Artificial Intelligence–Assisted Colonoscopy for Colorectal Cancer Screening: A Multicenter Randomized Controlled Trial

Artificial intelligence (AI)–assisted colonoscopy improves polyp detection and characterization in colonoscopy. However, data from large-scale multicenter randomized controlled trials (RCT) in an asymptomatic population are lacking. This multicenter RCT aimed to compare AI-assisted colonoscopy with...

Full description

Saved in:
Bibliographic Details
Published inClinical gastroenterology and hepatology Vol. 21; no. 2; pp. 337 - 346.e3
Main Authors Xu, Hong, Tang, Raymond S.Y., Lam, Thomas Y.T., Zhao, Guijun, Lau, James Y.W., Liu, Yunpeng, Wu, Qi, Rong, Long, Xu, Weiran, Li, Xue, Wong, Sunny H., Cai, Shuntian, Wang, Jing, Liu, Guanyi, Ma, Tantan, Liang, Xiong, Mak, Joyce W.Y., Xu, Hongzhi, Yuan, Peng, Cao, Tingting, Li, Fudong, Ye, Zhenshi, Shutian, Zhang, Sung, Joseph J.Y.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Artificial intelligence (AI)–assisted colonoscopy improves polyp detection and characterization in colonoscopy. However, data from large-scale multicenter randomized controlled trials (RCT) in an asymptomatic population are lacking. This multicenter RCT aimed to compare AI-assisted colonoscopy with conventional colonoscopy for adenoma detection in an asymptomatic population. Asymptomatic subjects 45–75 years of age undergoing colorectal cancer screening by direct colonoscopy or fecal immunochemical test were recruited in 6 referral centers in Hong Kong, Jilin, Inner Mongolia, Xiamen, and Beijing. In the AI-assisted colonoscopy, an AI polyp detection system (Eagle-Eye) with real-time notification on the same monitor of the endoscopy system was used. The primary outcome was overall adenoma detection rate (ADR). Secondary outcomes were mean number of adenomas per colonoscopy, ADR according to endoscopist’s experience, and colonoscopy withdrawal time. This study received Institutional Review Board approval (CRE-2019.393). From November 2019 to August 2021, 3059 subjects were randomized to AI-assisted colonoscopy (n = 1519) and conventional colonoscopy (n = 1540). Baseline characteristics and bowel preparation quality between the 2 groups were similar. The overall ADR (39.9% vs 32.4%; P < .001), advanced ADR (6.6% vs 4.9%; P = .041), ADR of expert (42.3% vs 32.8%; P < .001) and nonexpert endoscopists (37.5% vs 32.1%; P = .023), and adenomas per colonoscopy (0.59 ± 0.97 vs 0.45 ± 0.81; P < .001) were all significantly higher in the AI-assisted colonoscopy. The median withdrawal time (8.3 minutes vs 7.8 minutes; P = .004) was slightly longer in the AI-assisted colonoscopy group. In this multicenter RCT in asymptomatic patients, AI-assisted colonoscopy improved overall ADR, advanced ADR, and ADR of both expert and nonexpert attending endoscopists. (ClinicalTrials.gov, Number: NCT04422548).
AbstractList Background and AimsArtificial intelligence (AI)–assisted colonoscopy improves polyp detection and characterization in colonoscopy. However, data from large-scale multicenter randomized controlled trials (RCT) in an asymptomatic population are lacking. MethodsThis multicenter RCT aimed to compare AI-assisted colonoscopy with conventional colonoscopy for adenoma detection in an asymptomatic population. Asymptomatic subjects 45–75 years of age undergoing colorectal cancer screening by direct colonoscopy or fecal immunochemical test were recruited in 6 referral centers in Hong Kong, Jilin, Inner Mongolia, Xiamen, and Beijing. In the AI-assisted colonoscopy, an AI polyp detection system (Eagle-Eye) with real-time notification on the same monitor of the endoscopy system was used. The primary outcome was overall adenoma detection rate (ADR). Secondary outcomes were mean number of adenomas per colonoscopy, ADR according to endoscopist’s experience, and colonoscopy withdrawal time. This study received Institutional Review Board approval (CRE-2019.393). ResultsFrom November 2019 to August 2021, 3059 subjects were randomized to AI-assisted colonoscopy (n = 1519) and conventional colonoscopy (n = 1540). Baseline characteristics and bowel preparation quality between the 2 groups were similar. The overall ADR (39.9% vs 32.4%; P < .001), advanced ADR (6.6% vs 4.9%; P = .041), ADR of expert (42.3% vs 32.8%; P < .001) and nonexpert endoscopists (37.5% vs 32.1%; P = .023), and adenomas per colonoscopy (0.59 ± 0.97 vs 0.45 ± 0.81; P < .001) were all significantly higher in the AI-assisted colonoscopy. The median withdrawal time (8.3 minutes vs 7.8 minutes; P = .004) was slightly longer in the AI-assisted colonoscopy group. ConclusionsIn this multicenter RCT in asymptomatic patients, AI-assisted colonoscopy improved overall ADR, advanced ADR, and ADR of both expert and nonexpert attending endoscopists. ( ClinicalTrials.gov, Number: NCT04422548).
Artificial intelligence (AI)–assisted colonoscopy improves polyp detection and characterization in colonoscopy. However, data from large-scale multicenter randomized controlled trials (RCT) in an asymptomatic population are lacking. This multicenter RCT aimed to compare AI-assisted colonoscopy with conventional colonoscopy for adenoma detection in an asymptomatic population. Asymptomatic subjects 45–75 years of age undergoing colorectal cancer screening by direct colonoscopy or fecal immunochemical test were recruited in 6 referral centers in Hong Kong, Jilin, Inner Mongolia, Xiamen, and Beijing. In the AI-assisted colonoscopy, an AI polyp detection system (Eagle-Eye) with real-time notification on the same monitor of the endoscopy system was used. The primary outcome was overall adenoma detection rate (ADR). Secondary outcomes were mean number of adenomas per colonoscopy, ADR according to endoscopist’s experience, and colonoscopy withdrawal time. This study received Institutional Review Board approval (CRE-2019.393). From November 2019 to August 2021, 3059 subjects were randomized to AI-assisted colonoscopy (n = 1519) and conventional colonoscopy (n = 1540). Baseline characteristics and bowel preparation quality between the 2 groups were similar. The overall ADR (39.9% vs 32.4%; P < .001), advanced ADR (6.6% vs 4.9%; P = .041), ADR of expert (42.3% vs 32.8%; P < .001) and nonexpert endoscopists (37.5% vs 32.1%; P = .023), and adenomas per colonoscopy (0.59 ± 0.97 vs 0.45 ± 0.81; P < .001) were all significantly higher in the AI-assisted colonoscopy. The median withdrawal time (8.3 minutes vs 7.8 minutes; P = .004) was slightly longer in the AI-assisted colonoscopy group. In this multicenter RCT in asymptomatic patients, AI-assisted colonoscopy improved overall ADR, advanced ADR, and ADR of both expert and nonexpert attending endoscopists. (ClinicalTrials.gov, Number: NCT04422548).
Artificial intelligence (AI)-assisted colonoscopy improves polyp detection and characterization in colonoscopy. However, data from large-scale multicenter randomized controlled trials (RCT) in an asymptomatic population are lacking.BACKGROUND AND AIMSArtificial intelligence (AI)-assisted colonoscopy improves polyp detection and characterization in colonoscopy. However, data from large-scale multicenter randomized controlled trials (RCT) in an asymptomatic population are lacking.This multicenter RCT aimed to compare AI-assisted colonoscopy with conventional colonoscopy for adenoma detection in an asymptomatic population. Asymptomatic subjects 45-75 years of age undergoing colorectal cancer screening by direct colonoscopy or fecal immunochemical test were recruited in 6 referral centers in Hong Kong, Jilin, Inner Mongolia, Xiamen, and Beijing. In the AI-assisted colonoscopy, an AI polyp detection system (Eagle-Eye) with real-time notification on the same monitor of the endoscopy system was used. The primary outcome was overall adenoma detection rate (ADR). Secondary outcomes were mean number of adenomas per colonoscopy, ADR according to endoscopist's experience, and colonoscopy withdrawal time. This study received Institutional Review Board approval (CRE-2019.393).METHODSThis multicenter RCT aimed to compare AI-assisted colonoscopy with conventional colonoscopy for adenoma detection in an asymptomatic population. Asymptomatic subjects 45-75 years of age undergoing colorectal cancer screening by direct colonoscopy or fecal immunochemical test were recruited in 6 referral centers in Hong Kong, Jilin, Inner Mongolia, Xiamen, and Beijing. In the AI-assisted colonoscopy, an AI polyp detection system (Eagle-Eye) with real-time notification on the same monitor of the endoscopy system was used. The primary outcome was overall adenoma detection rate (ADR). Secondary outcomes were mean number of adenomas per colonoscopy, ADR according to endoscopist's experience, and colonoscopy withdrawal time. This study received Institutional Review Board approval (CRE-2019.393).From November 2019 to August 2021, 3059 subjects were randomized to AI-assisted colonoscopy (n = 1519) and conventional colonoscopy (n = 1540). Baseline characteristics and bowel preparation quality between the 2 groups were similar. The overall ADR (39.9% vs 32.4%; P < .001), advanced ADR (6.6% vs 4.9%; P = .041), ADR of expert (42.3% vs 32.8%; P < .001) and nonexpert endoscopists (37.5% vs 32.1%; P = .023), and adenomas per colonoscopy (0.59 ± 0.97 vs 0.45 ± 0.81; P < .001) were all significantly higher in the AI-assisted colonoscopy. The median withdrawal time (8.3 minutes vs 7.8 minutes; P = .004) was slightly longer in the AI-assisted colonoscopy group.RESULTSFrom November 2019 to August 2021, 3059 subjects were randomized to AI-assisted colonoscopy (n = 1519) and conventional colonoscopy (n = 1540). Baseline characteristics and bowel preparation quality between the 2 groups were similar. The overall ADR (39.9% vs 32.4%; P < .001), advanced ADR (6.6% vs 4.9%; P = .041), ADR of expert (42.3% vs 32.8%; P < .001) and nonexpert endoscopists (37.5% vs 32.1%; P = .023), and adenomas per colonoscopy (0.59 ± 0.97 vs 0.45 ± 0.81; P < .001) were all significantly higher in the AI-assisted colonoscopy. The median withdrawal time (8.3 minutes vs 7.8 minutes; P = .004) was slightly longer in the AI-assisted colonoscopy group.In this multicenter RCT in asymptomatic patients, AI-assisted colonoscopy improved overall ADR, advanced ADR, and ADR of both expert and nonexpert attending endoscopists. (ClinicalTrials.gov, Number: NCT04422548).CONCLUSIONSIn this multicenter RCT in asymptomatic patients, AI-assisted colonoscopy improved overall ADR, advanced ADR, and ADR of both expert and nonexpert attending endoscopists. (ClinicalTrials.gov, Number: NCT04422548).
Author Sung, Joseph J.Y.
Xu, Weiran
Liu, Yunpeng
Shutian, Zhang
Cai, Shuntian
Yuan, Peng
Lau, James Y.W.
Ma, Tantan
Li, Fudong
Xu, Hong
Xu, Hongzhi
Mak, Joyce W.Y.
Wang, Jing
Ye, Zhenshi
Wu, Qi
Lam, Thomas Y.T.
Liang, Xiong
Li, Xue
Rong, Long
Cao, Tingting
Zhao, Guijun
Liu, Guanyi
Tang, Raymond S.Y.
Wong, Sunny H.
Author_xml – sequence: 1
  givenname: Hong
  surname: Xu
  fullname: Xu, Hong
  organization: Department of Gastroenterology and Endoscopy Center, First Hospital of Jilin University, Jilin, China
– sequence: 2
  givenname: Raymond S.Y.
  surname: Tang
  fullname: Tang, Raymond S.Y.
  organization: Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong SAR, China
– sequence: 3
  givenname: Thomas Y.T.
  surname: Lam
  fullname: Lam, Thomas Y.T.
  organization: Institute of Digestive Disease, Chinese University of Hong Kong, Hong Kong SAR, China
– sequence: 4
  givenname: Guijun
  surname: Zhao
  fullname: Zhao, Guijun
  organization: Department of Endoscopy Center, Inner Mongolia Key Laboratory of Endoscopic Digestive Diseases, Inner Mongolia People’s Hospital, Hohhot, China
– sequence: 5
  givenname: James Y.W.
  surname: Lau
  fullname: Lau, James Y.W.
  organization: Institute of Digestive Disease, Chinese University of Hong Kong, Hong Kong SAR, China
– sequence: 6
  givenname: Yunpeng
  surname: Liu
  fullname: Liu, Yunpeng
  organization: Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
– sequence: 7
  givenname: Qi
  surname: Wu
  fullname: Wu, Qi
  organization: Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Endoscopy Center, Peking University Cancer Hospital and Institute, Beijing, China
– sequence: 8
  givenname: Long
  surname: Rong
  fullname: Rong, Long
  organization: Endoscopy Center, Peking University First Hospital, Beijing, China
– sequence: 9
  givenname: Weiran
  surname: Xu
  fullname: Xu, Weiran
  organization: Department of Gastroenterology and Endoscopy Center, First Hospital of Jilin University, Jilin, China
– sequence: 10
  givenname: Xue
  surname: Li
  fullname: Li, Xue
  organization: Department of Endoscopy Center, Inner Mongolia Key Laboratory of Endoscopic Digestive Diseases, Inner Mongolia People’s Hospital, Hohhot, China
– sequence: 11
  givenname: Sunny H.
  surname: Wong
  fullname: Wong, Sunny H.
  organization: Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong SAR, China
– sequence: 12
  givenname: Shuntian
  surname: Cai
  fullname: Cai, Shuntian
  organization: Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
– sequence: 13
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
  organization: Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Endoscopy Center, Peking University Cancer Hospital and Institute, Beijing, China
– sequence: 14
  givenname: Guanyi
  surname: Liu
  fullname: Liu, Guanyi
  organization: Endoscopy Center, Peking University First Hospital, Beijing, China
– sequence: 15
  givenname: Tantan
  surname: Ma
  fullname: Ma, Tantan
  organization: Department of Gastroenterology and Endoscopy Center, First Hospital of Jilin University, Jilin, China
– sequence: 16
  givenname: Xiong
  surname: Liang
  fullname: Liang, Xiong
  organization: Department of Endoscopy Center, Inner Mongolia Key Laboratory of Endoscopic Digestive Diseases, Inner Mongolia People’s Hospital, Hohhot, China
– sequence: 17
  givenname: Joyce W.Y.
  surname: Mak
  fullname: Mak, Joyce W.Y.
  organization: Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong SAR, China
– sequence: 18
  givenname: Hongzhi
  surname: Xu
  fullname: Xu, Hongzhi
  organization: Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
– sequence: 19
  givenname: Peng
  surname: Yuan
  fullname: Yuan, Peng
  organization: Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Endoscopy Center, Peking University Cancer Hospital and Institute, Beijing, China
– sequence: 20
  givenname: Tingting
  surname: Cao
  fullname: Cao, Tingting
  organization: Department of Gastroenterology and Endoscopy Center, First Hospital of Jilin University, Jilin, China
– sequence: 21
  givenname: Fudong
  surname: Li
  fullname: Li, Fudong
  organization: Department of Gastroenterology and Endoscopy Center, First Hospital of Jilin University, Jilin, China
– sequence: 22
  givenname: Zhenshi
  surname: Ye
  fullname: Ye, Zhenshi
  organization: Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
– sequence: 23
  givenname: Zhang
  surname: Shutian
  fullname: Shutian, Zhang
  organization: Department of Gastroenterology and Hepatology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, China
– sequence: 24
  givenname: Joseph J.Y.
  orcidid: 0000-0003-3125-5199
  surname: Sung
  fullname: Sung, Joseph J.Y.
  email: josephsung@ntu.edu.sg
  organization: Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong SAR, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35863686$$D View this record in MEDLINE/PubMed
BookMark eNqFks1u1DAUhSNURH_gAdigLNlM8E_im4CENBrxU6kIiZa15XFuBg8ee7CdSsOKd-gb9klwOgOLSpSVr6XznSuf49PiyHmHRfGckooSKl6tK736VjHCWEWgIkQ8Kk5oU7MZAK2PDjNvRHNcnMa4JoR1dQdPimPetIKLVpwUu3lIZjDaKFueu4TWmhU6jbe_buYxmpiwLxfeeuej9ttdOfhwdw-oU0YWKmtDeakDojNu9bqcl59Gm4zGbBbKL8r1fmN-3rm4FLy1ebwKed3T4vGgbMRnh_Os-Pr-3dXi4-zi84fzxfxiphsBaQYKQCilgFKgjNc1QE1a2nFsBQzLhmvFaTso6NSy1p3ClgH0WiwVsr5ra35WvNz7boP_MWJMcmOizg9VDv0YJRMdzyuAd1n64iAdlxvs5TaYjQo7-SeuLKB7gQ4-xoDDXwklcqpErmWuRE6VSAIyV5IZuMdok1QyUxzK2AfJN3sSczzXBoOM2kzl9GaKX_bePEi_vUdra5zRyn7HHca1H4PLuUsqY2bk5fRZpr_CWKaBN9mg-7fBf5b_BpmPz5Q
CitedBy_id crossref_primary_10_1097_JS9_0000000000002077
crossref_primary_10_1177_17562848251314829
crossref_primary_10_3389_fsurg_2025_1523684
crossref_primary_10_1111_jgh_16241
crossref_primary_10_7759_cureus_79570
crossref_primary_10_1002_cam4_6947
crossref_primary_10_1016_S2589_7500_23_00242_X
crossref_primary_10_3390_diagnostics14232762
crossref_primary_10_1016_j_dld_2025_01_192
crossref_primary_10_3390_jcm13195842
crossref_primary_10_1097_CCO_0000000000001068
crossref_primary_10_1016_j_gastha_2024_08_021
crossref_primary_10_2147_DDDT_S425860
crossref_primary_10_1016_j_canlet_2025_217461
crossref_primary_10_1016_j_gie_2024_05_002
crossref_primary_10_1111_jgh_16847
crossref_primary_10_1001_jamanetworkopen_2024_57241
crossref_primary_10_1002_mog2_91
crossref_primary_10_1007_s10151_024_02917_3
crossref_primary_10_1016_j_cgh_2023_10_019
crossref_primary_10_37126_aige_v5_i3_92742
crossref_primary_10_1016_j_giec_2024_09_003
crossref_primary_10_1159_000543345
crossref_primary_10_4103_singaporemedj_SMJ_2023_193
crossref_primary_10_1055_s_0045_1802655
crossref_primary_10_1055_a_2210_7999
crossref_primary_10_3390_cancers15215126
crossref_primary_10_1158_2159_8290_CD_23_1199
crossref_primary_10_3390_ijerph22010098
crossref_primary_10_7326_M22_3678
crossref_primary_10_1007_s43032_024_01588_7
crossref_primary_10_1016_S2468_1253_23_00104_8
crossref_primary_10_12688_f1000research_155384_1
crossref_primary_10_2196_52073
crossref_primary_10_3390_genes15060710
crossref_primary_10_1016_j_gie_2023_09_004
crossref_primary_10_4253_wjge_v16_i6_335
crossref_primary_10_1016_j_vgie_2024_09_013
crossref_primary_10_1136_gutjnl_2024_333227
crossref_primary_10_1016_j_esmorw_2024_100046
crossref_primary_10_1038_s41467_024_45355_3
crossref_primary_10_1080_14737140_2023_2215436
crossref_primary_10_18528_ijgii240013
crossref_primary_10_1111_den_14627
crossref_primary_10_11569_wcjd_v32_i3_171
crossref_primary_10_1186_s13045_023_01514_5
crossref_primary_10_1097_MD_0000000000038938
crossref_primary_10_1016_j_eclinm_2023_102341
crossref_primary_10_1007_s43472_023_00118_1
crossref_primary_10_1080_0954898X_2024_2426580
crossref_primary_10_3390_cancers15092410
crossref_primary_10_1016_j_dld_2024_12_023
crossref_primary_10_3389_fmed_2024_1406842
crossref_primary_10_37126_aige_v5_i2_90704
crossref_primary_10_7326_ANNALS_24_00981
crossref_primary_10_1055_a_2521_5169
crossref_primary_10_1016_j_scrs_2024_101007
crossref_primary_10_14309_ajg_0000000000002286
crossref_primary_10_1055_a_2038_7078
crossref_primary_10_2196_42665
crossref_primary_10_7326_M22_2619
crossref_primary_10_1038_s41598_024_70117_y
crossref_primary_10_1016_j_gie_2024_08_033
crossref_primary_10_7759_cureus_37509
crossref_primary_10_1016_j_dld_2023_10_018
crossref_primary_10_35712_aig_v5_i2_91336
crossref_primary_10_7759_cureus_51859
crossref_primary_10_4103_singaporemedj_SMJ_2023_203
crossref_primary_10_1055_a_2328_2844
crossref_primary_10_1111_jgh_16491
crossref_primary_10_1136_bmjgast_2023_001247
crossref_primary_10_1016_j_cgh_2024_04_022
crossref_primary_10_1016_j_gie_2024_01_021
crossref_primary_10_1055_a_2280_7096
crossref_primary_10_1016_j_igie_2023_05_001
crossref_primary_10_1002_jgh3_70018
crossref_primary_10_1177_17562848231218570
crossref_primary_10_1186_s43162_024_00371_z
crossref_primary_10_1080_17434440_2023_2280773
crossref_primary_10_23736_S2724_5691_22_09810_0
crossref_primary_10_1186_s12876_024_03365_x
crossref_primary_10_7759_cureus_45278
crossref_primary_10_1016_j_gie_2023_07_044
crossref_primary_10_3390_jcm12144840
crossref_primary_10_3390_math12244041
crossref_primary_10_1016_j_compbiomed_2023_107356
crossref_primary_10_1016_S2468_1253_24_00161_4
crossref_primary_10_14309_ajg_0000000000002396
crossref_primary_10_1016_j_lfs_2024_122462
crossref_primary_10_33878_2073_7556_2023_22_2_92_102
crossref_primary_10_1111_jgh_16135
Cites_doi 10.7326/M20-6689
10.7326/0003-4819-150-1-200901060-00306
10.1055/a-1031-7657
10.1136/gutjnl-2021-324471
10.1056/NEJMoa1100370
10.1038/s41591-019-0447-x
10.1093/jnci/djy222
10.1136/gutjnl-2013-304880
10.1016/j.cgh.2020.10.014
10.1016/j.gie.2019.08.026
10.1136/gut.51.1.130
10.1053/j.gastro.2018.04.003
10.1007/s11605-020-04802-4
10.1016/S2468-1253(19)30411-X
10.1016/j.gie.2018.11.014
10.1016/j.gie.2008.05.057
10.1016/S2468-1253(19)30413-3
10.1111/jgh.15368
10.1001/jama.295.20.2366
10.1016/S2468-1253(20)30009-1
10.1016/j.gie.2021.03.439
10.1053/j.gastro.2020.10.009
10.1053/j.gastro.2019.01.260
10.1038/ajg.2012.135
10.1136/gutjnl-2014-308362
10.1056/NEJMoa1309086
10.1053/j.gastro.2020.03.025
ContentType Journal Article
Copyright 2023 The Authors
The Authors
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2023 The Authors
– notice: The Authors
– notice: Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cgh.2022.07.006
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1542-7714
EndPage 346.e3
ExternalDocumentID 35863686
10_1016_j_cgh_2022_07_006
S1542356522006735
1_s2_0_S1542356522006735
Genre Multicenter Study
Journal Article
GroupedDBID ---
--K
.1-
.FO
0R~
1B1
1CY
1P~
29B
4.4
457
53G
5GY
5VS
AAEDT
AAEDW
AAFWJ
AALRI
AAQFI
AAQQT
AAXUO
ABJNI
ABLJU
ABMAC
ACGFS
ADBBV
AENEX
AEVXI
AFJKZ
AFRHN
AFTJW
AGCQF
AITUG
AJUYK
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BELOY
C45
C5W
CS3
DU5
EBS
EFJIC
EFKBS
EJD
F5P
FDB
FRP
HZ~
IHE
KOM
M41
MO0
N9A
NQ-
O9-
OBH
OC.
ON0
OVD
P2P
ROL
RPZ
SEL
SES
TEORI
UV1
XH2
Z5R
ADPAM
AFCTW
RIG
6I.
AAFTH
AAIAV
AGZHU
ALXNB
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c567t-7a776aaa71171234477408193e867fb53ca318fa79ab4c9ae8277dc6bae2d9843
ISSN 1542-3565
1542-7714
IngestDate Mon Jul 21 11:49:07 EDT 2025
Thu Jan 02 22:52:29 EST 2025
Thu Apr 24 23:07:45 EDT 2025
Tue Jul 01 03:50:48 EDT 2025
Fri Feb 23 02:38:35 EST 2024
Tue Feb 25 20:04:43 EST 2025
Tue Aug 26 16:33:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords CC
PP
aOR
Artificial Intelligence
AMR
CI
AI
ITT
IQR
SSL
Colorectal Cancer Screening
ADR
FIT
APC
CRC
Colonoscopy
BBPS
BMI
PDR
polyp detection rate
adenoma miss rate
per protocol
interquartile range
adjusted odds ratio
sessile serrated lesion
Boston Bowel Preparation Scale
colorectal cancer
body mass index
fecal immunochemical test
conventional colonoscopy
adenoma detection rate
intention to treat
confidence interval
adenoma per colonoscopy
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c567t-7a776aaa71171234477408193e867fb53ca318fa79ab4c9ae8277dc6bae2d9843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3125-5199
OpenAccessLink https://www.clinicalkey.es/playcontent/1-s2.0-S1542356522006735
PMID 35863686
PQID 2693776739
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2693776739
pubmed_primary_35863686
crossref_primary_10_1016_j_cgh_2022_07_006
crossref_citationtrail_10_1016_j_cgh_2022_07_006
elsevier_sciencedirect_doi_10_1016_j_cgh_2022_07_006
elsevier_clinicalkeyesjournals_1_s2_0_S1542356522006735
elsevier_clinicalkey_doi_10_1016_j_cgh_2022_07_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Clinical gastroenterology and hepatology
PublicationTitleAlternate Clin Gastroenterol Hepatol
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Ardila, Kiraly, Bharadwaj (bib26) 2019; 25
Corley, Jensen, Marks (bib4) 2014; 370
Meester, van Herk, Lansdorp-Vogelaar (bib24) 2020; 159
Gong, Wu, Zhang (bib14) 2020; 5
Zauber, Winawer, O'Brien (bib1) 2012; 366
le Clercq, Bouwens, Rondagh (bib5) 2014; 63
Wieszczy, Waldmann, Løberg (bib6) 2021; 160
Hassan, Senore, Radaelli (bib9) 2017; 66
Singh, Turner, Xue (bib2) 2006; 295
Repici, Spadaccini, Antonelli (bib15) 2022; 71
Kamba, Tamai, Horiuchi (bib17) 2021; 93
Lui, Kyaw, Lam (bib25) 2021; 36
Baxter, Goldwasser, Paszat (bib21) 2009; 150
Ng, Tsoi, Hirai (bib8) 2012; 107
Wong, Chiu, Kim (bib19) 2019; 89
Lai, Calderwood, Doros (bib18) 2009; 69
Song, Emilsson, Bozorg (bib23) 2020; 5
Rodriguez-Ruiz, Lang, Gubern-Merida (bib27) 2019; 111
Pohl, Anderson, Aguilera-Fish (bib22) 2021; 174
Zhao, Wang, Pan (bib3) 2019; 156
Luo, Zhang, Liu (bib16) 2021; 25
Bisschops, East, Hassan (bib7) 2019; 51
Tang, Lee, Chang (bib10) 2022; 20
Wang, Liu, Berzin (bib12) 2020; 5
Misawa, Kudo, Mori (bib11) 2018; 154
Morris, Rutter, Finan (bib20) 2015; 64
Su, Li, Shao (bib13) 2020; 91
Morris (10.1016/j.cgh.2022.07.006_bib20) 2015; 64
Zauber (10.1016/j.cgh.2022.07.006_bib1) 2012; 366
Hassan (10.1016/j.cgh.2022.07.006_bib9) 2017; 66
Lai (10.1016/j.cgh.2022.07.006_bib18) 2009; 69
Tang (10.1016/j.cgh.2022.07.006_bib10) 2022; 20
Wang (10.1016/j.cgh.2022.07.006_bib12) 2020; 5
Gong (10.1016/j.cgh.2022.07.006_bib14) 2020; 5
Wong (10.1016/j.cgh.2022.07.006_bib19) 2019; 89
Ardila (10.1016/j.cgh.2022.07.006_bib26) 2019; 25
Luo (10.1016/j.cgh.2022.07.006_bib16) 2021; 25
Meester (10.1016/j.cgh.2022.07.006_bib24) 2020; 159
Ng (10.1016/j.cgh.2022.07.006_bib8) 2012; 107
Lui (10.1016/j.cgh.2022.07.006_bib25) 2021; 36
Corley (10.1016/j.cgh.2022.07.006_bib4) 2014; 370
Baxter (10.1016/j.cgh.2022.07.006_bib21) 2009; 150
Wieszczy (10.1016/j.cgh.2022.07.006_bib6) 2021; 160
Song (10.1016/j.cgh.2022.07.006_bib23) 2020; 5
Rodriguez-Ruiz (10.1016/j.cgh.2022.07.006_bib27) 2019; 111
Kamba (10.1016/j.cgh.2022.07.006_bib17) 2021; 93
Repici (10.1016/j.cgh.2022.07.006_bib15) 2022; 71
Pohl (10.1016/j.cgh.2022.07.006_bib22) 2021; 174
Luo (10.1016/j.cgh.2022.07.006_bib28) 2021; 25
Dixon (10.1016/j.cgh.2022.07.006_bib30) 2002; 51
Singh (10.1016/j.cgh.2022.07.006_bib2) 2006; 295
Bisschops (10.1016/j.cgh.2022.07.006_bib7) 2019; 51
le Clercq (10.1016/j.cgh.2022.07.006_bib5) 2014; 63
Misawa (10.1016/j.cgh.2022.07.006_bib11) 2018; 154
Zhao (10.1016/j.cgh.2022.07.006_bib3) 2019; 156
Su (10.1016/j.cgh.2022.07.006_bib13) 2020; 91
10.1016/j.cgh.2022.07.006_bib29
References_xml – volume: 20
  start-page: 372
  year: 2022
  end-page: 380.e2
  ident: bib10
  article-title: Two vs one forward view examination of right colon on adenoma detection: an international multicenter randomized trial
  publication-title: Clin Gastroenterol Hepatol
– volume: 156
  start-page: 1661
  year: 2019
  end-page: 1674.e11
  ident: bib3
  article-title: Magnitude, risk factors, and factors associated with adenoma miss rate of tandem colonoscopy: a systematic review and meta-analysis
  publication-title: Gastroenterology
– volume: 174
  start-page: 1377
  year: 2021
  end-page: 1384
  ident: bib22
  article-title: Recurrence of colorectal neoplastic polyps after incomplete resection
  publication-title: Ann Intern Med
– volume: 160
  start-page: 1067
  year: 2021
  end-page: 1074.e6
  ident: bib6
  article-title: Colonoscopist performance and colorectal cancer risk after adenoma removal to stratify surveillance: two nationwide observational studies
  publication-title: Gastroenterology
– volume: 150
  start-page: 1
  year: 2009
  end-page: 8
  ident: bib21
  article-title: Association of colonoscopy and death from colorectal cancer
  publication-title: Ann Intern Med
– volume: 159
  start-page: 105
  year: 2020
  end-page: 118.e25
  ident: bib24
  article-title: Prevalence and clinical features of sessile serrated polyps: a systematic review
  publication-title: Gastroenterology
– volume: 25
  start-page: 2011
  year: 2021
  end-page: 2018
  ident: bib16
  article-title: Artificial intelligence-assisted colonoscopy for detection of colon polyps: a prospective, randomized cohort study
  publication-title: J Gastrointest Surg
– volume: 63
  start-page: 957
  year: 2014
  end-page: 963
  ident: bib5
  article-title: Postcolonoscopy colorectal cancers are preventable: a population-based study
  publication-title: Gut
– volume: 366
  start-page: 687
  year: 2012
  end-page: 696
  ident: bib1
  article-title: Colonoscopic polypectomy and long-term prevention of colorectal-cancer deaths
  publication-title: N Engl J Med
– volume: 93
  start-page: AB195
  year: 2021
  ident: bib17
  article-title: A multicentre randomized controlled trial to verify the reducibility of adenoma miss rate of colonoscopy assisted with artificial intelligence based software
  publication-title: Gastrointest Endosc
– volume: 89
  start-page: 607
  year: 2019
  end-page: 613.e1
  ident: bib19
  article-title: Adenoma detection rates in colonoscopies for positive fecal immunochemical tests versus direct screening colonoscopies
  publication-title: Gastrointest Endosc
– volume: 64
  start-page: 1248
  year: 2015
  end-page: 1256
  ident: bib20
  article-title: Post-colonoscopy colorectal cancer (PCCRC) rates vary considerably depending on the method used to calculate them: a retrospective observational population-based study of PCCRC in the English National Health Service
  publication-title: Gut
– volume: 25
  start-page: 954
  year: 2019
  end-page: 961
  ident: bib26
  article-title: End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography
  publication-title: Nat Med
– volume: 295
  start-page: 2366
  year: 2006
  end-page: 2373
  ident: bib2
  article-title: Risk of developing colorectal cancer following a negative colonoscopy examination: evidence for a 10-year interval between colonoscopies
  publication-title: JAMA
– volume: 91
  start-page: 415
  year: 2020
  end-page: 424.e4
  ident: bib13
  article-title: Impact of a real-time automatic quality control system on colorectal polyp and adenoma detection: a prospective randomized controlled study (with videos)
  publication-title: Gastrointest Endosc
– volume: 71
  start-page: 757
  year: 2022
  end-page: 765
  ident: bib15
  article-title: Artificial intelligence and colonoscopy experience: lessons from two randomised trials
  publication-title: Gut
– volume: 69
  start-page: 620
  year: 2009
  end-page: 625
  ident: bib18
  article-title: The Boston bowel preparation scale: a valid and reliable instrument for colonoscopy-oriented research
  publication-title: Gastrointest Endosc
– volume: 51
  start-page: 1155
  year: 2019
  end-page: 1179
  ident: bib7
  article-title: Advanced imaging for detection and differentiation of colorectal neoplasia: European Society of Gastrointestinal Endoscopy (ESGE) Guideline - Update 2019
  publication-title: Endoscopy
– volume: 36
  start-page: 1656
  year: 2021
  end-page: 1662
  ident: bib25
  article-title: Prevalence and risk factors for sessile serrated lesions in an average risk colorectal cancer screening population
  publication-title: J Gastroenterol Hepatol
– volume: 370
  start-page: 1298
  year: 2014
  end-page: 1306
  ident: bib4
  article-title: Adenoma detection rate and risk of colorectal cancer and death
  publication-title: N Engl J Med
– volume: 5
  start-page: 537
  year: 2020
  end-page: 547
  ident: bib23
  article-title: Risk of colorectal cancer incidence and mortality after polypectomy: a Swedish record-linkage study
  publication-title: Lancet Gastroenterol Hepatol
– volume: 5
  start-page: 352
  year: 2020
  end-page: 361
  ident: bib14
  article-title: Detection of colorectal adenomas with a real-time computer-aided system (ENDOANGEL): a randomised controlled study
  publication-title: Lancet Gastroenterol Hepatol
– volume: 111
  start-page: 916
  year: 2019
  end-page: 922
  ident: bib27
  article-title: Stand-alone artificial intelligence for breast cancer detection in mammography: comparison with 101 radiologists
  publication-title: J Natl Cancer Inst
– volume: 154
  start-page: 2027
  year: 2018
  end-page: 2029.e3
  ident: bib11
  article-title: Artificial intelligence-assisted polyp detection for colonoscopy: initial experience
  publication-title: Gastroenterology
– volume: 5
  start-page: 343
  year: 2020
  end-page: 351
  ident: bib12
  article-title: Effect of a deep-learning computer-aided detection system on adenoma detection during colonoscopy (CADe-DB trial): a double-blind randomised study
  publication-title: Lancet Gastroenterol Hepatol
– volume: 107
  start-page: 1165
  year: 2012
  end-page: 1173
  ident: bib8
  article-title: The efficacy of cap-assisted colonoscopy in polyp detection and cecal intubation: a meta-analysis of randomized controlled trials
  publication-title: Am J Gastroenterol
– volume: 66
  start-page: 1949
  year: 2017
  end-page: 1955
  ident: bib9
  article-title: Full-spectrum (FUSE) versus standard forward-viewing colonoscopy in an organised colorectal cancer screening programme
  publication-title: Gut
– volume: 174
  start-page: 1377
  year: 2021
  ident: 10.1016/j.cgh.2022.07.006_bib22
  article-title: Recurrence of colorectal neoplastic polyps after incomplete resection
  publication-title: Ann Intern Med
  doi: 10.7326/M20-6689
– volume: 150
  start-page: 1
  year: 2009
  ident: 10.1016/j.cgh.2022.07.006_bib21
  article-title: Association of colonoscopy and death from colorectal cancer
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-150-1-200901060-00306
– volume: 51
  start-page: 1155
  year: 2019
  ident: 10.1016/j.cgh.2022.07.006_bib7
  article-title: Advanced imaging for detection and differentiation of colorectal neoplasia: European Society of Gastrointestinal Endoscopy (ESGE) Guideline - Update 2019
  publication-title: Endoscopy
  doi: 10.1055/a-1031-7657
– volume: 71
  start-page: 757
  year: 2022
  ident: 10.1016/j.cgh.2022.07.006_bib15
  article-title: Artificial intelligence and colonoscopy experience: lessons from two randomised trials
  publication-title: Gut
  doi: 10.1136/gutjnl-2021-324471
– volume: 366
  start-page: 687
  year: 2012
  ident: 10.1016/j.cgh.2022.07.006_bib1
  article-title: Colonoscopic polypectomy and long-term prevention of colorectal-cancer deaths
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1100370
– volume: 25
  start-page: 954
  year: 2019
  ident: 10.1016/j.cgh.2022.07.006_bib26
  article-title: End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography
  publication-title: Nat Med
  doi: 10.1038/s41591-019-0447-x
– volume: 111
  start-page: 916
  year: 2019
  ident: 10.1016/j.cgh.2022.07.006_bib27
  article-title: Stand-alone artificial intelligence for breast cancer detection in mammography: comparison with 101 radiologists
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/djy222
– volume: 63
  start-page: 957
  year: 2014
  ident: 10.1016/j.cgh.2022.07.006_bib5
  article-title: Postcolonoscopy colorectal cancers are preventable: a population-based study
  publication-title: Gut
  doi: 10.1136/gutjnl-2013-304880
– volume: 20
  start-page: 372
  year: 2022
  ident: 10.1016/j.cgh.2022.07.006_bib10
  article-title: Two vs one forward view examination of right colon on adenoma detection: an international multicenter randomized trial
  publication-title: Clin Gastroenterol Hepatol
  doi: 10.1016/j.cgh.2020.10.014
– volume: 91
  start-page: 415
  year: 2020
  ident: 10.1016/j.cgh.2022.07.006_bib13
  article-title: Impact of a real-time automatic quality control system on colorectal polyp and adenoma detection: a prospective randomized controlled study (with videos)
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2019.08.026
– volume: 51
  start-page: 130
  year: 2002
  ident: 10.1016/j.cgh.2022.07.006_bib30
  article-title: Gastrointestinal epithelial neoplasia: Vienna revisited
  publication-title: Gut
  doi: 10.1136/gut.51.1.130
– volume: 154
  start-page: 2027
  year: 2018
  ident: 10.1016/j.cgh.2022.07.006_bib11
  article-title: Artificial intelligence-assisted polyp detection for colonoscopy: initial experience
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2018.04.003
– volume: 25
  start-page: 2011
  year: 2021
  ident: 10.1016/j.cgh.2022.07.006_bib16
  article-title: Artificial intelligence-assisted colonoscopy for detection of colon polyps: a prospective, randomized cohort study
  publication-title: J Gastrointest Surg
  doi: 10.1007/s11605-020-04802-4
– volume: 5
  start-page: 343
  year: 2020
  ident: 10.1016/j.cgh.2022.07.006_bib12
  article-title: Effect of a deep-learning computer-aided detection system on adenoma detection during colonoscopy (CADe-DB trial): a double-blind randomised study
  publication-title: Lancet Gastroenterol Hepatol
  doi: 10.1016/S2468-1253(19)30411-X
– volume: 89
  start-page: 607
  year: 2019
  ident: 10.1016/j.cgh.2022.07.006_bib19
  article-title: Adenoma detection rates in colonoscopies for positive fecal immunochemical tests versus direct screening colonoscopies
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2018.11.014
– volume: 69
  start-page: 620
  year: 2009
  ident: 10.1016/j.cgh.2022.07.006_bib18
  article-title: The Boston bowel preparation scale: a valid and reliable instrument for colonoscopy-oriented research
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2008.05.057
– volume: 5
  start-page: 352
  year: 2020
  ident: 10.1016/j.cgh.2022.07.006_bib14
  article-title: Detection of colorectal adenomas with a real-time computer-aided system (ENDOANGEL): a randomised controlled study
  publication-title: Lancet Gastroenterol Hepatol
  doi: 10.1016/S2468-1253(19)30413-3
– volume: 36
  start-page: 1656
  year: 2021
  ident: 10.1016/j.cgh.2022.07.006_bib25
  article-title: Prevalence and risk factors for sessile serrated lesions in an average risk colorectal cancer screening population
  publication-title: J Gastroenterol Hepatol
  doi: 10.1111/jgh.15368
– volume: 295
  start-page: 2366
  year: 2006
  ident: 10.1016/j.cgh.2022.07.006_bib2
  article-title: Risk of developing colorectal cancer following a negative colonoscopy examination: evidence for a 10-year interval between colonoscopies
  publication-title: JAMA
  doi: 10.1001/jama.295.20.2366
– volume: 5
  start-page: 537
  year: 2020
  ident: 10.1016/j.cgh.2022.07.006_bib23
  article-title: Risk of colorectal cancer incidence and mortality after polypectomy: a Swedish record-linkage study
  publication-title: Lancet Gastroenterol Hepatol
  doi: 10.1016/S2468-1253(20)30009-1
– volume: 93
  start-page: AB195
  year: 2021
  ident: 10.1016/j.cgh.2022.07.006_bib17
  article-title: A multicentre randomized controlled trial to verify the reducibility of adenoma miss rate of colonoscopy assisted with artificial intelligence based software
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2021.03.439
– ident: 10.1016/j.cgh.2022.07.006_bib29
– volume: 25
  start-page: 2011
  year: 2021
  ident: 10.1016/j.cgh.2022.07.006_bib28
  article-title: Artificial intelligence-assisted colonoscopy for detection of colon polyps: a prospective, randomized cohort study
  publication-title: J Gastrointest Surg
  doi: 10.1007/s11605-020-04802-4
– volume: 160
  start-page: 1067
  year: 2021
  ident: 10.1016/j.cgh.2022.07.006_bib6
  article-title: Colonoscopist performance and colorectal cancer risk after adenoma removal to stratify surveillance: two nationwide observational studies
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2020.10.009
– volume: 156
  start-page: 1661
  year: 2019
  ident: 10.1016/j.cgh.2022.07.006_bib3
  article-title: Magnitude, risk factors, and factors associated with adenoma miss rate of tandem colonoscopy: a systematic review and meta-analysis
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2019.01.260
– volume: 107
  start-page: 1165
  year: 2012
  ident: 10.1016/j.cgh.2022.07.006_bib8
  article-title: The efficacy of cap-assisted colonoscopy in polyp detection and cecal intubation: a meta-analysis of randomized controlled trials
  publication-title: Am J Gastroenterol
  doi: 10.1038/ajg.2012.135
– volume: 64
  start-page: 1248
  year: 2015
  ident: 10.1016/j.cgh.2022.07.006_bib20
  article-title: Post-colonoscopy colorectal cancer (PCCRC) rates vary considerably depending on the method used to calculate them: a retrospective observational population-based study of PCCRC in the English National Health Service
  publication-title: Gut
  doi: 10.1136/gutjnl-2014-308362
– volume: 370
  start-page: 1298
  year: 2014
  ident: 10.1016/j.cgh.2022.07.006_bib4
  article-title: Adenoma detection rate and risk of colorectal cancer and death
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1309086
– volume: 66
  start-page: 1949
  year: 2017
  ident: 10.1016/j.cgh.2022.07.006_bib9
  article-title: Full-spectrum (FUSE) versus standard forward-viewing colonoscopy in an organised colorectal cancer screening programme
  publication-title: Gut
– volume: 159
  start-page: 105
  year: 2020
  ident: 10.1016/j.cgh.2022.07.006_bib24
  article-title: Prevalence and clinical features of sessile serrated polyps: a systematic review
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2020.03.025
SSID ssj0029497
Score 2.6371315
Snippet Artificial intelligence (AI)–assisted colonoscopy improves polyp detection and characterization in colonoscopy. However, data from large-scale multicenter...
Background and AimsArtificial intelligence (AI)–assisted colonoscopy improves polyp detection and characterization in colonoscopy. However, data from...
Artificial intelligence (AI)-assisted colonoscopy improves polyp detection and characterization in colonoscopy. However, data from large-scale multicenter...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 337
SubjectTerms Adenoma - diagnosis
Artificial Intelligence
Colonic Polyps - diagnosis
Colonoscopy
Colorectal Cancer Screening
Colorectal Neoplasms - diagnosis
Early Detection of Cancer
Gastroenterology and Hepatology
Humans
Randomized Controlled Trials as Topic
Title Artificial Intelligence–Assisted Colonoscopy for Colorectal Cancer Screening: A Multicenter Randomized Controlled Trial
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1542356522006735
https://www.clinicalkey.es/playcontent/1-s2.0-S1542356522006735
https://dx.doi.org/10.1016/j.cgh.2022.07.006
https://www.ncbi.nlm.nih.gov/pubmed/35863686
https://www.proquest.com/docview/2693776739
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWGVkJsEG-Gl4zEiirRjO3YE3ajCqioyqKdiimbyPE4bUdtgiaTRbviH_gc_oYv4dqOk7RMC3QT5WXncU98Hzn3GqE3YqYY6BUexBFhAdNDFkhJokDTNKWZKZilTL7zzme-tc8-TaNpr_ezw1qqlmmozlfmldxEqrAP5GqyZP9Dsk2nsAPWQb6wBAnD8p9kPF5Ypo-rl9GW1vQEBril0khxZsIDRV6YDBTHzzTbZqgzkQMj9gV844aAU2c_jzdsXq4hbsKhXZnPitPjc9uPJbafwOrEPF_XtN30OZaHsoSTbNu2wNMRqL3lhRD-tLJqr6hVp40euIFnV56dmrSavfAgbAhDDriOz7RxEE6aI1-PpA33fqyO51XejWIQ6onPPrTm02susD_BvDOpBm4yiVC3-4Rwmad-CHdJ1jVUSWc8pq6iTK3aKeOhpisVh4thzEN1aP5QEWIrug4uFem2an_P3IG5KULsLD_RLbROwEeBQXZ9vL37Zbvx92Pm5vbxT-F_qlt64aULXWUWXeX2WPNncg_drf0WPHYgvI96On-Abu_UzIyH6KzFIu5i8df3Hx6FuINCDCjELQqxQyFuUPgOj3EHg7jFIG4xiC0GH6H9D-8nm1tBPa1HoCIuloGQQnAppRgOBdhNjIEHYgxTqkdcZGlElQRFk0kRy5SpWOoRvN6Z4qnUZBaPGH2M1vIi108RFkOhNM8yrQeKgTMuNbgzXGWDGROUSdJHA_9WE1XXvDdTr5wkntw4T0AQiRFEMjBMDN5Hb5sm31zBl-tOJl5Uic9kBt2bAKquayRWNdJlPbKUyTAp4eTkD6T1EWta1gayM3z_dsHXHkUJKA_zR1DmuqjKhHDwTgR0HffREwev5qFpNOKUj_izm130ObrTfucv0NpyUemXYL8v01f1d_IbSLHxdg
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence%E2%80%93Assisted+Colonoscopy+for+Colorectal+Cancer+Screening%3A+A+Multicenter+Randomized+Controlled+Trial&rft.jtitle=Clinical+gastroenterology+and+hepatology&rft.au=Xu%2C+Hong&rft.au=Tang%2C+Raymond+S.Y.&rft.au=Lam%2C+Thomas+Y.T.&rft.au=Zhao%2C+Guijun&rft.date=2023-02-01&rft.pub=Elsevier+Inc&rft.issn=1542-3565&rft.eissn=1542-7714&rft.volume=21&rft.issue=2&rft.spage=337&rft.epage=346.e3&rft_id=info:doi/10.1016%2Fj.cgh.2022.07.006&rft.externalDocID=S1542356522006735
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F15423565%2FS1542356522X00153%2Fcov150h.gif