Non-fullerene acceptor organic photovoltaics with intrinsic operational lifetimes over 30 years
Organic photovoltaic cells (OPVs) have the potential of becoming a productive renewable energy technology if the requirements of low cost, high efficiency and prolonged lifetime are simultaneously fulfilled. So far, the remaining unfulfilled promise of this technology is its inadequate operational l...
Saved in:
Published in | Nature communications Vol. 12; no. 1; pp. 5419 - 9 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
14.09.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Organic photovoltaic cells (OPVs) have the potential of becoming a productive renewable energy technology if the requirements of low cost, high efficiency and prolonged lifetime are simultaneously fulfilled. So far, the remaining unfulfilled promise of this technology is its inadequate operational lifetime. Here, we demonstrate that the instability of NFA solar cells arises primarily from chemical changes at organic/inorganic interfaces bounding the bulk heterojunction active region. Encapsulated devices stabilized by additional protective buffer layers as well as the integration of a simple solution processed ultraviolet filtering layer, maintain 94% of their initial efficiency under simulated, 1 sun intensity, AM1.5 G irradiation for 1900 hours at 55 °C. Accelerated aging is also induced by exposure of light illumination intensities up to 27 suns, and operation temperatures as high as 65 °C. An extrapolated intrinsic lifetime of > 5.6 × 10
4
h is obtained, which is equivalent to 30 years outdoor exposure.
Through development of non-fullerene acceptors, OPVs have reached efficiencies of 18%, yet the inadequate operational lifetime still poses a challenge for the commercialisation. Here, the authors investigate the origin of instability of NFA solar cells, and propose some strategies to mitigate this issue. |
---|---|
AbstractList | Organic photovoltaic cells (OPVs) have the potential of becoming a productive renewable energy technology if the requirements of low cost, high efficiency and prolonged lifetime are simultaneously fulfilled. So far, the remaining unfulfilled promise of this technology is its inadequate operational lifetime. Here, we demonstrate that the instability of NFA solar cells arises primarily from chemical changes at organic/inorganic interfaces bounding the bulk heterojunction active region. Encapsulated devices stabilized by additional protective buffer layers as well as the integration of a simple solution processed ultraviolet filtering layer, maintain 94% of their initial efficiency under simulated, 1 sun intensity, AM1.5 G irradiation for 1900 hours at 55 °C. Accelerated aging is also induced by exposure of light illumination intensities up to 27 suns, and operation temperatures as high as 65 °C. An extrapolated intrinsic lifetime of > 5.6 × 104 h is obtained, which is equivalent to 30 years outdoor exposure.Through development of non-fullerene acceptors, OPVs have reached efficiencies of 18%, yet the inadequate operational lifetime still poses a challenge for the commercialisation. Here, the authors investigate the origin of instability of NFA solar cells, and propose some strategies to mitigate this issue. Organic photovoltaic cells (OPVs) have the potential of becoming a productive renewable energy technology if the requirements of low cost, high efficiency and prolonged lifetime are simultaneously fulfilled. So far, the remaining unfulfilled promise of this technology is its inadequate operational lifetime. Here, we demonstrate that the instability of NFA solar cells arises primarily from chemical changes at organic/inorganic interfaces bounding the bulk heterojunction active region. Encapsulated devices stabilized by additional protective buffer layers as well as the integration of a simple solution processed ultraviolet filtering layer, maintain 94% of their initial efficiency under simulated, 1 sun intensity, AM1.5 G irradiation for 1900 hours at 55 °C. Accelerated aging is also induced by exposure of light illumination intensities up to 27 suns, and operation temperatures as high as 65 °C. An extrapolated intrinsic lifetime of > 5.6 × 104 h is obtained, which is equivalent to 30 years outdoor exposure.Organic photovoltaic cells (OPVs) have the potential of becoming a productive renewable energy technology if the requirements of low cost, high efficiency and prolonged lifetime are simultaneously fulfilled. So far, the remaining unfulfilled promise of this technology is its inadequate operational lifetime. Here, we demonstrate that the instability of NFA solar cells arises primarily from chemical changes at organic/inorganic interfaces bounding the bulk heterojunction active region. Encapsulated devices stabilized by additional protective buffer layers as well as the integration of a simple solution processed ultraviolet filtering layer, maintain 94% of their initial efficiency under simulated, 1 sun intensity, AM1.5 G irradiation for 1900 hours at 55 °C. Accelerated aging is also induced by exposure of light illumination intensities up to 27 suns, and operation temperatures as high as 65 °C. An extrapolated intrinsic lifetime of > 5.6 × 104 h is obtained, which is equivalent to 30 years outdoor exposure. Abstract Organic photovoltaic cells (OPVs) have the potential of becoming a productive renewable energy technology if the requirements of low cost, high efficiency and prolonged lifetime are simultaneously fulfilled. So far, the remaining unfulfilled promise of this technology is its inadequate operational lifetime. Here, we demonstrate that the instability of NFA solar cells arises primarily from chemical changes at organic/inorganic interfaces bounding the bulk heterojunction active region. Encapsulated devices stabilized by additional protective buffer layers as well as the integration of a simple solution processed ultraviolet filtering layer, maintain 94% of their initial efficiency under simulated, 1 sun intensity, AM1.5 G irradiation for 1900 hours at 55 °C. Accelerated aging is also induced by exposure of light illumination intensities up to 27 suns, and operation temperatures as high as 65 °C. An extrapolated intrinsic lifetime of > 5.6 × 10 4 h is obtained, which is equivalent to 30 years outdoor exposure. Organic photovoltaic cells (OPVs) have the potential of becoming a productive renewable energy technology if the requirements of low cost, high efficiency and prolonged lifetime are simultaneously fulfilled. So far, the remaining unfulfilled promise of this technology is its inadequate operational lifetime. Here, we demonstrate that the instability of NFA solar cells arises primarily from chemical changes at organic/inorganic interfaces bounding the bulk heterojunction active region. Encapsulated devices stabilized by additional protective buffer layers as well as the integration of a simple solution processed ultraviolet filtering layer, maintain 94% of their initial efficiency under simulated, 1 sun intensity, AM1.5 G irradiation for 1900 hours at 55 °C. Accelerated aging is also induced by exposure of light illumination intensities up to 27 suns, and operation temperatures as high as 65 °C. An extrapolated intrinsic lifetime of > 5.6 × 10 h is obtained, which is equivalent to 30 years outdoor exposure. Organic photovoltaic cells (OPVs) have the potential of becoming a productive renewable energy technology if the requirements of low cost, high efficiency and prolonged lifetime are simultaneously fulfilled. So far, the remaining unfulfilled promise of this technology is its inadequate operational lifetime. Here, we demonstrate that the instability of NFA solar cells arises primarily from chemical changes at organic/inorganic interfaces bounding the bulk heterojunction active region. Encapsulated devices stabilized by additional protective buffer layers as well as the integration of a simple solution processed ultraviolet filtering layer, maintain 94% of their initial efficiency under simulated, 1 sun intensity, AM1.5 G irradiation for 1900 hours at 55 °C. Accelerated aging is also induced by exposure of light illumination intensities up to 27 suns, and operation temperatures as high as 65 °C. An extrapolated intrinsic lifetime of > 5.6 × 10 4 h is obtained, which is equivalent to 30 years outdoor exposure. Through development of non-fullerene acceptors, OPVs have reached efficiencies of 18%, yet the inadequate operational lifetime still poses a challenge for the commercialisation. Here, the authors investigate the origin of instability of NFA solar cells, and propose some strategies to mitigate this issue. Organic photovoltaic cells (OPVs) have the potential of becoming a productive renewable energy technology if the requirements of low cost, high efficiency and prolonged lifetime are simultaneously fulfilled. So far, the remaining unfulfilled promise of this technology is its inadequate operational lifetime. Here, we demonstrate that the instability of NFA solar cells arises primarily from chemical changes at organic/inorganic interfaces bounding the bulk heterojunction active region. Encapsulated devices stabilized by additional protective buffer layers as well as the integration of a simple solution processed ultraviolet filtering layer, maintain 94% of their initial efficiency under simulated, 1 sun intensity, AM1.5 G irradiation for 1900 hours at 55 °C. Accelerated aging is also induced by exposure of light illumination intensities up to 27 suns, and operation temperatures as high as 65 °C. An extrapolated intrinsic lifetime of > 5.6 × 10 4 h is obtained, which is equivalent to 30 years outdoor exposure. Through development of non-fullerene acceptors, OPVs have reached efficiencies of 18%, yet the inadequate operational lifetime still poses a challenge for the commercialisation. Here, the authors investigate the origin of instability of NFA solar cells, and propose some strategies to mitigate this issue. |
ArticleNumber | 5419 |
Author | Huang, Xiaheng Ding, Kan Ade, Harald Ye, Long Forrest, Stephen R. Li, Chang-Zhi Li, Yongxi Sheriff, Hafiz K. M. Liu, Haoran |
Author_xml | – sequence: 1 givenname: Yongxi orcidid: 0000-0002-9719-9698 surname: Li fullname: Li, Yongxi organization: Departments of Electrical Engineering, Material Science and Engineering, and Physics, University of Michigan – sequence: 2 givenname: Xiaheng surname: Huang fullname: Huang, Xiaheng organization: Departments of Electrical Engineering, Material Science and Engineering, and Physics, University of Michigan – sequence: 3 givenname: Kan surname: Ding fullname: Ding, Kan organization: Departments of Electrical Engineering, Material Science and Engineering, and Physics, University of Michigan – sequence: 4 givenname: Hafiz K. M. orcidid: 0000-0003-2772-9873 surname: Sheriff fullname: Sheriff, Hafiz K. M. organization: Applied Physics Program, University of Michigan – sequence: 5 givenname: Long surname: Ye fullname: Ye, Long organization: Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University – sequence: 6 givenname: Haoran surname: Liu fullname: Liu, Haoran organization: State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University – sequence: 7 givenname: Chang-Zhi surname: Li fullname: Li, Chang-Zhi organization: State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University – sequence: 8 givenname: Harald orcidid: 0000-0002-1853-5471 surname: Ade fullname: Ade, Harald organization: Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University – sequence: 9 givenname: Stephen R. orcidid: 0000-0003-0131-1903 surname: Forrest fullname: Forrest, Stephen R. email: stevefor@umich.edu organization: Departments of Electrical Engineering, Material Science and Engineering, and Physics, University of Michigan, Applied Physics Program, University of Michigan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34521842$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1819976$$D View this record in Osti.gov |
BookMark | eNp9UstuEzEUtVARLaE_wAKNYMNmwM_xeIOEKh6VKtjA2nI8dxJHjh1sT6L-PW6mhbaLeuMr33OOz328RCchBkDoNcEfCGb9x8wJ72SLKWmpkKRvD8_QGcWctERSdnIvPkXnOW9wPUyRnvMX6JRxQWtIz5D-EUM7Tt5DggCNsRZ2JaYmppUJzja7dSxxH30xzubm4Mq6caEkF3JNxh0kU1wMxjfejVDcFnIT95AahptrMCm_Qs9H4zOc394L9Pvrl18X39urn98uLz5ftVZ0srTSqoHygWMsxl5QGA1wOvSEUiWopRhbSQdpQHZMiaWU3ShsB4MgZtmPlgFboMtZd4hmo3fJbU261tE4fXyo5WiTirMetKk0gkVn5Cg4V6KHcUkpGYRiFpS40fo0a-2m5RYGC7Vg4x-IPswEt9aruNe1uVh2vAq8nQViLk5n6wrYtY0hgC2a9ESpWscCvb_9JcU_E-Sity5b8N4EiFPWdapUUa4oqdB3j6CbOKXa9RnFBKuzrag3923_83s37AroZ4BNMecEo67OjvOrVTivCdY3q6Xn1dJ1tfRxtfShUukj6p36kyQ2k3IFhxWk_7afYP0F11vhkQ |
CitedBy_id | crossref_primary_10_1021_acsaem_3c03254 crossref_primary_10_1038_s41560_022_01155_x crossref_primary_10_1002_advs_202104588 crossref_primary_10_1007_s00894_024_05977_2 crossref_primary_10_1016_j_cej_2023_144850 crossref_primary_10_1016_j_nanoen_2024_110513 crossref_primary_10_1002_adma_202300400 crossref_primary_10_1021_acs_macromol_4c01082 crossref_primary_10_1002_aenm_202405148 crossref_primary_10_1002_cssc_202301559 crossref_primary_10_1002_ange_202400590 crossref_primary_10_1002_solr_202200712 crossref_primary_10_1038_s41467_024_46493_4 crossref_primary_10_1002_adfm_202305445 crossref_primary_10_1021_acsami_3c13007 crossref_primary_10_1039_D3CS00492A crossref_primary_10_1007_s11664_025_11845_3 crossref_primary_10_1016_j_cclet_2024_109849 crossref_primary_10_1016_j_trechm_2021_09_008 crossref_primary_10_1021_acs_chemrev_3c00396 crossref_primary_10_1002_adma_202407609 crossref_primary_10_1021_acs_chemrev_2c00720 crossref_primary_10_1002_ange_202308595 crossref_primary_10_1021_acs_jpca_3c03601 crossref_primary_10_1039_D2TA01205G crossref_primary_10_1002_adfm_202415090 crossref_primary_10_1002_aenm_202103193 crossref_primary_10_1002_agt2_345 crossref_primary_10_1038_s41560_023_01330_8 crossref_primary_10_1039_D3TA06601K crossref_primary_10_1002_smll_202405925 crossref_primary_10_1063_5_0185076 crossref_primary_10_1021_acsaelm_2c00217 crossref_primary_10_1039_D2TA07856B crossref_primary_10_1021_acsami_1c17943 crossref_primary_10_1126_science_adj3654 crossref_primary_10_1002_adts_202400462 crossref_primary_10_1002_solr_202200172 crossref_primary_10_1038_s41467_022_33754_3 crossref_primary_10_1002_adfm_202411286 crossref_primary_10_1002_solr_202200605 crossref_primary_10_1038_s41578_022_00514_0 crossref_primary_10_1039_D2EE03483B crossref_primary_10_1002_agt2_190 crossref_primary_10_1039_D3CS00251A crossref_primary_10_1002_advs_202302976 crossref_primary_10_1557_s43581_024_00112_3 crossref_primary_10_1002_adfm_202414317 crossref_primary_10_1038_s41893_023_01071_2 crossref_primary_10_1039_D3EE01317K crossref_primary_10_1039_D4EE00860J crossref_primary_10_1002_adfm_202402128 crossref_primary_10_1021_jacs_3c12605 crossref_primary_10_1002_admt_202101556 crossref_primary_10_1002_solr_202300029 crossref_primary_10_1002_advs_202305948 crossref_primary_10_1038_s41566_025_01644_x crossref_primary_10_1021_acsami_3c08788 crossref_primary_10_1021_jacs_2c13247 crossref_primary_10_1002_smll_202403233 crossref_primary_10_1016_j_chempr_2023_05_031 crossref_primary_10_1039_D2EE00977C crossref_primary_10_1021_acsenergylett_4c01252 crossref_primary_10_1002_smtd_202200940 crossref_primary_10_3390_molecules27072138 crossref_primary_10_1016_j_joule_2024_06_006 crossref_primary_10_1016_j_orgel_2022_106549 crossref_primary_10_1038_s41467_024_45455_0 crossref_primary_10_1002_ange_202303066 crossref_primary_10_1088_1674_4926_44_8_082202 crossref_primary_10_1021_acs_jpcc_2c01650 crossref_primary_10_1039_D1SC07269B crossref_primary_10_1002_adma_202413317 crossref_primary_10_1016_j_orgel_2025_107207 crossref_primary_10_1039_D3SC02898D crossref_primary_10_1021_acs_macromol_4c02123 crossref_primary_10_1002_smll_202311561 crossref_primary_10_1016_j_orgel_2023_106955 crossref_primary_10_1038_s44287_024_00080_3 crossref_primary_10_1039_D2MH01314B crossref_primary_10_1039_D3CS00895A crossref_primary_10_1002_adma_202110569 crossref_primary_10_1039_D3EE02540C crossref_primary_10_1063_5_0089706 crossref_primary_10_1007_s11426_021_1180_6 crossref_primary_10_1002_solr_202300043 crossref_primary_10_1039_D3CP02591H crossref_primary_10_3390_app13021211 crossref_primary_10_1002_adfm_202408340 crossref_primary_10_1002_sus2_50 crossref_primary_10_1016_j_joule_2024_06_013 crossref_primary_10_1039_D2TC02232J crossref_primary_10_1063_5_0239725 crossref_primary_10_1002_adfm_202304960 crossref_primary_10_1016_j_joule_2024_12_001 crossref_primary_10_1016_j_joule_2023_02_013 crossref_primary_10_1021_acsami_3c01519 crossref_primary_10_1038_s41528_022_00207_2 crossref_primary_10_1002_anie_202308595 crossref_primary_10_1002_anie_202214931 crossref_primary_10_1016_j_apsusc_2023_157720 crossref_primary_10_1038_s41586_024_07892_1 crossref_primary_10_1002_aenm_202300046 crossref_primary_10_1002_anie_202303066 crossref_primary_10_1002_adma_202308606 crossref_primary_10_1002_adma_202300166 crossref_primary_10_1016_j_scib_2022_05_015 crossref_primary_10_1021_acsami_1c22093 crossref_primary_10_1016_j_matt_2021_12_002 crossref_primary_10_1016_j_cej_2023_142634 crossref_primary_10_1002_aenm_202401262 crossref_primary_10_1007_s10118_022_2762_9 crossref_primary_10_1002_adma_202206269 crossref_primary_10_1002_ange_202316295 crossref_primary_10_1007_s11426_022_1281_0 crossref_primary_10_1002_ange_202214931 crossref_primary_10_1039_D2TC04971F crossref_primary_10_1002_smll_202306471 crossref_primary_10_1016_j_xcrp_2023_101654 crossref_primary_10_1088_1361_648X_ad42f2 crossref_primary_10_1038_s41428_023_00843_z crossref_primary_10_1002_adma_202307920 crossref_primary_10_1016_j_jechem_2022_02_025 crossref_primary_10_1002_adpr_202400128 crossref_primary_10_1002_aenm_202202503 crossref_primary_10_1002_smtd_202300224 crossref_primary_10_1038_s41560_022_01140_4 crossref_primary_10_1007_s11426_022_1390_2 crossref_primary_10_1002_anie_202400590 crossref_primary_10_1073_pnas_2301118120 crossref_primary_10_1021_acsaem_2c02416 crossref_primary_10_1039_D4EE04879B crossref_primary_10_1002_solr_202300146 crossref_primary_10_1002_anie_202207397 crossref_primary_10_1016_j_ssc_2025_115828 crossref_primary_10_1039_D4TC03144J crossref_primary_10_1039_D3RA01454A crossref_primary_10_1126_science_ade9463 crossref_primary_10_1038_s41467_023_40423_6 crossref_primary_10_1063_5_0227785 crossref_primary_10_26599_EMD_2024_9370033 crossref_primary_10_1002_smtd_202300397 crossref_primary_10_1039_D3TA04901A crossref_primary_10_1002_inf2_12554 crossref_primary_10_1021_acsaem_4c00618 crossref_primary_10_1002_ange_202207397 crossref_primary_10_1002_anie_202306303 crossref_primary_10_1021_acsaem_4c02521 crossref_primary_10_1055_a_1833_8668 crossref_primary_10_1002_agt2_567 crossref_primary_10_1016_j_nanoen_2024_110246 crossref_primary_10_1021_acsami_2c22130 crossref_primary_10_1016_j_device_2024_100369 crossref_primary_10_1021_jacs_4c03917 crossref_primary_10_1002_aenm_202405635 crossref_primary_10_1007_s11708_025_0985_5 crossref_primary_10_1063_5_0215972 crossref_primary_10_1364_OPTICA_461025 crossref_primary_10_1016_j_joule_2023_03_002 crossref_primary_10_1088_2515_7655_ad307d crossref_primary_10_1016_j_oneear_2022_10_014 crossref_primary_10_1002_aenm_202400064 crossref_primary_10_1557_s43577_023_00593_6 crossref_primary_10_1016_j_cej_2024_150081 crossref_primary_10_1002_aesr_202300285 crossref_primary_10_1021_acsaem_2c01749 crossref_primary_10_1039_D2MH01575G crossref_primary_10_1063_5_0124743 crossref_primary_10_1002_anie_202316295 crossref_primary_10_1021_acs_jpclett_4c00153 crossref_primary_10_1038_s41528_023_00248_1 crossref_primary_10_1038_s41563_025_02161_6 crossref_primary_10_1002_ange_202306303 crossref_primary_10_1039_D2EE01894B crossref_primary_10_1002_aenm_202303354 crossref_primary_10_1021_acsami_4c03446 crossref_primary_10_1002_adma_202305367 crossref_primary_10_1002_adma_202407119 crossref_primary_10_1021_acs_jpcc_2c07721 crossref_primary_10_1039_D4EE03869J crossref_primary_10_1039_D4TA03501A crossref_primary_10_3389_femat_2022_851294 |
Cites_doi | 10.1016/j.scib.2019.10.019 10.1038/s41467-020-20580-8 10.1002/aenm.201700770 10.1002/aenm.201100138 10.1039/D0SE00910E 10.1002/aenm.201900887 10.1021/ja5110602 10.1016/j.joule.2019.12.018 10.1073/pnas.1919769117 10.1038/s41563-017-0005-1 10.1002/aenm.202002653 10.1039/C9TA07417A 10.1016/j.solmat.2011.01.036 10.1039/D0EE03885G 10.1038/s41586-019-1544-1 10.1063/5.0037104 10.1002/aenm.201902124 10.1016/j.joule.2018.09.001 10.1016/j.orgel.2016.11.015 10.1063/1.3701831 10.1038/s41560-020-00732-2 10.1515/nanoph-2020-0322 10.1016/j.scib.2020.01.001 10.1002/adma.201903173 10.1002/adma.201404317 10.1002/aenm.201701601 10.1103/PhysRevB.83.195326 10.1038/nature02498 10.1002/adma.201103010 10.1038/srep21109 10.1021/jacs.7b11278 10.1073/pnas.2007799117 10.1038/nmat4797 10.1002/pi.4656 10.1063/1.2195694 10.1002/adma.201204425 10.1016/j.joule.2019.01.004 10.1039/D0MA00277A 10.1088/1742-6596/247/1/012007 10.1039/C9MH00379G 10.1039/C7EE00844A 10.1016/j.joule.2019.03.020 10.1016/j.solmat.2014.03.005 10.1002/aenm.202003002 10.1093/oso/9780198529729.001.0001 10.2172/1351859 10.1002/aenm.202003441 10.1016/j.joule.2018.04.005 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 2021. The Author(s). The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 OTOTI 5PM DOA |
DOI | 10.1038/s41467-021-25718-w |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_ad511056a7f544958efb221d593ce95e PMC8440764 1819976 34521842 10_1038_s41467_021_25718_w |
Genre | Journal Article |
GrantInformation_xml | – fundername: United States Department of Defense | United States Navy | Office of Naval Research (ONR) grantid: N000141712204; N000141712204; N00014-17-1-2211 funderid: https://doi.org/10.13039/100000006 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 52073207 funderid: https://doi.org/10.13039/501100001809 – fundername: DOE | Office of Energy Efficiency & Renewable Energy | Wind Energy Technologies Office (U.S. Department of Energy’s (DOE’s) Wind Energy Technologies Office) grantid: DE-EE0008561 funderid: https://doi.org/10.13039/100011030 – fundername: Universal Display Corporation (Universal Display) funderid: https://doi.org/10.13039/100012674 – fundername: United States Department of Defense | United States Navy | Office of Naval Research (ONR) grantid: N000141712204 – fundername: DOE | Office of Energy Efficiency & Renewable Energy | Wind Energy Technologies Office (U.S. Department of Energy's (DOE's) Wind Energy Technologies Office) grantid: DE-EE0008561 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 52073207 – fundername: United States Department of Defense | United States Navy | Office of Naval Research (ONR) grantid: N00014-17-1-2211 – fundername: ; – fundername: ; grantid: N000141712204; N000141712204; N00014-17-1-2211 – fundername: ; grantid: 52073207 – fundername: ; grantid: DE-EE0008561 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 SOI 7X8 AAPBV AAYJO ADQMX AEDAW OTOTI ZA5 5PM PUEGO |
ID | FETCH-LOGICAL-c567t-7c9d24d4005f852efae42d8122952c200c72d7ae76395b776f5c6ed51ab8fc3e3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:27:24 EDT 2025 Thu Aug 21 17:50:21 EDT 2025 Thu May 18 22:34:50 EDT 2023 Thu Jul 10 19:27:02 EDT 2025 Wed Aug 13 08:09:00 EDT 2025 Wed Feb 19 02:08:58 EST 2025 Thu Apr 24 23:04:15 EDT 2025 Tue Jul 01 04:17:34 EDT 2025 Fri Feb 21 02:39:16 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2021. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c567t-7c9d24d4005f852efae42d8122952c200c72d7ae76395b776f5c6ed51ab8fc3e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE |
ORCID | 0000-0003-2772-9873 0000-0002-9719-9698 0000-0002-1853-5471 0000-0003-0131-1903 0000000301311903 0000000297199698 0000000327729873 0000000218535471 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-021-25718-w |
PMID | 34521842 |
PQID | 2572353003 |
PQPubID | 546298 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ad511056a7f544958efb221d593ce95e pubmedcentral_primary_oai_pubmedcentral_nih_gov_8440764 osti_scitechconnect_1819976 proquest_miscellaneous_2572924921 proquest_journals_2572353003 pubmed_primary_34521842 crossref_citationtrail_10_1038_s41467_021_25718_w crossref_primary_10_1038_s41467_021_25718_w springer_journals_10_1038_s41467_021_25718_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-14 |
PublicationDateYYYYMMDD | 2021-09-14 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United Kingdom |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Zhang (CR10) 2021; 12 Classen (CR33) 2019; 9 Jiang (CR15) 2020; 117 Riede, Spoltore, Leo (CR3) 2021; 11 Lin (CR8) 2015; 27 Yuan (CR9) 2019; 3 Liu (CR11) 2020; 65 Liu (CR43) 2019; 9 Cao, Cai, Zeng (CR32) 2006; 88 Li (CR25) 2017; 139 Hexemer (CR47) 2010; 247 Baran (CR18) 2017; 16 Park, Son (CR30) 2019; 7 Huang (CR38) 2018; 8 Gasparini (CR20) 2017; 7 CR17 Reese (CR27) 2011; 95 Burlingame, Zanotti, Ciammaruchi, Katz, Forrest (CR46) 2017; 41 Jiang (CR31) 2019; 6 Yan (CR36) 2020; 1 Li (CR44) 2019; 31 Burlingame, Ball, Loo (CR14) 2020; 5 Xu (CR19) 2020; 65 Du (CR16) 2019; 3 Gann (CR48) 2012; 83 Holliday (CR13) 2015; 137 Kan, Huang, Li, Forrest (CR39) 2021; 14 Peters (CR21) 2012; 24 Li (CR40) 2017; 10 Wang, Tong, Burlingame, Yu, Forrest (CR45) 2014; 125 Peters (CR34) 2011; 1 Ghasemi (CR23) 2019; 3 Lee, Lahann, Li, Forrest (CR26) 2020; 4 Forrest (CR2) 2021; 10 CR4 Sheriff, Li, Qu, Forrest (CR6) 2021; 118 CR5 Forrest (CR1) 2004; 428 Li (CR12) 2020; 117 CR28 Ravishankar (CR7) 2020; 4 Giebink, Wiederrecht, Wasielewski, Forrest (CR41) 2011; 83 White, Thibau, Lu (CR35) 2016; 6 Burlingame (CR24) 2019; 573 CR42 Rivaton (CR22) 2014; 63 Ye (CR29) 2018; 17 Xie (CR37) 2013; 25 S Park (25718_CR30) 2019; 7 M Zhang (25718_CR10) 2021; 12 S Holliday (25718_CR13) 2015; 137 Z Jiang (25718_CR15) 2020; 117 X Xu (25718_CR19) 2020; 65 Y Li (25718_CR25) 2017; 139 J Yuan (25718_CR9) 2019; 3 25718_CR17 NC Giebink (25718_CR41) 2011; 83 X Du (25718_CR16) 2019; 3 B Lee (25718_CR26) 2020; 4 B Cao (25718_CR32) 2006; 88 RT White (25718_CR35) 2016; 6 L Yan (25718_CR36) 2020; 1 HKM Sheriff (25718_CR6) 2021; 118 A Rivaton (25718_CR22) 2014; 63 A Classen (25718_CR33) 2019; 9 Q Burlingame (25718_CR46) 2017; 41 Y Huang (25718_CR38) 2018; 8 Y Li (25718_CR40) 2017; 10 H Liu (25718_CR43) 2019; 9 N Wang (25718_CR45) 2014; 125 Q Liu (25718_CR11) 2020; 65 E Gann (25718_CR48) 2012; 83 D Kan (25718_CR39) 2021; 14 F Xie (25718_CR37) 2013; 25 25718_CR28 L Ye (25718_CR29) 2018; 17 A Hexemer (25718_CR47) 2010; 247 Y Li (25718_CR44) 2019; 31 M Riede (25718_CR3) 2021; 11 N Gasparini (25718_CR20) 2017; 7 CH Peters (25718_CR34) 2011; 1 SR Forrest (25718_CR1) 2004; 428 Y Li (25718_CR12) 2020; 117 M Ghasemi (25718_CR23) 2019; 3 25718_CR42 25718_CR4 Y Jiang (25718_CR31) 2019; 6 25718_CR5 Q Burlingame (25718_CR24) 2019; 573 SR Forrest (25718_CR2) 2021; 10 MO Reese (25718_CR27) 2011; 95 Q Burlingame (25718_CR14) 2020; 5 D Baran (25718_CR18) 2017; 16 E Ravishankar (25718_CR7) 2020; 4 CH Peters (25718_CR21) 2012; 24 Y Lin (25718_CR8) 2015; 27 |
References_xml | – volume: 65 start-page: 208 year: 2020 end-page: 216 ident: CR19 article-title: Interface-enhanced organic solar cells with extrapolated T80 lifetimes of over 20 years publication-title: Sci. Bull. doi: 10.1016/j.scib.2019.10.019 – volume: 12 year: 2021 ident: CR10 article-title: Single-layered organic photovoltaics with double cascading charge transport pathways: 18% efficiencies publication-title: Nat. Commun. doi: 10.1038/s41467-020-20580-8 – volume: 7 start-page: 1700770 year: 2017 ident: CR20 article-title: Burn-in free nonfullerene-based organic solar cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700770 – volume: 1 start-page: 491 year: 2011 end-page: 494 ident: CR34 article-title: High efficiency polymer solar cells with long operating lifetimes publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201100138 – ident: CR4 – volume: 4 start-page: 5765 year: 2020 end-page: 5772 ident: CR26 article-title: Cost estimates of production scale semitransparent organic photovoltaic modules for building integrated photovoltaics publication-title: Sustain. Energy Fuels doi: 10.1039/D0SE00910E – volume: 9 start-page: 1900887 year: 2019 ident: CR43 article-title: Boosting organic–metal oxide heterojunction via conjugated small molecules for efficient and stable nonfullerene polymer solar cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900887 – volume: 137 start-page: 898 year: 2015 end-page: 904 ident: CR13 article-title: A rhodanine flanked nonfullerene acceptor for solution-processed organic photovoltaics publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5110602 – volume: 4 start-page: 490 year: 2020 end-page: 506 ident: CR7 article-title: Achieving net zero energy greenhouses by integrating semitransparent organic solar cells publication-title: Joule doi: 10.1016/j.joule.2019.12.018 – volume: 117 start-page: 6391 year: 2020 end-page: 6397 ident: CR15 article-title: Highly efficient organic photovoltaics with enhanced stability through the formation of doping-induced stable interfaces publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1919769117 – volume: 17 start-page: 253 year: 2018 end-page: 260 ident: CR29 article-title: Quantitative relations between interaction parameter, miscibility and function in organic solar cells publication-title: Nat. Mater. doi: 10.1038/s41563-017-0005-1 – volume: 11 start-page: 2002653 year: 2021 ident: CR3 article-title: Organic solar cells—the path to commercial success publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002653 – volume: 7 start-page: 25830 year: 2019 end-page: 25837 ident: CR30 article-title: Intrinsic photo-degradation and mechanism of polymer solar cells: the crucial role of non-fullerene acceptors publication-title: J. Mater. Chem. A doi: 10.1039/C9TA07417A – volume: 95 start-page: 1253 year: 2011 end-page: 1267 ident: CR27 article-title: Consensus stability testing protocols for organic photovoltaic materials and devices publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2011.01.036 – volume: 14 start-page: 1584 year: 2021 end-page: 1593 ident: CR39 article-title: Photogeneration and the bulk quantum efficiency of organic photovoltaics publication-title: Energy Environ. Sci. doi: 10.1039/D0EE03885G – ident: CR42 – volume: 573 start-page: 394 year: 2019 end-page: 397 ident: CR24 article-title: Intrinsically stable organic solar cells under high-intensity illumination publication-title: Nature doi: 10.1038/s41586-019-1544-1 – volume: 118 start-page: 033302 year: 2021 ident: CR6 article-title: Aperiodic optical coatings for neutral-color semi-transparent organic photovoltaics publication-title: Appl. Phys. Lett. doi: 10.1063/5.0037104 – volume: 9 start-page: 1902124 year: 2019 ident: CR33 article-title: Revealing hidden UV instabilities in organic solar cells by correlating device and material stability publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201902124 – volume: 3 start-page: 215 year: 2019 end-page: 226 ident: CR16 article-title: Efficient polymer solar cells based on non-fullerene acceptors with potential device lifetime approaching 10 years publication-title: Joule doi: 10.1016/j.joule.2018.09.001 – volume: 41 start-page: 274 year: 2017 end-page: 279 ident: CR46 article-title: Outdoor operation of small-molecule organic photovoltaics publication-title: Org. Electron. doi: 10.1016/j.orgel.2016.11.015 – volume: 83 start-page: 045110 year: 2012 ident: CR48 article-title: Soft x-ray scattering facility at the Advanced Light Source with real-time data processing and analysis publication-title: Rev. Sci. Instrum. doi: 10.1063/1.3701831 – volume: 5 start-page: 947 year: 2020 end-page: 949 ident: CR14 article-title: It’s time to focus on organic solar cell stability publication-title: Nat. Energy doi: 10.1038/s41560-020-00732-2 – volume: 10 start-page: 31 year: 2021 end-page: 40 ident: CR2 article-title: Waiting for Act 2: what lies beyond organic light-emitting diode (OLED) displays for organic electronics? publication-title: Nanophotonics doi: 10.1515/nanoph-2020-0322 – volume: 65 start-page: 272 year: 2020 end-page: 275 ident: CR11 article-title: 18% Efficiency organic solar cells publication-title: Sci. Bull. doi: 10.1016/j.scib.2020.01.001 – volume: 31 start-page: 1903173 year: 2019 ident: CR44 article-title: Enhanced light utilization in semitransparent organic photovoltaics using an optical outcoupling architecture publication-title: Adv. Mater. doi: 10.1002/adma.201903173 – volume: 27 start-page: 1170 year: 2015 end-page: 1174 ident: CR8 article-title: An electron acceptor challenging fullerenes for efficient polymer solar cells publication-title: Adv. Mater. doi: 10.1002/adma.201404317 – volume: 8 start-page: 1701601 year: 2018 ident: CR38 article-title: Nitrogen-doped porous molybdenum carbide and phosphide hybrids on a carbon matrix as highly effective electrocatalysts for the hydrogen evolution reaction publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701601 – volume: 83 start-page: 195326 year: 2011 ident: CR41 article-title: Thermodynamic efficiency limit of excitonic solar cells publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.195326 – volume: 428 start-page: 911 year: 2004 end-page: 918 ident: CR1 article-title: The path to ubiquitous and low-cost organic electronic appliances on plastic publication-title: Nature doi: 10.1038/nature02498 – ident: CR17 – volume: 24 start-page: 663 year: 2012 end-page: 668 ident: CR21 article-title: The mechanism of burn-in loss in a high efficiency polymer solar cell publication-title: Adv. Mater. doi: 10.1002/adma.201103010 – volume: 6 year: 2016 ident: CR35 article-title: Interface structure of MoO3 on organic semiconductors publication-title: Sci. Rep. doi: 10.1038/srep21109 – volume: 139 start-page: 17114 year: 2017 end-page: 17119 ident: CR25 article-title: High efficiency near-infrared and semitransparent non-fullerene acceptor organic photovoltaic cells publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11278 – volume: 117 start-page: 21147 year: 2020 end-page: 21154 ident: CR12 article-title: Color-neutral, semitransparent organic photovoltaics for power window applications publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2007799117 – volume: 16 start-page: 363 year: 2017 end-page: 369 ident: CR18 article-title: Reducing the efficiency–stability–cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells publication-title: Nat. Mater. doi: 10.1038/nmat4797 – volume: 63 start-page: 1335 year: 2014 end-page: 1345 ident: CR22 article-title: Photostability of organic materials used in polymer solar cells publication-title: Polym. Int. doi: 10.1002/pi.4656 – volume: 88 start-page: 161101 year: 2006 ident: CR32 article-title: Temperature-dependent shifts of three emission bands for ZnO nanoneedle arrays publication-title: Appl. Phys. Lett. doi: 10.1063/1.2195694 – volume: 25 start-page: 2051 year: 2013 end-page: 2055 ident: CR37 article-title: Low-temperature solution-processed hydrogen molybdenum and vanadium bronzes for an efficient hole-transport layer in organic electronics publication-title: Adv. Mater. doi: 10.1002/adma.201204425 – volume: 3 start-page: 1140 year: 2019 end-page: 1151 ident: CR9 article-title: Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core publication-title: Joule doi: 10.1016/j.joule.2019.01.004 – volume: 1 start-page: 1307 year: 2020 end-page: 1317 ident: CR36 article-title: The interfacial degradation mechanism of polymer:fullerene bis-adduct solar cells and their stability improvement publication-title: Mater. Adv. doi: 10.1039/D0MA00277A – ident: CR5 – volume: 247 start-page: 012007 year: 2010 ident: CR47 article-title: A SAXS/WAXS/GISAXS beamline with multilayer monochromator publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/247/1/012007 – ident: CR28 – volume: 6 start-page: 1438 year: 2019 end-page: 1443 ident: CR31 article-title: Photocatalytic effect of ZnO on the stability of nonfullerene acceptors and its mitigation by SnO for nonfullerene organic solar cells publication-title: Mater. Horiz. doi: 10.1039/C9MH00379G – volume: 10 start-page: 1610 year: 2017 end-page: 1620 ident: CR40 article-title: A near-infrared non-fullerene electron acceptor for high performance polymer solar cells publication-title: Energy Environ. Sci. doi: 10.1039/C7EE00844A – volume: 3 start-page: 1328 year: 2019 end-page: 1348 ident: CR23 article-title: Delineation of thermodynamic and kinetic factors that control stability in non-fullerene organic solar cells publication-title: Joule doi: 10.1016/j.joule.2019.03.020 – volume: 125 start-page: 170 year: 2014 end-page: 175 ident: CR45 article-title: Photodegradation of small-molecule organic photovoltaics publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2014.03.005 – volume: 5 start-page: 947 year: 2020 ident: 25718_CR14 publication-title: Nat. Energy doi: 10.1038/s41560-020-00732-2 – volume: 137 start-page: 898 year: 2015 ident: 25718_CR13 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5110602 – ident: 25718_CR17 doi: 10.1002/aenm.202003002 – volume: 41 start-page: 274 year: 2017 ident: 25718_CR46 publication-title: Org. Electron. doi: 10.1016/j.orgel.2016.11.015 – volume: 4 start-page: 490 year: 2020 ident: 25718_CR7 publication-title: Joule doi: 10.1016/j.joule.2019.12.018 – volume: 11 start-page: 2002653 year: 2021 ident: 25718_CR3 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002653 – ident: 25718_CR28 doi: 10.1093/oso/9780198529729.001.0001 – volume: 83 start-page: 045110 year: 2012 ident: 25718_CR48 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.3701831 – volume: 25 start-page: 2051 year: 2013 ident: 25718_CR37 publication-title: Adv. Mater. doi: 10.1002/adma.201204425 – volume: 9 start-page: 1900887 year: 2019 ident: 25718_CR43 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900887 – ident: 25718_CR42 doi: 10.2172/1351859 – volume: 6 start-page: 1438 year: 2019 ident: 25718_CR31 publication-title: Mater. Horiz. doi: 10.1039/C9MH00379G – volume: 31 start-page: 1903173 year: 2019 ident: 25718_CR44 publication-title: Adv. Mater. doi: 10.1002/adma.201903173 – volume: 63 start-page: 1335 year: 2014 ident: 25718_CR22 publication-title: Polym. Int. doi: 10.1002/pi.4656 – volume: 139 start-page: 17114 year: 2017 ident: 25718_CR25 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11278 – volume: 117 start-page: 6391 year: 2020 ident: 25718_CR15 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1919769117 – volume: 573 start-page: 394 year: 2019 ident: 25718_CR24 publication-title: Nature doi: 10.1038/s41586-019-1544-1 – volume: 65 start-page: 272 year: 2020 ident: 25718_CR11 publication-title: Sci. Bull. doi: 10.1016/j.scib.2020.01.001 – volume: 16 start-page: 363 year: 2017 ident: 25718_CR18 publication-title: Nat. Mater. doi: 10.1038/nmat4797 – volume: 65 start-page: 208 year: 2020 ident: 25718_CR19 publication-title: Sci. Bull. doi: 10.1016/j.scib.2019.10.019 – volume: 1 start-page: 491 year: 2011 ident: 25718_CR34 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201100138 – volume: 247 start-page: 012007 year: 2010 ident: 25718_CR47 publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/247/1/012007 – volume: 7 start-page: 1700770 year: 2017 ident: 25718_CR20 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700770 – volume: 3 start-page: 215 year: 2019 ident: 25718_CR16 publication-title: Joule doi: 10.1016/j.joule.2018.09.001 – ident: 25718_CR4 doi: 10.1002/aenm.202003441 – volume: 3 start-page: 1140 year: 2019 ident: 25718_CR9 publication-title: Joule doi: 10.1016/j.joule.2019.01.004 – volume: 117 start-page: 21147 year: 2020 ident: 25718_CR12 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2007799117 – volume: 4 start-page: 5765 year: 2020 ident: 25718_CR26 publication-title: Sustain. Energy Fuels doi: 10.1039/D0SE00910E – volume: 17 start-page: 253 year: 2018 ident: 25718_CR29 publication-title: Nat. Mater. doi: 10.1038/s41563-017-0005-1 – volume: 27 start-page: 1170 year: 2015 ident: 25718_CR8 publication-title: Adv. Mater. doi: 10.1002/adma.201404317 – volume: 1 start-page: 1307 year: 2020 ident: 25718_CR36 publication-title: Mater. Adv. doi: 10.1039/D0MA00277A – volume: 24 start-page: 663 year: 2012 ident: 25718_CR21 publication-title: Adv. Mater. doi: 10.1002/adma.201103010 – volume: 95 start-page: 1253 year: 2011 ident: 25718_CR27 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2011.01.036 – volume: 7 start-page: 25830 year: 2019 ident: 25718_CR30 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA07417A – ident: 25718_CR5 doi: 10.1016/j.joule.2018.04.005 – volume: 88 start-page: 161101 year: 2006 ident: 25718_CR32 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2195694 – volume: 10 start-page: 1610 year: 2017 ident: 25718_CR40 publication-title: Energy Environ. Sci. doi: 10.1039/C7EE00844A – volume: 8 start-page: 1701601 year: 2018 ident: 25718_CR38 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701601 – volume: 10 start-page: 31 year: 2021 ident: 25718_CR2 publication-title: Nanophotonics doi: 10.1515/nanoph-2020-0322 – volume: 3 start-page: 1328 year: 2019 ident: 25718_CR23 publication-title: Joule doi: 10.1016/j.joule.2019.03.020 – volume: 6 year: 2016 ident: 25718_CR35 publication-title: Sci. Rep. doi: 10.1038/srep21109 – volume: 14 start-page: 1584 year: 2021 ident: 25718_CR39 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE03885G – volume: 12 year: 2021 ident: 25718_CR10 publication-title: Nat. Commun. doi: 10.1038/s41467-020-20580-8 – volume: 9 start-page: 1902124 year: 2019 ident: 25718_CR33 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201902124 – volume: 83 start-page: 195326 year: 2011 ident: 25718_CR41 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.195326 – volume: 118 start-page: 033302 year: 2021 ident: 25718_CR6 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0037104 – volume: 125 start-page: 170 year: 2014 ident: 25718_CR45 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2014.03.005 – volume: 428 start-page: 911 year: 2004 ident: 25718_CR1 publication-title: Nature doi: 10.1038/nature02498 |
SSID | ssj0000391844 |
Score | 2.6730506 |
Snippet | Organic photovoltaic cells (OPVs) have the potential of becoming a productive renewable energy technology if the requirements of low cost, high efficiency and... Abstract Organic photovoltaic cells (OPVs) have the potential of becoming a productive renewable energy technology if the requirements of low cost, high... Through development of non-fullerene acceptors, OPVs have reached efficiencies of 18%, yet the inadequate operational lifetime still poses a challenge for the... |
SourceID | doaj pubmedcentral osti proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5419 |
SubjectTerms | 140/131 140/146 147/137 639/166/987 639/4077/909/4101 Aging Aging (artificial) Buffer layers Commercialization Energy technology Fullerenes Heterojunctions Humanities and Social Sciences Interfaces Irradiation Lifetime Luminous intensity multidisciplinary Photovoltaic cells Photovoltaics Renewable energy technologies Science Science (multidisciplinary) Solar cells |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9xADBYlUOil9F0naZlCb63Jep6eY1IaQqE5NZDbYI9lYgj2susQ8u8rjb3bbJ-XnhbWY8aWPknfzMgSwHuM6Gvf6By51KdG5fK6tWR4VkfvJWqt-APnr-f27EJ_uTSX91p9cU7YVB54EtxR1RAloChdudZoYvMltrWURWO8omkMsvelmHdvMZV8sPK0dNHzVzILVR6tdfIJnJFAKC3K_HYnEqWC_fQzkGH9jmz-mjP508FpikenT-DxTCTF8fQCT-EB9s_g4dRa8u45hPOhz3lvPXU_EVXk9JVhJaYuTlEsr4ZxINc0Vl1cC96NFR1N2fWkNTEscTVvEorrrsXUgF5wsqdQC3FHxrF-ARenn799OsvnZgp5NNaNuYu-kbohkzVtaSS2FWrZUHiX3shIthKdbFyF5G-8qZ2zrYkWSfhVXbZRoXoJe_3Q42sQsiFS4CwRDW-0IlkSrbERrW5t0TiPGRQbwYY4VxrnhhfXIZ14qzJMygikjJCUEW4z-LC9ZznV2fjr6BPW13Yk18hOf5AQw4yc8C_kZHDA2g5ENbhebuTEojgGojwEW5vB4QYEYTbrNU8vlVEErwzebS-TQfIpS9XjcDON4UWtLDJ4NWFm-5xKG15SywzcDpp2XmT3St9dpaLfhOaFszqDjxvc_XisPwtq_38I6gAeSbYbbpyhD2FvXN3gG6JiY_02Wd13D2YuWQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtSqGXkqQv51FU6K01WetpnUpbugmF5tRAbsKWZGII9nbtEPLvOyNrHbaPnAy2bMua7xuNRuMZQt4HF0xtvMgDpvoUgeu8bhQQTwlnDAtCcPzB-ce5OrsQ3y_lZXK4DSmscqMTo6L2vUMf-QlAi3HJAYSfVr9yrBqFu6uphMZj8qSAmQZDusrl6exjweznpRDpX5kFL08GETUDxiXAA4syv92aj2Lafjj0QK9_mZx_R07-sX0aZ6XlLnmezEn6eZL_HnkUun3ydCowefeC2PO-y9HDHmug0MphEEu_plMtJ0dXV_3Yg4Iaq9YNFH2ytIVXth3IjvarsE6uQnrdNiGWoacY8kn5gt4BRYaX5GL57efXszyVVMidVHrMtTOeCQ_ElU0pWWiqIJiHSZ4ZyRwwxmnmdRVA6xhZa60a6VTwsqjqsnE88Fdkp-u78IZQ5sE00ArMDSMFh7EE40a5oESjCq9NyEixGVjrUr5xLHtxbeO-Ny_tJAwLwrBRGPY2Ix_me1ZTto0HW39Bec0tMVN2PAGDaBPxbAWdBxtSVbqRAlaDZWhqxgovDQeYSujmIUrbgsGBWXMdhhe50YLhA-BVGTnagMAmcg_2HooZeTdfBlriXkvVhf5maoNLW1Zk5PWEmbmfXEhcWLOM6C00bX3I9pWuvYqpvwHNC61ERj5ucHffrf8P1MHDX3FInjFkBBbGEEdkZ1zfhGMwtcb6beTTb8fGJfk priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7ShEIvJX3GSVpU6K01XetpHbelISw0lzaQm7BlmRiCvew6hPz7zsiPsm1a6Mlgy1jWfJ80kkbfALwPPtjSVjINJPUpgzBpWWsknpbeWh6kFHTA-duFPr-Uqyt1tQd8OgsTg_ajpGXspqfosE9bGSlNAQUIsixP7x7BAUm1I7YPlsvV99W8skKa57mU4wmZhcgfeHlnFIpi_XjpkFQPOZp_xkv-tmkax6KzQ3g6OpFsOVT7GeyF9jk8HtJK3r8Ad9G1Ka2rx8wnrPAUutJt2JDBybP1ddd32C31ReO3jFZiWYOfbFq0GOvWYTMuELKbpg4x-TyjQE8mFuweibF9CZdnX398OU_HRAqpV9r0qfG24rJCuqo6VzzURZC8wqGdW8U98sQbXpkiYF9jVWmMrpXXoVJZUea1F0G8gv22a8MRMF6hQ2A0OhlWSYFtiS6N9kHLWmeVsSGBbGpY50eVcUp2cePibrfI3WAMh8Zw0RjuLoEP8zvrQWPjn6U_k73mkqSPHW9gI7oRL67AyqPnqAtTK4lzwDzUJedZpaxAcCqs5glZ26GbQVq5noKKfO_Q3UHI6gROJxC4kdJb-jwXSiC8Eng3P0Yy0g5L0YbudihDE1qeJfB6wMxcTyEVTad5AmYHTTs_svukba6j4DeieWG0TODjhLtf1fp7Qx3_X_ETeMKJIZQeQ57Cfr-5DW_Q4erLtyPDfgLRTiW- priority: 102 providerName: Springer Nature |
Title | Non-fullerene acceptor organic photovoltaics with intrinsic operational lifetimes over 30 years |
URI | https://link.springer.com/article/10.1038/s41467-021-25718-w https://www.ncbi.nlm.nih.gov/pubmed/34521842 https://www.proquest.com/docview/2572353003 https://www.proquest.com/docview/2572924921 https://www.osti.gov/biblio/1819976 https://pubmed.ncbi.nlm.nih.gov/PMC8440764 https://doaj.org/article/ad511056a7f544958efb221d593ce95e |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB71IVAviGcxLdEicQNDvU_7gFAaNVSRGiEgUm4re71WLUV2SVyV_Htm13ZQIHDgYkv2Wrue-b7dmX3MALy2xiZZkvPQulCf3DIVZoVE4klukoRazpk74Hw1lZczPpmL-R706Y46Aa52unYun9RsuXj34_v6IxL-Q3tkPH6_4p7ubrMBAjCKw7t9OMSRSbmMBledue97ZpagQ8O7szO7Pz2C-4wL5_jQraHKR_THW43M22WN_rmp8reVVT9gjR_Cg87SJMMWGo9gz1aP4V6be3L9BPS0rkI3-e7To5DUuP0t9ZK0aZ4Mubmumxr7riYtzYq46VpSYpVlhWolKKNlN4tIFmVhfYZ64naDEnZG1sie1VOYjS--jS7DLttCaIRUTahMklOeI6dFEQtqi9RymuP4TxNBDZLJKJqr1GKHlIhMKVkII20uojSLC8MsewYHVV3Z50BojlaDkmiJJIIzFCvaPdJYyQsZ5SqxAUS9YLXpQpG7jBgL7ZfEWaxbvWjUi_Z60XcBvNl8c9MG4vhn6XOnr01JF0TbP0Ah6o6TOsXGo3kpU1UIjo5ibIuM0igXCUMEC2zmidO2RlvEBdQ1bueRaTTaRIhrGcBpDwLdw9ZVT5lgiLQAXm1eI2PdMkxa2fq2LeO8XhoFcNxiZtPOHnoBqC00bf3I9puqvPZRwRHYZ0ryAN72uPvVrL8L6sV_V3QCR9TxxqXT4Kdw0Cxv7Us00JpsAPtqrvAajz8N4HA4nHyd4P38Yvr5Cz4dydHAT30MPDt_AuvWPZc |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgQXxBvTAosEJ7Aa79M-IMQrpLTNqZV6W-z1Wo1U2SF2FeVP8RuZ8SNVePTWU6R4nezOfDM7uzs7H8Br73ySJbkMPZX6lF6YMCs0Gp6WLkm4l1LQBeejqZ6cyO-n6nQLfg13YSitcvCJraPOK0d75HsILS6UQBB-mP8MiTWKTlcHCo0OFgd-tcQlW_1-_wvq9w3n46_HnydhzyoQOqVNExqX5FzmiF1VxIr7IvWS5zjP8URxh6Bxhucm9Wh4icqM0YVy2ucqSrO4cMIL_N0bcFMKnMnpZvr423pPh6qtx1L2d3NGIt6rZeuJKA8CBxDF4XJj_mtpAvCjQnP-V4j7d6bmH8e17Sw4vgd3-_CVfezwdh-2fPkAbnWElquHYKdVGdKOfsu5wlJHSTPVgnXcUY7Nz6qmQofYpDNXM9oDZjP8y1mJWGHV3C_6rUl2Pit8S3vPKMWUiRFboezrR3ByLcJ-DNtlVfqnwHiOoYjRGN4kSgqUJQZT2nktCx3lJvEBRINgrevrmxPNxrltz9lFbDtlWFSGbZVhlwG8Xb8z76p7XNn6E-lr3ZIqc7dfoBBtb-g2xc5jzKpTUyiJq8_YFxnnUa4SgWahsJs7pG2LAQ5V6XWUzuQai4EWGosOYHcAge2dSW0voR_Aq_VjdAN0tpOWvrro2tBSmkcBPOkws-6nkIoW8jwAs4GmjYFsPilnZ22pcUTzyGgZwLsBd5fd-r-gnl09ipdwe3J8dGgP96cHO3CHk3UQKYfche1mceGfY5jXZC9a22Lw47qN-TfvqmK_ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuiDemBRYJTmA13qd9QIjSRi2FqEJU6m1rr9dqpMoOiasof41fx4wfqcKjt54ixetkd-b7Zmd3Z2cA3njnkyzJZegp1af0woRZoZF4Wrok4V5KQRecv431wYn8cqpON-BXfxeGwip7m9gY6rxytEe-g9DiQgnadyu6sIjjvdHH6c-QKkjRSWtfTqOFyJFfLnD5Nv9wuIe6fsv5aP_H54OwqzAQOqVNHRqX5FzmiGNVxIr7IvWS5zjn8URxhwByhucm9UjCRGXG6EI57XMVpVlcOOEF_u4t2DS0KhrA5u7--Pj7aoeHcq_HUnY3dYYi3pnLxi5RVAQOJ4rDxdps2BQNwI8Kyf0vh_fvuM0_Dm-bOXF0H-51ziz71KLvAWz48iHcbstbLh-BHVdlSGJsKrCw1FEITTVjbSUpx6bnVV2heazTiZsz2hFmE_zLSYnIYdXUz7qNSnYxKXxNd1UYBZwyMWRLlP78MZzciLifwKCsSv8MGM_RMTEanZ1ESYGyRNdKO69loaPcJD6AqBesdV22cyq6cWGbU3cR21YZFpVhG2XYRQDvVu9M21wf17beJX2tWlKe7uYLFKLtaG9T7Dx6sDo1hZK4Fo19kXEe5SoRSBKF3dwibVt0dyhnr6PgJldbdLuQOjqA7R4EtjMtc3tFhABerx6jUaCTnrT01WXbhhbWPArgaYuZVT-FVLSs5wGYNTStDWT9STk5bxKPI5qHRssA3ve4u-rW_wX1_PpRvII7SGT79XB8tAV3OZGDKnTIbRjUs0v_An2-OnvZkYvB2U3z-TeHnGhR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-fullerene+acceptor+organic+photovoltaics+with+intrinsic+operational+lifetimes+over+30+years&rft.jtitle=Nature+communications&rft.au=Li%2C+Yongxi&rft.au=Huang%2C+Xiaheng&rft.au=Ding%2C+Kan&rft.au=Sheriff%2C+Hafiz+K.+M.&rft.date=2021-09-14&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=12&rft_id=info:doi/10.1038%2Fs41467-021-25718-w&rft_id=info%3Apmid%2F34521842&rft.externalDocID=PMC8440764 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |