Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design

Next-generation advanced high/pulsed power capacitors rely heavily on dielectric ceramics with high energy storage performance. However, thus far, the huge challenge of realizing ultrahigh recoverable energy storage density ( W rec ) accompanied by ultrahigh efficiency ( η ) still existed and has be...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; pp. 3089 - 8
Main Authors Chen, Liang, Deng, Shiqing, Liu, Hui, Wu, Jie, Qi, He, Chen, Jun
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 02.06.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Next-generation advanced high/pulsed power capacitors rely heavily on dielectric ceramics with high energy storage performance. However, thus far, the huge challenge of realizing ultrahigh recoverable energy storage density ( W rec ) accompanied by ultrahigh efficiency ( η ) still existed and has become a key bottleneck restricting the development of dielectric materials in cutting-edge energy storage applications. Here, we propose a high-entropy strategy to design “local polymorphic distortion” including rhombohedral-orthorhombic-tetragonal-cubic multiphase nanoclusters and random oxygen octahedral tilt, resulting in ultrasmall polar nanoregions, an enhanced breakdown electric field, and delayed polarization saturation. A giant W rec ~10.06 J cm −3 is realized in lead-free relaxor ferroelectrics, especially with an ultrahigh η ~90.8%, showing breakthrough progress in the comprehensive energy storage performance for lead-free bulk ceramics. This work opens up an effective avenue to design dielectric materials with ultrahigh comprehensive energy storage performance to meet the demanding requirements of advanced energy storage applications. Dielectric ceramics are widely used in advanced high/pulsed power capacitors. Here, the authors propose a high-entropy strategy to design “local polymorphic distortion” in lead-free ceramics, achieving high energy storage performance.
AbstractList Next-generation advanced high/pulsed power capacitors rely heavily on dielectric ceramics with high energy storage performance. However, thus far, the huge challenge of realizing ultrahigh recoverable energy storage density ( W rec ) accompanied by ultrahigh efficiency ( η ) still existed and has become a key bottleneck restricting the development of dielectric materials in cutting-edge energy storage applications. Here, we propose a high-entropy strategy to design “local polymorphic distortion” including rhombohedral-orthorhombic-tetragonal-cubic multiphase nanoclusters and random oxygen octahedral tilt, resulting in ultrasmall polar nanoregions, an enhanced breakdown electric field, and delayed polarization saturation. A giant W rec ~10.06 J cm −3 is realized in lead-free relaxor ferroelectrics, especially with an ultrahigh η ~90.8%, showing breakthrough progress in the comprehensive energy storage performance for lead-free bulk ceramics. This work opens up an effective avenue to design dielectric materials with ultrahigh comprehensive energy storage performance to meet the demanding requirements of advanced energy storage applications. Dielectric ceramics are widely used in advanced high/pulsed power capacitors. Here, the authors propose a high-entropy strategy to design “local polymorphic distortion” in lead-free ceramics, achieving high energy storage performance.
Next-generation advanced high/pulsed power capacitors rely heavily on dielectric ceramics with high energy storage performance. However, thus far, the huge challenge of realizing ultrahigh recoverable energy storage density (W ) accompanied by ultrahigh efficiency (η) still existed and has become a key bottleneck restricting the development of dielectric materials in cutting-edge energy storage applications. Here, we propose a high-entropy strategy to design "local polymorphic distortion" including rhombohedral-orthorhombic-tetragonal-cubic multiphase nanoclusters and random oxygen octahedral tilt, resulting in ultrasmall polar nanoregions, an enhanced breakdown electric field, and delayed polarization saturation. A giant W ~10.06 J cm is realized in lead-free relaxor ferroelectrics, especially with an ultrahigh η ~90.8%, showing breakthrough progress in the comprehensive energy storage performance for lead-free bulk ceramics. This work opens up an effective avenue to design dielectric materials with ultrahigh comprehensive energy storage performance to meet the demanding requirements of advanced energy storage applications.
Next-generation advanced high/pulsed power capacitors rely heavily on dielectric ceramics with high energy storage performance. However, thus far, the huge challenge of realizing ultrahigh recoverable energy storage density (Wrec) accompanied by ultrahigh efficiency (η) still existed and has become a key bottleneck restricting the development of dielectric materials in cutting-edge energy storage applications. Here, we propose a high-entropy strategy to design "local polymorphic distortion" including rhombohedral-orthorhombic-tetragonal-cubic multiphase nanoclusters and random oxygen octahedral tilt, resulting in ultrasmall polar nanoregions, an enhanced breakdown electric field, and delayed polarization saturation. A giant Wrec ~10.06 J cm-3 is realized in lead-free relaxor ferroelectrics, especially with an ultrahigh η ~90.8%, showing breakthrough progress in the comprehensive energy storage performance for lead-free bulk ceramics. This work opens up an effective avenue to design dielectric materials with ultrahigh comprehensive energy storage performance to meet the demanding requirements of advanced energy storage applications.Next-generation advanced high/pulsed power capacitors rely heavily on dielectric ceramics with high energy storage performance. However, thus far, the huge challenge of realizing ultrahigh recoverable energy storage density (Wrec) accompanied by ultrahigh efficiency (η) still existed and has become a key bottleneck restricting the development of dielectric materials in cutting-edge energy storage applications. Here, we propose a high-entropy strategy to design "local polymorphic distortion" including rhombohedral-orthorhombic-tetragonal-cubic multiphase nanoclusters and random oxygen octahedral tilt, resulting in ultrasmall polar nanoregions, an enhanced breakdown electric field, and delayed polarization saturation. A giant Wrec ~10.06 J cm-3 is realized in lead-free relaxor ferroelectrics, especially with an ultrahigh η ~90.8%, showing breakthrough progress in the comprehensive energy storage performance for lead-free bulk ceramics. This work opens up an effective avenue to design dielectric materials with ultrahigh comprehensive energy storage performance to meet the demanding requirements of advanced energy storage applications.
Dielectric ceramics are widely used in advanced high/pulsed power capacitors. Here, the authors propose a high-entropy strategy to design “local polymorphic distortion” in lead-free ceramics, achieving high energy storage performance.
Next-generation advanced high/pulsed power capacitors rely heavily on dielectric ceramics with high energy storage performance. However, thus far, the huge challenge of realizing ultrahigh recoverable energy storage density (Wrec) accompanied by ultrahigh efficiency (η) still existed and has become a key bottleneck restricting the development of dielectric materials in cutting-edge energy storage applications. Here, we propose a high-entropy strategy to design “local polymorphic distortion” including rhombohedral-orthorhombic-tetragonal-cubic multiphase nanoclusters and random oxygen octahedral tilt, resulting in ultrasmall polar nanoregions, an enhanced breakdown electric field, and delayed polarization saturation. A giant Wrec ~10.06 J cm-3 is realized in lead-free relaxor ferroelectrics, especially with an ultrahigh η ~90.8%, showing breakthrough progress in the comprehensive energy storage performance for lead-free bulk ceramics. This work opens up an effective avenue to design dielectric materials with ultrahigh comprehensive energy storage performance to meet the demanding requirements of advanced energy storage applications.
Next-generation advanced high/pulsed power capacitors rely heavily on dielectric ceramics with high energy storage performance. However, thus far, the huge challenge of realizing ultrahigh recoverable energy storage density (Wrec) accompanied by ultrahigh efficiency (η) still existed and has become a key bottleneck restricting the development of dielectric materials in cutting-edge energy storage applications. Here, we propose a high-entropy strategy to design “local polymorphic distortion” including rhombohedral-orthorhombic-tetragonal-cubic multiphase nanoclusters and random oxygen octahedral tilt, resulting in ultrasmall polar nanoregions, an enhanced breakdown electric field, and delayed polarization saturation. A giant Wrec ~10.06 J cm−3 is realized in lead-free relaxor ferroelectrics, especially with an ultrahigh η ~90.8%, showing breakthrough progress in the comprehensive energy storage performance for lead-free bulk ceramics. This work opens up an effective avenue to design dielectric materials with ultrahigh comprehensive energy storage performance to meet the demanding requirements of advanced energy storage applications.Dielectric ceramics are widely used in advanced high/pulsed power capacitors. Here, the authors propose a high-entropy strategy to design “local polymorphic distortion” in lead-free ceramics, achieving high energy storage performance.
Next-generation advanced high/pulsed power capacitors rely heavily on dielectric ceramics with high energy storage performance. However, thus far, the huge challenge of realizing ultrahigh recoverable energy storage density ( W rec ) accompanied by ultrahigh efficiency ( η ) still existed and has become a key bottleneck restricting the development of dielectric materials in cutting-edge energy storage applications. Here, we propose a high-entropy strategy to design “local polymorphic distortion” including rhombohedral-orthorhombic-tetragonal-cubic multiphase nanoclusters and random oxygen octahedral tilt, resulting in ultrasmall polar nanoregions, an enhanced breakdown electric field, and delayed polarization saturation. A giant W rec ~10.06 J cm −3 is realized in lead-free relaxor ferroelectrics, especially with an ultrahigh η ~90.8%, showing breakthrough progress in the comprehensive energy storage performance for lead-free bulk ceramics. This work opens up an effective avenue to design dielectric materials with ultrahigh comprehensive energy storage performance to meet the demanding requirements of advanced energy storage applications.
ArticleNumber 3089
Author Deng, Shiqing
Chen, Jun
Liu, Hui
Chen, Liang
Wu, Jie
Qi, He
Author_xml – sequence: 1
  givenname: Liang
  surname: Chen
  fullname: Chen, Liang
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Department of Physical Chemistry, University of Science and Technology Beijing
– sequence: 2
  givenname: Shiqing
  surname: Deng
  fullname: Deng, Shiqing
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, School of Mathematics and Physics, University of Science and Technology Beijing
– sequence: 3
  givenname: Hui
  surname: Liu
  fullname: Liu, Hui
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, School of Mathematics and Physics, University of Science and Technology Beijing
– sequence: 4
  givenname: Jie
  surname: Wu
  fullname: Wu, Jie
  organization: School of Mathematics and Physics, University of Science and Technology Beijing
– sequence: 5
  givenname: He
  orcidid: 0000-0002-3094-3574
  surname: Qi
  fullname: Qi, He
  email: qiheustb@ustb.edu.cn
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Department of Physical Chemistry, University of Science and Technology Beijing
– sequence: 6
  givenname: Jun
  orcidid: 0000-0002-7330-8976
  surname: Chen
  fullname: Chen, Jun
  email: junchen@ustb.edu.cn
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Department of Physical Chemistry, University of Science and Technology Beijing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35654831$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1879729$$D View this record in Osti.gov
BookMark eNp9kktv1DAUhSNUREvpH2CBItiwCfgVPzZIqIJSqRIbWFuOc53xKGMPtqcw_x6nU0rbRbNxZJ_znXvt-7I5CjFA07zG6ANGVH7MDDMuOkRIR5EkuBPPmhOCGO6wIPTo3v9xc5bzGtWPKiwZe9Ec0573TFJ80owX3oTSQoA07btcYjITtCOE7Mu-_e3Lqt3NJZmVn1YtOOeth2D3rQ_tDGbsXAJoE8zmT0y5vfamXZQdhJLidl9B2U_hVfPcmTnD2e162vz8-uXH-bfu6vvF5fnnq872XJROOADBFeWcYDYINJJBul4hIE4qzhEasCEjFaMynGPulHOid5hjYKB6w-hpc3ngjtGs9Tb5jUl7HY3XNxsxTdqk4u0MmqOxQkY1UCeZQ_0gbE0ZMB4plZKqyvp0YG13wwZGu3Rk5gfQhyfBr_QUr7XCnKKeV8DbAyDm4nW2voBd2RgC2KKxFEqQJeX9bUqKv3aQi974bGGeTYC4y5pwQWmvMENV-u6RdB13KdT7XFSESSnIkvrmftl39f578SogB4FNMecE7k6CkV4mSx8mS9fJ0jeTpUU1yUem2o4pPi6t-_lpKz1Yc80JE6T_ZT_h-gtnzuGs
CitedBy_id crossref_primary_10_1016_j_ceramint_2024_03_057
crossref_primary_10_1002_smll_202309796
crossref_primary_10_1007_s12598_024_02852_0
crossref_primary_10_1021_acs_inorgchem_2c02489
crossref_primary_10_1002_advs_202409814
crossref_primary_10_1038_s41467_025_56316_9
crossref_primary_10_1016_j_cej_2023_145705
crossref_primary_10_1016_j_pmatsci_2024_101385
crossref_primary_10_1038_s41467_025_57139_4
crossref_primary_10_1002_adma_202313285
crossref_primary_10_1016_j_actamat_2023_118826
crossref_primary_10_1016_j_ceramint_2024_09_350
crossref_primary_10_1021_acsami_2c21969
crossref_primary_10_1016_j_cej_2024_156447
crossref_primary_10_1007_s12613_024_2915_7
crossref_primary_10_1002_adma_202403400
crossref_primary_10_1038_s41578_023_00544_2
crossref_primary_10_1016_j_apmt_2024_102488
crossref_primary_10_1016_j_jmrt_2022_09_081
crossref_primary_10_1016_j_ceramint_2024_11_289
crossref_primary_10_23919_IEN_2022_0023
crossref_primary_10_1002_adfm_202311160
crossref_primary_10_1016_j_actamat_2024_120079
crossref_primary_10_1021_jacs_3c09805
crossref_primary_10_1002_smll_202206662
crossref_primary_10_1016_j_jeurceramsoc_2023_01_036
crossref_primary_10_1016_j_jmat_2023_02_008
crossref_primary_10_1016_j_jmat_2024_100931
crossref_primary_10_1038_s41598_023_33975_6
crossref_primary_10_1007_s42864_022_00179_w
crossref_primary_10_1021_acsaelm_3c01657
crossref_primary_10_1016_j_cclet_2024_110728
crossref_primary_10_1016_j_jallcom_2023_172524
crossref_primary_10_1002_adfm_202425080
crossref_primary_10_1016_j_ceramint_2025_01_045
crossref_primary_10_1007_s10854_023_11892_8
crossref_primary_10_1002_adma_202409639
crossref_primary_10_3390_polym15122688
crossref_primary_10_1016_j_mtcomm_2024_111467
crossref_primary_10_1038_s41586_024_08505_7
crossref_primary_10_1016_j_ceramint_2024_11_036
crossref_primary_10_1038_s41467_024_55491_5
crossref_primary_10_1016_j_ceramint_2023_06_208
crossref_primary_10_1016_j_matlet_2024_137931
crossref_primary_10_1016_j_cej_2023_141449
crossref_primary_10_1016_j_jpowsour_2024_236023
crossref_primary_10_1016_j_ceramint_2023_02_070
crossref_primary_10_1016_j_est_2025_115699
crossref_primary_10_1021_acsami_4c15339
crossref_primary_10_1021_acsami_4c11898
crossref_primary_10_1016_j_cej_2024_154369
crossref_primary_10_1016_j_ceramint_2024_02_101
crossref_primary_10_1016_j_ceramint_2023_12_284
crossref_primary_10_1038_s41467_024_52934_x
crossref_primary_10_1002_aenm_202400821
crossref_primary_10_3390_en17040946
crossref_primary_10_26599_JAC_2024_9220859
crossref_primary_10_1002_apxr_202400143
crossref_primary_10_1016_j_actamat_2023_119135
crossref_primary_10_1016_j_cej_2023_145363
crossref_primary_10_1039_D4TC03278K
crossref_primary_10_1038_s41467_025_56605_3
crossref_primary_10_1021_acsami_4c16790
crossref_primary_10_1021_jacs_4c10907
crossref_primary_10_1016_j_materresbull_2022_112024
crossref_primary_10_1016_j_ceramint_2022_09_208
crossref_primary_10_1016_j_cej_2023_144702
crossref_primary_10_1016_j_cej_2024_150441
crossref_primary_10_1021_jacs_2c12200
crossref_primary_10_1039_D3TA01172K
crossref_primary_10_1038_s41598_024_80454_7
crossref_primary_10_4150_KPMI_2023_30_6_509
crossref_primary_10_1016_j_matchemphys_2024_130290
crossref_primary_10_1002_inf2_12488
crossref_primary_10_1016_j_cej_2024_157986
crossref_primary_10_1039_D4TA04156A
crossref_primary_10_1002_adfm_202214273
crossref_primary_10_1016_j_jallcom_2025_178528
crossref_primary_10_1016_j_ceramint_2023_05_089
crossref_primary_10_1111_jace_19282
crossref_primary_10_26599_JAC_2024_9221018
crossref_primary_10_26599_JAC_2024_9220964
crossref_primary_10_3390_molecules29133187
crossref_primary_10_1111_jace_18849
crossref_primary_10_1039_D3EE01545A
crossref_primary_10_1016_j_cej_2023_147527
crossref_primary_10_1039_D4TA00575A
crossref_primary_10_1016_j_ensm_2024_103534
crossref_primary_10_1002_adma_202304128
crossref_primary_10_1016_j_cej_2022_139222
crossref_primary_10_1038_s41467_024_48810_3
crossref_primary_10_1038_s41467_024_47781_9
crossref_primary_10_1016_j_ceramint_2024_10_446
crossref_primary_10_1002_adma_202402070
crossref_primary_10_1007_s40820_023_01036_2
crossref_primary_10_1016_j_cej_2024_158940
crossref_primary_10_1002_adfm_202409344
crossref_primary_10_1016_j_cej_2024_150091
crossref_primary_10_1038_s41467_024_53287_1
crossref_primary_10_1039_D3TA03946C
crossref_primary_10_1016_j_cej_2023_142070
crossref_primary_10_1016_j_jmat_2023_05_007
crossref_primary_10_1039_D4TA03637A
crossref_primary_10_1016_j_jmat_2024_100980
crossref_primary_10_1016_j_scib_2025_03_016
crossref_primary_10_1016_j_jallcom_2023_172671
crossref_primary_10_1016_j_nanoen_2023_108477
crossref_primary_10_1039_D3QI01228J
crossref_primary_10_1016_j_ceramint_2025_03_029
crossref_primary_10_1007_s10854_023_10476_w
crossref_primary_10_1063_5_0190404
crossref_primary_10_1002_adfm_202425711
crossref_primary_10_1038_s41467_025_57228_4
crossref_primary_10_1039_D3TA03294A
crossref_primary_10_1016_j_jeurceramsoc_2024_02_040
crossref_primary_10_1021_acsaom_2c00115
crossref_primary_10_1016_j_pmatsci_2023_101231
crossref_primary_10_1039_D4TA08169B
crossref_primary_10_1007_s10854_024_12233_z
crossref_primary_10_1016_j_cej_2024_155666
crossref_primary_10_1016_j_ceramint_2024_12_353
crossref_primary_10_1016_j_mtener_2022_101078
crossref_primary_10_1021_acsaem_2c02895
crossref_primary_10_1021_acsami_4c22803
crossref_primary_10_1021_acsami_4c22588
crossref_primary_10_1002_eom2_12331
crossref_primary_10_1038_s41560_023_01300_0
crossref_primary_10_1063_5_0226576
crossref_primary_10_1103_PhysRevB_109_195204
crossref_primary_10_1016_j_ensm_2025_104205
crossref_primary_10_1007_s10853_023_08670_6
crossref_primary_10_1016_j_cej_2024_151046
crossref_primary_10_1002_adma_202408275
crossref_primary_10_1016_j_jeurceramsoc_2024_02_011
crossref_primary_10_1016_j_jmat_2024_02_011
crossref_primary_10_1039_D4MH00322E
crossref_primary_10_1007_s12274_023_5571_8
crossref_primary_10_1126_science_adl2931
crossref_primary_10_1016_j_ceramint_2024_10_310
crossref_primary_10_1002_smll_202303915
crossref_primary_10_1016_j_cej_2022_139921
crossref_primary_10_1016_j_ceramint_2022_07_129
crossref_primary_10_1016_j_compositesb_2023_111189
crossref_primary_10_1002_adfm_202303965
crossref_primary_10_1016_j_actamat_2023_119612
crossref_primary_10_1016_j_cej_2024_152823
crossref_primary_10_3390_catal13091287
crossref_primary_10_1002_advs_202307011
crossref_primary_10_1016_j_est_2023_109527
crossref_primary_10_1016_j_cej_2023_147974
crossref_primary_10_1039_D4TA05920D
crossref_primary_10_1080_21870764_2023_2259149
crossref_primary_10_1021_jacs_3c06912
crossref_primary_10_1016_j_jpcs_2024_112462
crossref_primary_10_1021_acsami_4c19866
crossref_primary_10_1016_j_mtphys_2024_101545
crossref_primary_10_1039_D4QI02126F
crossref_primary_10_1039_D4QI00046C
crossref_primary_10_1039_D4TA03145H
crossref_primary_10_1016_j_est_2024_112668
crossref_primary_10_1039_D2TA08074E
crossref_primary_10_1063_5_0235963
crossref_primary_10_1016_j_ceramint_2023_05_049
crossref_primary_10_1016_j_ceramint_2023_11_277
crossref_primary_10_1063_5_0165495
crossref_primary_10_1016_j_jallcom_2023_173199
crossref_primary_10_1002_apxr_202300006
crossref_primary_10_1016_j_ceramint_2022_08_272
crossref_primary_10_1039_D2TA10098C
crossref_primary_10_1021_acsami_3c19340
crossref_primary_10_1016_j_jmst_2024_11_073
crossref_primary_10_1016_j_ceramint_2025_01_566
crossref_primary_10_1002_smll_202206958
crossref_primary_10_1002_smll_202404662
crossref_primary_10_1016_j_ensm_2023_103055
crossref_primary_10_1063_5_0156119
crossref_primary_10_1142_S2010135X23430014
crossref_primary_10_1063_5_0144267
crossref_primary_10_1111_ijac_14962
crossref_primary_10_1002_advs_202300320
crossref_primary_10_1016_j_cej_2023_147167
crossref_primary_10_1002_adfm_202401487
crossref_primary_10_1021_acsaelm_3c00607
crossref_primary_10_1016_j_cej_2023_144446
crossref_primary_10_1016_j_cej_2023_144205
crossref_primary_10_1016_j_ceramint_2023_06_139
crossref_primary_10_1111_jace_19349
crossref_primary_10_1016_j_jallcom_2023_169723
crossref_primary_10_1021_acsami_4c11956
crossref_primary_10_1007_s10971_023_06150_6
crossref_primary_10_1016_j_est_2024_112841
crossref_primary_10_1002_sus2_174
crossref_primary_10_1016_j_ceramint_2024_12_151
crossref_primary_10_1038_s41467_025_56181_6
crossref_primary_10_1016_j_materresbull_2023_112392
crossref_primary_10_1088_1361_648X_ad9211
crossref_primary_10_1016_j_jallcom_2025_178902
crossref_primary_10_1016_j_ceramint_2024_11_438
crossref_primary_10_1002_adma_202415351
crossref_primary_10_1016_j_jmrt_2024_02_006
crossref_primary_10_1063_5_0179224
crossref_primary_10_1021_acsami_3c12015
crossref_primary_10_1016_j_jmat_2024_03_016
crossref_primary_10_1002_adma_202311721
crossref_primary_10_1016_j_jallcom_2024_173987
crossref_primary_10_1016_j_jmat_2023_01_005
crossref_primary_10_1016_j_nanoen_2023_108458
crossref_primary_10_1016_j_jmat_2022_09_009
crossref_primary_10_1039_D4TC04400B
crossref_primary_10_1016_j_matlet_2025_138116
crossref_primary_10_1016_j_jeurceramsoc_2022_12_007
crossref_primary_10_1038_s41467_024_51766_z
crossref_primary_10_1016_j_jallcom_2023_169626
crossref_primary_10_1111_jace_19329
crossref_primary_10_1002_adma_202419134
crossref_primary_10_1016_j_cej_2024_153421
crossref_primary_10_1016_j_ceramint_2023_10_167
crossref_primary_10_1038_s41467_025_56443_3
crossref_primary_10_1016_j_jallcom_2023_170962
crossref_primary_10_1016_j_jmat_2024_03_005
crossref_primary_10_1016_j_est_2024_111890
crossref_primary_10_1016_j_jmat_2024_03_007
crossref_primary_10_1002_aelm_202201210
crossref_primary_10_1038_s41467_024_51058_6
crossref_primary_10_1021_acsami_4c14890
crossref_primary_10_1002_smtd_202201246
crossref_primary_10_1021_acsanm_4c03569
crossref_primary_10_1016_j_scriptamat_2024_115966
crossref_primary_10_1002_smll_202306486
crossref_primary_10_1021_acsnano_4c16672
crossref_primary_10_1016_j_jallcom_2022_167999
crossref_primary_10_1016_j_cej_2023_145506
crossref_primary_10_1039_D4TA06319H
crossref_primary_10_1007_s10854_022_09492_z
crossref_primary_10_1007_s12598_024_02934_z
crossref_primary_10_1002_smtd_202201138
crossref_primary_10_1016_j_jallcom_2024_174610
crossref_primary_10_1038_s41467_025_56194_1
crossref_primary_10_1007_s12598_023_02271_7
crossref_primary_10_1063_5_0140020
crossref_primary_10_1016_j_actamat_2025_120931
crossref_primary_10_1016_j_cej_2024_150823
crossref_primary_10_1016_j_nanoen_2024_109394
crossref_primary_10_1002_advs_202300227
crossref_primary_10_1016_j_actamat_2024_120278
crossref_primary_10_1016_j_ceramint_2024_03_368
crossref_primary_10_1021_jacs_3c02811
crossref_primary_10_1016_j_cej_2024_156112
crossref_primary_10_1016_j_cej_2024_157561
crossref_primary_10_1039_D2ME00211F
crossref_primary_10_1002_smll_202303768
crossref_primary_10_1021_acsami_3c16303
crossref_primary_10_1016_j_jeurceramsoc_2024_116927
crossref_primary_10_1016_j_ceramint_2024_07_316
crossref_primary_10_1016_j_jallcom_2024_177433
crossref_primary_10_1038_s41467_024_49170_8
crossref_primary_10_3390_cryst13030445
crossref_primary_10_1016_j_cej_2023_146260
crossref_primary_10_1016_j_cej_2023_144086
crossref_primary_10_1016_j_cej_2023_141490
crossref_primary_10_1016_j_jmat_2023_03_001
crossref_primary_10_46754_jml_2023_12_005
crossref_primary_10_1016_j_ceramint_2024_03_352
crossref_primary_10_1021_acs_chemrev_3c00767
crossref_primary_10_1016_j_ceramint_2024_06_402
crossref_primary_10_1063_5_0138877
crossref_primary_10_1002_adfm_202301027
crossref_primary_10_1002_smll_202400686
crossref_primary_10_2298_PAC2401001D
crossref_primary_10_1021_acs_jpcc_4c05351
crossref_primary_10_1002_advs_202409113
crossref_primary_10_1016_j_ceramint_2023_08_296
crossref_primary_10_1016_j_ensm_2023_103155
crossref_primary_10_1016_j_nanoen_2025_110651
crossref_primary_10_1016_j_ceramint_2024_12_084
crossref_primary_10_1016_j_cej_2024_154047
crossref_primary_10_1038_s41467_025_56195_0
crossref_primary_10_1002_adma_202420566
crossref_primary_10_1016_j_jallcom_2025_178836
crossref_primary_10_1149_2162_8777_acbe16
crossref_primary_10_1039_D4TA07104B
crossref_primary_10_1002_adfm_202411954
crossref_primary_10_1016_j_jeurceramsoc_2024_01_083
crossref_primary_10_1038_s41467_024_49107_1
crossref_primary_10_1016_j_ceramint_2023_07_043
crossref_primary_10_3390_polym15081842
crossref_primary_10_1002_smtd_202400258
crossref_primary_10_1016_j_jmat_2022_12_010
crossref_primary_10_1038_s41467_024_46894_5
crossref_primary_10_1016_j_nanoen_2024_109493
crossref_primary_10_1021_acsami_3c18262
crossref_primary_10_1038_s41467_025_56767_0
crossref_primary_10_1126_sciadv_adf8706
crossref_primary_10_1063_5_0133853
crossref_primary_10_1016_j_jeurceramsoc_2024_04_023
crossref_primary_10_1016_j_jmst_2022_10_053
crossref_primary_10_1002_adma_202205787
crossref_primary_10_1038_s41467_024_50252_w
crossref_primary_10_1039_D4TC03942D
crossref_primary_10_1016_j_jeurceramsoc_2023_07_020
crossref_primary_10_1126_science_ado7736
Cites_doi 10.1038/nature03028
10.1002/aenm.201903338
10.1126/science.abi7687
10.1038/s41467-018-07160-7
10.1021/jacs.9b07188
10.1038/441941a
10.1021/cr5006809
10.1039/C8EE02758G
10.1016/j.pmatsci.2022.100944
10.1016/j.nanoen.2020.105423
10.1002/adfm.202110478
10.1107/S0567739475001635
10.1016/j.jeurceramsoc.2016.05.002
10.1002/adfm.201903877
10.1016/j.nanoen.2019.02.003
10.1021/acsami.1c14151
10.1126/science.aaw8109
10.1080/00150199208217984
10.1038/533306a
10.1063/1.2761852
10.1039/D0EE02104K
10.1039/C9CS00432G
10.1002/adma.201701824
10.1039/C9TC06711F
10.1021/acsami.0c13057
10.1016/j.jeurceramsoc.2017.12.058
10.1038/s41563-020-0704-x
10.1016/j.ensm.2018.09.011
10.1002/aenm.202001778
10.1016/j.cej.2021.130669
10.1039/C5TA00732A
10.1016/j.ensm.2021.11.043
10.1016/j.ensm.2021.01.023
10.1111/j.1551-2916.2010.03804.x
10.1016/j.pmatsci.2018.12.005
10.1038/s41578-019-0170-8
10.1007/BF00275336
10.1016/j.cej.2021.131465
10.1038/s41467-020-18665-5
10.1021/acs.chemrev.0c01264
10.1016/j.ensm.2020.05.026
10.1016/j.msea.2003.10.257
10.1126/science.1159610
10.1016/j.jallcom.2016.02.140
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
CorporateAuthor_xml – name: Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
OIOZB
OTOTI
5PM
DOA
DOI 10.1038/s41467-022-30821-7
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
Open Access资源_DOAJ
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic


Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 8
ExternalDocumentID oai_doaj_org_article_60da66d9b3f84f05b7c2f8b11d338839
PMC9163056
1879729
35654831
10_1038_s41467_022_30821_7
Genre Journal Article
GrantInformation_xml – fundername: China National Funds for Distinguished Young Scientists
  grantid: 21825102
  funderid: https://doi.org/10.13039/501100005153
– fundername: undamental Research Funds for the Central Universities, China (Grant No. 06500186);the China Postdoctoral Science Foundation (Grant Nos. 2020M680345 and 2021T140048)
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 52172181; 22075014; 22161142022
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 52172181
– fundername: China National Funds for Distinguished Young Scientists
  grantid: 21825102
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 22075014
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 22161142022
– fundername: ;
– fundername: ;
  grantid: 52172181; 22075014; 22161142022
– fundername: ;
  grantid: 21825102
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
AAPBV
AAYJO
ADQMX
AEDAW
OIOZB
OTOTI
ZA5
5PM
PUEGO
ID FETCH-LOGICAL-c567t-7fee769366214b70d2b8f590e2f896600b1a2d37d9a6616f9ff75f161e4e95a43
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:09:00 EDT 2025
Thu Aug 21 17:45:17 EDT 2025
Fri May 19 01:41:23 EDT 2023
Wed Jul 30 11:39:16 EDT 2025
Wed Aug 13 02:51:13 EDT 2025
Thu Apr 03 07:08:57 EDT 2025
Tue Jul 01 00:58:14 EDT 2025
Thu Apr 24 22:51:37 EDT 2025
Fri Feb 21 02:38:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c567t-7fee769366214b70d2b8f590e2f896600b1a2d37d9a6616f9ff75f161e4e95a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AC02-06CH11357; 21825102; 22161142022; 52172181; 22075014; 06500186; 2020M680345; 2021T140048
Fundamental Research Funds for the Central Universities, China
China Postdoctoral Science Foundation
USDOE Office of Science (SC)
National Natural Science Foundation of China (NSFC)
ORCID 0000-0002-3094-3574
0000-0002-7330-8976
0000000230943574
0000000273308976
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-30821-7
PMID 35654831
PQID 2672488726
PQPubID 546298
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_60da66d9b3f84f05b7c2f8b11d338839
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9163056
osti_scitechconnect_1879729
proquest_miscellaneous_2673359140
proquest_journals_2672488726
pubmed_primary_35654831
crossref_primary_10_1038_s41467_022_30821_7
crossref_citationtrail_10_1038_s41467_022_30821_7
springer_journals_10_1038_s41467_022_30821_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-02
PublicationDateYYYYMMDD 2022-06-02
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Lv, Zhu, Xiao, Zhang, Wu (CR27) 2020; 49
Wang (CR13) 2020; 10
Oses, Toher, Curtarolo (CR24) 2020; 5
Qi, Xie, Tian, Zuo (CR12) 2020; 10
Shi (CR17) 2020; 8
Liu (CR32) 2018; 11
Glazer (CR34) 1975; 31
Chen, Liu, Qi, Chen (CR40) 2022; 127
Lu, Lu, Suresh (CR44) 2009; 324
Zhao, Liu, Gao, Zhang, Li (CR6) 2017; 29
Yan (CR11) 2020; 30
Yan (CR20) 2021; 425
Lu (CR16) 2021; 79
Chen (CR37) 2022; 32
Wang (CR5) 2021; 121
Yang (CR14) 2020; 12
Yang (CR4) 2019; 102
Zhang (CR43) 2016; 36
Saito (CR38) 2004; 432
Zhang, Zhao, Li, Fei (CR15) 2019; 18
Tang (CR31) 2016; 672
Sarker (CR26) 2018; 9
Zheng, Wu (CR39) 2015; 3
Tao (CR33) 2019; 141
Ji (CR19) 2021; 38
Qi, Xie, Zuo (CR18) 2021; 45
Lim (CR23) 2016; 533
Li (CR2) 2020; 19
Zhang, Yang, Yu, Lin (CR7) 2021; 425
Sarkar (CR25) 2018; 38
Pan (CR3) 2019; 365
Qi (CR9) 2019; 29
Pan (CR1) 2021; 374
Luo (CR10) 2020; 11
Cohen (CR35) 2006; 441
Tunkasiri, Rujijanagul (CR42) 1996; 15
Wu, Xiao, Zhu (CR28) 2015; 115
Zuo, Fu, Lv, Liu (CR30) 2010; 93
Yang (CR36) 2019; 58
Lin, Kwok, Chan (CR29) 2007; 102
Wang (CR21) 2021; 13
Cantor, Chang, Knight, Vincent (CR22) 2004; 375
Lu (CR8) 2020; 13
Waser (CR41) 1992; 133
H Tao (30821_CR33) 2019; 141
J Li (30821_CR2) 2020; 19
L Yang (30821_CR4) 2019; 102
L Chen (30821_CR40) 2022; 127
Z Yang (30821_CR36) 2019; 58
F Yan (30821_CR11) 2020; 30
Y Saito (30821_CR38) 2004; 432
K Wang (30821_CR13) 2020; 10
Z Lu (30821_CR16) 2021; 79
J Wu (30821_CR28) 2015; 115
H Ji (30821_CR19) 2021; 38
Q Liu (30821_CR32) 2018; 11
N Luo (30821_CR10) 2020; 11
T Zhang (30821_CR15) 2019; 18
C Oses (30821_CR24) 2020; 5
X Tang (30821_CR31) 2016; 672
H Yang (30821_CR14) 2020; 12
A Sarkar (30821_CR25) 2018; 38
R Zuo (30821_CR30) 2010; 93
P Sarker (30821_CR26) 2018; 9
X Lv (30821_CR27) 2020; 49
A Glazer (30821_CR34) 1975; 31
T Tunkasiri (30821_CR42) 1996; 15
R Cohen (30821_CR35) 2006; 441
B Cantor (30821_CR22) 2004; 375
L Zhang (30821_CR43) 2016; 36
G Wang (30821_CR5) 2021; 121
Z Lu (30821_CR8) 2020; 13
T Zheng (30821_CR39) 2015; 3
K Lu (30821_CR44) 2009; 324
M Zhang (30821_CR7) 2021; 425
F Yan (30821_CR20) 2021; 425
R Waser (30821_CR41) 1992; 133
L Chen (30821_CR37) 2022; 32
H Qi (30821_CR18) 2021; 45
J Shi (30821_CR17) 2020; 8
M Wang (30821_CR21) 2021; 13
D Lin (30821_CR29) 2007; 102
H Qi (30821_CR12) 2020; 10
H Pan (30821_CR1) 2021; 374
X Lim (30821_CR23) 2016; 533
H Qi (30821_CR9) 2019; 29
H Pan (30821_CR3) 2019; 365
L Zhao (30821_CR6) 2017; 29
References_xml – volume: 432
  start-page: 84
  year: 2004
  end-page: 87
  ident: CR38
  article-title: Lead-free piezoceramics
  publication-title: Nature
  doi: 10.1038/nature03028
– volume: 10
  start-page: 1903338
  year: 2020
  ident: CR12
  article-title: Superior energy‐storage capacitors with simultaneously giant energy density and efficiency using nanodomain engineered BiFeO ‐BaTiO ‐NaNbO lead‐free bulk ferroelectrics
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903338
– volume: 374
  start-page: 100
  year: 2021
  end-page: 104
  ident: CR1
  article-title: Ultrahigh energy storage in superparaelectric relaxor ferroelectrics
  publication-title: Science
  doi: 10.1126/science.abi7687
– volume: 9
  start-page: 1
  year: 2018
  end-page: 10
  ident: CR26
  article-title: High-entropy high-hardness metal carbides discovered by entropy descriptors
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07160-7
– volume: 141
  start-page: 13987
  year: 2019
  end-page: 13994
  ident: CR33
  article-title: Ultrahigh performance in lead-free piezoceramics utilizing a relaxor slush polar state with multiphase coexistence
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b07188
– volume: 441
  start-page: 941
  year: 2006
  end-page: 942
  ident: CR35
  article-title: Relaxors go critical
  publication-title: Nature
  doi: 10.1038/441941a
– volume: 115
  start-page: 2559
  year: 2015
  end-page: 2595
  ident: CR28
  article-title: Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries
  publication-title: Chem. Rev.
  doi: 10.1021/cr5006809
– volume: 11
  start-page: 3531
  year: 2018
  end-page: 3539
  ident: CR32
  article-title: High-performance lead-free piezoelectrics with local structural heterogeneity
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE02758G
– volume: 127
  start-page: 100944
  year: 2022
  ident: CR40
  article-title: High-electromechanical performance for high-power piezoelectric applications: fundamental, progress, and perspective
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2022.100944
– volume: 79
  start-page: 105423
  year: 2021
  ident: CR16
  article-title: Mechanism of enhanced energy storage density in AgNbO -based lead-free antiferroelectrics
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105423
– volume: 32
  start-page: 2110478
  year: 2022
  ident: CR37
  article-title: Outstanding energy storage performance in high‐hardness (Bi K )TiO ‐based lead‐free relaxors via multi‐scale synergistic design
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202110478
– volume: 31
  start-page: 756
  year: 1975
  end-page: 762
  ident: CR34
  article-title: Simple ways of determining perovskite structures
  publication-title: Acta Cryst. A
  doi: 10.1107/S0567739475001635
– volume: 36
  start-page: 3157
  year: 2016
  end-page: 3163
  ident: CR43
  article-title: Effect of HfO addition as intergranular grains on the energy storage behavior of Ca Sr TiO ceramics
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2016.05.002
– volume: 29
  start-page: 1903877
  year: 2019
  ident: CR9
  article-title: Ultrahigh energy‐storage density in NaNbO ‐based lead‐free relaxor antiferroelectric ceramics with nanoscale domains
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201903877
– volume: 58
  start-page: 768
  year: 2019
  end-page: 777
  ident: CR36
  article-title: Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.02.003
– volume: 13
  start-page: 51218
  year: 2021
  end-page: 51229
  ident: CR21
  article-title: Ultrahigh energy storage density and efficiency in Bi Na TiO -based ceramics via the domain and bandgap engineering
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c14151
– volume: 365
  start-page: 578
  year: 2019
  end-page: 582
  ident: CR3
  article-title: Ultrahigh–energy density lead-free dielectric films via polymorphic nanodomain design
  publication-title: Science
  doi: 10.1126/science.aaw8109
– volume: 133
  start-page: 109
  year: 1992
  end-page: 114
  ident: CR41
  article-title: TrI4: The role of grain boundaries in conduction and breakdown of perovskite-type titanates
  publication-title: Ferroelectrics
  doi: 10.1080/00150199208217984
– volume: 533
  start-page: 306
  year: 2016
  end-page: 307
  ident: CR23
  article-title: Mixed-up metals make for stronger, tougher, stretchier alloys
  publication-title: Nature
  doi: 10.1038/533306a
– volume: 102
  start-page: 034102
  year: 2007
  ident: CR29
  article-title: Microstructure, phase transition, and electrical properties of (K Na ) Li (Nb Ta )O lead-free piezoelectric ceramics
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2761852
– volume: 13
  start-page: 2938
  year: 2020
  end-page: 2948
  ident: CR8
  article-title: Superior energy density through tailored dopant strategies in multilayer ceramic capacitors
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE02104K
– volume: 49
  start-page: 671
  year: 2020
  end-page: 707
  ident: CR27
  article-title: Emerging new phase boundary in potassium sodium-niobate based ceramics
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00432G
– volume: 29
  start-page: 1701824
  year: 2017
  ident: CR6
  article-title: Lead‐free antiferroelectric silver niobate tantalate with high energy storage performance
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701824
– volume: 8
  start-page: 3784
  year: 2020
  end-page: 3794
  ident: CR17
  article-title: Realizing ultrahigh recoverable energy density and superior charge–discharge performance in NaNbO -based lead-free ceramics via a local random field strategy
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/C9TC06711F
– volume: 12
  start-page: 43942
  year: 2020
  end-page: 43949
  ident: CR14
  article-title: Novel BaTiO -based, Ag/Pd-compatible lead-free relaxors with superior energy storage performance
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c13057
– volume: 38
  start-page: 2318
  year: 2018
  end-page: 2327
  ident: CR25
  article-title: Rare earth and transition metal based entropy stabilised perovskite type oxides
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2017.12.058
– volume: 19
  start-page: 999
  year: 2020
  end-page: 1005
  ident: CR2
  article-title: Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-0704-x
– volume: 18
  start-page: 238
  year: 2019
  end-page: 245
  ident: CR15
  article-title: High energy storage density at low electric field of ABO antiferroelectric films with ionic pair doping
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.09.011
– volume: 10
  start-page: 2001778
  year: 2020
  ident: CR13
  article-title: Superparaelectric (Ba ,Sr )(Zr ,Ti )O ultracapacitors
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202001778
– volume: 425
  start-page: 130669
  year: 2021
  ident: CR20
  article-title: Sandwich structured lead-free ceramics based on Bi Na TiO for high energy storage
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.130669
– volume: 3
  start-page: 6772
  year: 2015
  end-page: 6780
  ident: CR39
  article-title: Enhanced piezoelectricity over a wide sintering temperature (400–1050 °C) range in potassium sodium niobate-based ceramics by two step sintering
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA00732A
– volume: 45
  start-page: 541
  year: 2021
  end-page: 567
  ident: CR18
  article-title: Local structure engineered lead-free ferroic dielectrics for superior energy-storage capacitors: a review
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.11.043
– volume: 38
  start-page: 113
  year: 2021
  end-page: 120
  ident: CR19
  article-title: Ultrahigh energy density in short-range tilted NBT-based lead-free multilayer ceramic capacitors by nanodomain percolation
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.01.023
– volume: 93
  start-page: 2783
  year: 2010
  end-page: 2787
  ident: CR30
  article-title: Antimony tuned rhombohedral‐orthorhombic phase transition and enhanced piezoelectric properties in sodium potassium niobate
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2010.03804.x
– volume: 102
  start-page: 72
  year: 2019
  end-page: 108
  ident: CR4
  article-title: Perovskite lead-free dielectrics for energy storage applications
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2018.12.005
– volume: 5
  start-page: 295
  year: 2020
  end-page: 309
  ident: CR24
  article-title: High-entropy ceramics
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-019-0170-8
– volume: 15
  start-page: 1767
  year: 1996
  end-page: 1769
  ident: CR42
  article-title: Dielectric strength of fine grained barium titanate ceramics
  publication-title: J. Mater. Sci. Lett.
  doi: 10.1007/BF00275336
– volume: 425
  start-page: 131465
  year: 2021
  ident: CR7
  article-title: Energy storage performance of K Na NbO -based ceramics modified by Bi(Zn (Nb Ta ) )O
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131465
– volume: 11
  year: 2020
  ident: CR10
  article-title: Constructing phase boundary in AgNbO antiferroelectrics: pathway simultaneously achieving high energy density and efficiency
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18665-5
– volume: 121
  start-page: 6124
  year: 2021
  end-page: 6172
  ident: CR5
  article-title: Electroceramics for high-energy density capacitors: current status and future perspectives
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c01264
– volume: 30
  start-page: 392
  year: 2020
  end-page: 400
  ident: CR11
  article-title: Significantly enhanced energy storage density and efficiency of BNT-based perovskite ceramics via A-site defect engineering
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.05.026
– volume: 375
  start-page: 213
  year: 2004
  end-page: 218
  ident: CR22
  article-title: Microstructural development in equiatomic multicomponent alloys
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2003.10.257
– volume: 324
  start-page: 349
  year: 2009
  end-page: 352
  ident: CR44
  article-title: Strengthening materials by engineering coherent internal boundaries at the nanoscale
  publication-title: Science
  doi: 10.1126/science.1159610
– volume: 672
  start-page: 277
  year: 2016
  end-page: 281
  ident: CR31
  article-title: Composition dependence of phase structure and electrical properties in (0.98- )K Na NbO –0.02BaZrO – Bi Na ZrO ternary ceramics
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2016.02.140
– volume: 9
  start-page: 1
  year: 2018
  ident: 30821_CR26
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07160-7
– volume: 425
  start-page: 131465
  year: 2021
  ident: 30821_CR7
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131465
– volume: 30
  start-page: 392
  year: 2020
  ident: 30821_CR11
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.05.026
– volume: 127
  start-page: 100944
  year: 2022
  ident: 30821_CR40
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2022.100944
– volume: 32
  start-page: 2110478
  year: 2022
  ident: 30821_CR37
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202110478
– volume: 36
  start-page: 3157
  year: 2016
  ident: 30821_CR43
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2016.05.002
– volume: 10
  start-page: 1903338
  year: 2020
  ident: 30821_CR12
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903338
– volume: 102
  start-page: 034102
  year: 2007
  ident: 30821_CR29
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2761852
– volume: 45
  start-page: 541
  year: 2021
  ident: 30821_CR18
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.11.043
– volume: 365
  start-page: 578
  year: 2019
  ident: 30821_CR3
  publication-title: Science
  doi: 10.1126/science.aaw8109
– volume: 121
  start-page: 6124
  year: 2021
  ident: 30821_CR5
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c01264
– volume: 13
  start-page: 2938
  year: 2020
  ident: 30821_CR8
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE02104K
– volume: 11
  year: 2020
  ident: 30821_CR10
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18665-5
– volume: 12
  start-page: 43942
  year: 2020
  ident: 30821_CR14
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c13057
– volume: 672
  start-page: 277
  year: 2016
  ident: 30821_CR31
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2016.02.140
– volume: 15
  start-page: 1767
  year: 1996
  ident: 30821_CR42
  publication-title: J. Mater. Sci. Lett.
  doi: 10.1007/BF00275336
– volume: 18
  start-page: 238
  year: 2019
  ident: 30821_CR15
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.09.011
– volume: 441
  start-page: 941
  year: 2006
  ident: 30821_CR35
  publication-title: Nature
  doi: 10.1038/441941a
– volume: 93
  start-page: 2783
  year: 2010
  ident: 30821_CR30
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2010.03804.x
– volume: 29
  start-page: 1903877
  year: 2019
  ident: 30821_CR9
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201903877
– volume: 115
  start-page: 2559
  year: 2015
  ident: 30821_CR28
  publication-title: Chem. Rev.
  doi: 10.1021/cr5006809
– volume: 425
  start-page: 130669
  year: 2021
  ident: 30821_CR20
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.130669
– volume: 375
  start-page: 213
  year: 2004
  ident: 30821_CR22
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2003.10.257
– volume: 31
  start-page: 756
  year: 1975
  ident: 30821_CR34
  publication-title: Acta Cryst. A
  doi: 10.1107/S0567739475001635
– volume: 79
  start-page: 105423
  year: 2021
  ident: 30821_CR16
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105423
– volume: 11
  start-page: 3531
  year: 2018
  ident: 30821_CR32
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE02758G
– volume: 533
  start-page: 306
  year: 2016
  ident: 30821_CR23
  publication-title: Nature
  doi: 10.1038/533306a
– volume: 10
  start-page: 2001778
  year: 2020
  ident: 30821_CR13
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202001778
– volume: 8
  start-page: 3784
  year: 2020
  ident: 30821_CR17
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/C9TC06711F
– volume: 102
  start-page: 72
  year: 2019
  ident: 30821_CR4
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2018.12.005
– volume: 133
  start-page: 109
  year: 1992
  ident: 30821_CR41
  publication-title: Ferroelectrics
  doi: 10.1080/00150199208217984
– volume: 374
  start-page: 100
  year: 2021
  ident: 30821_CR1
  publication-title: Science
  doi: 10.1126/science.abi7687
– volume: 3
  start-page: 6772
  year: 2015
  ident: 30821_CR39
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA00732A
– volume: 19
  start-page: 999
  year: 2020
  ident: 30821_CR2
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-0704-x
– volume: 29
  start-page: 1701824
  year: 2017
  ident: 30821_CR6
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701824
– volume: 5
  start-page: 295
  year: 2020
  ident: 30821_CR24
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-019-0170-8
– volume: 432
  start-page: 84
  year: 2004
  ident: 30821_CR38
  publication-title: Nature
  doi: 10.1038/nature03028
– volume: 13
  start-page: 51218
  year: 2021
  ident: 30821_CR21
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c14151
– volume: 49
  start-page: 671
  year: 2020
  ident: 30821_CR27
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00432G
– volume: 38
  start-page: 2318
  year: 2018
  ident: 30821_CR25
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2017.12.058
– volume: 324
  start-page: 349
  year: 2009
  ident: 30821_CR44
  publication-title: Science
  doi: 10.1126/science.1159610
– volume: 38
  start-page: 113
  year: 2021
  ident: 30821_CR19
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.01.023
– volume: 141
  start-page: 13987
  year: 2019
  ident: 30821_CR33
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b07188
– volume: 58
  start-page: 768
  year: 2019
  ident: 30821_CR36
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.02.003
SSID ssj0000391844
Score 2.7217128
Snippet Next-generation advanced high/pulsed power capacitors rely heavily on dielectric ceramics with high energy storage performance. However, thus far, the huge...
Next-generation advanced high/pulsed power capacitors rely heavily on dielectric ceramics with high energy storage performance. However, thus far, the huge...
Dielectric ceramics are widely used in advanced high/pulsed power capacitors. Here, the authors propose a high-entropy strategy to design “local polymorphic...
SourceID doaj
pubmedcentral
osti
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3089
SubjectTerms 140/133
147/135
147/137
147/143
639/301/1023/1024
639/301/119/996
639/301/299
639/4077/4079/4105
Capacitors
Ceramics
Density
Design
Dielectrics
Distortion
Electric fields
ENERGY STORAGE
Entropy
Ferroelectric materials
Ferroelectricity
ferroelectrics and multiferroics
Humanities and Social Sciences
Lead free
materials for energy and catalysis
multidisciplinary
Nanoclusters
Relaxors
Science
Science (multidisciplinary)
supercapacitors
SummonAdditionalLinks – databaseName: Open Access资源_DOAJ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFH_IguBF_LbuKhG8adg2SZP0qOK6CHpyYW-haRIcGNplpiPOf-97aWfc8fPiaaBNO-n7fsnL7wG8oK0yq9uO62hLrjpMWL3XHY-tsCF10gdP65AfP-nzC_Xhsr681uqLasImeOCJcKe6DK3WofEyWZXK2ptOJOurKmByhd6drC_6vGvJVLbBssHURc2nZEppT9cq24RcvI5ur-LmwBNlwH78GVCxfhds_loz-dPGafZHZ3fg9hxIstfTB9yFG7G_Bzen1pLb-xDeI99HFvPRPk4lkGg4WKBy9XHLaPWVbZb4FwRXzGLGkaBDmGzRsyWynadVjIwOunwbVmv2ddEyGslpWsPVFl9EhR8P4OLs3ee353zuqMC7WpuRmxQjNT_UWlTKmzIIb1PdlBFJSjCdpa9aEaQJDdK80okWdOuEQWFUsalbJR_CUT_08TGwhrQ9YIBgglQmqBYtuLfRIO9F2Ya6gGpHXdfNcOPU9WLp8ra3tG7iiEOOuMwRZwp4uX_magLb-OvoN8S0_UgCys4XUHzcLD7uX-JTwDGx3GG8QaC5HVUXdaOjHuyYdhRwspMEN-v22gltBJo9I3QBz_e3UStpq6Xt47DJY6SsG8xeC3g0Cc5-nhJjaGVlVYA5EKmDDzm80y--ZORvjOUp5Svg1U74fkzrz4R68j8IdQy3BCkPLUCJEzgaV5v4FOOx0T_LqvcdRDUvpQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7BIiQuiDdhF2QkbmBtYju2c0KA6K6Q4MRKe7Pi2IFKVVLaFNF_z4ybZlUee6qUOKmdeXhe_gbgFaXKrK4brqPNuWrQYfVeNzzWwoa2kT54ikN-_qLPL9Sny_JyDLitx7LKvU5Mijr0DcXIT4U2ApnNCP12-YNT1yjKro4tNG7CrQJ3GirpsrOzKcZC6OdWqfGsTC7t6VolzZBK2HHzK7g52I8SbD_-9Che_zI5_66c_CN9mnal2T24O5qT7N2O_vfhRuwewO1dg8ntQwhnSP2BxXTAj1MhJKoPFqhofdgyisGyzQL_gkCLWUxoEnQUk807tkDi83YVI6PjLr_61Zr9nNeMRnKaVr_c4ouo_OMRXMw-fv1wzse-CrwptRm4aWOkFohai0J5kwfhbVtWeRStJbDO3Be1CNKEqsbdW7cU1i1bNA2jilVZK_kYjrq-i0-BVSTzAc0EE6QyQdWox72NBjlA5HUoMyj2X9c1I-g49b5YuJT8ltbtKOKQIi5RxJkMXk_PLHeQG9eOfk9Em0YSXHa60K--uVH6nM4DLiVUXrZWtXnpTYNr9UUR0ENHEzGDYyK5Q6uDoHMbqjFqBked2NH5yOBkzwlulPC1u-LHDF5Ot1E2KeFSd7HfpDFSlhX6sBk82THONE-JlrSyssjAHLDUwUIO73Tz7wn_Gy16cvwyeLNnvqtp_f9DPbt-FcdwR5BYUIBJnMDRsNrE52hvDf5FEqrfHNsnbQ
  priority: 102
  providerName: ProQuest
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLfGJiReEN8rGyhIvEFFm6RJ-nggxnQSvMCkvUVNk8JJp3a666Hdfz877RUdDCSeKl3da1Lbie3YPwO8pqMyo6o6VcFkqazRYXVO1WmouPFNLZx3FIf8_EWdX8j5ZXF5AHxXCxOT9iOkZVymd9lh79YyqnTMPcddK0_1HTgiqHaU7aPZbP51PkVWCPPcSDlWyGTC3PLw3i4Uwfrx0qFS3WZo_pkv-duhadyLzh7A_dGIZLNh2A_hILSP4O7QVnL7GPwn5HnPQizrSyn9ERcN5ilVvd8yiryyzRJfQVDFLEQMCSrAZIuWLZHlabMKgVGRy3W3WrOfi4oRZUrD6q62-EeU9PEELs4-fvtwno7dFNK6ULpPdRMCNT5UiufS6cxzZ5qizAJvDEF0Zi6vuBfalxXu2aqhYG7RoEEYZCiLSoqncNh2bTgGVpKmezQOtBdSe1nh6u1M0Mh3nlW-SCDffV1bj1Dj1PFiaeORtzB24IhFjtjIEasTeDM9czUAbfyT-j0xbaIkkOz4Q7f6bkehsSrzOBVfOtEY2WSF0zXO1eW5R78cDcMETojlFm0NAsytKbOo7i31X0eXI4HTnSTYUa_XlivNccnTXCXwarqNGknHLFUbuk2kEaIo0XNN4NkgONM4BdrP0og8Ab0nUnsT2b_TLn5E1G-048ndS-DtTvh-DevvH-r5_5GfwD1OakJhJn4Kh_1qE16g1dW7l6Oa3QDLqyZ2
  priority: 102
  providerName: Springer Nature
Title Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design
URI https://link.springer.com/article/10.1038/s41467-022-30821-7
https://www.ncbi.nlm.nih.gov/pubmed/35654831
https://www.proquest.com/docview/2672488726
https://www.proquest.com/docview/2673359140
https://www.osti.gov/servlets/purl/1879729
https://pubmed.ncbi.nlm.nih.gov/PMC9163056
https://doaj.org/article/60da66d9b3f84f05b7c2f8b11d338839
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB7tQ0hcEG_CLpWRuEEgsRM7OSDUrba7qrQrBFTqzYpjBypVzdKmaPvvmXHSokJB4tJIiZvYnoe_secB8IqOyjJZlKF0WRQmJRqsxsgydAXPbFUKYw3tQ15dy8txMpqkkwPYlDvqJnC517SjelLjxezt7ff1BxT4923IePZumXhx937puKLFoTqEY1yZFFU0uOrgvtfMIkeDhg6aeZTEITYQXRzN_tfsrFU-pT9eahS9fXD0T6_K345W_Yo1vA_3OqjJ-i1vPIADN38Id9rik-tHYC-QMxrmfPBfSE6SqFqYJYf2Zs1of5atZvgJSmjMnM80QWGabDpnM2SMsFo4xygU5rZeLNmPacGoZUjdqm_W-CJyDXkM4-H5l8Fl2NVcCMtUqiZUlXNUHlFKHidGRZabrErzyPEqo0SekYkLboWyeYEru6xoyzetEDa6xOVpkYgncDSv5-4ZsJz0gUUIoaxIlE0K1PEmcwq5g0eFTQOIN7Oryy4hOdXFmGl_MC4y3VJEI0W0p4hWAbze_uemTcfxz9ZnRLRtS0ql7W_Ui6-6k0wtI4tDsbkRVZZUUWpUiWM1cWzRekf4GMAJkVwjIqG0uiX5H5WNpirtaJgEcLrhBL1hXs2l4qgYFZcBvNw-Rrmlw5hi7uqVbyNEmqN9G8DTlnG2_RSIspNMxAGoHZbaGcjuk_n0m88NjmifjMIA3myY71e3_j5Rz_9rWk_gLicpob0ofgpHzWLlXiA0a0wPDtVE4W82vOjBcb8_-jzC69n59cdPeHcgBz2_6dHzcvkTQJI24A
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIIXxJ2wAUaCJ4iW2I7tPCDEbevY5WmT9mbi2IFKVVLaFOif4jdyjpN0Kpe97alS46a2z-dz87kQ8hyvyrQsylh6ncSiBIPVWlnGvmDaVSW3zqIf8uhYjk7Fp7PsbIP8GnJhMKxy4ImBUbumRB_5DpOKAdgUk2-m32LsGoW3q0MLjQ4WB375A0y2-ev9D0DfF4ztfjx5P4r7rgJxmUnVxqryHhsASslSYVXimNVVlieeVRpLVSY2LZjjyuUFyC5ZoVMzq0Ax8sLnWSE4vPcKuSo4SHLMTN_dW_l0sNq6FqLPzUm43pmLwIlCyDwI2zRWa_IvtAmAjwaO879U3L8jNf-4rg1ScPcWudmrr_Rth7fbZMPXd8i1rqHl8i5xe4C2lvqQUBhj4CWwK-owSL5dUvT50sUE_gKLJFMfqldg6icd13QCYIurmfcU02t-NrM5_T4uKI6McVrNdAkvwnCTe-T0Unb8Ptmsm9o_JDRHHuNALVGOC-VEAXLDaq8AcSwpXBaRdNhdU_ZFzrHXxsSEy3auTUcRAxQxgSJGReTl6jfTrsTHhaPfIdFWI7E8d_iimX0x_Wk3MnGwFJdbXmlRJZlVJazVpqnjXINKGpEtJLkBLQdL9ZYY01S2Bju_g7ETke0BCabnKHNzjv-IPFs9Bl6AFzxF7ZtFGMN5loPNHJEHHXBW8-SguQvN04ioNUitLWT9ST3-GuqNgwWBhmZEXg3gO5_W_zfq0cWreEquj06ODs3h_vHBFrnB8Iigc4ttk812tvCPQddr7ZNwwCj5fNkn-jflrmNF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1Lb9Mw2BqdQFwQb8IGGAlOEDWxndg5IMTYysZgmhCTdvPi2IFKVVLaFOhf49fxfU7SqTx226lS46a2v_ebkGcYKlNpXoSpU1EoCjBYjUmL0OVM2bLgxhr0Q348SvdPxPvT5HSD_OprYTCtsueJnlHbukAf-ZClkgGySZYOyy4t4nh39Hr6LcQJUhhp7cdptChy6JY_wHybvzrYBVg_Z2y09_ntfthNGAiLJJVNKEvncBhgmrJYGBlZZlSZZJFjpcK2lZGJc2a5tFkOciwt0cGZlKAkOeGyJBcc3nuFbEq0igZkc2fv6PjTysODvdeVEF2lTsTVcC48X_IJ9CB641CuSUM_NAA-aiDufym8f-dt_hG89TJxdJPc6JRZ-qbFvltkw1W3ydV2vOXyDrHvAPca6nx5YYhpmMC8qMWU-WZJ0QNMFxP4C2yZTJ3vZYGFoHRc0QmgXljOnKNYbPOzns3p93FOcWWI26qnS3gRJp_cJSeXcuf3yKCqK_eA0Aw5jgUlRVoupBU5SBGjnAT8Y1Fuk4DE_e3qomt5jpM3JtqH3rnSLUQ0QER7iGgZkBer30zbhh8Xrt5BoK1WYrNu_0U9-6I72tdpZOEoNjO8VKKMEiMLOKuJY8u5AgU1IFsIcg06DzbuLTDDqWg0zoEH0ycg2z0m6I6_zPU5NQTk6eoxcAYM9-SVqxd-DedJBhZ0QO63iLPaJwc9XigeB0SuodTaQdafVOOvvvs42BNodgbkZY9859v6_0U9vPgUT8g1oGb94eDocItcZ0gh6Oli22TQzBbuESh-jXncURglZ5dN1L8BnhZo1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Giant+energy-storage+density+with+ultrahigh+efficiency+in+lead-free+relaxors+via+high-entropy+design&rft.jtitle=Nature+communications&rft.au=Chen%2C+Liang&rft.au=Deng%2C+Shiqing&rft.au=Liu%2C+Hui&rft.au=Wu%2C+Jie&rft.date=2022-06-02&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-022-30821-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_022_30821_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon