: – volume: 52 start-page: 1156 year: 2004 end-page: 1166 ident: bb0075 article-title: Point spread function mapping with parallel imaging techniques and high acceleration factors: fast, robust, and flexible method for echo-planar imaging distortion correction publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine – reference: Ferrucci L. The Baltimore Longitudinal Study of Aging (BLSA): a 50-year-long journey and plans for the future. J Gerontol A Biol Sci Med Sci. 2008;63(12):1416–9. PubMed PMID: 19126858; PubMed Central PMCID: [PMCPMC5004590]. – reference: Zhang Z, Yang L, Zheng Y, editors. Translating and segmenting multimodal medical volumes with cycle-and shapeconsistency generative adversarial network. – reference: Taylor DG, Bushell MC. The spatial mapping of translational diffusion coefficients by the NMR imaging technique. Phys Med Biol. 1985;30(4):345–9. PubMed PMID: [4001161]. – reference: Pluim JP, Maintz JB, Viergever MA. Mutual-information-based registration of medical images: a survey. IEEE Trans Med Imaging. 2003;22(8):986–1004. doi: – reference: Xue R, van Zijl PC, Crain BJ, Solaiyappan M, Mori S. In vivo three-dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine. 1999;42(6):1123–7. [PubMed PMID: 10571934]. – ident: 10.1016/j.mri.2019.05.008_bb0115 doi: 10.1016/S1053-8119(03)00336-7 – ident: 10.1016/j.mri.2019.05.008_bb0225 doi: 10.1109/TIP.2018.2820424 – ident: 10.1016/j.mri.2019.05.008_bb0215 doi: 10.1016/j.media.2016.10.005 – ident: 10.1016/j.mri.2019.05.008_bb0050 doi: 10.1016/j.neuroimage.2012.02.054 – volume: 30 start-page: 699 issue: 4 year: 2009 ident: 10.1016/j.mri.2019.05.008_bb0065 article-title: Toward a practical protocol for human optic nerve DTI with EPI geometric distortion correction publication-title: Journal of magnetic resonance imaging: JMRI doi: 10.1002/jmri.21836 – volume: 3 start-page: 73 issue: 2 year: 2013 ident: 10.1016/j.mri.2019.05.008_bb0150 article-title: Correction of geometric distortion in Propeller echo planar imaging using a modified reversed gradient approach publication-title: Quant Imaging Med Surg – volume: 23 start-page: S208 issue: Suppl. 1 year: 2004 ident: 10.1016/j.mri.2019.05.008_bb0125 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: NeuroImage. doi: 10.1016/j.neuroimage.2004.07.051 – ident: 10.1016/j.mri.2019.05.008_bb0220 doi: 10.1016/j.media.2017.05.004 – start-page: 10133 year: 2017 ident: 10.1016/j.mri.2019.05.008_bb0170 article-title: Multi-atlas-based CT synthesis from conventional MRI with patch-based refinement for MRI-based radiotherapy planning publication-title: Proc SPIE Int Soc Opt Eng – volume: 14 start-page: 174 issue: Pt 2 year: 2011 ident: 10.1016/j.mri.2019.05.008_bb0100 article-title: Susceptibility distortion correction for echo planar images with non-uniform B-spline grid sampling: a diffusion tensor image study publication-title: Med Image Comput Comput Assist Interv – year: 1994 ident: 10.1016/j.mri.2019.05.008_bb0105 article-title: Correction of geometric distortion in echo planar images – volume: 21 start-page: 664 year: 2009 ident: 10.1016/j.mri.2019.05.008_bb0095 article-title: A variational image-based approach to the correction of susceptibility artifacts in the alignment of diffusion weighted and structural MRI publication-title: Inf Process Med Imaging doi: 10.1007/978-3-642-02498-6_55 – volume: 9034 year: 2014 ident: 10.1016/j.mri.2019.05.008_bb0210 article-title: MR to CT registration of brains using image synthesis publication-title: Proc SPIE Int Soc Opt Eng – year: 2010 ident: 10.1016/j.mri.2019.05.008_bb0140 article-title: A variational approach for the correction of field-inhomogeneities in EPI sequences – volume: 11 start-page: 321 issue: Pt 2 year: 2008 ident: 10.1016/j.mri.2019.05.008_bb0055 article-title: Comparison of EPI distortion correction methods in diffusion tensor MRI using a novel framework publication-title: Med Image Comput Comput Assist Interv. – ident: 10.1016/j.mri.2019.05.008_bb0180 – year: 2018 ident: 10.1016/j.mri.2019.05.008_bb0275 article-title: Large scale GAN training for high fidelity natural image synthesis – start-page: 1711 year: 2017 ident: 10.1016/j.mri.2019.05.008_bb0270 – year: 2018 ident: 10.1016/j.mri.2019.05.008_bb0260 article-title: More knowledge is better: cross-modality volume completion and 3D+ 2D segmentation for intracardiac echocardiography contouring – ident: 10.1016/j.mri.2019.05.008_bb0165 doi: 10.1109/TMI.2014.2340135 – volume: 48 start-page: 137 issue: 1 year: 2002 ident: 10.1016/j.mri.2019.05.008_bb0070 article-title: Image distortion correction in EPI: comparison of field mapping with point spread function mapping publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine doi: 10.1002/mrm.10200 – ident: 10.1016/j.mri.2019.05.008_bb0130 doi: 10.1016/j.neuroimage.2013.05.057 – ident: 10.1016/j.mri.2019.05.008_bb0090 doi: 10.1016/j.mri.2008.03.005 – volume: 62 start-page: 468 issue: 2 year: 2009 ident: 10.1016/j.mri.2019.05.008_bb0240 article-title: High resolution diffusion-weighted imaging using readout-segmented echo-planar imaging, parallel imaging and a two-dimensional navigator-based reacquisition publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine doi: 10.1002/mrm.22024 – ident: 10.1016/j.mri.2019.05.008_bb0185 doi: 10.1109/ICCV.2017.244 – ident: 10.1016/j.mri.2019.05.008_bb0230 doi: 10.1093/gerona/63.12.1416 – ident: 10.1016/j.mri.2019.05.008_bb0005 doi: 10.1148/radiology.161.2.3763909 – ident: 10.1016/j.mri.2019.05.008_bb0120 doi: 10.1016/j.neuroimage.2011.09.015 – ident: 10.1016/j.mri.2019.05.008_bb0135 doi: 10.1016/j.neuroimage.2009.11.044 – volume: 64 start-page: 382 issue: 2 year: 2010 ident: 10.1016/j.mri.2019.05.008_bb0145 article-title: Reducing distortions in diffusion-weighted echo planar imaging with a dual-echo blip-reversed sequence publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine doi: 10.1002/mrm.22318 – volume: 38 start-page: 1016 year: 2018 ident: 10.1016/j.mri.2019.05.008_bb0250 article-title: SynSeg-Net: synthetic segmentation without target modality ground truth publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2018.2876633 – ident: 10.1016/j.mri.2019.05.008_bb0235 doi: 10.1016/j.neuroimage.2015.06.078 – volume: 19 start-page: 499 issue: 4 year: 2004 ident: 10.1016/j.mri.2019.05.008_bb0110 article-title: Correction of spatial distortion in EPI due to inhomogeneous static magnetic fields using the reversed gradient method publication-title: J Magn Reson Imaging doi: 10.1002/jmri.20032 – year: 2018 ident: 10.1016/j.mri.2019.05.008_bb0265 article-title: Image synthesis in multi-contrast MRI with conditional generative adversarial networks – ident: 10.1016/j.mri.2019.05.008_bb0245 doi: 10.1109/TMI.2003.815867 – ident: 10.1016/j.mri.2019.05.008_bb0025 doi: 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3 – volume: 52 start-page: 1156 issue: 5 year: 2004 ident: 10.1016/j.mri.2019.05.008_bb0075 article-title: Point spread function mapping with parallel imaging techniques and high acceleration factors: fast, robust, and flexible method for echo-planar imaging distortion correction publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine doi: 10.1002/mrm.20261 – volume: 2013 start-page: 350 year: 2013 ident: 10.1016/j.mri.2019.05.008_bb0175 article-title: Magnetic resonance image synthesis through patch regression publication-title: Proc IEEE Int Symp Biomed Imaging – volume: 41 start-page: 1206 issue: 6 year: 1999 ident: 10.1016/j.mri.2019.05.008_bb0060 article-title: Correction for EPI distortions using multi-echo gradient-echo imaging publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine. doi: 10.1002/(SICI)1522-2594(199906)41:6<1206::AID-MRM17>3.0.CO;2-L – year: 2010 ident: 10.1016/j.mri.2019.05.008_bb0045 article-title: Image distortion and its correction in diffusion MRI – year: 2016 ident: 10.1016/j.mri.2019.05.008_bb0015 – ident: 10.1016/j.mri.2019.05.008_bb0035 doi: 10.1007/BF02594607 – ident: 10.1016/j.mri.2019.05.008_bb0010 doi: 10.1088/0031-9155/30/4/009 – ident: 10.1016/j.mri.2019.05.008_bb0155 doi: 10.1016/j.neuroimage.2014.11.042 – volume: 2 start-page: A31 issue: Suppl. 1 year: 2015 ident: 10.1016/j.mri.2019.05.008_bb0160 article-title: CT synthesis in the head & neck region for PET/MR attenuation correction: an iterative multi-atlas approach publication-title: EJNMMI Phys doi: 10.1186/2197-7364-2-S1-A31 – ident: 10.1016/j.mri.2019.05.008_bb0205 doi: 10.1007/978-3-030-00928-1_60 – ident: 10.1016/j.mri.2019.05.008_bb0030 doi: 10.1002/(SICI)1522-2594(199912)42:6<1123::AID-MRM17>3.0.CO;2-H – ident: 10.1016/j.mri.2019.05.008_bb0085 doi: 10.1109/42.836368 – ident: 10.1016/j.mri.2019.05.008_bb0280 – volume: 15 start-page: 468 issue: 7–8 year: 2002 ident: 10.1016/j.mri.2019.05.008_bb0020 article-title: Fiber tracking: principles and strategies – a technical review publication-title: NMR Biomed doi: 10.1002/nbm.781 – ident: 10.1016/j.mri.2019.05.008_bb0195 – year: 2018 ident: 10.1016/j.mri.2019.05.008_bb0255 article-title: Task driven generative modeling for unsupervised domain adaptation: application to X-ray image segmentation – volume: 2016 start-page: 146 issue: 9968 year: 2016 ident: 10.1016/j.mri.2019.05.008_bb0080 article-title: Patch based synthesis of whole head MR images: application to EPI distortion correction publication-title: Simul Synth Med Imaging doi: 10.1007/978-3-319-46630-9_15 – ident: 10.1016/j.mri.2019.05.008_bb0200 – volume: 34 start-page: 65 issue: 1 year: 1995 ident: 10.1016/j.mri.2019.05.008_bb0040 article-title: Correction for geometric distortion in echo planar images from B0 field variations publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine doi: 10.1002/mrm.1910340111 – ident: 10.1016/j.mri.2019.05.008_bb0190 doi: 10.1007/978-3-319-68127-6_2 |
SSID | ssj0005235 |
Score | 2.6113844 |
Snippet | Diffusion magnetic resonance images typically suffer from spatial distortions due to susceptibility induced off-resonance fields, which may affect the... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 62 |
SubjectTerms | Adult Aged Aged, 80 and over Algorithms Brain - anatomy & histology Conditional generative network Diffusion Magnetic Resonance Imaging - methods Diffusion MRI Distortion correction Echo planar imaging Echo-Planar Imaging - methods Humans Image Processing, Computer-Assisted - methods Image synthesis Middle Aged |
Title | Synthesized b0 for diffusion distortion correction (Synb0-DisCo) |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X18306179 https://dx.doi.org/10.1016/j.mri.2019.05.008 https://www.ncbi.nlm.nih.gov/pubmed/31075422 https://www.proquest.com/docview/2231908543 https://pubmed.ncbi.nlm.nih.gov/PMC6834894 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5EQbyIb9cXFTyoULcmadPeXFZlVfSiwt5C06RY0a7s46AHf7szfSyuioK3PmYgzExnvjTzANijFumREdINuEhdEVjPjWPc81jJrDRap4GgQuHrm6BzLy67fncK2nUtDKVVVr6_9OmFt66eNCtpNl-yrHlLximZ30WjpDhMRXxCSLLyo_fPaR7lkE0kdom6Ptkscrye-xlld0VF806aMPlzbPqOPb-mUH6KSecLMF-BSadVrncRpmy-BLPX1XH5MpzcvuYI8AbZmzWO9hwEqA5NRBnRLzK8osxIUoyT0IyOosLB2Uce7bmn2aDdO1iB-_Ozu3bHrUYmuIkfyKEb2igxYcq0NgyRnTxOU9RGHBnte7Hg8bEfW88yzfGJlSkLfSlSDFhC8FRHlvFVmM57uV0HxxjcSyXaIgaLRbENxGjOEs4T2pSZsAFeLSyVVP3EaazFk6oTxx4VyleRfJXnK5RvAw7HLC9lM43fiFmtAVVXiaJfU-jqf2MSY6YJM_qLbbdWscLPi85M4tz2RgOF6AkhU-gL3oC1UuXjpSMypvnBrAFywhjGBNS6e_JNnj0ULbyDkIswEhv_W-4mzNFdmVWzBdPD_shuIzYa6p3C-HdgpnVx1bn5AIKrDZc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB5BkAoXVN6BlhqJQ0GyYvbhtW-gAAqF5AJIua283rVwVRxEkgP99Z3xIyJtBRI3a3dHWs3MznzrnQfAIZVIj61QfshF5ovQBX6S4J3HKeaUNSYLBSUK9wdh7178GMrhAnSbXBgKq6xtf2XTS2tdj3Rqbnae8rxzS8qpmByiUpIfjhdhiapTyRYsnV1d9wavIj2qPpu43ieC5nGzDPN6fM4pwCsu63dSk8n_u6d_4effUZSv3NLlZ1it8aR3Vm15DRZcsQ6f-vWL-Qac3r4UiPHG-W9nPRN4iFE9aooypb9k-EXBkSQbL6U2HWWSg_cdaUzgn-fj7uhoE-4vL-66Pb_umuCnMlQTP3JxaqOMGWMZgjt1kmUokCS2RgaJ4MmJTFzgmOE44lTGIqlEhj5LCJ6Z2DG-Ba1iVLgd8KzF61RqHMKwRJQ3QXToLOU8pXuZjdoQNMzSaV1SnDpb_NJN7NhPjfzVxF8dSI38bcPxjOSpqqfx1mLWSEA3iaJo2jRa-7eIxIxoTpPeIztoRKzxhNGzSVK40XSsEUAhaoqk4G3YrkQ-2zqCY2ohzNqg5pRhtoCqd8_PFPlDWcU7jLiIYrH7se1-g-XeXf9G31wNrvdghWaqIJsv0Jo8T91XhEoTs18fhT-1xRBI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesized+b0+for+diffusion+distortion+correction+%28Synb0-DisCo%29&rft.jtitle=Magnetic+resonance+imaging&rft.au=Schilling%2C+Kurt+G.&rft.au=Blaber%2C+Justin&rft.au=Huo%2C+Yuankai&rft.au=Newton%2C+Allen&rft.date=2019-12-01&rft.pub=Elsevier+Inc&rft.issn=0730-725X&rft.volume=64&rft.spage=62&rft.epage=70&rft_id=info:doi/10.1016%2Fj.mri.2019.05.008&rft.externalDocID=S0730725X18306179 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-725X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-725X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-725X&client=summon |