Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design
Next-generation advanced high/pulsed power capacitors rely heavily on dielectric ceramics with high energy storage performance. However, thus far, the huge challenge of realizing ultrahigh recoverable energy storage density ( W rec ) accompanied by ultrahigh efficiency ( η ) still existed and has be...
Saved in:
Published in | Nature communications Vol. 13; no. 1; pp. 3089 - 8 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
02.06.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Next-generation advanced high/pulsed power capacitors rely heavily on dielectric ceramics with high energy storage performance. However, thus far, the huge challenge of realizing ultrahigh recoverable energy storage density (
W
rec
) accompanied by ultrahigh efficiency (
η
) still existed and has become a key bottleneck restricting the development of dielectric materials in cutting-edge energy storage applications. Here, we propose a high-entropy strategy to design “local polymorphic distortion” including rhombohedral-orthorhombic-tetragonal-cubic multiphase nanoclusters and random oxygen octahedral tilt, resulting in ultrasmall polar nanoregions, an enhanced breakdown electric field, and delayed polarization saturation. A giant
W
rec
~10.06 J cm
−3
is realized in lead-free relaxor ferroelectrics, especially with an ultrahigh
η
~90.8%, showing breakthrough progress in the comprehensive energy storage performance for lead-free bulk ceramics. This work opens up an effective avenue to design dielectric materials with ultrahigh comprehensive energy storage performance to meet the demanding requirements of advanced energy storage applications.
Dielectric ceramics are widely used in advanced high/pulsed power capacitors. Here, the authors propose a high-entropy strategy to design “local polymorphic distortion” in lead-free ceramics, achieving high energy storage performance. |
---|---|
AbstractList | Next-generation advanced high/pulsed power capacitors rely heavily on dielectric ceramics with high energy storage performance. However, thus far, the huge challenge of realizing ultrahigh recoverable energy storage density (
W
rec
) accompanied by ultrahigh efficiency (
η
) still existed and has become a key bottleneck restricting the development of dielectric materials in cutting-edge energy storage applications. Here, we propose a high-entropy strategy to design “local polymorphic distortion” including rhombohedral-orthorhombic-tetragonal-cubic multiphase nanoclusters and random oxygen octahedral tilt, resulting in ultrasmall polar nanoregions, an enhanced breakdown electric field, and delayed polarization saturation. A giant
W
rec
~10.06 J cm
−3
is realized in lead-free relaxor ferroelectrics, especially with an ultrahigh
η
~90.8%, showing breakthrough progress in the comprehensive energy storage performance for lead-free bulk ceramics. This work opens up an effective avenue to design dielectric materials with ultrahigh comprehensive energy storage performance to meet the demanding requirements of advanced energy storage applications.
Dielectric ceramics are widely used in advanced high/pulsed power capacitors. Here, the authors propose a high-entropy strategy to design “local polymorphic distortion” in lead-free ceramics, achieving high energy storage performance. Next-generation advanced high/pulsed power capacitors rely heavily on dielectric ceramics with high energy storage performance. However, thus far, the huge challenge of realizing ultrahigh recoverable energy storage density (W ) accompanied by ultrahigh efficiency (η) still existed and has become a key bottleneck restricting the development of dielectric materials in cutting-edge energy storage applications. Here, we propose a high-entropy strategy to design "local polymorphic distortion" including rhombohedral-orthorhombic-tetragonal-cubic multiphase nanoclusters and random oxygen octahedral tilt, resulting in ultrasmall polar nanoregions, an enhanced breakdown electric field, and delayed polarization saturation. A giant W ~10.06 J cm is realized in lead-free relaxor ferroelectrics, especially with an ultrahigh η ~90.8%, showing breakthrough progress in the comprehensive energy storage performance for lead-free bulk ceramics. This work opens up an effective avenue to design dielectric materials with ultrahigh comprehensive energy storage performance to meet the demanding requirements of advanced energy storage applications. Next-generation advanced high/pulsed power capacitors rely heavily on dielectric ceramics with high energy storage performance. However, thus far, the huge challenge of realizing ultrahigh recoverable energy storage density (Wrec) accompanied by ultrahigh efficiency (η) still existed and has become a key bottleneck restricting the development of dielectric materials in cutting-edge energy storage applications. Here, we propose a high-entropy strategy to design "local polymorphic distortion" including rhombohedral-orthorhombic-tetragonal-cubic multiphase nanoclusters and random oxygen octahedral tilt, resulting in ultrasmall polar nanoregions, an enhanced breakdown electric field, and delayed polarization saturation. A giant Wrec ~10.06 J cm-3 is realized in lead-free relaxor ferroelectrics, especially with an ultrahigh η ~90.8%, showing breakthrough progress in the comprehensive energy storage performance for lead-free bulk ceramics. This work opens up an effective avenue to design dielectric materials with ultrahigh comprehensive energy storage performance to meet the demanding requirements of advanced energy storage applications.Next-generation advanced high/pulsed power capacitors rely heavily on dielectric ceramics with high energy storage performance. However, thus far, the huge challenge of realizing ultrahigh recoverable energy storage density (Wrec) accompanied by ultrahigh efficiency (η) still existed and has become a key bottleneck restricting the development of dielectric materials in cutting-edge energy storage applications. Here, we propose a high-entropy strategy to design "local polymorphic distortion" including rhombohedral-orthorhombic-tetragonal-cubic multiphase nanoclusters and random oxygen octahedral tilt, resulting in ultrasmall polar nanoregions, an enhanced breakdown electric field, and delayed polarization saturation. A giant Wrec ~10.06 J cm-3 is realized in lead-free relaxor ferroelectrics, especially with an ultrahigh η ~90.8%, showing breakthrough progress in the comprehensive energy storage performance for lead-free bulk ceramics. This work opens up an effective avenue to design dielectric materials with ultrahigh comprehensive energy storage performance to meet the demanding requirements of advanced energy storage applications. Dielectric ceramics are widely used in advanced high/pulsed power capacitors. Here, the authors propose a high-entropy strategy to design “local polymorphic distortion” in lead-free ceramics, achieving high energy storage performance. Next-generation advanced high/pulsed power capacitors rely heavily on dielectric ceramics with high energy storage performance. However, thus far, the huge challenge of realizing ultrahigh recoverable energy storage density (Wrec) accompanied by ultrahigh efficiency (η) still existed and has become a key bottleneck restricting the development of dielectric materials in cutting-edge energy storage applications. Here, we propose a high-entropy strategy to design “local polymorphic distortion” including rhombohedral-orthorhombic-tetragonal-cubic multiphase nanoclusters and random oxygen octahedral tilt, resulting in ultrasmall polar nanoregions, an enhanced breakdown electric field, and delayed polarization saturation. A giant Wrec ~10.06 J cm-3 is realized in lead-free relaxor ferroelectrics, especially with an ultrahigh η ~90.8%, showing breakthrough progress in the comprehensive energy storage performance for lead-free bulk ceramics. This work opens up an effective avenue to design dielectric materials with ultrahigh comprehensive energy storage performance to meet the demanding requirements of advanced energy storage applications. Next-generation advanced high/pulsed power capacitors rely heavily on dielectric ceramics with high energy storage performance. However, thus far, the huge challenge of realizing ultrahigh recoverable energy storage density (Wrec) accompanied by ultrahigh efficiency (η) still existed and has become a key bottleneck restricting the development of dielectric materials in cutting-edge energy storage applications. Here, we propose a high-entropy strategy to design “local polymorphic distortion” including rhombohedral-orthorhombic-tetragonal-cubic multiphase nanoclusters and random oxygen octahedral tilt, resulting in ultrasmall polar nanoregions, an enhanced breakdown electric field, and delayed polarization saturation. A giant Wrec ~10.06 J cm−3 is realized in lead-free relaxor ferroelectrics, especially with an ultrahigh η ~90.8%, showing breakthrough progress in the comprehensive energy storage performance for lead-free bulk ceramics. This work opens up an effective avenue to design dielectric materials with ultrahigh comprehensive energy storage performance to meet the demanding requirements of advanced energy storage applications.Dielectric ceramics are widely used in advanced high/pulsed power capacitors. Here, the authors propose a high-entropy strategy to design “local polymorphic distortion” in lead-free ceramics, achieving high energy storage performance. Next-generation advanced high/pulsed power capacitors rely heavily on dielectric ceramics with high energy storage performance. However, thus far, the huge challenge of realizing ultrahigh recoverable energy storage density ( W rec ) accompanied by ultrahigh efficiency ( η ) still existed and has become a key bottleneck restricting the development of dielectric materials in cutting-edge energy storage applications. Here, we propose a high-entropy strategy to design “local polymorphic distortion” including rhombohedral-orthorhombic-tetragonal-cubic multiphase nanoclusters and random oxygen octahedral tilt, resulting in ultrasmall polar nanoregions, an enhanced breakdown electric field, and delayed polarization saturation. A giant W rec ~10.06 J cm −3 is realized in lead-free relaxor ferroelectrics, especially with an ultrahigh η ~90.8%, showing breakthrough progress in the comprehensive energy storage performance for lead-free bulk ceramics. This work opens up an effective avenue to design dielectric materials with ultrahigh comprehensive energy storage performance to meet the demanding requirements of advanced energy storage applications. |
ArticleNumber | 3089 |
Author | Deng, Shiqing Chen, Jun Liu, Hui Chen, Liang Wu, Jie Qi, He |
Author_xml | – sequence: 1 givenname: Liang surname: Chen fullname: Chen, Liang organization: Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Department of Physical Chemistry, University of Science and Technology Beijing – sequence: 2 givenname: Shiqing surname: Deng fullname: Deng, Shiqing organization: Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, School of Mathematics and Physics, University of Science and Technology Beijing – sequence: 3 givenname: Hui surname: Liu fullname: Liu, Hui organization: Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, School of Mathematics and Physics, University of Science and Technology Beijing – sequence: 4 givenname: Jie surname: Wu fullname: Wu, Jie organization: School of Mathematics and Physics, University of Science and Technology Beijing – sequence: 5 givenname: He orcidid: 0000-0002-3094-3574 surname: Qi fullname: Qi, He email: qiheustb@ustb.edu.cn organization: Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Department of Physical Chemistry, University of Science and Technology Beijing – sequence: 6 givenname: Jun orcidid: 0000-0002-7330-8976 surname: Chen fullname: Chen, Jun email: junchen@ustb.edu.cn organization: Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Department of Physical Chemistry, University of Science and Technology Beijing |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35654831$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1879729$$D View this record in Osti.gov |
BookMark | eNp9kktv1DAUhSNUREvpH2CBItiwCfgVPzZIqIJSqRIbWFuOc53xKGMPtqcw_x6nU0rbRbNxZJ_znXvt-7I5CjFA07zG6ANGVH7MDDMuOkRIR5EkuBPPmhOCGO6wIPTo3v9xc5bzGtWPKiwZe9Ec0573TFJ80owX3oTSQoA07btcYjITtCOE7Mu-_e3Lqt3NJZmVn1YtOOeth2D3rQ_tDGbsXAJoE8zmT0y5vfamXZQdhJLidl9B2U_hVfPcmTnD2e162vz8-uXH-bfu6vvF5fnnq872XJROOADBFeWcYDYINJJBul4hIE4qzhEasCEjFaMynGPulHOid5hjYKB6w-hpc3ngjtGs9Tb5jUl7HY3XNxsxTdqk4u0MmqOxQkY1UCeZQ_0gbE0ZMB4plZKqyvp0YG13wwZGu3Rk5gfQhyfBr_QUr7XCnKKeV8DbAyDm4nW2voBd2RgC2KKxFEqQJeX9bUqKv3aQi974bGGeTYC4y5pwQWmvMENV-u6RdB13KdT7XFSESSnIkvrmftl39f578SogB4FNMecE7k6CkV4mSx8mS9fJ0jeTpUU1yUem2o4pPi6t-_lpKz1Yc80JE6T_ZT_h-gtnzuGs |
CitedBy_id | crossref_primary_10_1016_j_ceramint_2024_03_057 crossref_primary_10_1002_smll_202309796 crossref_primary_10_1007_s12598_024_02852_0 crossref_primary_10_1021_acs_inorgchem_2c02489 crossref_primary_10_1002_advs_202409814 crossref_primary_10_1038_s41467_025_56316_9 crossref_primary_10_1016_j_cej_2023_145705 crossref_primary_10_1016_j_pmatsci_2024_101385 crossref_primary_10_1038_s41467_025_57139_4 crossref_primary_10_1002_adma_202313285 crossref_primary_10_1016_j_actamat_2023_118826 crossref_primary_10_1016_j_ceramint_2024_09_350 crossref_primary_10_1021_acsami_2c21969 crossref_primary_10_1016_j_cej_2024_156447 crossref_primary_10_1007_s12613_024_2915_7 crossref_primary_10_1002_adma_202403400 crossref_primary_10_1038_s41578_023_00544_2 crossref_primary_10_1016_j_apmt_2024_102488 crossref_primary_10_1016_j_jmrt_2022_09_081 crossref_primary_10_1016_j_ceramint_2024_11_289 crossref_primary_10_23919_IEN_2022_0023 crossref_primary_10_1002_adfm_202311160 crossref_primary_10_1016_j_actamat_2024_120079 crossref_primary_10_1021_jacs_3c09805 crossref_primary_10_1002_smll_202206662 crossref_primary_10_1016_j_jeurceramsoc_2023_01_036 crossref_primary_10_1016_j_jmat_2023_02_008 crossref_primary_10_1016_j_jmat_2024_100931 crossref_primary_10_1038_s41598_023_33975_6 crossref_primary_10_1007_s42864_022_00179_w crossref_primary_10_1021_acsaelm_3c01657 crossref_primary_10_1016_j_cclet_2024_110728 crossref_primary_10_1016_j_jallcom_2023_172524 crossref_primary_10_1002_adfm_202425080 crossref_primary_10_1016_j_ceramint_2025_01_045 crossref_primary_10_1007_s10854_023_11892_8 crossref_primary_10_1002_adma_202409639 crossref_primary_10_3390_polym15122688 crossref_primary_10_1016_j_mtcomm_2024_111467 crossref_primary_10_1038_s41586_024_08505_7 crossref_primary_10_1016_j_ceramint_2024_11_036 crossref_primary_10_1038_s41467_024_55491_5 crossref_primary_10_1016_j_ceramint_2023_06_208 crossref_primary_10_1016_j_matlet_2024_137931 crossref_primary_10_1016_j_cej_2023_141449 crossref_primary_10_1016_j_jpowsour_2024_236023 crossref_primary_10_1016_j_ceramint_2023_02_070 crossref_primary_10_1016_j_est_2025_115699 crossref_primary_10_1021_acsami_4c15339 crossref_primary_10_1021_acsami_4c11898 crossref_primary_10_1016_j_cej_2024_154369 crossref_primary_10_1016_j_ceramint_2024_02_101 crossref_primary_10_1016_j_ceramint_2023_12_284 crossref_primary_10_1038_s41467_024_52934_x crossref_primary_10_1002_aenm_202400821 crossref_primary_10_3390_en17040946 crossref_primary_10_26599_JAC_2024_9220859 crossref_primary_10_1002_apxr_202400143 crossref_primary_10_1016_j_actamat_2023_119135 crossref_primary_10_1016_j_cej_2023_145363 crossref_primary_10_1039_D4TC03278K crossref_primary_10_1038_s41467_025_56605_3 crossref_primary_10_1021_acsami_4c16790 crossref_primary_10_1021_jacs_4c10907 crossref_primary_10_1016_j_materresbull_2022_112024 crossref_primary_10_1016_j_ceramint_2022_09_208 crossref_primary_10_1016_j_cej_2023_144702 crossref_primary_10_1016_j_cej_2024_150441 crossref_primary_10_1021_jacs_2c12200 crossref_primary_10_1039_D3TA01172K crossref_primary_10_1038_s41598_024_80454_7 crossref_primary_10_4150_KPMI_2023_30_6_509 crossref_primary_10_1016_j_matchemphys_2024_130290 crossref_primary_10_1002_inf2_12488 crossref_primary_10_1016_j_cej_2024_157986 crossref_primary_10_1039_D4TA04156A crossref_primary_10_1002_adfm_202214273 crossref_primary_10_1016_j_jallcom_2025_178528 crossref_primary_10_1016_j_ceramint_2023_05_089 crossref_primary_10_1111_jace_19282 crossref_primary_10_26599_JAC_2024_9221018 crossref_primary_10_26599_JAC_2024_9220964 crossref_primary_10_3390_molecules29133187 crossref_primary_10_1111_jace_18849 crossref_primary_10_1039_D3EE01545A crossref_primary_10_1016_j_cej_2023_147527 crossref_primary_10_1039_D4TA00575A crossref_primary_10_1016_j_ensm_2024_103534 crossref_primary_10_1002_adma_202304128 crossref_primary_10_1016_j_cej_2022_139222 crossref_primary_10_1038_s41467_024_48810_3 crossref_primary_10_1038_s41467_024_47781_9 crossref_primary_10_1016_j_ceramint_2024_10_446 crossref_primary_10_1002_adma_202402070 crossref_primary_10_1007_s40820_023_01036_2 crossref_primary_10_1016_j_cej_2024_158940 crossref_primary_10_1002_adfm_202409344 crossref_primary_10_1016_j_cej_2024_150091 crossref_primary_10_1038_s41467_024_53287_1 crossref_primary_10_1039_D3TA03946C crossref_primary_10_1016_j_cej_2023_142070 crossref_primary_10_1016_j_jmat_2023_05_007 crossref_primary_10_1039_D4TA03637A crossref_primary_10_1016_j_jmat_2024_100980 crossref_primary_10_1016_j_scib_2025_03_016 crossref_primary_10_1016_j_jallcom_2023_172671 crossref_primary_10_1016_j_nanoen_2023_108477 crossref_primary_10_1039_D3QI01228J crossref_primary_10_1016_j_ceramint_2025_03_029 crossref_primary_10_1007_s10854_023_10476_w crossref_primary_10_1063_5_0190404 crossref_primary_10_1002_adfm_202425711 crossref_primary_10_1038_s41467_025_57228_4 crossref_primary_10_1039_D3TA03294A crossref_primary_10_1016_j_jeurceramsoc_2024_02_040 crossref_primary_10_1021_acsaom_2c00115 crossref_primary_10_1016_j_pmatsci_2023_101231 crossref_primary_10_1039_D4TA08169B crossref_primary_10_1007_s10854_024_12233_z crossref_primary_10_1016_j_cej_2024_155666 crossref_primary_10_1016_j_ceramint_2024_12_353 crossref_primary_10_1016_j_mtener_2022_101078 crossref_primary_10_1021_acsaem_2c02895 crossref_primary_10_1021_acsami_4c22803 crossref_primary_10_1021_acsami_4c22588 crossref_primary_10_1002_eom2_12331 crossref_primary_10_1038_s41560_023_01300_0 crossref_primary_10_1063_5_0226576 crossref_primary_10_1103_PhysRevB_109_195204 crossref_primary_10_1016_j_ensm_2025_104205 crossref_primary_10_1007_s10853_023_08670_6 crossref_primary_10_1016_j_cej_2024_151046 crossref_primary_10_1002_adma_202408275 crossref_primary_10_1016_j_jeurceramsoc_2024_02_011 crossref_primary_10_1016_j_jmat_2024_02_011 crossref_primary_10_1039_D4MH00322E crossref_primary_10_1007_s12274_023_5571_8 crossref_primary_10_1126_science_adl2931 crossref_primary_10_1016_j_ceramint_2024_10_310 crossref_primary_10_1002_smll_202303915 crossref_primary_10_1016_j_cej_2022_139921 crossref_primary_10_1016_j_ceramint_2022_07_129 crossref_primary_10_1016_j_compositesb_2023_111189 crossref_primary_10_1002_adfm_202303965 crossref_primary_10_1016_j_actamat_2023_119612 crossref_primary_10_1016_j_cej_2024_152823 crossref_primary_10_3390_catal13091287 crossref_primary_10_1002_advs_202307011 crossref_primary_10_1016_j_est_2023_109527 crossref_primary_10_1016_j_cej_2023_147974 crossref_primary_10_1039_D4TA05920D crossref_primary_10_1080_21870764_2023_2259149 crossref_primary_10_1021_jacs_3c06912 crossref_primary_10_1016_j_jpcs_2024_112462 crossref_primary_10_1021_acsami_4c19866 crossref_primary_10_1016_j_mtphys_2024_101545 crossref_primary_10_1039_D4QI02126F crossref_primary_10_1039_D4QI00046C crossref_primary_10_1039_D4TA03145H crossref_primary_10_1016_j_est_2024_112668 crossref_primary_10_1039_D2TA08074E crossref_primary_10_1063_5_0235963 crossref_primary_10_1016_j_ceramint_2023_05_049 crossref_primary_10_1016_j_ceramint_2023_11_277 crossref_primary_10_1063_5_0165495 crossref_primary_10_1016_j_jallcom_2023_173199 crossref_primary_10_1002_apxr_202300006 crossref_primary_10_1016_j_ceramint_2022_08_272 crossref_primary_10_1039_D2TA10098C crossref_primary_10_1021_acsami_3c19340 crossref_primary_10_1016_j_jmst_2024_11_073 crossref_primary_10_1016_j_ceramint_2025_01_566 crossref_primary_10_1002_smll_202206958 crossref_primary_10_1002_smll_202404662 crossref_primary_10_1016_j_ensm_2023_103055 crossref_primary_10_1063_5_0156119 crossref_primary_10_1142_S2010135X23430014 crossref_primary_10_1063_5_0144267 crossref_primary_10_1111_ijac_14962 crossref_primary_10_1002_advs_202300320 crossref_primary_10_1016_j_cej_2023_147167 crossref_primary_10_1002_adfm_202401487 crossref_primary_10_1021_acsaelm_3c00607 crossref_primary_10_1016_j_cej_2023_144446 crossref_primary_10_1016_j_cej_2023_144205 crossref_primary_10_1016_j_ceramint_2023_06_139 crossref_primary_10_1111_jace_19349 crossref_primary_10_1016_j_jallcom_2023_169723 crossref_primary_10_1021_acsami_4c11956 crossref_primary_10_1007_s10971_023_06150_6 crossref_primary_10_1016_j_est_2024_112841 crossref_primary_10_1002_sus2_174 crossref_primary_10_1016_j_ceramint_2024_12_151 crossref_primary_10_1038_s41467_025_56181_6 crossref_primary_10_1016_j_materresbull_2023_112392 crossref_primary_10_1088_1361_648X_ad9211 crossref_primary_10_1016_j_jallcom_2025_178902 crossref_primary_10_1016_j_ceramint_2024_11_438 crossref_primary_10_1002_adma_202415351 crossref_primary_10_1016_j_jmrt_2024_02_006 crossref_primary_10_1063_5_0179224 crossref_primary_10_1021_acsami_3c12015 crossref_primary_10_1016_j_jmat_2024_03_016 crossref_primary_10_1002_adma_202311721 crossref_primary_10_1016_j_jallcom_2024_173987 crossref_primary_10_1016_j_jmat_2023_01_005 crossref_primary_10_1016_j_nanoen_2023_108458 crossref_primary_10_1016_j_jmat_2022_09_009 crossref_primary_10_1039_D4TC04400B crossref_primary_10_1016_j_matlet_2025_138116 crossref_primary_10_1016_j_jeurceramsoc_2022_12_007 crossref_primary_10_1038_s41467_024_51766_z crossref_primary_10_1016_j_jallcom_2023_169626 crossref_primary_10_1111_jace_19329 crossref_primary_10_1002_adma_202419134 crossref_primary_10_1016_j_cej_2024_153421 crossref_primary_10_1016_j_ceramint_2023_10_167 crossref_primary_10_1038_s41467_025_56443_3 crossref_primary_10_1016_j_jallcom_2023_170962 crossref_primary_10_1016_j_jmat_2024_03_005 crossref_primary_10_1016_j_est_2024_111890 crossref_primary_10_1016_j_jmat_2024_03_007 crossref_primary_10_1002_aelm_202201210 crossref_primary_10_1038_s41467_024_51058_6 crossref_primary_10_1021_acsami_4c14890 crossref_primary_10_1002_smtd_202201246 crossref_primary_10_1021_acsanm_4c03569 crossref_primary_10_1016_j_scriptamat_2024_115966 crossref_primary_10_1002_smll_202306486 crossref_primary_10_1021_acsnano_4c16672 crossref_primary_10_1016_j_jallcom_2022_167999 crossref_primary_10_1016_j_cej_2023_145506 crossref_primary_10_1039_D4TA06319H crossref_primary_10_1007_s10854_022_09492_z crossref_primary_10_1007_s12598_024_02934_z crossref_primary_10_1002_smtd_202201138 crossref_primary_10_1016_j_jallcom_2024_174610 crossref_primary_10_1038_s41467_025_56194_1 crossref_primary_10_1007_s12598_023_02271_7 crossref_primary_10_1063_5_0140020 crossref_primary_10_1016_j_actamat_2025_120931 crossref_primary_10_1016_j_cej_2024_150823 crossref_primary_10_1016_j_nanoen_2024_109394 crossref_primary_10_1002_advs_202300227 crossref_primary_10_1016_j_actamat_2024_120278 crossref_primary_10_1016_j_ceramint_2024_03_368 crossref_primary_10_1021_jacs_3c02811 crossref_primary_10_1016_j_cej_2024_156112 crossref_primary_10_1016_j_cej_2024_157561 crossref_primary_10_1039_D2ME00211F crossref_primary_10_1002_smll_202303768 crossref_primary_10_1021_acsami_3c16303 crossref_primary_10_1016_j_jeurceramsoc_2024_116927 crossref_primary_10_1016_j_ceramint_2024_07_316 crossref_primary_10_1016_j_jallcom_2024_177433 crossref_primary_10_1038_s41467_024_49170_8 crossref_primary_10_3390_cryst13030445 crossref_primary_10_1016_j_cej_2023_146260 crossref_primary_10_1016_j_cej_2023_144086 crossref_primary_10_1016_j_cej_2023_141490 crossref_primary_10_1016_j_jmat_2023_03_001 crossref_primary_10_46754_jml_2023_12_005 crossref_primary_10_1016_j_ceramint_2024_03_352 crossref_primary_10_1021_acs_chemrev_3c00767 crossref_primary_10_1016_j_ceramint_2024_06_402 crossref_primary_10_1063_5_0138877 crossref_primary_10_1002_adfm_202301027 crossref_primary_10_1002_smll_202400686 crossref_primary_10_2298_PAC2401001D crossref_primary_10_1021_acs_jpcc_4c05351 crossref_primary_10_1002_advs_202409113 crossref_primary_10_1016_j_ceramint_2023_08_296 crossref_primary_10_1016_j_ensm_2023_103155 crossref_primary_10_1016_j_nanoen_2025_110651 crossref_primary_10_1016_j_ceramint_2024_12_084 crossref_primary_10_1016_j_cej_2024_154047 crossref_primary_10_1038_s41467_025_56195_0 crossref_primary_10_1002_adma_202420566 crossref_primary_10_1016_j_jallcom_2025_178836 crossref_primary_10_1149_2162_8777_acbe16 crossref_primary_10_1039_D4TA07104B crossref_primary_10_1002_adfm_202411954 crossref_primary_10_1016_j_jeurceramsoc_2024_01_083 crossref_primary_10_1038_s41467_024_49107_1 crossref_primary_10_1016_j_ceramint_2023_07_043 crossref_primary_10_3390_polym15081842 crossref_primary_10_1002_smtd_202400258 crossref_primary_10_1016_j_jmat_2022_12_010 crossref_primary_10_1038_s41467_024_46894_5 crossref_primary_10_1016_j_nanoen_2024_109493 crossref_primary_10_1021_acsami_3c18262 crossref_primary_10_1038_s41467_025_56767_0 crossref_primary_10_1126_sciadv_adf8706 crossref_primary_10_1063_5_0133853 crossref_primary_10_1016_j_jeurceramsoc_2024_04_023 crossref_primary_10_1016_j_jmst_2022_10_053 crossref_primary_10_1002_adma_202205787 crossref_primary_10_1038_s41467_024_50252_w crossref_primary_10_1039_D4TC03942D crossref_primary_10_1016_j_jeurceramsoc_2023_07_020 crossref_primary_10_1126_science_ado7736 |
Cites_doi | 10.1038/nature03028 10.1002/aenm.201903338 10.1126/science.abi7687 10.1038/s41467-018-07160-7 10.1021/jacs.9b07188 10.1038/441941a 10.1021/cr5006809 10.1039/C8EE02758G 10.1016/j.pmatsci.2022.100944 10.1016/j.nanoen.2020.105423 10.1002/adfm.202110478 10.1107/S0567739475001635 10.1016/j.jeurceramsoc.2016.05.002 10.1002/adfm.201903877 10.1016/j.nanoen.2019.02.003 10.1021/acsami.1c14151 10.1126/science.aaw8109 10.1080/00150199208217984 10.1038/533306a 10.1063/1.2761852 10.1039/D0EE02104K 10.1039/C9CS00432G 10.1002/adma.201701824 10.1039/C9TC06711F 10.1021/acsami.0c13057 10.1016/j.jeurceramsoc.2017.12.058 10.1038/s41563-020-0704-x 10.1016/j.ensm.2018.09.011 10.1002/aenm.202001778 10.1016/j.cej.2021.130669 10.1039/C5TA00732A 10.1016/j.ensm.2021.11.043 10.1016/j.ensm.2021.01.023 10.1111/j.1551-2916.2010.03804.x 10.1016/j.pmatsci.2018.12.005 10.1038/s41578-019-0170-8 10.1007/BF00275336 10.1016/j.cej.2021.131465 10.1038/s41467-020-18665-5 10.1021/acs.chemrev.0c01264 10.1016/j.ensm.2020.05.026 10.1016/j.msea.2003.10.257 10.1126/science.1159610 10.1016/j.jallcom.2016.02.140 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) |
CorporateAuthor_xml | – name: Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 OIOZB OTOTI 5PM DOA |
DOI | 10.1038/s41467-022-30821-7 |
DatabaseName | Springer Nature OA Free Journals (WRLC) CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) Open Access资源_DOAJ |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_60da66d9b3f84f05b7c2f8b11d338839 PMC9163056 1879729 35654831 10_1038_s41467_022_30821_7 |
Genre | Journal Article |
GrantInformation_xml | – fundername: China National Funds for Distinguished Young Scientists grantid: 21825102 funderid: https://doi.org/10.13039/501100005153 – fundername: undamental Research Funds for the Central Universities, China (Grant No. 06500186);the China Postdoctoral Science Foundation (Grant Nos. 2020M680345 and 2021T140048) – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 52172181; 22075014; 22161142022 funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 52172181 – fundername: China National Funds for Distinguished Young Scientists grantid: 21825102 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 22075014 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 22161142022 – fundername: ; – fundername: ; grantid: 52172181; 22075014; 22161142022 – fundername: ; grantid: 21825102 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 AAPBV AAYJO ADQMX AEDAW OIOZB OTOTI ZA5 5PM PUEGO |
ID | FETCH-LOGICAL-c567t-7fee769366214b70d2b8f590e2f896600b1a2d37d9a6616f9ff75f161e4e95a43 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:09:00 EDT 2025 Thu Aug 21 17:45:17 EDT 2025 Fri May 19 01:41:23 EDT 2023 Wed Jul 30 11:39:16 EDT 2025 Wed Aug 13 02:51:13 EDT 2025 Thu Apr 03 07:08:57 EDT 2025 Tue Jul 01 00:58:14 EDT 2025 Thu Apr 24 22:51:37 EDT 2025 Fri Feb 21 02:38:15 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c567t-7fee769366214b70d2b8f590e2f896600b1a2d37d9a6616f9ff75f161e4e95a43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AC02-06CH11357; 21825102; 22161142022; 52172181; 22075014; 06500186; 2020M680345; 2021T140048 Fundamental Research Funds for the Central Universities, China China Postdoctoral Science Foundation USDOE Office of Science (SC) National Natural Science Foundation of China (NSFC) |
ORCID | 0000-0002-3094-3574 0000-0002-7330-8976 0000000230943574 0000000273308976 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-30821-7 |
PMID | 35654831 |
PQID | 2672488726 |
PQPubID | 546298 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_60da66d9b3f84f05b7c2f8b11d338839 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9163056 osti_scitechconnect_1879729 proquest_miscellaneous_2673359140 proquest_journals_2672488726 pubmed_primary_35654831 crossref_primary_10_1038_s41467_022_30821_7 crossref_citationtrail_10_1038_s41467_022_30821_7 springer_journals_10_1038_s41467_022_30821_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-02 |
PublicationDateYYYYMMDD | 2022-06-02 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United States |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Lv, Zhu, Xiao, Zhang, Wu (CR27) 2020; 49 Wang (CR13) 2020; 10 Oses, Toher, Curtarolo (CR24) 2020; 5 Qi, Xie, Tian, Zuo (CR12) 2020; 10 Shi (CR17) 2020; 8 Liu (CR32) 2018; 11 Glazer (CR34) 1975; 31 Chen, Liu, Qi, Chen (CR40) 2022; 127 Lu, Lu, Suresh (CR44) 2009; 324 Zhao, Liu, Gao, Zhang, Li (CR6) 2017; 29 Yan (CR11) 2020; 30 Yan (CR20) 2021; 425 Lu (CR16) 2021; 79 Chen (CR37) 2022; 32 Wang (CR5) 2021; 121 Yang (CR14) 2020; 12 Yang (CR4) 2019; 102 Zhang (CR43) 2016; 36 Saito (CR38) 2004; 432 Zhang, Zhao, Li, Fei (CR15) 2019; 18 Tang (CR31) 2016; 672 Sarker (CR26) 2018; 9 Zheng, Wu (CR39) 2015; 3 Tao (CR33) 2019; 141 Ji (CR19) 2021; 38 Qi, Xie, Zuo (CR18) 2021; 45 Lim (CR23) 2016; 533 Li (CR2) 2020; 19 Zhang, Yang, Yu, Lin (CR7) 2021; 425 Sarkar (CR25) 2018; 38 Pan (CR3) 2019; 365 Qi (CR9) 2019; 29 Pan (CR1) 2021; 374 Luo (CR10) 2020; 11 Cohen (CR35) 2006; 441 Tunkasiri, Rujijanagul (CR42) 1996; 15 Wu, Xiao, Zhu (CR28) 2015; 115 Zuo, Fu, Lv, Liu (CR30) 2010; 93 Yang (CR36) 2019; 58 Lin, Kwok, Chan (CR29) 2007; 102 Wang (CR21) 2021; 13 Cantor, Chang, Knight, Vincent (CR22) 2004; 375 Lu (CR8) 2020; 13 Waser (CR41) 1992; 133 H Tao (30821_CR33) 2019; 141 J Li (30821_CR2) 2020; 19 L Yang (30821_CR4) 2019; 102 L Chen (30821_CR40) 2022; 127 Z Yang (30821_CR36) 2019; 58 F Yan (30821_CR11) 2020; 30 Y Saito (30821_CR38) 2004; 432 K Wang (30821_CR13) 2020; 10 Z Lu (30821_CR16) 2021; 79 J Wu (30821_CR28) 2015; 115 H Ji (30821_CR19) 2021; 38 Q Liu (30821_CR32) 2018; 11 N Luo (30821_CR10) 2020; 11 T Zhang (30821_CR15) 2019; 18 C Oses (30821_CR24) 2020; 5 X Tang (30821_CR31) 2016; 672 H Yang (30821_CR14) 2020; 12 A Sarkar (30821_CR25) 2018; 38 R Zuo (30821_CR30) 2010; 93 P Sarker (30821_CR26) 2018; 9 X Lv (30821_CR27) 2020; 49 A Glazer (30821_CR34) 1975; 31 T Tunkasiri (30821_CR42) 1996; 15 R Cohen (30821_CR35) 2006; 441 B Cantor (30821_CR22) 2004; 375 L Zhang (30821_CR43) 2016; 36 G Wang (30821_CR5) 2021; 121 Z Lu (30821_CR8) 2020; 13 T Zheng (30821_CR39) 2015; 3 K Lu (30821_CR44) 2009; 324 M Zhang (30821_CR7) 2021; 425 F Yan (30821_CR20) 2021; 425 R Waser (30821_CR41) 1992; 133 L Chen (30821_CR37) 2022; 32 H Qi (30821_CR18) 2021; 45 J Shi (30821_CR17) 2020; 8 M Wang (30821_CR21) 2021; 13 D Lin (30821_CR29) 2007; 102 H Qi (30821_CR12) 2020; 10 H Pan (30821_CR1) 2021; 374 X Lim (30821_CR23) 2016; 533 H Qi (30821_CR9) 2019; 29 H Pan (30821_CR3) 2019; 365 L Zhao (30821_CR6) 2017; 29 |
References_xml | – volume: 432 start-page: 84 year: 2004 end-page: 87 ident: CR38 article-title: Lead-free piezoceramics publication-title: Nature doi: 10.1038/nature03028 – volume: 10 start-page: 1903338 year: 2020 ident: CR12 article-title: Superior energy‐storage capacitors with simultaneously giant energy density and efficiency using nanodomain engineered BiFeO ‐BaTiO ‐NaNbO lead‐free bulk ferroelectrics publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903338 – volume: 374 start-page: 100 year: 2021 end-page: 104 ident: CR1 article-title: Ultrahigh energy storage in superparaelectric relaxor ferroelectrics publication-title: Science doi: 10.1126/science.abi7687 – volume: 9 start-page: 1 year: 2018 end-page: 10 ident: CR26 article-title: High-entropy high-hardness metal carbides discovered by entropy descriptors publication-title: Nat. Commun. doi: 10.1038/s41467-018-07160-7 – volume: 141 start-page: 13987 year: 2019 end-page: 13994 ident: CR33 article-title: Ultrahigh performance in lead-free piezoceramics utilizing a relaxor slush polar state with multiphase coexistence publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b07188 – volume: 441 start-page: 941 year: 2006 end-page: 942 ident: CR35 article-title: Relaxors go critical publication-title: Nature doi: 10.1038/441941a – volume: 115 start-page: 2559 year: 2015 end-page: 2595 ident: CR28 article-title: Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries publication-title: Chem. Rev. doi: 10.1021/cr5006809 – volume: 11 start-page: 3531 year: 2018 end-page: 3539 ident: CR32 article-title: High-performance lead-free piezoelectrics with local structural heterogeneity publication-title: Energy Environ. Sci. doi: 10.1039/C8EE02758G – volume: 127 start-page: 100944 year: 2022 ident: CR40 article-title: High-electromechanical performance for high-power piezoelectric applications: fundamental, progress, and perspective publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2022.100944 – volume: 79 start-page: 105423 year: 2021 ident: CR16 article-title: Mechanism of enhanced energy storage density in AgNbO -based lead-free antiferroelectrics publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105423 – volume: 32 start-page: 2110478 year: 2022 ident: CR37 article-title: Outstanding energy storage performance in high‐hardness (Bi K )TiO ‐based lead‐free relaxors via multi‐scale synergistic design publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202110478 – volume: 31 start-page: 756 year: 1975 end-page: 762 ident: CR34 article-title: Simple ways of determining perovskite structures publication-title: Acta Cryst. A doi: 10.1107/S0567739475001635 – volume: 36 start-page: 3157 year: 2016 end-page: 3163 ident: CR43 article-title: Effect of HfO addition as intergranular grains on the energy storage behavior of Ca Sr TiO ceramics publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2016.05.002 – volume: 29 start-page: 1903877 year: 2019 ident: CR9 article-title: Ultrahigh energy‐storage density in NaNbO ‐based lead‐free relaxor antiferroelectric ceramics with nanoscale domains publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201903877 – volume: 58 start-page: 768 year: 2019 end-page: 777 ident: CR36 article-title: Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.02.003 – volume: 13 start-page: 51218 year: 2021 end-page: 51229 ident: CR21 article-title: Ultrahigh energy storage density and efficiency in Bi Na TiO -based ceramics via the domain and bandgap engineering publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c14151 – volume: 365 start-page: 578 year: 2019 end-page: 582 ident: CR3 article-title: Ultrahigh–energy density lead-free dielectric films via polymorphic nanodomain design publication-title: Science doi: 10.1126/science.aaw8109 – volume: 133 start-page: 109 year: 1992 end-page: 114 ident: CR41 article-title: TrI4: The role of grain boundaries in conduction and breakdown of perovskite-type titanates publication-title: Ferroelectrics doi: 10.1080/00150199208217984 – volume: 533 start-page: 306 year: 2016 end-page: 307 ident: CR23 article-title: Mixed-up metals make for stronger, tougher, stretchier alloys publication-title: Nature doi: 10.1038/533306a – volume: 102 start-page: 034102 year: 2007 ident: CR29 article-title: Microstructure, phase transition, and electrical properties of (K Na ) Li (Nb Ta )O lead-free piezoelectric ceramics publication-title: J. Appl. Phys. doi: 10.1063/1.2761852 – volume: 13 start-page: 2938 year: 2020 end-page: 2948 ident: CR8 article-title: Superior energy density through tailored dopant strategies in multilayer ceramic capacitors publication-title: Energy Environ. Sci. doi: 10.1039/D0EE02104K – volume: 49 start-page: 671 year: 2020 end-page: 707 ident: CR27 article-title: Emerging new phase boundary in potassium sodium-niobate based ceramics publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00432G – volume: 29 start-page: 1701824 year: 2017 ident: CR6 article-title: Lead‐free antiferroelectric silver niobate tantalate with high energy storage performance publication-title: Adv. Mater. doi: 10.1002/adma.201701824 – volume: 8 start-page: 3784 year: 2020 end-page: 3794 ident: CR17 article-title: Realizing ultrahigh recoverable energy density and superior charge–discharge performance in NaNbO -based lead-free ceramics via a local random field strategy publication-title: J. Mater. Chem. C. doi: 10.1039/C9TC06711F – volume: 12 start-page: 43942 year: 2020 end-page: 43949 ident: CR14 article-title: Novel BaTiO -based, Ag/Pd-compatible lead-free relaxors with superior energy storage performance publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c13057 – volume: 38 start-page: 2318 year: 2018 end-page: 2327 ident: CR25 article-title: Rare earth and transition metal based entropy stabilised perovskite type oxides publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2017.12.058 – volume: 19 start-page: 999 year: 2020 end-page: 1005 ident: CR2 article-title: Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications publication-title: Nat. Mater. doi: 10.1038/s41563-020-0704-x – volume: 18 start-page: 238 year: 2019 end-page: 245 ident: CR15 article-title: High energy storage density at low electric field of ABO antiferroelectric films with ionic pair doping publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.09.011 – volume: 10 start-page: 2001778 year: 2020 ident: CR13 article-title: Superparaelectric (Ba ,Sr )(Zr ,Ti )O ultracapacitors publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202001778 – volume: 425 start-page: 130669 year: 2021 ident: CR20 article-title: Sandwich structured lead-free ceramics based on Bi Na TiO for high energy storage publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130669 – volume: 3 start-page: 6772 year: 2015 end-page: 6780 ident: CR39 article-title: Enhanced piezoelectricity over a wide sintering temperature (400–1050 °C) range in potassium sodium niobate-based ceramics by two step sintering publication-title: J. Mater. Chem. A doi: 10.1039/C5TA00732A – volume: 45 start-page: 541 year: 2021 end-page: 567 ident: CR18 article-title: Local structure engineered lead-free ferroic dielectrics for superior energy-storage capacitors: a review publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.11.043 – volume: 38 start-page: 113 year: 2021 end-page: 120 ident: CR19 article-title: Ultrahigh energy density in short-range tilted NBT-based lead-free multilayer ceramic capacitors by nanodomain percolation publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.01.023 – volume: 93 start-page: 2783 year: 2010 end-page: 2787 ident: CR30 article-title: Antimony tuned rhombohedral‐orthorhombic phase transition and enhanced piezoelectric properties in sodium potassium niobate publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2010.03804.x – volume: 102 start-page: 72 year: 2019 end-page: 108 ident: CR4 article-title: Perovskite lead-free dielectrics for energy storage applications publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2018.12.005 – volume: 5 start-page: 295 year: 2020 end-page: 309 ident: CR24 article-title: High-entropy ceramics publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0170-8 – volume: 15 start-page: 1767 year: 1996 end-page: 1769 ident: CR42 article-title: Dielectric strength of fine grained barium titanate ceramics publication-title: J. Mater. Sci. Lett. doi: 10.1007/BF00275336 – volume: 425 start-page: 131465 year: 2021 ident: CR7 article-title: Energy storage performance of K Na NbO -based ceramics modified by Bi(Zn (Nb Ta ) )O publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131465 – volume: 11 year: 2020 ident: CR10 article-title: Constructing phase boundary in AgNbO antiferroelectrics: pathway simultaneously achieving high energy density and efficiency publication-title: Nat. Commun. doi: 10.1038/s41467-020-18665-5 – volume: 121 start-page: 6124 year: 2021 end-page: 6172 ident: CR5 article-title: Electroceramics for high-energy density capacitors: current status and future perspectives publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c01264 – volume: 30 start-page: 392 year: 2020 end-page: 400 ident: CR11 article-title: Significantly enhanced energy storage density and efficiency of BNT-based perovskite ceramics via A-site defect engineering publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.05.026 – volume: 375 start-page: 213 year: 2004 end-page: 218 ident: CR22 article-title: Microstructural development in equiatomic multicomponent alloys publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2003.10.257 – volume: 324 start-page: 349 year: 2009 end-page: 352 ident: CR44 article-title: Strengthening materials by engineering coherent internal boundaries at the nanoscale publication-title: Science doi: 10.1126/science.1159610 – volume: 672 start-page: 277 year: 2016 end-page: 281 ident: CR31 article-title: Composition dependence of phase structure and electrical properties in (0.98- )K Na NbO –0.02BaZrO – Bi Na ZrO ternary ceramics publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2016.02.140 – volume: 9 start-page: 1 year: 2018 ident: 30821_CR26 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07160-7 – volume: 425 start-page: 131465 year: 2021 ident: 30821_CR7 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131465 – volume: 30 start-page: 392 year: 2020 ident: 30821_CR11 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.05.026 – volume: 127 start-page: 100944 year: 2022 ident: 30821_CR40 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2022.100944 – volume: 32 start-page: 2110478 year: 2022 ident: 30821_CR37 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202110478 – volume: 36 start-page: 3157 year: 2016 ident: 30821_CR43 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2016.05.002 – volume: 10 start-page: 1903338 year: 2020 ident: 30821_CR12 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903338 – volume: 102 start-page: 034102 year: 2007 ident: 30821_CR29 publication-title: J. Appl. Phys. doi: 10.1063/1.2761852 – volume: 45 start-page: 541 year: 2021 ident: 30821_CR18 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.11.043 – volume: 365 start-page: 578 year: 2019 ident: 30821_CR3 publication-title: Science doi: 10.1126/science.aaw8109 – volume: 121 start-page: 6124 year: 2021 ident: 30821_CR5 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c01264 – volume: 13 start-page: 2938 year: 2020 ident: 30821_CR8 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE02104K – volume: 11 year: 2020 ident: 30821_CR10 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18665-5 – volume: 12 start-page: 43942 year: 2020 ident: 30821_CR14 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c13057 – volume: 672 start-page: 277 year: 2016 ident: 30821_CR31 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2016.02.140 – volume: 15 start-page: 1767 year: 1996 ident: 30821_CR42 publication-title: J. Mater. Sci. Lett. doi: 10.1007/BF00275336 – volume: 18 start-page: 238 year: 2019 ident: 30821_CR15 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.09.011 – volume: 441 start-page: 941 year: 2006 ident: 30821_CR35 publication-title: Nature doi: 10.1038/441941a – volume: 93 start-page: 2783 year: 2010 ident: 30821_CR30 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2010.03804.x – volume: 29 start-page: 1903877 year: 2019 ident: 30821_CR9 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201903877 – volume: 115 start-page: 2559 year: 2015 ident: 30821_CR28 publication-title: Chem. Rev. doi: 10.1021/cr5006809 – volume: 425 start-page: 130669 year: 2021 ident: 30821_CR20 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130669 – volume: 375 start-page: 213 year: 2004 ident: 30821_CR22 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2003.10.257 – volume: 31 start-page: 756 year: 1975 ident: 30821_CR34 publication-title: Acta Cryst. A doi: 10.1107/S0567739475001635 – volume: 79 start-page: 105423 year: 2021 ident: 30821_CR16 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105423 – volume: 11 start-page: 3531 year: 2018 ident: 30821_CR32 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE02758G – volume: 533 start-page: 306 year: 2016 ident: 30821_CR23 publication-title: Nature doi: 10.1038/533306a – volume: 10 start-page: 2001778 year: 2020 ident: 30821_CR13 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202001778 – volume: 8 start-page: 3784 year: 2020 ident: 30821_CR17 publication-title: J. Mater. Chem. C. doi: 10.1039/C9TC06711F – volume: 102 start-page: 72 year: 2019 ident: 30821_CR4 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2018.12.005 – volume: 133 start-page: 109 year: 1992 ident: 30821_CR41 publication-title: Ferroelectrics doi: 10.1080/00150199208217984 – volume: 374 start-page: 100 year: 2021 ident: 30821_CR1 publication-title: Science doi: 10.1126/science.abi7687 – volume: 3 start-page: 6772 year: 2015 ident: 30821_CR39 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA00732A – volume: 19 start-page: 999 year: 2020 ident: 30821_CR2 publication-title: Nat. Mater. doi: 10.1038/s41563-020-0704-x – volume: 29 start-page: 1701824 year: 2017 ident: 30821_CR6 publication-title: Adv. Mater. doi: 10.1002/adma.201701824 – volume: 5 start-page: 295 year: 2020 ident: 30821_CR24 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0170-8 – volume: 432 start-page: 84 year: 2004 ident: 30821_CR38 publication-title: Nature doi: 10.1038/nature03028 – volume: 13 start-page: 51218 year: 2021 ident: 30821_CR21 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c14151 – volume: 49 start-page: 671 year: 2020 ident: 30821_CR27 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00432G – volume: 38 start-page: 2318 year: 2018 ident: 30821_CR25 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2017.12.058 – volume: 324 start-page: 349 year: 2009 ident: 30821_CR44 publication-title: Science doi: 10.1126/science.1159610 – volume: 38 start-page: 113 year: 2021 ident: 30821_CR19 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.01.023 – volume: 141 start-page: 13987 year: 2019 ident: 30821_CR33 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b07188 – volume: 58 start-page: 768 year: 2019 ident: 30821_CR36 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.02.003 |
SSID | ssj0000391844 |
Score | 2.7217128 |
Snippet | Next-generation advanced high/pulsed power capacitors rely heavily on dielectric ceramics with high energy storage performance. However, thus far, the huge... Next-generation advanced high/pulsed power capacitors rely heavily on dielectric ceramics with high energy storage performance. However, thus far, the huge... Dielectric ceramics are widely used in advanced high/pulsed power capacitors. Here, the authors propose a high-entropy strategy to design “local polymorphic... |
SourceID | doaj pubmedcentral osti proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3089 |
SubjectTerms | 140/133 147/135 147/137 147/143 639/301/1023/1024 639/301/119/996 639/301/299 639/4077/4079/4105 Capacitors Ceramics Density Design Dielectrics Distortion Electric fields ENERGY STORAGE Entropy Ferroelectric materials Ferroelectricity ferroelectrics and multiferroics Humanities and Social Sciences Lead free materials for energy and catalysis multidisciplinary Nanoclusters Relaxors Science Science (multidisciplinary) supercapacitors |
SummonAdditionalLinks | – databaseName: Open Access资源_DOAJ dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFH_IguBF_LbuKhG8adg2SZP0qOK6CHpyYW-haRIcGNplpiPOf-97aWfc8fPiaaBNO-n7fsnL7wG8oK0yq9uO62hLrjpMWL3XHY-tsCF10gdP65AfP-nzC_Xhsr681uqLasImeOCJcKe6DK3WofEyWZXK2ptOJOurKmByhd6drC_6vGvJVLbBssHURc2nZEppT9cq24RcvI5ur-LmwBNlwH78GVCxfhds_loz-dPGafZHZ3fg9hxIstfTB9yFG7G_Bzen1pLb-xDeI99HFvPRPk4lkGg4WKBy9XHLaPWVbZb4FwRXzGLGkaBDmGzRsyWynadVjIwOunwbVmv2ddEyGslpWsPVFl9EhR8P4OLs3ee353zuqMC7WpuRmxQjNT_UWlTKmzIIb1PdlBFJSjCdpa9aEaQJDdK80okWdOuEQWFUsalbJR_CUT_08TGwhrQ9YIBgglQmqBYtuLfRIO9F2Ya6gGpHXdfNcOPU9WLp8ra3tG7iiEOOuMwRZwp4uX_magLb-OvoN8S0_UgCys4XUHzcLD7uX-JTwDGx3GG8QaC5HVUXdaOjHuyYdhRwspMEN-v22gltBJo9I3QBz_e3UStpq6Xt47DJY6SsG8xeC3g0Cc5-nhJjaGVlVYA5EKmDDzm80y--ZORvjOUp5Svg1U74fkzrz4R68j8IdQy3BCkPLUCJEzgaV5v4FOOx0T_LqvcdRDUvpQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7BIiQuiDdhF2QkbmBtYju2c0KA6K6Q4MRKe7Pi2IFKVVLaFNF_z4ybZlUee6qUOKmdeXhe_gbgFaXKrK4brqPNuWrQYfVeNzzWwoa2kT54ikN-_qLPL9Sny_JyDLitx7LKvU5Mijr0DcXIT4U2ApnNCP12-YNT1yjKro4tNG7CrQJ3GirpsrOzKcZC6OdWqfGsTC7t6VolzZBK2HHzK7g52I8SbD_-9Che_zI5_66c_CN9mnal2T24O5qT7N2O_vfhRuwewO1dg8ntQwhnSP2BxXTAj1MhJKoPFqhofdgyisGyzQL_gkCLWUxoEnQUk807tkDi83YVI6PjLr_61Zr9nNeMRnKaVr_c4ouo_OMRXMw-fv1wzse-CrwptRm4aWOkFohai0J5kwfhbVtWeRStJbDO3Be1CNKEqsbdW7cU1i1bNA2jilVZK_kYjrq-i0-BVSTzAc0EE6QyQdWox72NBjlA5HUoMyj2X9c1I-g49b5YuJT8ltbtKOKQIi5RxJkMXk_PLHeQG9eOfk9Em0YSXHa60K--uVH6nM4DLiVUXrZWtXnpTYNr9UUR0ENHEzGDYyK5Q6uDoHMbqjFqBked2NH5yOBkzwlulPC1u-LHDF5Ot1E2KeFSd7HfpDFSlhX6sBk82THONE-JlrSyssjAHLDUwUIO73Tz7wn_Gy16cvwyeLNnvqtp_f9DPbt-FcdwR5BYUIBJnMDRsNrE52hvDf5FEqrfHNsnbQ priority: 102 providerName: ProQuest – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLfGJiReEN8rGyhIvEFFm6RJ-nggxnQSvMCkvUVNk8JJp3a666Hdfz877RUdDCSeKl3da1Lbie3YPwO8pqMyo6o6VcFkqazRYXVO1WmouPFNLZx3FIf8_EWdX8j5ZXF5AHxXCxOT9iOkZVymd9lh79YyqnTMPcddK0_1HTgiqHaU7aPZbP51PkVWCPPcSDlWyGTC3PLw3i4Uwfrx0qFS3WZo_pkv-duhadyLzh7A_dGIZLNh2A_hILSP4O7QVnL7GPwn5HnPQizrSyn9ERcN5ilVvd8yiryyzRJfQVDFLEQMCSrAZIuWLZHlabMKgVGRy3W3WrOfi4oRZUrD6q62-EeU9PEELs4-fvtwno7dFNK6ULpPdRMCNT5UiufS6cxzZ5qizAJvDEF0Zi6vuBfalxXu2aqhYG7RoEEYZCiLSoqncNh2bTgGVpKmezQOtBdSe1nh6u1M0Mh3nlW-SCDffV1bj1Dj1PFiaeORtzB24IhFjtjIEasTeDM9czUAbfyT-j0xbaIkkOz4Q7f6bkehsSrzOBVfOtEY2WSF0zXO1eW5R78cDcMETojlFm0NAsytKbOo7i31X0eXI4HTnSTYUa_XlivNccnTXCXwarqNGknHLFUbuk2kEaIo0XNN4NkgONM4BdrP0og8Ab0nUnsT2b_TLn5E1G-048ndS-DtTvh-DevvH-r5_5GfwD1OakJhJn4Kh_1qE16g1dW7l6Oa3QDLqyZ2 priority: 102 providerName: Springer Nature |
Title | Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design |
URI | https://link.springer.com/article/10.1038/s41467-022-30821-7 https://www.ncbi.nlm.nih.gov/pubmed/35654831 https://www.proquest.com/docview/2672488726 https://www.proquest.com/docview/2673359140 https://www.osti.gov/servlets/purl/1879729 https://pubmed.ncbi.nlm.nih.gov/PMC9163056 https://doaj.org/article/60da66d9b3f84f05b7c2f8b11d338839 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB7tQ0hcEG_CLpWRuEEgsRM7OSDUrba7qrQrBFTqzYpjBypVzdKmaPvvmXHSokJB4tJIiZvYnoe_secB8IqOyjJZlKF0WRQmJRqsxsgydAXPbFUKYw3tQ15dy8txMpqkkwPYlDvqJnC517SjelLjxezt7ff1BxT4923IePZumXhx937puKLFoTqEY1yZFFU0uOrgvtfMIkeDhg6aeZTEITYQXRzN_tfsrFU-pT9eahS9fXD0T6_K345W_Yo1vA_3OqjJ-i1vPIADN38Id9rik-tHYC-QMxrmfPBfSE6SqFqYJYf2Zs1of5atZvgJSmjMnM80QWGabDpnM2SMsFo4xygU5rZeLNmPacGoZUjdqm_W-CJyDXkM4-H5l8Fl2NVcCMtUqiZUlXNUHlFKHidGRZabrErzyPEqo0SekYkLboWyeYEru6xoyzetEDa6xOVpkYgncDSv5-4ZsJz0gUUIoaxIlE0K1PEmcwq5g0eFTQOIN7Oryy4hOdXFmGl_MC4y3VJEI0W0p4hWAbze_uemTcfxz9ZnRLRtS0ql7W_Ui6-6k0wtI4tDsbkRVZZUUWpUiWM1cWzRekf4GMAJkVwjIqG0uiX5H5WNpirtaJgEcLrhBL1hXs2l4qgYFZcBvNw-Rrmlw5hi7uqVbyNEmqN9G8DTlnG2_RSIspNMxAGoHZbaGcjuk_n0m88NjmifjMIA3myY71e3_j5Rz_9rWk_gLicpob0ofgpHzWLlXiA0a0wPDtVE4W82vOjBcb8_-jzC69n59cdPeHcgBz2_6dHzcvkTQJI24A |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIIXxJ2wAUaCJ4iW2I7tPCDEbevY5WmT9mbi2IFKVVLaFOif4jdyjpN0Kpe97alS46a2z-dz87kQ8hyvyrQsylh6ncSiBIPVWlnGvmDaVSW3zqIf8uhYjk7Fp7PsbIP8GnJhMKxy4ImBUbumRB_5DpOKAdgUk2-m32LsGoW3q0MLjQ4WB375A0y2-ev9D0DfF4ztfjx5P4r7rgJxmUnVxqryHhsASslSYVXimNVVlieeVRpLVSY2LZjjyuUFyC5ZoVMzq0Ax8sLnWSE4vPcKuSo4SHLMTN_dW_l0sNq6FqLPzUm43pmLwIlCyDwI2zRWa_IvtAmAjwaO879U3L8jNf-4rg1ScPcWudmrr_Rth7fbZMPXd8i1rqHl8i5xe4C2lvqQUBhj4CWwK-owSL5dUvT50sUE_gKLJFMfqldg6icd13QCYIurmfcU02t-NrM5_T4uKI6McVrNdAkvwnCTe-T0Unb8Ptmsm9o_JDRHHuNALVGOC-VEAXLDaq8AcSwpXBaRdNhdU_ZFzrHXxsSEy3auTUcRAxQxgSJGReTl6jfTrsTHhaPfIdFWI7E8d_iimX0x_Wk3MnGwFJdbXmlRJZlVJazVpqnjXINKGpEtJLkBLQdL9ZYY01S2Bju_g7ETke0BCabnKHNzjv-IPFs9Bl6AFzxF7ZtFGMN5loPNHJEHHXBW8-SguQvN04ioNUitLWT9ST3-GuqNgwWBhmZEXg3gO5_W_zfq0cWreEquj06ODs3h_vHBFrnB8Iigc4ttk812tvCPQddr7ZNwwCj5fNkn-jflrmNF |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1Lb9Mw2BqdQFwQb8IGGAlOEDWxndg5IMTYysZgmhCTdvPi2IFKVVLaFOhf49fxfU7SqTx226lS46a2v_ebkGcYKlNpXoSpU1EoCjBYjUmL0OVM2bLgxhr0Q348SvdPxPvT5HSD_OprYTCtsueJnlHbukAf-ZClkgGySZYOyy4t4nh39Hr6LcQJUhhp7cdptChy6JY_wHybvzrYBVg_Z2y09_ntfthNGAiLJJVNKEvncBhgmrJYGBlZZlSZZJFjpcK2lZGJc2a5tFkOciwt0cGZlKAkOeGyJBcc3nuFbEq0igZkc2fv6PjTysODvdeVEF2lTsTVcC48X_IJ9CB641CuSUM_NAA-aiDufym8f-dt_hG89TJxdJPc6JRZ-qbFvltkw1W3ydV2vOXyDrHvAPca6nx5YYhpmMC8qMWU-WZJ0QNMFxP4C2yZTJ3vZYGFoHRc0QmgXljOnKNYbPOzns3p93FOcWWI26qnS3gRJp_cJSeXcuf3yKCqK_eA0Aw5jgUlRVoupBU5SBGjnAT8Y1Fuk4DE_e3qomt5jpM3JtqH3rnSLUQ0QER7iGgZkBer30zbhh8Xrt5BoK1WYrNu_0U9-6I72tdpZOEoNjO8VKKMEiMLOKuJY8u5AgU1IFsIcg06DzbuLTDDqWg0zoEH0ycg2z0m6I6_zPU5NQTk6eoxcAYM9-SVqxd-DedJBhZ0QO63iLPaJwc9XigeB0SuodTaQdafVOOvvvs42BNodgbkZY9859v6_0U9vPgUT8g1oGb94eDocItcZ0gh6Oli22TQzBbuESh-jXncURglZ5dN1L8BnhZo1w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Giant+energy-storage+density+with+ultrahigh+efficiency+in+lead-free+relaxors+via+high-entropy+design&rft.jtitle=Nature+communications&rft.au=Chen%2C+Liang&rft.au=Deng%2C+Shiqing&rft.au=Liu%2C+Hui&rft.au=Wu%2C+Jie&rft.date=2022-06-02&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-022-30821-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_022_30821_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |