Synthesized b0 for diffusion distortion correction (Synb0-DisCo)

Diffusion magnetic resonance images typically suffer from spatial distortions due to susceptibility induced off-resonance fields, which may affect the geometric fidelity of the reconstructed volume and cause mismatches with anatomical images. State-of-the art susceptibility correction (for example,...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance imaging Vol. 64; pp. 62 - 70
Main Authors Schilling, Kurt G., Blaber, Justin, Huo, Yuankai, Newton, Allen, Hansen, Colin, Nath, Vishwesh, Shafer, Andrea T., Williams, Owen, Resnick, Susan M., Rogers, Baxter, Anderson, Adam W., Landman, Bennett A.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Diffusion magnetic resonance images typically suffer from spatial distortions due to susceptibility induced off-resonance fields, which may affect the geometric fidelity of the reconstructed volume and cause mismatches with anatomical images. State-of-the art susceptibility correction (for example, FSL's TOPUP algorithm) typically requires data acquired twice with reverse phase encoding directions, referred to as blip-up blip-down acquisitions, in order to estimate an undistorted volume. Unfortunately, not all imaging protocols include a blip-up blip-down acquisition, and cannot take advantage of the state-of-the art susceptibility and motion correction capabilities. In this study, we aim to enable TOPUP-like processing with historical and/or limited diffusion imaging data that include only a structural image and single blip diffusion image. We utilize deep learning to synthesize an undistorted non-diffusion weighted image from the structural image, and use the non-distorted synthetic image as an anatomical target for distortion correction. We evaluate the efficacy of this approach (named Synb0-DisCo) and show that our distortion correction process results in better matching of the geometry of undistorted anatomical images, reduces variation in diffusion modeling, and is practically equivalent to having both blip-up and blip-down non-diffusion weighted images.
AbstractList Diffusion magnetic resonance images typically suffer from spatial distortions due to susceptibility induced off-resonance fields, which may affect the geometric fidelity of the reconstructed volume and cause mismatches with anatomical images. State-of-the art susceptibility correction (for example, FSL's TOPUP algorithm) typically requires data acquired twice with reverse phase encoding directions, referred to as blip-up blip-down acquisitions, in order to estimate an undistorted volume. Unfortunately, not all imaging protocols include a blip-up blip-down acquisition, and cannot take advantage of the state-of-the art susceptibility and motion correction capabilities. In this study, we aim to enable TOPUP-like processing with historical and/or limited diffusion imaging data that include only a structural image and single blip diffusion image. We utilize deep learning to synthesize an undistorted non-diffusion weighted image from the structural image, and use the non-distorted synthetic image as an anatomical target for distortion correction. We evaluate the efficacy of this approach (named Synb0-DisCo) and show that our distortion correction process results in better matching of the geometry of undistorted anatomical images, reduces variation in diffusion modeling, and is practically equivalent to having both blip-up and blip-down non-diffusion weighted images.
Diffusion magnetic resonance images typically suffer from spatial distortions due to susceptibility induced off-resonance fields, which may affect the geometric fidelity of the reconstructed volume and cause mismatches with anatomical images. State-of-the art susceptibility correction (for example, FSL's TOPUP algorithm) typically requires data acquired twice with reverse phase encoding directions, referred to as blip-up blip-down acquisitions, in order to estimate an undistorted volume. Unfortunately, not all imaging protocols include a blip-up blip-down acquisition, and cannot take advantage of the state-of-the art susceptibility and motion correction capabilities. In this study, we aim to enable TOPUP-like processing with historical and/or limited diffusion imaging data that include only a structural image and single blip diffusion image. We utilize deep learning to synthesize an undistorted non-diffusion weighted image from the structural image, and use the non-distorted synthetic image as an anatomical target for distortion correction. We evaluate the efficacy of this approach (named Synb0-DisCo) and show that our distortion correction process results in better matching of the geometry of undistorted anatomical images, reduces variation in diffusion modeling, and is practically equivalent to having both blip-up and blip-down non-diffusion weighted images.Diffusion magnetic resonance images typically suffer from spatial distortions due to susceptibility induced off-resonance fields, which may affect the geometric fidelity of the reconstructed volume and cause mismatches with anatomical images. State-of-the art susceptibility correction (for example, FSL's TOPUP algorithm) typically requires data acquired twice with reverse phase encoding directions, referred to as blip-up blip-down acquisitions, in order to estimate an undistorted volume. Unfortunately, not all imaging protocols include a blip-up blip-down acquisition, and cannot take advantage of the state-of-the art susceptibility and motion correction capabilities. In this study, we aim to enable TOPUP-like processing with historical and/or limited diffusion imaging data that include only a structural image and single blip diffusion image. We utilize deep learning to synthesize an undistorted non-diffusion weighted image from the structural image, and use the non-distorted synthetic image as an anatomical target for distortion correction. We evaluate the efficacy of this approach (named Synb0-DisCo) and show that our distortion correction process results in better matching of the geometry of undistorted anatomical images, reduces variation in diffusion modeling, and is practically equivalent to having both blip-up and blip-down non-diffusion weighted images.
Author Blaber, Justin
Rogers, Baxter
Resnick, Susan M.
Schilling, Kurt G.
Hansen, Colin
Williams, Owen
Anderson, Adam W.
Nath, Vishwesh
Newton, Allen
Landman, Bennett A.
Huo, Yuankai
Shafer, Andrea T.
AuthorAffiliation 3) Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN
5) Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN
2) Department of Electrical Engineering, Vanderbilt University, Nashville, TN
4) Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD
1) Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN
AuthorAffiliation_xml – name: 1) Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN
– name: 4) Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD
– name: 2) Department of Electrical Engineering, Vanderbilt University, Nashville, TN
– name: 5) Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN
– name: 3) Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN
Author_xml – sequence: 1
  givenname: Kurt G.
  surname: Schilling
  fullname: Schilling, Kurt G.
  email: kurt.g.schilling.1@vumc.org
  organization: Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States of America
– sequence: 2
  givenname: Justin
  surname: Blaber
  fullname: Blaber, Justin
  organization: Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN, United States of America
– sequence: 3
  givenname: Yuankai
  surname: Huo
  fullname: Huo, Yuankai
  organization: Department of Electrical Engineering, Vanderbilt University, Nashville, TN, United States of America
– sequence: 4
  givenname: Allen
  surname: Newton
  fullname: Newton, Allen
  organization: Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States of America
– sequence: 5
  givenname: Colin
  surname: Hansen
  fullname: Hansen, Colin
  organization: Department of Electrical Engineering, Vanderbilt University, Nashville, TN, United States of America
– sequence: 6
  givenname: Vishwesh
  surname: Nath
  fullname: Nath, Vishwesh
  organization: Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN, United States of America
– sequence: 7
  givenname: Andrea T.
  surname: Shafer
  fullname: Shafer, Andrea T.
  organization: Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America
– sequence: 8
  givenname: Owen
  surname: Williams
  fullname: Williams, Owen
  organization: Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America
– sequence: 9
  givenname: Susan M.
  surname: Resnick
  fullname: Resnick, Susan M.
  organization: Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America
– sequence: 10
  givenname: Baxter
  orcidid: 0000-0002-5666-2797
  surname: Rogers
  fullname: Rogers, Baxter
  organization: Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States of America
– sequence: 11
  givenname: Adam W.
  surname: Anderson
  fullname: Anderson, Adam W.
  organization: Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States of America
– sequence: 12
  givenname: Bennett A.
  surname: Landman
  fullname: Landman, Bennett A.
  organization: Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States of America
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31075422$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v1DAQxS1URLeFD8AF7bEcEsZ2vE6EhEDLX6kSB0DiZjnOmM6StYudrbR8ehy2VNBDOfnJfr8Z670TdhRiQMYec6g58NWzTb1NVAvgXQ2qBmjvsQVvtaxU2zVHbAFaQqWF-nrMTnLeAIASUj1gx5KDVo0QC_by0z5MF5jpJw7LHpY-puVA3u8yxVBUnmKaZuliSuh-y7PC9FC9pryOTx-y-96OGR9dn6fsy9s3n9fvq_OP7z6sX51XTq30VLXYuaH1ou8H0WmtufdaadsNvQLbSMuVRUDRy3KD2otW6cbDSjeN9H2HQp6yF4e5l7t-i4PDMCU7mstEW5v2Jloy_74EujDf4pVZtbIpcZQBZ9cDUvyxwzyZLWWH42gDxl02QkjeQasaWaxP_t51s-RPbMXADwaXYs4J_Y2Fg5mrMRtTqjFzNQaUKdUURt9iHE12DrR8l8Y7yecHEku-V4TJZEcYHA40V2KGSHfS3S3ajRTI2fE77v_D_gJg8ryB
CitedBy_id crossref_primary_10_1007_s11604_024_01710_4
crossref_primary_10_1002_jmri_29538
crossref_primary_10_1016_j_bspc_2023_105762
crossref_primary_10_1371_journal_pone_0236418
crossref_primary_10_1016_j_nicl_2022_103244
crossref_primary_10_1136_jnnp_2023_331531
crossref_primary_10_1162_nol_a_00075
crossref_primary_10_52294_001c_123922
crossref_primary_10_1371_journal_pone_0280892
crossref_primary_10_1016_j_neuroimage_2021_118830
crossref_primary_10_1088_1361_6560_ad94c7
crossref_primary_10_1002_hbm_26239
crossref_primary_10_1038_s41380_023_02321_7
crossref_primary_10_1111_jon_12965
crossref_primary_10_1212_NXI_0000000000001058
crossref_primary_10_1002_jmri_29248
crossref_primary_10_1093_bib_bbaa310
crossref_primary_10_1162_netn_a_00276
crossref_primary_10_1186_s41747_025_00570_5
crossref_primary_10_1016_j_psychres_2024_115966
crossref_primary_10_1017_S1355617724000626
crossref_primary_10_1093_bjr_tqae150
crossref_primary_10_1212_WNL_0000000000206862
crossref_primary_10_1016_j_neuroscience_2024_07_026
crossref_primary_10_3389_fnins_2024_1353306
crossref_primary_10_1016_j_heliyon_2024_e34699
crossref_primary_10_1161_STROKEAHA_124_047449
crossref_primary_10_1002_hbm_26662
crossref_primary_10_1016_j_mri_2022_05_016
crossref_primary_10_1002_mrm_29851
crossref_primary_10_3389_fradi_2024_1385742
crossref_primary_10_1016_j_mri_2019_07_004
crossref_primary_10_1016_j_nicl_2025_103737
crossref_primary_10_1002_jnr_70004
crossref_primary_10_1016_j_mri_2023_06_016
crossref_primary_10_1002_hbm_26659
crossref_primary_10_1212_WNL_0000000000209306
crossref_primary_10_1016_j_sleep_2022_12_002
crossref_primary_10_1016_j_pscychresns_2024_111915
crossref_primary_10_1109_TMI_2021_3134496
crossref_primary_10_1016_j_jpain_2024_104536
crossref_primary_10_2463_jjmrm_2022_1754
crossref_primary_10_1016_j_neuroimage_2025_121034
crossref_primary_10_1109_TMI_2021_3059726
crossref_primary_10_1002_hbm_26491
crossref_primary_10_1007_s00221_023_06545_5
crossref_primary_10_1109_JBHI_2023_3240508
crossref_primary_10_1016_j_biopsych_2024_06_014
crossref_primary_10_1002_alz_14343
crossref_primary_10_1007_s10334_024_01182_7
crossref_primary_10_1016_j_nicl_2022_103097
crossref_primary_10_1016_j_mri_2024_01_008
crossref_primary_10_1002_hbm_70042
crossref_primary_10_1016_j_bja_2024_12_036
crossref_primary_10_1162_imag_a_00353
crossref_primary_10_1073_pnas_2207025120
crossref_primary_10_1016_j_neuroimage_2022_119168
crossref_primary_10_1093_braincomms_fcad290
crossref_primary_10_1093_cercor_bhac492
crossref_primary_10_1007_s00406_023_01683_x
crossref_primary_10_3389_fnins_2024_1385847
crossref_primary_10_1016_j_nicl_2024_103711
crossref_primary_10_1016_j_nicl_2023_103444
crossref_primary_10_1016_j_nicl_2024_103679
crossref_primary_10_1002_ana_27180
crossref_primary_10_1007_s00415_024_12511_0
crossref_primary_10_1088_1361_6560_ac60b9
crossref_primary_10_1007_s00415_022_11399_y
crossref_primary_10_1093_cercor_bhac410
crossref_primary_10_1093_brain_awad085
crossref_primary_10_1002_ana_26911
crossref_primary_10_1016_j_mri_2019_12_006
crossref_primary_10_1016_j_media_2023_102744
crossref_primary_10_1016_j_nbas_2023_100067
crossref_primary_10_1007_s00066_023_02120_7
crossref_primary_10_1016_j_cmpb_2023_107597
crossref_primary_10_1016_j_nicl_2022_103279
crossref_primary_10_3389_fninf_2022_883223
crossref_primary_10_5334_tohm_904
crossref_primary_10_1093_brain_awad117
crossref_primary_10_1002_alz_14162
crossref_primary_10_1002_dad2_12468
crossref_primary_10_3389_fneur_2024_1440294
crossref_primary_10_1093_brain_awac265
crossref_primary_10_1177_02841851211056471
crossref_primary_10_1016_j_compbiomed_2024_109334
crossref_primary_10_1002_hbm_26064
crossref_primary_10_1002_acm2_13121
crossref_primary_10_1002_hbm_70135
crossref_primary_10_1002_alz_14371
crossref_primary_10_1162_imag_a_00387
crossref_primary_10_1093_cercor_bhac035
crossref_primary_10_1007_s10278_022_00721_9
crossref_primary_10_3389_fnins_2022_824431
crossref_primary_10_1016_j_neuroimage_2022_119571
crossref_primary_10_1038_s43856_024_00452_8
crossref_primary_10_1002_hbm_26697
crossref_primary_10_1162_neco_a_01623
crossref_primary_10_1016_j_nicl_2021_102696
crossref_primary_10_1007_s00429_020_02185_5
crossref_primary_10_1093_braincomms_fcae139
crossref_primary_10_1002_mds_29578
Cites_doi 10.1016/S1053-8119(03)00336-7
10.1109/TIP.2018.2820424
10.1016/j.media.2016.10.005
10.1016/j.neuroimage.2012.02.054
10.1002/jmri.21836
10.1016/j.neuroimage.2004.07.051
10.1016/j.media.2017.05.004
10.1007/978-3-642-02498-6_55
10.1109/TMI.2014.2340135
10.1002/mrm.10200
10.1016/j.neuroimage.2013.05.057
10.1016/j.mri.2008.03.005
10.1002/mrm.22024
10.1109/ICCV.2017.244
10.1093/gerona/63.12.1416
10.1148/radiology.161.2.3763909
10.1016/j.neuroimage.2011.09.015
10.1016/j.neuroimage.2009.11.044
10.1002/mrm.22318
10.1109/TMI.2018.2876633
10.1016/j.neuroimage.2015.06.078
10.1002/jmri.20032
10.1109/TMI.2003.815867
10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3
10.1002/mrm.20261
10.1002/(SICI)1522-2594(199906)41:6<1206::AID-MRM17>3.0.CO;2-L
10.1007/BF02594607
10.1088/0031-9155/30/4/009
10.1016/j.neuroimage.2014.11.042
10.1186/2197-7364-2-S1-A31
10.1007/978-3-030-00928-1_60
10.1002/(SICI)1522-2594(199912)42:6<1123::AID-MRM17>3.0.CO;2-H
10.1109/42.836368
10.1002/nbm.781
10.1007/978-3-319-46630-9_15
10.1002/mrm.1910340111
10.1007/978-3-319-68127-6_2
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.mri.2019.05.008
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1873-5894
EndPage 70
ExternalDocumentID PMC6834894
31075422
10_1016_j_mri_2019_05_008
S0730725X18306179
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCATS NIH HHS
  grantid: UL1 TR002243
– fundername: NIBIB NIH HHS
  grantid: R01 EB017230
– fundername: NCRR NIH HHS
  grantid: UL1 RR024975
– fundername: NIBIB NIH HHS
  grantid: T32 EB001628
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
3O-
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABDPE
ABFNM
ABGSF
ABJNI
ABMAC
ABMZM
ABNEU
ABOCM
ABUDA
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEI
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSQ
SSU
SSZ
T5K
WUQ
XPP
Z5R
ZGI
ZMT
~G-
~S-
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
G8K
LCYCR
RIG
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c567t-8e9cd8f2bbd297771ff757a9db50a43a15ae0e2b39dbe7f28574f067443fb9e23
IEDL.DBID .~1
ISSN 0730-725X
1873-5894
IngestDate Thu Aug 21 14:04:12 EDT 2025
Thu Jul 10 19:54:18 EDT 2025
Thu Apr 03 06:59:04 EDT 2025
Thu Apr 24 23:04:23 EDT 2025
Tue Jul 01 01:55:24 EDT 2025
Fri Feb 23 02:22:54 EST 2024
Tue Aug 26 16:33:44 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Diffusion MRI
Distortion correction
Image synthesis
Conditional generative network
Echo planar imaging
Language English
License Copyright © 2019 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c567t-8e9cd8f2bbd297771ff757a9db50a43a15ae0e2b39dbe7f28574f067443fb9e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5666-2797
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6834894
PMID 31075422
PQID 2231908543
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6834894
proquest_miscellaneous_2231908543
pubmed_primary_31075422
crossref_primary_10_1016_j_mri_2019_05_008
crossref_citationtrail_10_1016_j_mri_2019_05_008
elsevier_sciencedirect_doi_10_1016_j_mri_2019_05_008
elsevier_clinicalkey_doi_10_1016_j_mri_2019_05_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Magnetic resonance imaging
PublicationTitleAlternate Magn Reson Imaging
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161(2):401–7. doi
abs/2016arXiv161107004I.
PubMed PMID: [10784280].
(bb0260) 2018
Zeng, Constable (bb0070) 2002; 48
Lee, Carass, Jog, Zhao, Prince (bb0170) 2017
PubMed PMID: 25433212; PubMed Central PMCID: [PMCPMC4286283].
Sotiropoulos SN, Jbabdi S, Xu J, Andersson JL, Moeller S, Auerbach EJ, et al. Advances in diffusion MRI acquisition and processing in the Human Connectome Project. NeuroImage. 2013;80:125–43. doi
Novikov, Fieremans, Jespersen, Kiselev (bb0015) 2016
(bb0105) 1994
Tao, Fletcher, Gerber, Whitaker (bb0095) 2009; 21
Zhang, Miao, Mansi, Liao (bb0255) 2018
abs/2018arXiv180508841C.
Irfanoglu MO, Modi P, Nayak A, Hutchinson EB, Sarlls J, Pierpaoli C. DR-BUDDI (Diffeomorphic Registration for Blip-Up blip-Down Diffusion Imaging) method for correcting echo planar imaging distortions. NeuroImage. 2015;106:284–99. doi
Brock, Donahue, Simonyan (bb0275) 2018
Mori, van Zijl (bb0020) 2002; 15
Zaitsev, Hennig, Speck (bb0075) 2004; 52
Jog, Roy, Carass, Prince (bb0175) 2013; 2013
Cohen JP, Luck M, Honari S. Distribution matching losses can hallucinate features in medical image translation. ArXiv e-prints [Internet]. 2018 May 01, 2018. Available from
Andersson JL, Skare S, Ashburner J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage. 2003;20(2):870–88. doi
Morgan, Bowtell, McIntyre, Worthington (bb0110) 2004; 19
Smith, Jenkinson, Woolrich, Beckmann, Behrens, Johansen-Berg (bb0125) 2004; 23
Huo Y, Xu Z, Bao S, Assad A, Abramson RG, Landman BA. Adversarial synthesis learning enables segmentation without target modality ground truth. ArXiv e-prints [Internet]. 2017 December 01, 2017. Available from
PubMed PMID: [25055381].
abs/2017arXiv170801155W.
Pluim JP, Maintz JB, Viergever MA. Mutual-information-based registration of medical images: a survey. IEEE Trans Med Imaging. 2003;22(8):986–1004. doi
Mori S, Crain BJ, Chacko VP, van Zijl PC. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol. 1999;45(2):265–9. [Epub 1999/02/16. PubMed PMID: 9989633].
Dar, Yurt, Karacan, Erdem, Erdem, Çukur (bb0265) 2018
Techavipoo, Okai, Lackey, Shi, Dresner, Leist (bb0065) 2009; 30
Burgos, Cardoso, Modat, Punwani, Atkinson, Arridge (bb0160) 2015; 2
Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. Fsl. NeuroImage. 2012;62(2):782–90. doi
Zhu J-Y, Park T, Isola P, Efros AA. Unpaired image-to-image translation using cycle-consistent adversarial networks. ArXiv e-prints [internet]. 2017 March 01, 2017. Available from
PubMed PMID: 23702418; PubMed Central PMCID: [PMCPMC3720790].
PubMed PMID: 28533050; PubMed Central PMCID: [PMCPMC5896773].
Porter, Heidemann (bb0240) 2009; 62
PubMed PMID: [12906253].
Roy, Chou, Jog, Butman, Pham (bb0080) 2016; 2016
Burgos N, Cardoso MJ, Thielemans K, Modat M, Pedemonte S, Dickson J, et al. Attenuation correction synthesis for hybrid PET-MR scanners: application to brain studies. IEEE Trans Med Imaging. 2014;33(12):2332–41. doi
abs/2018arXiv180607777W.
Roy, Carass, Jog, Prince, Lee (bb0210) 2014; 9034
Chen M, Carass A, Jog A, Lee J, Roy S, Prince JL. Cross contrast multi-channel image registration using image synthesis for MR brain images. Med Image Anal. 2017;36:2–14. doi
Ferrucci L. The Baltimore Longitudinal Study of Aging (BLSA): a 50-year-long journey and plans for the future. J Gerontol A Biol Sci Med Sci. 2008;63(12):1416–9. PubMed PMID: 19126858; PubMed Central PMCID: [PMCPMC5004590].
abs/2017arXiv170310593Z.
Wu, Chang, Walker, Lemaitre, Barnett, Marenco (bb0055) 2008; 11
Taylor DG, Bushell MC. The spatial mapping of translational diffusion coefficients by the NMR imaging technique. Phys Med Biol. 1985;30(4):345–9. PubMed PMID: [4001161].
Andersson, Skare (bb0045) 2010
Chen, Wyrwicz (bb0060) 1999; 41
PubMed PMID: [14568458].
(bb0140) 2010
Kybic J, Thevenaz P, Nirkko A, Unser M. Unwarping of unidirectionally distorted EPI images. IEEE Trans Med Imaging. 2000;19(2):80–93. doi
Zhang Z, Yang L, Zheng Y, editors. Translating and segmenting multimodal medical volumes with cycle-and shapeconsistency generative adversarial network.
Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. ArXiv e-prints [internet]. 2016 November 01, 2016. Available from
abs/2017arXiv171207695H.
Wolterink JM, Dinkla AM, Savenije MHF, Seevinck PR, van den Berg CAT, Isgum I. Deep MR to CT synthesis using unpaired data. ArXiv e-prints [Internet]. 2017 August 01, 2017. Available from
Jezzard, Balaban (bb0040) 1995; 34
Cao X, Yang J, Gao Y, Wang Q, Shen D. Region-adaptive deformable registration of CT/MRI pelvic images via learning-based image synthesis. IEEE Trans Image Process. 2018. doi
PubMed PMID: 29994091; PubMed Central PMCID: [PMCPMC6165687].
Venkatraman VK, Gonzalez CE, Landman B, Goh J, Reiter DA, An Y, et al. Region of interest correction factors improve reliability of diffusion imaging measures within and across scanners and field strengths. NeuroImage. 2015;119:406–16. doi
Xue R, van Zijl PC, Crain BJ, Solaiyappan M, Mori S. In vivo three-dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine. 1999;42(6):1123–7. [PubMed PMID: 10571934].
PubMed PMID: [21979382].
Welander P, Karlsson S, Eklund A. Generative adversarial networks for image-to-image translation on multi-contrast MR images - a comparison of CycleGAN and UNIT. ArXiv e-prints [internet]. 2018 June 01, 2018. Available from
Huang H, Ceritoglu C, Li X, Qiu A, Miller MI, van Zijl PC, et al. Correction of B0 susceptibility induced distortion in diffusion-weighted images using large-deformation diffeomorphic metric mapping. Magn Reson Imaging. 2008;26(9):1294–302. doi
Huo, Xu, Moon, Bao, Assad, Moyo (bb0250) 2018; 38
PubMed PMID: 19944768; PubMed Central PMCID: [PMCPMC2819607].
Cao X, Yang J, Gao Y, Guo Y, Wu G, Shen D. Dual-core steered non-rigid registration for multi-modal images via bi-directional image synthesis. Med Image Anal. 2017;41:18–31. doi
PubMed PMID: 22401760; PubMed Central PMCID: [PMCPMC3653420].
PubMed PMID: 18499384; PubMed Central PMCID: [PMCPMC2612638].
Chang, Chuang, Lin, Wang, Huang, Chung (bb0150) 2013; 3
Irfanoglu MO, Walker L, Sarlls J, Marenco S, Pierpaoli C. Effects of image distortions originating from susceptibility variations and concomitant fields on diffusion MRI tractography results. NeuroImage. 2012;61(1):275–88. doi
PubMed PMID: 27816859; PubMed Central PMCID: [PMCPMC5239759].
PubMed PMID: [3763909].
Choi, Choi, Kim, Ha, Kim, Choo (bb0270) 2017
Irfanoglu, Walker, Sammet, Pierpaoli, Machiraju (bb0100) 2011; 14
Ordidge R. The development of echo-planar imaging (EPI): 1977-1982. MAGMA. 1999;9(3):117–21. PubMed PMID: [10628684].
PubMed PMID: 26146196; PubMed Central PMCID: [PMCPMC5519407].
Holland D, Kuperman JM, Dale AM. Efficient correction of inhomogeneous static magnetic field-induced distortion in Echo Planar Imaging. NeuroImage. 2010;50(1):175–83. doi
Gallichan, Andersson, Jenkinson, Robson, Miller (bb0145) 2010; 64
Porter (10.1016/j.mri.2019.05.008_bb0240) 2009; 62
10.1016/j.mri.2019.05.008_bb0050
Andersson (10.1016/j.mri.2019.05.008_bb0045) 2010
10.1016/j.mri.2019.05.008_bb0090
10.1016/j.mri.2019.05.008_bb0135
10.1016/j.mri.2019.05.008_bb0130
10.1016/j.mri.2019.05.008_bb0010
Chang (10.1016/j.mri.2019.05.008_bb0150) 2013; 3
10.1016/j.mri.2019.05.008_bb0215
Roy (10.1016/j.mri.2019.05.008_bb0080) 2016; 2016
Smith (10.1016/j.mri.2019.05.008_bb0125) 2004; 23
(10.1016/j.mri.2019.05.008_bb0105) 1994
10.1016/j.mri.2019.05.008_bb0280
10.1016/j.mri.2019.05.008_bb0085
Zhang (10.1016/j.mri.2019.05.008_bb0255) 2018
10.1016/j.mri.2019.05.008_bb0200
Zeng (10.1016/j.mri.2019.05.008_bb0070) 2002; 48
10.1016/j.mri.2019.05.008_bb0245
10.1016/j.mri.2019.05.008_bb0005
10.1016/j.mri.2019.05.008_bb0120
Chen (10.1016/j.mri.2019.05.008_bb0060) 1999; 41
10.1016/j.mri.2019.05.008_bb0165
Morgan (10.1016/j.mri.2019.05.008_bb0110) 2004; 19
10.1016/j.mri.2019.05.008_bb0205
Jezzard (10.1016/j.mri.2019.05.008_bb0040) 1995; 34
Roy (10.1016/j.mri.2019.05.008_bb0210) 2014; 9034
Burgos (10.1016/j.mri.2019.05.008_bb0160) 2015; 2
Gallichan (10.1016/j.mri.2019.05.008_bb0145) 2010; 64
10.1016/j.mri.2019.05.008_bb0030
10.1016/j.mri.2019.05.008_bb0195
Brock (10.1016/j.mri.2019.05.008_bb0275) 2018
10.1016/j.mri.2019.05.008_bb0190
10.1016/j.mri.2019.05.008_bb0035
10.1016/j.mri.2019.05.008_bb0235
10.1016/j.mri.2019.05.008_bb0115
Wu (10.1016/j.mri.2019.05.008_bb0055) 2008; 11
(10.1016/j.mri.2019.05.008_bb0140) 2010
10.1016/j.mri.2019.05.008_bb0230
10.1016/j.mri.2019.05.008_bb0155
Mori (10.1016/j.mri.2019.05.008_bb0020) 2002; 15
Dar (10.1016/j.mri.2019.05.008_bb0265) 2018
Techavipoo (10.1016/j.mri.2019.05.008_bb0065) 2009; 30
Choi (10.1016/j.mri.2019.05.008_bb0270) 2017
Tao (10.1016/j.mri.2019.05.008_bb0095) 2009; 21
Irfanoglu (10.1016/j.mri.2019.05.008_bb0100) 2011; 14
10.1016/j.mri.2019.05.008_bb0180
Jog (10.1016/j.mri.2019.05.008_bb0175) 2013; 2013
10.1016/j.mri.2019.05.008_bb0025
Zaitsev (10.1016/j.mri.2019.05.008_bb0075) 2004; 52
10.1016/j.mri.2019.05.008_bb0225
Novikov (10.1016/j.mri.2019.05.008_bb0015) 2016
10.1016/j.mri.2019.05.008_bb0185
Huo (10.1016/j.mri.2019.05.008_bb0250) 2018; 38
10.1016/j.mri.2019.05.008_bb0220
Lee (10.1016/j.mri.2019.05.008_bb0170) 2017
(10.1016/j.mri.2019.05.008_bb0260) 2018
References_xml – reference: . PubMed PMID: [10784280].
– volume: 48
  start-page: 137
  year: 2002
  end-page: 146
  ident: bb0070
  article-title: Image distortion correction in EPI: comparison of field mapping with point spread function mapping
  publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine
– reference: . PubMed PMID: 23702418; PubMed Central PMCID: [PMCPMC3720790].
– reference: . PubMed PMID: [25055381].
– year: 2018
  ident: bb0275
  article-title: Large scale GAN training for high fidelity natural image synthesis
  publication-title: arXiv preprint arXiv:180911096
– reference: Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161(2):401–7. doi:
– reference: . PubMed PMID: [21979382].
– reference: - abs/2017arXiv170801155W.
– year: 2018
  ident: bb0260
  article-title: More knowledge is better: cross-modality volume completion and 3D+ 2D segmentation for intracardiac echocardiography contouring
  publication-title: International conference on medical image computing and computer-assisted intervention
– volume: 2
  start-page: A31
  year: 2015
  ident: bb0160
  article-title: CT synthesis in the head & neck region for PET/MR attenuation correction: an iterative multi-atlas approach
  publication-title: EJNMMI Phys
– start-page: 10133
  year: 2017
  ident: bb0170
  article-title: Multi-atlas-based CT synthesis from conventional MRI with patch-based refinement for MRI-based radiotherapy planning
  publication-title: Proc SPIE Int Soc Opt Eng
– volume: 34
  start-page: 65
  year: 1995
  end-page: 73
  ident: bb0040
  article-title: Correction for geometric distortion in echo planar images from B0 field variations
  publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine
– reference: Zhu J-Y, Park T, Isola P, Efros AA. Unpaired image-to-image translation using cycle-consistent adversarial networks. ArXiv e-prints [internet]. 2017 March 01, 2017. Available from:
– reference: Welander P, Karlsson S, Eklund A. Generative adversarial networks for image-to-image translation on multi-contrast MR images - a comparison of CycleGAN and UNIT. ArXiv e-prints [internet]. 2018 June 01, 2018. Available from:
– volume: 21
  start-page: 664
  year: 2009
  end-page: 675
  ident: bb0095
  article-title: A variational image-based approach to the correction of susceptibility artifacts in the alignment of diffusion weighted and structural MRI
  publication-title: Inf Process Med Imaging
– reference: - abs/2018arXiv180508841C.
– volume: 30
  start-page: 699
  year: 2009
  end-page: 707
  ident: bb0065
  article-title: Toward a practical protocol for human optic nerve DTI with EPI geometric distortion correction
  publication-title: Journal of magnetic resonance imaging: JMRI
– volume: 2016
  start-page: 146
  year: 2016
  end-page: 156
  ident: bb0080
  article-title: Patch based synthesis of whole head MR images: application to EPI distortion correction
  publication-title: Simul Synth Med Imaging
– reference: - abs/2016arXiv161107004I.
– reference: Sotiropoulos SN, Jbabdi S, Xu J, Andersson JL, Moeller S, Auerbach EJ, et al. Advances in diffusion MRI acquisition and processing in the Human Connectome Project. NeuroImage. 2013;80:125–43. doi:
– reference: . PubMed PMID: [14568458].
– volume: 11
  start-page: 321
  year: 2008
  end-page: 329
  ident: bb0055
  article-title: Comparison of EPI distortion correction methods in diffusion tensor MRI using a novel framework
  publication-title: Med Image Comput Comput Assist Interv.
– reference: Mori S, Crain BJ, Chacko VP, van Zijl PC. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol. 1999;45(2):265–9. [Epub 1999/02/16. PubMed PMID: 9989633].
– volume: 64
  start-page: 382
  year: 2010
  end-page: 390
  ident: bb0145
  article-title: Reducing distortions in diffusion-weighted echo planar imaging with a dual-echo blip-reversed sequence
  publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine
– reference: Irfanoglu MO, Modi P, Nayak A, Hutchinson EB, Sarlls J, Pierpaoli C. DR-BUDDI (Diffeomorphic Registration for Blip-Up blip-Down Diffusion Imaging) method for correcting echo planar imaging distortions. NeuroImage. 2015;106:284–99. doi:
– year: 2010
  ident: bb0140
  article-title: A variational approach for the correction of field-inhomogeneities in EPI sequences
  publication-title: SPIE Medical Imaging
– reference: Irfanoglu MO, Walker L, Sarlls J, Marenco S, Pierpaoli C. Effects of image distortions originating from susceptibility variations and concomitant fields on diffusion MRI tractography results. NeuroImage. 2012;61(1):275–88. doi:
– reference: Holland D, Kuperman JM, Dale AM. Efficient correction of inhomogeneous static magnetic field-induced distortion in Echo Planar Imaging. NeuroImage. 2010;50(1):175–83. doi:
– reference: - abs/2017arXiv171207695H.
– reference: . PubMed PMID: 22401760; PubMed Central PMCID: [PMCPMC3653420].
– volume: 2013
  start-page: 350
  year: 2013
  end-page: 353
  ident: bb0175
  article-title: Magnetic resonance image synthesis through patch regression
  publication-title: Proc IEEE Int Symp Biomed Imaging
– reference: Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. Fsl. NeuroImage. 2012;62(2):782–90. doi:
– reference: . PubMed PMID: 29994091; PubMed Central PMCID: [PMCPMC6165687].
– volume: 38
  start-page: 1016
  year: 2018
  end-page: 1025
  ident: bb0250
  article-title: SynSeg-Net: synthetic segmentation without target modality ground truth
  publication-title: IEEE Trans Med Imaging
– reference: Huang H, Ceritoglu C, Li X, Qiu A, Miller MI, van Zijl PC, et al. Correction of B0 susceptibility induced distortion in diffusion-weighted images using large-deformation diffeomorphic metric mapping. Magn Reson Imaging. 2008;26(9):1294–302. doi:
– reference: Venkatraman VK, Gonzalez CE, Landman B, Goh J, Reiter DA, An Y, et al. Region of interest correction factors improve reliability of diffusion imaging measures within and across scanners and field strengths. NeuroImage. 2015;119:406–16. doi:
– volume: 3
  start-page: 73
  year: 2013
  end-page: 81
  ident: bb0150
  article-title: Correction of geometric distortion in Propeller echo planar imaging using a modified reversed gradient approach
  publication-title: Quant Imaging Med Surg
– reference: Andersson JL, Skare S, Ashburner J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage. 2003;20(2):870–88. doi:
– reference: . PubMed PMID: 28533050; PubMed Central PMCID: [PMCPMC5896773].
– year: 1994
  ident: bb0105
  article-title: Correction of geometric distortion in echo planar images
  publication-title: Proceedings of 2nd annual meeting of the SMR
– year: 2018
  ident: bb0265
  article-title: Image synthesis in multi-contrast MRI with conditional generative adversarial networks
  publication-title: arXiv preprint arXiv:180201221
– year: 2010
  ident: bb0045
  article-title: Image distortion and its correction in diffusion MRI
  publication-title: Diffusion MRI: theory, methods, and applications
– reference: Cohen JP, Luck M, Honari S. Distribution matching losses can hallucinate features in medical image translation. ArXiv e-prints [Internet]. 2018 May 01, 2018. Available from:
– volume: 41
  start-page: 1206
  year: 1999
  end-page: 1213
  ident: bb0060
  article-title: Correction for EPI distortions using multi-echo gradient-echo imaging
  publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine.
– reference: . PubMed PMID: 27816859; PubMed Central PMCID: [PMCPMC5239759].
– reference: Kybic J, Thevenaz P, Nirkko A, Unser M. Unwarping of unidirectionally distorted EPI images. IEEE Trans Med Imaging. 2000;19(2):80–93. doi:
– reference: - abs/2017arXiv170310593Z.
– reference: . PubMed PMID: [12906253].
– year: 2018
  ident: bb0255
  article-title: Task driven generative modeling for unsupervised domain adaptation: application to X-ray image segmentation
  publication-title: arXiv preprint arXiv:180607201
– start-page: 1711
  year: 2017
  ident: bb0270
  article-title: Stargan: unified generative adversarial networks for multi-domain image-to-image translation. arXiv preprint
– year: 2016
  ident: bb0015
  article-title: Quantifying brain microstructure with diffusion MRI: theory and parameter estimation. Eprint arXiv
– reference: Burgos N, Cardoso MJ, Thielemans K, Modat M, Pedemonte S, Dickson J, et al. Attenuation correction synthesis for hybrid PET-MR scanners: application to brain studies. IEEE Trans Med Imaging. 2014;33(12):2332–41. doi:
– reference: . PubMed PMID: 25433212; PubMed Central PMCID: [PMCPMC4286283].
– reference: - abs/2018arXiv180607777W.
– reference: Huo Y, Xu Z, Bao S, Assad A, Abramson RG, Landman BA. Adversarial synthesis learning enables segmentation without target modality ground truth. ArXiv e-prints [Internet]. 2017 December 01, 2017. Available from:
– reference: . PubMed PMID: 19944768; PubMed Central PMCID: [PMCPMC2819607].
– volume: 15
  start-page: 468
  year: 2002
  end-page: 480
  ident: bb0020
  article-title: Fiber tracking: principles and strategies – a technical review
  publication-title: NMR Biomed
– volume: 23
  start-page: S208
  year: 2004
  end-page: S219
  ident: bb0125
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: NeuroImage.
– volume: 9034
  year: 2014
  ident: bb0210
  article-title: MR to CT registration of brains using image synthesis
  publication-title: Proc SPIE Int Soc Opt Eng
– reference: Ordidge R. The development of echo-planar imaging (EPI): 1977-1982. MAGMA. 1999;9(3):117–21. PubMed PMID: [10628684].
– reference: Cao X, Yang J, Gao Y, Wang Q, Shen D. Region-adaptive deformable registration of CT/MRI pelvic images via learning-based image synthesis. IEEE Trans Image Process. 2018. doi:
– reference: . PubMed PMID: 26146196; PubMed Central PMCID: [PMCPMC5519407].
– reference: . PubMed PMID: 18499384; PubMed Central PMCID: [PMCPMC2612638].
– volume: 14
  start-page: 174
  year: 2011
  end-page: 181
  ident: bb0100
  article-title: Susceptibility distortion correction for echo planar images with non-uniform B-spline grid sampling: a diffusion tensor image study
  publication-title: Med Image Comput Comput Assist Interv
– volume: 19
  start-page: 499
  year: 2004
  end-page: 507
  ident: bb0110
  article-title: Correction of spatial distortion in EPI due to inhomogeneous static magnetic fields using the reversed gradient method
  publication-title: J Magn Reson Imaging
– reference: Wolterink JM, Dinkla AM, Savenije MHF, Seevinck PR, van den Berg CAT, Isgum I. Deep MR to CT synthesis using unpaired data. ArXiv e-prints [Internet]. 2017 August 01, 2017. Available from:
– reference: . PubMed PMID: [3763909].
– volume: 62
  start-page: 468
  year: 2009
  end-page: 475
  ident: bb0240
  article-title: High resolution diffusion-weighted imaging using readout-segmented echo-planar imaging, parallel imaging and a two-dimensional navigator-based reacquisition
  publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine
– reference: Cao X, Yang J, Gao Y, Guo Y, Wu G, Shen D. Dual-core steered non-rigid registration for multi-modal images via bi-directional image synthesis. Med Image Anal. 2017;41:18–31. doi:
– reference: Chen M, Carass A, Jog A, Lee J, Roy S, Prince JL. Cross contrast multi-channel image registration using image synthesis for MR brain images. Med Image Anal. 2017;36:2–14. doi:
– reference: Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. ArXiv e-prints [internet]. 2016 November 01, 2016. Available from:
– volume: 52
  start-page: 1156
  year: 2004
  end-page: 1166
  ident: bb0075
  article-title: Point spread function mapping with parallel imaging techniques and high acceleration factors: fast, robust, and flexible method for echo-planar imaging distortion correction
  publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine
– reference: Ferrucci L. The Baltimore Longitudinal Study of Aging (BLSA): a 50-year-long journey and plans for the future. J Gerontol A Biol Sci Med Sci. 2008;63(12):1416–9. PubMed PMID: 19126858; PubMed Central PMCID: [PMCPMC5004590].
– reference: Zhang Z, Yang L, Zheng Y, editors. Translating and segmenting multimodal medical volumes with cycle-and shapeconsistency generative adversarial network.
– reference: Taylor DG, Bushell MC. The spatial mapping of translational diffusion coefficients by the NMR imaging technique. Phys Med Biol. 1985;30(4):345–9. PubMed PMID: [4001161].
– reference: Pluim JP, Maintz JB, Viergever MA. Mutual-information-based registration of medical images: a survey. IEEE Trans Med Imaging. 2003;22(8):986–1004. doi:
– reference: Xue R, van Zijl PC, Crain BJ, Solaiyappan M, Mori S. In vivo three-dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine. 1999;42(6):1123–7. [PubMed PMID: 10571934].
– ident: 10.1016/j.mri.2019.05.008_bb0115
  doi: 10.1016/S1053-8119(03)00336-7
– ident: 10.1016/j.mri.2019.05.008_bb0225
  doi: 10.1109/TIP.2018.2820424
– ident: 10.1016/j.mri.2019.05.008_bb0215
  doi: 10.1016/j.media.2016.10.005
– ident: 10.1016/j.mri.2019.05.008_bb0050
  doi: 10.1016/j.neuroimage.2012.02.054
– volume: 30
  start-page: 699
  issue: 4
  year: 2009
  ident: 10.1016/j.mri.2019.05.008_bb0065
  article-title: Toward a practical protocol for human optic nerve DTI with EPI geometric distortion correction
  publication-title: Journal of magnetic resonance imaging: JMRI
  doi: 10.1002/jmri.21836
– volume: 3
  start-page: 73
  issue: 2
  year: 2013
  ident: 10.1016/j.mri.2019.05.008_bb0150
  article-title: Correction of geometric distortion in Propeller echo planar imaging using a modified reversed gradient approach
  publication-title: Quant Imaging Med Surg
– volume: 23
  start-page: S208
  issue: Suppl. 1
  year: 2004
  ident: 10.1016/j.mri.2019.05.008_bb0125
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: NeuroImage.
  doi: 10.1016/j.neuroimage.2004.07.051
– ident: 10.1016/j.mri.2019.05.008_bb0220
  doi: 10.1016/j.media.2017.05.004
– start-page: 10133
  year: 2017
  ident: 10.1016/j.mri.2019.05.008_bb0170
  article-title: Multi-atlas-based CT synthesis from conventional MRI with patch-based refinement for MRI-based radiotherapy planning
  publication-title: Proc SPIE Int Soc Opt Eng
– volume: 14
  start-page: 174
  issue: Pt 2
  year: 2011
  ident: 10.1016/j.mri.2019.05.008_bb0100
  article-title: Susceptibility distortion correction for echo planar images with non-uniform B-spline grid sampling: a diffusion tensor image study
  publication-title: Med Image Comput Comput Assist Interv
– year: 1994
  ident: 10.1016/j.mri.2019.05.008_bb0105
  article-title: Correction of geometric distortion in echo planar images
– volume: 21
  start-page: 664
  year: 2009
  ident: 10.1016/j.mri.2019.05.008_bb0095
  article-title: A variational image-based approach to the correction of susceptibility artifacts in the alignment of diffusion weighted and structural MRI
  publication-title: Inf Process Med Imaging
  doi: 10.1007/978-3-642-02498-6_55
– volume: 9034
  year: 2014
  ident: 10.1016/j.mri.2019.05.008_bb0210
  article-title: MR to CT registration of brains using image synthesis
  publication-title: Proc SPIE Int Soc Opt Eng
– year: 2010
  ident: 10.1016/j.mri.2019.05.008_bb0140
  article-title: A variational approach for the correction of field-inhomogeneities in EPI sequences
– volume: 11
  start-page: 321
  issue: Pt 2
  year: 2008
  ident: 10.1016/j.mri.2019.05.008_bb0055
  article-title: Comparison of EPI distortion correction methods in diffusion tensor MRI using a novel framework
  publication-title: Med Image Comput Comput Assist Interv.
– ident: 10.1016/j.mri.2019.05.008_bb0180
– year: 2018
  ident: 10.1016/j.mri.2019.05.008_bb0275
  article-title: Large scale GAN training for high fidelity natural image synthesis
– start-page: 1711
  year: 2017
  ident: 10.1016/j.mri.2019.05.008_bb0270
– year: 2018
  ident: 10.1016/j.mri.2019.05.008_bb0260
  article-title: More knowledge is better: cross-modality volume completion and 3D+ 2D segmentation for intracardiac echocardiography contouring
– ident: 10.1016/j.mri.2019.05.008_bb0165
  doi: 10.1109/TMI.2014.2340135
– volume: 48
  start-page: 137
  issue: 1
  year: 2002
  ident: 10.1016/j.mri.2019.05.008_bb0070
  article-title: Image distortion correction in EPI: comparison of field mapping with point spread function mapping
  publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine
  doi: 10.1002/mrm.10200
– ident: 10.1016/j.mri.2019.05.008_bb0130
  doi: 10.1016/j.neuroimage.2013.05.057
– ident: 10.1016/j.mri.2019.05.008_bb0090
  doi: 10.1016/j.mri.2008.03.005
– volume: 62
  start-page: 468
  issue: 2
  year: 2009
  ident: 10.1016/j.mri.2019.05.008_bb0240
  article-title: High resolution diffusion-weighted imaging using readout-segmented echo-planar imaging, parallel imaging and a two-dimensional navigator-based reacquisition
  publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine
  doi: 10.1002/mrm.22024
– ident: 10.1016/j.mri.2019.05.008_bb0185
  doi: 10.1109/ICCV.2017.244
– ident: 10.1016/j.mri.2019.05.008_bb0230
  doi: 10.1093/gerona/63.12.1416
– ident: 10.1016/j.mri.2019.05.008_bb0005
  doi: 10.1148/radiology.161.2.3763909
– ident: 10.1016/j.mri.2019.05.008_bb0120
  doi: 10.1016/j.neuroimage.2011.09.015
– ident: 10.1016/j.mri.2019.05.008_bb0135
  doi: 10.1016/j.neuroimage.2009.11.044
– volume: 64
  start-page: 382
  issue: 2
  year: 2010
  ident: 10.1016/j.mri.2019.05.008_bb0145
  article-title: Reducing distortions in diffusion-weighted echo planar imaging with a dual-echo blip-reversed sequence
  publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine
  doi: 10.1002/mrm.22318
– volume: 38
  start-page: 1016
  year: 2018
  ident: 10.1016/j.mri.2019.05.008_bb0250
  article-title: SynSeg-Net: synthetic segmentation without target modality ground truth
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2876633
– ident: 10.1016/j.mri.2019.05.008_bb0235
  doi: 10.1016/j.neuroimage.2015.06.078
– volume: 19
  start-page: 499
  issue: 4
  year: 2004
  ident: 10.1016/j.mri.2019.05.008_bb0110
  article-title: Correction of spatial distortion in EPI due to inhomogeneous static magnetic fields using the reversed gradient method
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.20032
– year: 2018
  ident: 10.1016/j.mri.2019.05.008_bb0265
  article-title: Image synthesis in multi-contrast MRI with conditional generative adversarial networks
– ident: 10.1016/j.mri.2019.05.008_bb0245
  doi: 10.1109/TMI.2003.815867
– ident: 10.1016/j.mri.2019.05.008_bb0025
  doi: 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3
– volume: 52
  start-page: 1156
  issue: 5
  year: 2004
  ident: 10.1016/j.mri.2019.05.008_bb0075
  article-title: Point spread function mapping with parallel imaging techniques and high acceleration factors: fast, robust, and flexible method for echo-planar imaging distortion correction
  publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine
  doi: 10.1002/mrm.20261
– volume: 2013
  start-page: 350
  year: 2013
  ident: 10.1016/j.mri.2019.05.008_bb0175
  article-title: Magnetic resonance image synthesis through patch regression
  publication-title: Proc IEEE Int Symp Biomed Imaging
– volume: 41
  start-page: 1206
  issue: 6
  year: 1999
  ident: 10.1016/j.mri.2019.05.008_bb0060
  article-title: Correction for EPI distortions using multi-echo gradient-echo imaging
  publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine.
  doi: 10.1002/(SICI)1522-2594(199906)41:6<1206::AID-MRM17>3.0.CO;2-L
– year: 2010
  ident: 10.1016/j.mri.2019.05.008_bb0045
  article-title: Image distortion and its correction in diffusion MRI
– year: 2016
  ident: 10.1016/j.mri.2019.05.008_bb0015
– ident: 10.1016/j.mri.2019.05.008_bb0035
  doi: 10.1007/BF02594607
– ident: 10.1016/j.mri.2019.05.008_bb0010
  doi: 10.1088/0031-9155/30/4/009
– ident: 10.1016/j.mri.2019.05.008_bb0155
  doi: 10.1016/j.neuroimage.2014.11.042
– volume: 2
  start-page: A31
  issue: Suppl. 1
  year: 2015
  ident: 10.1016/j.mri.2019.05.008_bb0160
  article-title: CT synthesis in the head & neck region for PET/MR attenuation correction: an iterative multi-atlas approach
  publication-title: EJNMMI Phys
  doi: 10.1186/2197-7364-2-S1-A31
– ident: 10.1016/j.mri.2019.05.008_bb0205
  doi: 10.1007/978-3-030-00928-1_60
– ident: 10.1016/j.mri.2019.05.008_bb0030
  doi: 10.1002/(SICI)1522-2594(199912)42:6<1123::AID-MRM17>3.0.CO;2-H
– ident: 10.1016/j.mri.2019.05.008_bb0085
  doi: 10.1109/42.836368
– ident: 10.1016/j.mri.2019.05.008_bb0280
– volume: 15
  start-page: 468
  issue: 7–8
  year: 2002
  ident: 10.1016/j.mri.2019.05.008_bb0020
  article-title: Fiber tracking: principles and strategies – a technical review
  publication-title: NMR Biomed
  doi: 10.1002/nbm.781
– ident: 10.1016/j.mri.2019.05.008_bb0195
– year: 2018
  ident: 10.1016/j.mri.2019.05.008_bb0255
  article-title: Task driven generative modeling for unsupervised domain adaptation: application to X-ray image segmentation
– volume: 2016
  start-page: 146
  issue: 9968
  year: 2016
  ident: 10.1016/j.mri.2019.05.008_bb0080
  article-title: Patch based synthesis of whole head MR images: application to EPI distortion correction
  publication-title: Simul Synth Med Imaging
  doi: 10.1007/978-3-319-46630-9_15
– ident: 10.1016/j.mri.2019.05.008_bb0200
– volume: 34
  start-page: 65
  issue: 1
  year: 1995
  ident: 10.1016/j.mri.2019.05.008_bb0040
  article-title: Correction for geometric distortion in echo planar images from B0 field variations
  publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine
  doi: 10.1002/mrm.1910340111
– ident: 10.1016/j.mri.2019.05.008_bb0190
  doi: 10.1007/978-3-319-68127-6_2
SSID ssj0005235
Score 2.6113844
Snippet Diffusion magnetic resonance images typically suffer from spatial distortions due to susceptibility induced off-resonance fields, which may affect the...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 62
SubjectTerms Adult
Aged
Aged, 80 and over
Algorithms
Brain - anatomy & histology
Conditional generative network
Diffusion Magnetic Resonance Imaging - methods
Diffusion MRI
Distortion correction
Echo planar imaging
Echo-Planar Imaging - methods
Humans
Image Processing, Computer-Assisted - methods
Image synthesis
Middle Aged
Title Synthesized b0 for diffusion distortion correction (Synb0-DisCo)
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X18306179
https://dx.doi.org/10.1016/j.mri.2019.05.008
https://www.ncbi.nlm.nih.gov/pubmed/31075422
https://www.proquest.com/docview/2231908543
https://pubmed.ncbi.nlm.nih.gov/PMC6834894
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5EQbyIb9cXFTyoULcmadPeXFZlVfSiwt5C06RY0a7s46AHf7szfSyuioK3PmYgzExnvjTzANijFumREdINuEhdEVjPjWPc81jJrDRap4GgQuHrm6BzLy67fncK2nUtDKVVVr6_9OmFt66eNCtpNl-yrHlLximZ30WjpDhMRXxCSLLyo_fPaR7lkE0kdom6Ptkscrye-xlld0VF806aMPlzbPqOPb-mUH6KSecLMF-BSadVrncRpmy-BLPX1XH5MpzcvuYI8AbZmzWO9hwEqA5NRBnRLzK8osxIUoyT0IyOosLB2Uce7bmn2aDdO1iB-_Ozu3bHrUYmuIkfyKEb2igxYcq0NgyRnTxOU9RGHBnte7Hg8bEfW88yzfGJlSkLfSlSDFhC8FRHlvFVmM57uV0HxxjcSyXaIgaLRbENxGjOEs4T2pSZsAFeLSyVVP3EaazFk6oTxx4VyleRfJXnK5RvAw7HLC9lM43fiFmtAVVXiaJfU-jqf2MSY6YJM_qLbbdWscLPi85M4tz2RgOF6AkhU-gL3oC1UuXjpSMypvnBrAFywhjGBNS6e_JNnj0ULbyDkIswEhv_W-4mzNFdmVWzBdPD_shuIzYa6p3C-HdgpnVx1bn5AIKrDZc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB5BkAoXVN6BlhqJQ0GyYvbhtW-gAAqF5AJIua283rVwVRxEkgP99Z3xIyJtBRI3a3dHWs3MznzrnQfAIZVIj61QfshF5ovQBX6S4J3HKeaUNSYLBSUK9wdh7178GMrhAnSbXBgKq6xtf2XTS2tdj3Rqbnae8rxzS8qpmByiUpIfjhdhiapTyRYsnV1d9wavIj2qPpu43ieC5nGzDPN6fM4pwCsu63dSk8n_u6d_4effUZSv3NLlZ1it8aR3Vm15DRZcsQ6f-vWL-Qac3r4UiPHG-W9nPRN4iFE9aooypb9k-EXBkSQbL6U2HWWSg_cdaUzgn-fj7uhoE-4vL-66Pb_umuCnMlQTP3JxaqOMGWMZgjt1kmUokCS2RgaJ4MmJTFzgmOE44lTGIqlEhj5LCJ6Z2DG-Ba1iVLgd8KzF61RqHMKwRJQ3QXToLOU8pXuZjdoQNMzSaV1SnDpb_NJN7NhPjfzVxF8dSI38bcPxjOSpqqfx1mLWSEA3iaJo2jRa-7eIxIxoTpPeIztoRKzxhNGzSVK40XSsEUAhaoqk4G3YrkQ-2zqCY2ohzNqg5pRhtoCqd8_PFPlDWcU7jLiIYrH7se1-g-XeXf9G31wNrvdghWaqIJsv0Jo8T91XhEoTs18fhT-1xRBI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesized+b0+for+diffusion+distortion+correction+%28Synb0-DisCo%29&rft.jtitle=Magnetic+resonance+imaging&rft.au=Schilling%2C+Kurt+G.&rft.au=Blaber%2C+Justin&rft.au=Huo%2C+Yuankai&rft.au=Newton%2C+Allen&rft.date=2019-12-01&rft.pub=Elsevier+Inc&rft.issn=0730-725X&rft.volume=64&rft.spage=62&rft.epage=70&rft_id=info:doi/10.1016%2Fj.mri.2019.05.008&rft.externalDocID=S0730725X18306179
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-725X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-725X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-725X&client=summon