Pseudoknot length modulates the folding, conformational dynamics, and robustness of Xrn1 resistance of flaviviral xrRNAs
To understand how RNA dynamics is regulated and connected to its function, we investigate the folding, conformational dynamics and robustness of Xrn1 resistance of a set of flaviviral xrRNAs using SAXS, smFRET and in vitro enzymatic assays. Flaviviral xrRNAs form discrete ring-like 3D structures, in...
Saved in:
Published in | Nature communications Vol. 12; no. 1; pp. 6417 - 14 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
05.11.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To understand how RNA dynamics is regulated and connected to its function, we investigate the folding, conformational dynamics and robustness of Xrn1 resistance of a set of flaviviral xrRNAs using SAXS, smFRET and in vitro enzymatic assays. Flaviviral xrRNAs form discrete ring-like 3D structures, in which the length of a conserved long-range pseudoknot (PK2) ranges from 2 bp to 7 bp. We find that xrRNAs’ folding, conformational dynamics and Xrn1 resistance are strongly correlated and highly Mg
2+
-dependent, furthermore, the Mg
2+
-dependence is modulated by PK2 length variations. xrRNAs with long PK2 require less Mg
2+
to stabilize their folding, exhibit reduced conformational dynamics and strong Xrn1 resistance even at low Mg
2+
, and tolerate mutations at key tertiary motifs at high Mg
2+
, which generally are destructive to xrRNAs with short PK2. These results demonstrate an unusual regulatory mechanism of RNA dynamics providing insights into the functions and future biomedical applications of xrRNAs.
Exoribonuclease-resistant RNAs (xrRNAs) are RNA elements that block the exoribonucleolytic degradation of RNA. Here the authors show how a long-range pseudoknot length modulates the Mg
2+
-dependence of flaviviral xrRNA’s folding, conformational dynamics and Xrn1 resistance. |
---|---|
AbstractList | Exoribonuclease-resistant RNAs (xrRNAs) are RNA elements that block the exoribonucleolytic degradation of RNA. Here the authors show how a long-range pseudoknot length modulates the Mg2+-dependence of flaviviral xrRNA’s folding, conformational dynamics and Xrn1 resistance. To understand how RNA dynamics is regulated and connected to its function, we investigate the folding, conformational dynamics and robustness of Xrn1 resistance of a set of flaviviral xrRNAs using SAXS, smFRET and in vitro enzymatic assays. Flaviviral xrRNAs form discrete ring-like 3D structures, in which the length of a conserved long-range pseudoknot (PK2) ranges from 2 bp to 7 bp. We find that xrRNAs’ folding, conformational dynamics and Xrn1 resistance are strongly correlated and highly Mg2+-dependent, furthermore, the Mg2+-dependence is modulated by PK2 length variations. xrRNAs with long PK2 require less Mg2+ to stabilize their folding, exhibit reduced conformational dynamics and strong Xrn1 resistance even at low Mg2+, and tolerate mutations at key tertiary motifs at high Mg2+, which generally are destructive to xrRNAs with short PK2. These results demonstrate an unusual regulatory mechanism of RNA dynamics providing insights into the functions and future biomedical applications of xrRNAs.Exoribonuclease-resistant RNAs (xrRNAs) are RNA elements that block the exoribonucleolytic degradation of RNA. Here the authors show how a long-range pseudoknot length modulates the Mg2+-dependence of flaviviral xrRNA’s folding, conformational dynamics and Xrn1 resistance. To understand how RNA dynamics is regulated and connected to its function, we investigate the folding, conformational dynamics and robustness of Xrn1 resistance of a set of flaviviral xrRNAs using SAXS, smFRET and in vitro enzymatic assays. Flaviviral xrRNAs form discrete ring-like 3D structures, in which the length of a conserved long-range pseudoknot (PK2) ranges from 2 bp to 7 bp. We find that xrRNAs’ folding, conformational dynamics and Xrn1 resistance are strongly correlated and highly Mg 2+ -dependent, furthermore, the Mg 2+ -dependence is modulated by PK2 length variations. xrRNAs with long PK2 require less Mg 2+ to stabilize their folding, exhibit reduced conformational dynamics and strong Xrn1 resistance even at low Mg 2+ , and tolerate mutations at key tertiary motifs at high Mg 2+ , which generally are destructive to xrRNAs with short PK2. These results demonstrate an unusual regulatory mechanism of RNA dynamics providing insights into the functions and future biomedical applications of xrRNAs. To understand how RNA dynamics is regulated and connected to its function, we investigate the folding, conformational dynamics and robustness of Xrn1 resistance of a set of flaviviral xrRNAs using SAXS, smFRET and in vitro enzymatic assays. Flaviviral xrRNAs form discrete ring-like 3D structures, in which the length of a conserved long-range pseudoknot (PK2) ranges from 2 bp to 7 bp. We find that xrRNAs' folding, conformational dynamics and Xrn1 resistance are strongly correlated and highly Mg -dependent, furthermore, the Mg -dependence is modulated by PK2 length variations. xrRNAs with long PK2 require less Mg to stabilize their folding, exhibit reduced conformational dynamics and strong Xrn1 resistance even at low Mg , and tolerate mutations at key tertiary motifs at high Mg , which generally are destructive to xrRNAs with short PK2. These results demonstrate an unusual regulatory mechanism of RNA dynamics providing insights into the functions and future biomedical applications of xrRNAs. To understand how RNA dynamics is regulated and connected to its function, we investigate the folding, conformational dynamics and robustness of Xrn1 resistance of a set of flaviviral xrRNAs using SAXS, smFRET and in vitro enzymatic assay. Flaviviral xrRNAs form discrete ring-like 3D structures, in which the length of a conserved longrange pseudoknot (PK2) ranges from 2 bp to 7 bp. We find that xrRNAs’ folding, conformational dynamics and Xrn1 resistance are strongly correlated and highly Mg2+- dependent, furthermore, the Mg2+-dependence is modulated by PK2 length variations. xrRNAs with long PK2 require less Mg2+ to stabilize its folding, exhibits reduced conformational dynamics and strong Xrn1 resistance even at low Mg2+, and tolerates mutations at key tertiary motifs at high Mg2+, which generally are destructive to xrRNAs with short PK2. These results demonstrate an unusual regulatory mechanism of RNA dynamics providing insights into the functions and future biomedical applications of xrRNAs. To understand how RNA dynamics is regulated and connected to its function, we investigate the folding, conformational dynamics and robustness of Xrn1 resistance of a set of flaviviral xrRNAs using SAXS, smFRET and in vitro enzymatic assays. Flaviviral xrRNAs form discrete ring-like 3D structures, in which the length of a conserved long-range pseudoknot (PK2) ranges from 2 bp to 7 bp. We find that xrRNAs’ folding, conformational dynamics and Xrn1 resistance are strongly correlated and highly Mg 2+ -dependent, furthermore, the Mg 2+ -dependence is modulated by PK2 length variations. xrRNAs with long PK2 require less Mg 2+ to stabilize their folding, exhibit reduced conformational dynamics and strong Xrn1 resistance even at low Mg 2+ , and tolerate mutations at key tertiary motifs at high Mg 2+ , which generally are destructive to xrRNAs with short PK2. These results demonstrate an unusual regulatory mechanism of RNA dynamics providing insights into the functions and future biomedical applications of xrRNAs. Exoribonuclease-resistant RNAs (xrRNAs) are RNA elements that block the exoribonucleolytic degradation of RNA. Here the authors show how a long-range pseudoknot length modulates the Mg 2+ -dependence of flaviviral xrRNA’s folding, conformational dynamics and Xrn1 resistance. To understand how RNA dynamics is regulated and connected to its function, we investigate the folding, conformational dynamics and robustness of Xrn1 resistance of a set of flaviviral xrRNAs using SAXS, smFRET and in vitro enzymatic assays. Flaviviral xrRNAs form discrete ring-like 3D structures, in which the length of a conserved long-range pseudoknot (PK2) ranges from 2 bp to 7 bp. We find that xrRNAs' folding, conformational dynamics and Xrn1 resistance are strongly correlated and highly Mg2+-dependent, furthermore, the Mg2+-dependence is modulated by PK2 length variations. xrRNAs with long PK2 require less Mg2+ to stabilize their folding, exhibit reduced conformational dynamics and strong Xrn1 resistance even at low Mg2+, and tolerate mutations at key tertiary motifs at high Mg2+, which generally are destructive to xrRNAs with short PK2. These results demonstrate an unusual regulatory mechanism of RNA dynamics providing insights into the functions and future biomedical applications of xrRNAs.To understand how RNA dynamics is regulated and connected to its function, we investigate the folding, conformational dynamics and robustness of Xrn1 resistance of a set of flaviviral xrRNAs using SAXS, smFRET and in vitro enzymatic assays. Flaviviral xrRNAs form discrete ring-like 3D structures, in which the length of a conserved long-range pseudoknot (PK2) ranges from 2 bp to 7 bp. We find that xrRNAs' folding, conformational dynamics and Xrn1 resistance are strongly correlated and highly Mg2+-dependent, furthermore, the Mg2+-dependence is modulated by PK2 length variations. xrRNAs with long PK2 require less Mg2+ to stabilize their folding, exhibit reduced conformational dynamics and strong Xrn1 resistance even at low Mg2+, and tolerate mutations at key tertiary motifs at high Mg2+, which generally are destructive to xrRNAs with short PK2. These results demonstrate an unusual regulatory mechanism of RNA dynamics providing insights into the functions and future biomedical applications of xrRNAs. |
ArticleNumber | 6417 |
Author | Chen, Chunlai Fang, Xianyang Niu, Xiaolin Yao, Yirong Sun, Ruirui Chen, Zhifeng Zuo, Xiaobing |
Author_xml | – sequence: 1 givenname: Xiaolin orcidid: 0000-0002-1690-8406 surname: Niu fullname: Niu, Xiaolin organization: Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University – sequence: 2 givenname: Ruirui orcidid: 0000-0003-1715-5028 surname: Sun fullname: Sun, Ruirui organization: Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University – sequence: 3 givenname: Zhifeng surname: Chen fullname: Chen, Zhifeng organization: Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University – sequence: 4 givenname: Yirong surname: Yao fullname: Yao, Yirong organization: Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University – sequence: 5 givenname: Xiaobing orcidid: 0000-0002-0134-4804 surname: Zuo fullname: Zuo, Xiaobing organization: X-ray Science Division, Argonne National Laboratory – sequence: 6 givenname: Chunlai surname: Chen fullname: Chen, Chunlai email: chunlai@mail.tsinghua.edu.cn organization: Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University – sequence: 7 givenname: Xianyang orcidid: 0000-0001-9432-9736 surname: Fang fullname: Fang, Xianyang email: fangxy@mail.tsinghua.edu.cn organization: Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34741027$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1854162$$D View this record in Osti.gov |
BookMark | eNp9Uk1v1DAUjFARLaV_gAOK4MKhATt-sZ0LUlXxUakChEDiZjnOy65L1m5tZ7X993g3LbQ91BdbzzPz5tnzvNhz3mFRvKTkHSVMvo9AgYuK1LSqOae82jwpDmoCtKKiZnt3zvvFUYwXJC_WUgnwrNhnIICSWhwUm-8Rp97_cT6VI7pFWpYr30-jThjLtMRy8GNv3eK4NN4NPqx0st7pseyvnV5ZE49L7foy-G6KyWGMpR_K38HRMmC0MWlncFsaRr22axsycxN-fD2JL4qngx4jHt3sh8WvTx9_nn6pzr99Pjs9Oa9Mw0WqBPSkEx3vSE8M7bqu5gBEEFOD5gKHDnsGAzRioKw1vahRM2w7LYnA3kjDDouzWbf3-kJdBrvS4Vp5bdWu4MNC6ZCsGVGxTlLeQCsJACAYCf2AmLtI4ECQZK0Ps9bl1K2yPLqUB7onev_G2aVa-LWSjaCMbAVezwI-JquisQnNMj-sQ5MUlQ1QXmfQ25suwV9NGJNa2WhwHLVDP0VVNy3U2WQjM_TNA-iFn0L-nh2KCYCWtxn16q7tf35vU5ABcgaY4GMMOKjsbPfReQo7KkrUNnNqzpzKmVO7zKlNptYPqLfqj5LYTIoZ7BYY_tt-hPUXI0LrDQ |
CitedBy_id | crossref_primary_10_1007_s11427_021_2116_2 crossref_primary_10_1038_s41467_023_43232_z crossref_primary_10_3390_molecules30010057 crossref_primary_10_3389_fbioe_2021_792489 crossref_primary_10_1016_j_fmre_2023_06_001 crossref_primary_10_1093_nar_gkac414 crossref_primary_10_3390_bioengineering11010022 crossref_primary_10_1016_j_cell_2025_01_016 crossref_primary_10_1038_s41467_023_40589_z crossref_primary_10_1016_j_chembiol_2023_12_010 crossref_primary_10_1016_j_bpj_2021_12_007 crossref_primary_10_1073_pnas_2417234122 crossref_primary_10_1021_acschembio_2c00199 crossref_primary_10_1021_acs_jpcb_4c03981 crossref_primary_10_1016_j_sbi_2024_102944 crossref_primary_10_1038_s41467_023_36838_w crossref_primary_10_1038_s41586_024_07295_2 crossref_primary_10_1042_BSR20240139 crossref_primary_10_1002_cbic_202300110 crossref_primary_10_1016_j_bioorg_2023_106827 crossref_primary_10_3390_v14122662 |
Cites_doi | 10.1038/nsmb.1984 10.1016/j.virusres.2015.09.009 10.1016/j.virusres.2015.01.026 10.1016/j.celrep.2017.12.048 10.1038/s41467-017-02604-y 10.1016/j.celrep.2018.02.101 10.1016/j.cell.2013.10.008 10.1126/science.1250897 10.1007/s12551-009-0018-3 10.1016/j.molcel.2011.02.004 10.1016/j.cell.2014.03.008 10.1146/annurev-biophys-070816-034042 10.1038/s41580-019-0136-0 10.1002/anie.201502890 10.1016/j.cell.2012.01.057 10.1021/ar200098t 10.1371/journal.ppat.1004604 10.1002/(SICI)1521-3773(19990816)38:16<2326::AID-ANIE2326>3.0.CO;2-3 10.1128/JVI.01047-10 10.1021/ja800919q 10.1038/nmeth.1208 10.1073/pnas.0804034105 10.1080/15476286.2015.1094599 10.1016/j.tim.2016.01.002 10.1371/journal.ppat.1006265 10.1002/anie.201200526 10.1107/S0021889803012779 10.1073/pnas.1802429115 10.1002/bies.201500119 10.1016/j.chom.2008.10.007 10.7554/eLife.01892 10.1107/S0021889892001663 10.1038/ncomms13691 10.1021/ja207907d 10.1038/s41467-020-19260-4 10.1038/nrmicro1704 10.3390/v6020404 10.1021/acschembio.5b00952 10.1038/s41467-020-16086-y 10.1073/pnas.2005217117 10.1016/j.biochi.2015.06.028 10.1529/biophysj.106.082487 10.1126/science.aah3963 10.1038/s41596-019-0152-8 10.1016/j.sbi.2008.04.004 10.1002/wrna.1247 10.1042/BST0390575 10.1016/S0076-6879(10)72011-5 10.1016/j.bbagrm.2015.08.009 10.1038/s41467-020-17508-7 10.1016/S0006-3495(99)77443-6 10.1128/JVI.01159-10 10.1128/JVI.00343-20 10.1128/mBio.02352-20 10.1128/mBio.02461-18 10.1101/2020.04.30.070631 10.15252/embr.201847016 10.1261/rna.077065.120 10.1038/s41587-020-0712-z 10.1101/2020.07.01.183129 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 2021. The Author(s). The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Argonne National Lab. (ANL), Argonne, IL (United States) |
CorporateAuthor_xml | – name: Argonne National Lab. (ANL), Argonne, IL (United States) |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 OIOZB OTOTI 5PM DOA |
DOI | 10.1038/s41467-021-26616-x |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Database Suite (ProQuest) Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database (ProQuest) ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) DOAJ: Directory of Open Access Journal (DOAJ) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_3b81654980444e4c84dfee67e84640e0 PMC8571300 1854162 34741027 10_1038_s41467_021_26616_x |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 21922704; 21877069; 22061160466 funderid: https://doi.org/10.13039/501100001809 – fundername: ; grantid: 21922704; 21877069; 22061160466 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 AAPBV AAYJO ADQMX AEDAW OIOZB OTOTI ZA5 5PM PUEGO |
ID | FETCH-LOGICAL-c567t-74d0b7b6b0d0c1bbb2644070c24a67efbed34f457f139cd72ea3e9ba807edc8c3 |
IEDL.DBID | 7X7 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:02:51 EDT 2025 Thu Aug 21 14:05:30 EDT 2025 Fri May 19 00:34:10 EDT 2023 Thu Jul 10 16:33:35 EDT 2025 Wed Aug 13 05:15:39 EDT 2025 Wed Feb 19 02:28:30 EST 2025 Tue Jul 01 04:17:38 EDT 2025 Thu Apr 24 23:10:18 EDT 2025 Fri Feb 21 02:39:01 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2021. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c567t-74d0b7b6b0d0c1bbb2644070c24a67efbed34f457f139cd72ea3e9ba807edc8c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AC02-06CH11357 National Natural Science Foundation of China (NSFC) USDOE Office of Science. Office of Basic Energy Sciences |
ORCID | 0000-0002-0134-4804 0000-0001-9432-9736 0000-0003-1715-5028 0000-0002-1690-8406 0000000201344804 0000000317155028 0000000194329736 0000000216908406 |
OpenAccessLink | https://www.proquest.com/docview/2593744969?pq-origsite=%requestingapplication% |
PMID | 34741027 |
PQID | 2593744969 |
PQPubID | 546298 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3b81654980444e4c84dfee67e84640e0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8571300 osti_scitechconnect_1854162 proquest_miscellaneous_2594298058 proquest_journals_2593744969 pubmed_primary_34741027 crossref_citationtrail_10_1038_s41467_021_26616_x crossref_primary_10_1038_s41467_021_26616_x springer_journals_10_1038_s41467_021_26616_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-05 |
PublicationDateYYYYMMDD | 2021-11-05 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United States |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Liu, Sousa, Wang (CR42) 2016; 38 Konarev, Volkov, Sokolova, Koch, Svergun (CR57) 2003; 36 Roby, Pijlman, Wilusz, Khromykh (CR14) 2014; 6 Funk (CR11) 2010; 84 CR39 Caruthers Marvin (CR41) 2011; 39 Lavergne (CR44) 2016; 11 CR35 Kieft, Rabe, Chapman (CR26) 2015; 12 Seo, Malyshev, Lavergne, Ordoukhanian, Romesberg (CR32) 2011; 133 Behrouzi, Roh, Kilburn, Briber, Woodson (CR40) 2012; 149 Steiner, Karunatilaka, Sigel, Rueda (CR45) 2008; 105 Butcher, Pyle (CR7) 2011; 44 Helm, Kobitski, Nienhaus (CR36) 2009; 1 Fang (CR1) 2013; 155 Clarke, Roby, Slonchak, Khromykh (CR13) 2015; 206 Al-Hashimi, Walter (CR4) 2008; 18 Wang, Chen, Hu, Fang (CR34) 2020; 117 Malyshev, Romesberg (CR33) 2015; 54 Suma, Coronel, Bussi, Micheletti (CR56) 2020; 11 Silva, Pereira, Dalebout, Spaan, Bredenbeek (CR10) 2010; 84 CR9 Chapman, Moon, Wilusz, Kieft (CR27) 2014; 3 Peselis, Serganov (CR47) 2014; 5 Slonchak (CR53) 2020; 11 Jones, Ferre-D’Amare (CR2) 2017; 46 Yang (CR38) 2018; 22 Batey, Rambo, Doudna (CR8) 1999; 38 Svergun (CR58) 1992; 25 Peselis, Gao, Serganov (CR49) 2015; 117 Steckelberg (CR15) 2018; 115 Niu (CR22) 2020; 11 Blanco, Walter (CR60) 2010; 472 Ganser, Kelly, Herschlag, Al-Hashimi (CR5) 2019; 20 Zhang (CR31) 2019; 20 Boehm, Gerbracht, Marx, Gehring (CR20) 2016; 7 Brierley, Pennell, Gilbert (CR46) 2007; 5 Jinek, Coyle Scott, Doudna Jennifer (CR28) 2011; 41 CR19 Blythe, Fox, Bond (CR3) 2016; 1859 Pijlman (CR12) 2008; 4 Gracia (CR50) 2018; 22 CR16 Chang, Xiang, Xiang, Manley, Tong (CR29) 2011; 18 CR54 Voigt (CR21) 2019; 14 Roy, Hohng, Ha (CR30) 2008; 5 Sattin, Zhao, Travers, Chu, Herschlag (CR48) 2008; 130 Charley, Wilusz (CR51) 2016; 212 Filomatori (CR55) 2017; 13 Svergun (CR59) 1999; 76 Villordo, Filomatori, Sanchez-Vargas, Blair, Gamarnik (CR52) 2015; 11 CR24 Villordo, Carballeda, Filomatori, Gamarnik (CR25) 2016; 24 Hengesbach, Kim, Feigon, Stone (CR43) 2012; 51 Cech, Steitz (CR6) 2014; 157 Akiyama (CR18) 2016; 354 Chapman (CR17) 2014; 344 MacFadden (CR23) 2018; 9 McKinney, Joo, Ha (CR37) 2006; 91 A Funk (26616_CR11) 2010; 84 Y Zhang (26616_CR31) 2019; 20 BM Akiyama (26616_CR18) 2016; 354 RT Batey (26616_CR8) 1999; 38 M Jinek (26616_CR28) 2011; 41 SM Villordo (26616_CR25) 2016; 24 R Behrouzi (26616_CR40) 2012; 149 F Voigt (26616_CR21) 2019; 14 M Steiner (26616_CR45) 2008; 105 M Yang (26616_CR38) 2018; 22 JS Kieft (26616_CR26) 2015; 12 DI Svergun (26616_CR58) 1992; 25 PA Charley (26616_CR51) 2016; 212 M Blanco (26616_CR60) 2010; 472 EG Chapman (26616_CR17) 2014; 344 I Brierley (26616_CR46) 2007; 5 PV Konarev (26616_CR57) 2003; 36 Y Wang (26616_CR34) 2020; 117 T Lavergne (26616_CR44) 2016; 11 26616_CR16 A Peselis (26616_CR47) 2014; 5 26616_CR19 DA Malyshev (26616_CR33) 2015; 54 CV Filomatori (26616_CR55) 2017; 13 26616_CR54 DI Svergun (26616_CR59) 1999; 76 YJ Seo (26616_CR32) 2011; 133 26616_CR9 X Fang (26616_CR1) 2013; 155 M Hengesbach (26616_CR43) 2012; 51 B Gracia (26616_CR50) 2018; 22 26616_CR24 R Roy (26616_CR30) 2008; 5 JA Roby (26616_CR14) 2014; 6 JH Chang (26616_CR29) 2011; 18 SA McKinney (26616_CR37) 2006; 91 AL Steckelberg (26616_CR15) 2018; 115 AJ Blythe (26616_CR3) 2016; 1859 V Boehm (26616_CR20) 2016; 7 X Niu (26616_CR22) 2020; 11 EG Chapman (26616_CR27) 2014; 3 HM Al-Hashimi (26616_CR4) 2008; 18 M Helm (26616_CR36) 2009; 1 GP Pijlman (26616_CR12) 2008; 4 H Caruthers Marvin (26616_CR41) 2011; 39 CP Jones (26616_CR2) 2017; 46 A MacFadden (26616_CR23) 2018; 9 A Slonchak (26616_CR53) 2020; 11 26616_CR35 Y Liu (26616_CR42) 2016; 38 A Suma (26616_CR56) 2020; 11 26616_CR39 SM Villordo (26616_CR52) 2015; 11 PA Silva (26616_CR10) 2010; 84 BD Sattin (26616_CR48) 2008; 130 A Peselis (26616_CR49) 2015; 117 BD Clarke (26616_CR13) 2015; 206 TR Cech (26616_CR6) 2014; 157 SE Butcher (26616_CR7) 2011; 44 LR Ganser (26616_CR5) 2019; 20 |
References_xml | – volume: 18 start-page: 270 year: 2011 end-page: 276 ident: CR29 article-title: Structural and biochemical studies of the 5′→3′ exoribonuclease Xrn1 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1984 – volume: 212 start-page: 70 year: 2016 end-page: 77 ident: CR51 article-title: Standing your ground to exoribonucleases: function of flavivirus long non-coding RNAs publication-title: Virus Res doi: 10.1016/j.virusres.2015.09.009 – volume: 206 start-page: 53 year: 2015 end-page: 61 ident: CR13 article-title: Functional non-coding RNAs derived from the flavivirus 3′ untranslated region publication-title: Virus Res doi: 10.1016/j.virusres.2015.01.026 – volume: 22 start-page: 372 year: 2018 end-page: 382 ident: CR38 article-title: The conformational dynamics of Cas9 governing DNA cleavage are revealed by single-molecule FRET publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.12.048 – ident: CR39 – ident: CR16 – volume: 9 year: 2018 ident: CR23 article-title: Mechanism and structural diversity of exoribonuclease-resistant RNA structures in flaviviral RNAs publication-title: Nat. Commun. doi: 10.1038/s41467-017-02604-y – volume: 22 start-page: 3240 year: 2018 end-page: 3250 ident: CR50 article-title: Hidden structural modules in a cooperative RNA folding transition publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.02.101 – volume: 155 start-page: 594 year: 2013 end-page: 605 ident: CR1 article-title: An unusual topological structure of the HIV-1 Rev response element publication-title: Cell doi: 10.1016/j.cell.2013.10.008 – volume: 344 start-page: 307 year: 2014 end-page: 310 ident: CR17 article-title: The structural basis of pathogenic subgenomic flavivirus RNA (sfRNA) production publication-title: Science doi: 10.1126/science.1250897 – volume: 1 start-page: 161 year: 2009 ident: CR36 article-title: Single-molecule Forster resonance energy transfer studies of RNA structure, dynamics and function publication-title: Biophys. Rev. doi: 10.1007/s12551-009-0018-3 – volume: 41 start-page: 600 year: 2011 end-page: 608 ident: CR28 article-title: Coupled 5′ nucleotide recognition and processivity in Xrn1-mediated mRNA decay publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.02.004 – volume: 157 start-page: 77 year: 2014 end-page: 94 ident: CR6 article-title: The noncoding RNA revolution-trashing old rules to forge new ones publication-title: Cell doi: 10.1016/j.cell.2014.03.008 – ident: CR35 – ident: CR54 – volume: 46 start-page: 455 year: 2017 end-page: 481 ident: CR2 article-title: Long-range interactions in riboswitch control of gene expression publication-title: Annu. Rev. Biophys. doi: 10.1146/annurev-biophys-070816-034042 – volume: 20 start-page: 474 year: 2019 end-page: 489 ident: CR5 article-title: The roles of structural dynamics in the cellular functions of RNAs publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-019-0136-0 – volume: 54 start-page: 11930 year: 2015 end-page: 11944 ident: CR33 article-title: The expanded genetic alphabet publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201502890 – volume: 149 start-page: 348 year: 2012 end-page: 357 ident: CR40 article-title: Cooperative tertiary interaction network guides RNA folding publication-title: Cell doi: 10.1016/j.cell.2012.01.057 – ident: CR19 – volume: 44 start-page: 1302 year: 2011 end-page: 1311 ident: CR7 article-title: The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks publication-title: Acc. Chem. Res. doi: 10.1021/ar200098t – volume: 11 start-page: e1004604 year: 2015 ident: CR52 article-title: Dengue virus RNA structure specialization facilitates host adaptation publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1004604 – volume: 38 start-page: 2326 year: 1999 end-page: 2343 ident: CR8 article-title: Tertiary motifs in RNA structure and folding publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/(SICI)1521-3773(19990816)38:16<2326::AID-ANIE2326>3.0.CO;2-3 – volume: 84 start-page: 11395 year: 2010 end-page: 11406 ident: CR10 article-title: An RNA pseudoknot is required for production of yellow fever virus subgenomic RNA by the host nuclease XRN1 publication-title: J. Virol. doi: 10.1128/JVI.01047-10 – ident: CR9 – volume: 130 start-page: 6085 year: 2008 end-page: 6087 ident: CR48 article-title: Direct measurement of tertiary contact cooperativity in RNA folding publication-title: J. Am. Chem. Soc. doi: 10.1021/ja800919q – volume: 5 start-page: 507 year: 2008 end-page: 516 ident: CR30 article-title: A practical guide to single-molecule FRET publication-title: Nat. Methods doi: 10.1038/nmeth.1208 – volume: 105 start-page: 13853 year: 2008 end-page: 13858 ident: CR45 article-title: Single-molecule studies of group II intron ribozymes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0804034105 – volume: 12 start-page: 1169 year: 2015 end-page: 1177 ident: CR26 article-title: New hypotheses derived from the structure of a flaviviral Xrn1-resistant RNA: Conservation, folding, and host adaptation publication-title: RNA Biol. doi: 10.1080/15476286.2015.1094599 – volume: 24 start-page: 270 year: 2016 end-page: 283 ident: CR25 article-title: RNA structure duplications and flavivirus host adaptation publication-title: Trends Microbiol. doi: 10.1016/j.tim.2016.01.002 – volume: 13 start-page: e1006265 year: 2017 ident: CR55 article-title: Dengue virus genomic variation associated with mosquito adaptation defines the pattern of viral non-coding RNAs and fitness in human cells publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1006265 – volume: 51 start-page: 5876 year: 2012 end-page: 5879 ident: CR43 article-title: Single-molecule FRET reveals the folding dynamics of the human telomerase RNA pseudoknot domain publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201200526 – volume: 36 start-page: 1277 year: 2003 end-page: 1282 ident: CR57 article-title: PRIMUS - a Windows-PC based system for small-angle scattering data analysis publication-title: J. Appl. Cryst. doi: 10.1107/S0021889803012779 – volume: 115 start-page: 6404 year: 2018 end-page: 6409 ident: CR15 article-title: A folded viral noncoding RNA blocks host cell exoribonucleases through a conformationally dynamic RNA structure publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1802429115 – volume: 38 start-page: 192 year: 2016 end-page: 200 ident: CR42 article-title: Specific labeling: an effective tool to explore the RNA world publication-title: Bioessays doi: 10.1002/bies.201500119 – volume: 4 start-page: 579 year: 2008 end-page: 591 ident: CR12 article-title: A highly structured, nuclease-resistant, noncoding RNA produced by flaviviruses is required for pathogenicity publication-title: Cell Host Microbe doi: 10.1016/j.chom.2008.10.007 – volume: 3 start-page: e01892 year: 2014 ident: CR27 article-title: RNA structures that resist degradation by Xrn1 produce a pathogenic Dengue virus RNA publication-title: Elife doi: 10.7554/eLife.01892 – volume: 25 start-page: 495 year: 1992 end-page: 503 ident: CR58 article-title: Determination of the regularization parameter in indirect-transform methods using perceptual criteria publication-title: J. Appl. Cryst. doi: 10.1107/S0021889892001663 – volume: 7 year: 2016 ident: CR20 article-title: Interrogating the degradation pathways of unstable mRNAs with XRN1-resistant sequences publication-title: Nat. Commun. doi: 10.1038/ncomms13691 – volume: 133 start-page: 19878 year: 2011 end-page: 19888 ident: CR32 article-title: Site-specific labeling of DNA and RNA using an efficiently replicated and transcribed class of unnatural base pairs publication-title: J. Am. Chem. Soc. doi: 10.1021/ja207907d – volume: 11 year: 2020 ident: CR22 article-title: Molecular mechanisms underlying the extreme mechanical anisotropy of the flaviviral exoribonuclease-resistant RNAs (xrRNAs) publication-title: Nat. Commun. doi: 10.1038/s41467-020-19260-4 – volume: 5 start-page: 598 year: 2007 end-page: 610 ident: CR46 article-title: Viral RNA pseudoknots: versatile motifs in gene expression and replication publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro1704 – volume: 6 start-page: 404 year: 2014 end-page: 427 ident: CR14 article-title: Noncoding subgenomic flavivirus RNA: multiple functions in West Nile virus pathogenesis and modulation of host responses publication-title: Viruses doi: 10.3390/v6020404 – volume: 11 start-page: 1347 year: 2016 end-page: 1353 ident: CR44 article-title: FRET characterization of complex conformational changes in a large 16S ribosomal RNA fragment site-specifically labeled using unnatural base pairs publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.5b00952 – volume: 11 year: 2020 ident: CR53 article-title: Zika virus noncoding RNA suppresses apoptosis and is required for virus transmission by mosquitoes publication-title: Nat. Commun. doi: 10.1038/s41467-020-16086-y – volume: 117 start-page: 22823 year: 2020 end-page: 22832 ident: CR34 article-title: Site-specific covalent labeling of large RNAs with nanoparticles empowered by expanded genetic alphabet transcription publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2005217117 – volume: 117 start-page: 100 year: 2015 end-page: 109 ident: CR49 article-title: Cooperativity, allostery and synergism in ligand binding to riboswitches publication-title: Biochimie doi: 10.1016/j.biochi.2015.06.028 – volume: 91 start-page: 1941 year: 2006 end-page: 1951 ident: CR37 article-title: Analysis of single-molecule FRET trajectories using hidden Markov modeling publication-title: Biophys. J. doi: 10.1529/biophysj.106.082487 – volume: 354 start-page: 1148 year: 2016 end-page: 1152 ident: CR18 article-title: Zika virus produces noncoding RNAs using a multi-pseudoknot structure that confounds a cellular exonuclease publication-title: Science doi: 10.1126/science.aah3963 – volume: 14 start-page: 1603 year: 2019 end-page: 1633 ident: CR21 article-title: Detection and quantification of RNA decay intermediates using XRN1-resistant reporter transcripts publication-title: Nat. Protoc. doi: 10.1038/s41596-019-0152-8 – volume: 18 start-page: 321 year: 2008 end-page: 329 ident: CR4 article-title: RNA dynamics: it is about time publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2008.04.004 – volume: 5 start-page: 803 year: 2014 end-page: 822 ident: CR47 article-title: Structure and function of pseudoknots involved in gene expression control publication-title: Wiley Interdiscip. Rev. RNA doi: 10.1002/wrna.1247 – volume: 39 start-page: 575 year: 2011 end-page: 580 ident: CR41 article-title: A brief review of DNA and RNA chemical synthesis publication-title: Biochem. Soc. Trans. doi: 10.1042/BST0390575 – volume: 472 start-page: 153 year: 2010 end-page: 178 ident: CR60 article-title: Analysis of complex single-molecule FRET time trajectories publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(10)72011-5 – volume: 1859 start-page: 46 year: 2016 end-page: 58 ident: CR3 article-title: The ins and outs of lncRNA structure: how, why and what comes next? publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagrm.2015.08.009 – volume: 20 start-page: e47016 year: 2019 ident: CR31 article-title: Long non-coding subgenomic flavivirus RNAs have extended 3D structures and are flexible in solution publication-title: EMBO Rep. – volume: 11 year: 2020 ident: CR56 article-title: Directional translocation resistance of Zika xrRNA publication-title: Nat. Commun. doi: 10.1038/s41467-020-17508-7 – ident: CR24 – volume: 76 start-page: 2879 year: 1999 end-page: 2886 ident: CR59 article-title: Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing publication-title: Biophys. J. doi: 10.1016/S0006-3495(99)77443-6 – volume: 84 start-page: 11407 year: 2010 end-page: 11417 ident: CR11 article-title: RNA structures required for production of subgenomic flavivirus RNA publication-title: J. Virol. doi: 10.1128/JVI.01159-10 – volume: 84 start-page: 11395 year: 2010 ident: 26616_CR10 publication-title: J. Virol. doi: 10.1128/JVI.01047-10 – ident: 26616_CR54 doi: 10.1128/JVI.00343-20 – volume: 115 start-page: 6404 year: 2018 ident: 26616_CR15 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1802429115 – volume: 38 start-page: 2326 year: 1999 ident: 26616_CR8 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/(SICI)1521-3773(19990816)38:16<2326::AID-ANIE2326>3.0.CO;2-3 – volume: 11 year: 2020 ident: 26616_CR56 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17508-7 – volume: 25 start-page: 495 year: 1992 ident: 26616_CR58 publication-title: J. Appl. Cryst. doi: 10.1107/S0021889892001663 – volume: 472 start-page: 153 year: 2010 ident: 26616_CR60 publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(10)72011-5 – volume: 117 start-page: 22823 year: 2020 ident: 26616_CR34 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2005217117 – volume: 11 start-page: 1347 year: 2016 ident: 26616_CR44 publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.5b00952 – volume: 14 start-page: 1603 year: 2019 ident: 26616_CR21 publication-title: Nat. Protoc. doi: 10.1038/s41596-019-0152-8 – volume: 117 start-page: 100 year: 2015 ident: 26616_CR49 publication-title: Biochimie doi: 10.1016/j.biochi.2015.06.028 – volume: 4 start-page: 579 year: 2008 ident: 26616_CR12 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2008.10.007 – ident: 26616_CR24 doi: 10.1128/mBio.02352-20 – volume: 212 start-page: 70 year: 2016 ident: 26616_CR51 publication-title: Virus Res doi: 10.1016/j.virusres.2015.09.009 – volume: 6 start-page: 404 year: 2014 ident: 26616_CR14 publication-title: Viruses doi: 10.3390/v6020404 – volume: 11 year: 2020 ident: 26616_CR53 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16086-y – volume: 157 start-page: 77 year: 2014 ident: 26616_CR6 publication-title: Cell doi: 10.1016/j.cell.2014.03.008 – volume: 155 start-page: 594 year: 2013 ident: 26616_CR1 publication-title: Cell doi: 10.1016/j.cell.2013.10.008 – volume: 24 start-page: 270 year: 2016 ident: 26616_CR25 publication-title: Trends Microbiol. doi: 10.1016/j.tim.2016.01.002 – volume: 22 start-page: 372 year: 2018 ident: 26616_CR38 publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.12.048 – volume: 36 start-page: 1277 year: 2003 ident: 26616_CR57 publication-title: J. Appl. Cryst. doi: 10.1107/S0021889803012779 – volume: 11 start-page: e1004604 year: 2015 ident: 26616_CR52 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1004604 – volume: 1 start-page: 161 year: 2009 ident: 26616_CR36 publication-title: Biophys. Rev. doi: 10.1007/s12551-009-0018-3 – volume: 1859 start-page: 46 year: 2016 ident: 26616_CR3 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagrm.2015.08.009 – ident: 26616_CR9 doi: 10.1128/mBio.02461-18 – volume: 41 start-page: 600 year: 2011 ident: 26616_CR28 publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.02.004 – volume: 38 start-page: 192 year: 2016 ident: 26616_CR42 publication-title: Bioessays doi: 10.1002/bies.201500119 – volume: 44 start-page: 1302 year: 2011 ident: 26616_CR7 publication-title: Acc. Chem. Res. doi: 10.1021/ar200098t – volume: 11 year: 2020 ident: 26616_CR22 publication-title: Nat. Commun. doi: 10.1038/s41467-020-19260-4 – volume: 22 start-page: 3240 year: 2018 ident: 26616_CR50 publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.02.101 – volume: 20 start-page: 474 year: 2019 ident: 26616_CR5 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-019-0136-0 – ident: 26616_CR16 doi: 10.1101/2020.04.30.070631 – volume: 84 start-page: 11407 year: 2010 ident: 26616_CR11 publication-title: J. Virol. doi: 10.1128/JVI.01159-10 – volume: 133 start-page: 19878 year: 2011 ident: 26616_CR32 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja207907d – volume: 54 start-page: 11930 year: 2015 ident: 26616_CR33 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201502890 – volume: 149 start-page: 348 year: 2012 ident: 26616_CR40 publication-title: Cell doi: 10.1016/j.cell.2012.01.057 – volume: 51 start-page: 5876 year: 2012 ident: 26616_CR43 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201200526 – volume: 5 start-page: 803 year: 2014 ident: 26616_CR47 publication-title: Wiley Interdiscip. Rev. RNA doi: 10.1002/wrna.1247 – volume: 5 start-page: 507 year: 2008 ident: 26616_CR30 publication-title: Nat. Methods doi: 10.1038/nmeth.1208 – volume: 5 start-page: 598 year: 2007 ident: 26616_CR46 publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro1704 – volume: 12 start-page: 1169 year: 2015 ident: 26616_CR26 publication-title: RNA Biol. doi: 10.1080/15476286.2015.1094599 – volume: 20 start-page: e47016 year: 2019 ident: 26616_CR31 publication-title: EMBO Rep. doi: 10.15252/embr.201847016 – ident: 26616_CR19 doi: 10.1261/rna.077065.120 – volume: 206 start-page: 53 year: 2015 ident: 26616_CR13 publication-title: Virus Res doi: 10.1016/j.virusres.2015.01.026 – ident: 26616_CR35 doi: 10.1038/s41587-020-0712-z – volume: 9 year: 2018 ident: 26616_CR23 publication-title: Nat. Commun. doi: 10.1038/s41467-017-02604-y – volume: 13 start-page: e1006265 year: 2017 ident: 26616_CR55 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1006265 – volume: 39 start-page: 575 year: 2011 ident: 26616_CR41 publication-title: Biochem. Soc. Trans. doi: 10.1042/BST0390575 – ident: 26616_CR39 doi: 10.1101/2020.07.01.183129 – volume: 18 start-page: 270 year: 2011 ident: 26616_CR29 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1984 – volume: 91 start-page: 1941 year: 2006 ident: 26616_CR37 publication-title: Biophys. J. doi: 10.1529/biophysj.106.082487 – volume: 7 year: 2016 ident: 26616_CR20 publication-title: Nat. Commun. doi: 10.1038/ncomms13691 – volume: 130 start-page: 6085 year: 2008 ident: 26616_CR48 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja800919q – volume: 18 start-page: 321 year: 2008 ident: 26616_CR4 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2008.04.004 – volume: 344 start-page: 307 year: 2014 ident: 26616_CR17 publication-title: Science doi: 10.1126/science.1250897 – volume: 76 start-page: 2879 year: 1999 ident: 26616_CR59 publication-title: Biophys. J. doi: 10.1016/S0006-3495(99)77443-6 – volume: 105 start-page: 13853 year: 2008 ident: 26616_CR45 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0804034105 – volume: 354 start-page: 1148 year: 2016 ident: 26616_CR18 publication-title: Science doi: 10.1126/science.aah3963 – volume: 3 start-page: e01892 year: 2014 ident: 26616_CR27 publication-title: Elife doi: 10.7554/eLife.01892 – volume: 46 start-page: 455 year: 2017 ident: 26616_CR2 publication-title: Annu. Rev. Biophys. doi: 10.1146/annurev-biophys-070816-034042 |
SSID | ssj0000391844 |
Score | 2.4797966 |
Snippet | To understand how RNA dynamics is regulated and connected to its function, we investigate the folding, conformational dynamics and robustness of Xrn1... Exoribonuclease-resistant RNAs (xrRNAs) are RNA elements that block the exoribonucleolytic degradation of RNA. Here the authors show how a long-range... |
SourceID | doaj pubmedcentral osti proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6417 |
SubjectTerms | 45/70 45/71 45/77 631/45/500 631/535/1261 631/57/2265 82/80 82/83 9/97 96/33 BASIC BIOLOGICAL SCIENCES Biomedical materials Dengue fever Dynamics Flavivirus - genetics Folding Humanities and Social Sciences Laboratories Life sciences Magnesium multidisciplinary Mutation Nucleic Acid Conformation Regulatory mechanisms (biology) Ribonucleic acid RNA RNA Folding - genetics RNA Folding - physiology Robustness Science Science (multidisciplinary) Viruses West Nile virus |
SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journal (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFA6yIPgi3q27SgTfnLJtkzbp4youi-Ai4sK8hVzZxbGVaUfGf-85SafueH3xqdBmSnMuOd-ZcyPkBWud16Gpcg3wO-falrmugsiF44E3WJBgsDj53XlzdsHfLuvltVFfmBOW2gMnwh0zI7HgppXY2MxzK7kL3jfCg-HkhY_eOti8a85UPINZC64Ln6pkCiaPBx7PBMxIQJvU5Ns9SxQb9sOlB8X6Hdj8NWfyp8BptEend8jtCUjSk7SBu-SG7-6Rm2m05Lf7ZPt-8BvXf-r6keKwlPGSfu4dzuryAwXQR0MKOy0oOMRzBSO80KUR9cOC6s7RdW82w4jHIe0DXa67koJ_jpgThAVvhZX-eoWJwiu6XX84PxkekIvTNx9fn-XTlIXc1o0Yc8FdYYRpTOEKWxpjECLBQWArroHMwXjHgG-1CAAWrROV18y3RstCADWkZQ_JQdd3_jGmSTkjuQUQUmuOrpRxQUvpjK0tD6XMSLmjuLJTC3KchLFSMRTOpEpcUsAlFbmkthl5Of_mS2rA8dfVr5CR80psnh1vgEipSaTUv0QqI4coBgowCDbStZhxZEcFyAbQa5WRo510qEnfBwVOJBOw5abNyPP5MWgqhl905_tNXAPGXxY10OFREqb5OxkHZFdUIiNiT8z2NrL_pLu6jN3AZS0wJJmRxU4gf3zWnwn15H8Q6pDcqlCh8F_2-ogcjOuNfwoYbTTPojp-B_Y1OHE priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9RAFB5KRfBF6j22ygi-udFsMslMHkSqWIrQIuLCvg1ztcU1sUlWtv_ecyYXWV37FJhMQuZcZr6TcyPkZVZap3yRxgrgd8yUmccq9TzmlnlWYEKCxuTks_PidME-LfPlHhnbHQ0EbHeadthPatGsXm-urt-Bwr_tU8bFm5YFdcdgAzxuihgw5S04mTgq6tkA98POnJVg0LAhd2b3o1vnUyjjD5ca1G0XBP03kvIvd2o4pU4OyN0BXtLjXh7ukT1X3Se3-4aT1w_I5nPr1rb-XtUdxRYq3QX9UVvs4OVaClCQ-t4ZNaNgJk95jfBC2zeub2dUVZY2tV63HW6StPZ02VRzClY7IlEQIRzyK_XrEsOHV3TTfDk_bh-SxcnHrx9O46H3QmzygncxZzbRXBc6sYmZa60ROMH2YFKmCu68djYDbubcA4Q0lqdOZa7USiQcqCFM9ojsV3XlnmDwlNWCGYAmuWJoYGnrlRBWm9wwPxcRmY8Ul2YoTI79MVYyOMgzIXsuSeCSDFySm4i8mp752ZfluHH2e2TkNBNLaoeBuvkmBw2VmRaY2VUKrKDnmBHMeudgrYDQWOKSiByiGEhAJlhe12Ackukk4B3AtGlEjkbpkKMQSzAtMw5LLsqIvJhug_6iU0ZVrl6HOQAJRJIDHR73wjR9Z8YA7yUpjwjfErOthWzfqS4vQo1wkXN0VEZkNgrkn8_6P6Ge3ryKQ3InRVXBv-r5EdnvmrV7Bpis08-Dov0Glp00Vg priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9VAEF5KRfBFtN5ia1nBN08wl01281gPllJoEbFw3pa92uJpIkmOHP-9M5uLHK2CT4FkEzY7M7vf7sx8Q8ibvLJO-TKLFcDvmCmTxirzPOaWeVZiQoLG5OSLy_Lsip2vitUeyaZcmBC0HygtwzQ9RYe961gwaQwowCWljAE33kPqdtTqZbmcz1WQ8VwwNubHJLm449WdNShQ9cOlAZO6C2b-GS35m8s0rESnj8jDEULSk6HTj8meqw_I_aGo5I8nZPuxcxvbfK2bnmKZlP6a3jYWq3S5jgLco35wOC0obIXn3EX4oB2K03cLqmpL20Zvuh4nQtp4umrrlMLOHNEmqAne8mv1_QZDhNd02366POmekqvTD5-XZ_FYXyE2Rcn7mDObaK5LndjEpFprBEcwBZiMqZI7r53NQWIF9wATjeWZU7mrtBIJh9EQJn9G9uumdi8wQMpqwQzAj0Ix3ERp65UQVpvCMJ-KiKTTiEszko9jDYy1DE7wXMhBShKkJIOU5DYib-d3vg3UG_9s_R4FObdE2uxwo2m_yFGNZK4FZm9VAlnyHDOCWe8c_CugMJa4JCKHqAYS0AdS6BqMNTK9BEwDuDWLyNGkHXK09E7C9jEHNazKKiKv58dgo-h4UbVrNqENLPsiKWAcng_KNPczZ4DpkoxHhO-o2c6P7D6pb64DD7goODojI7KYFPJXt_4-UC__r_kheZCh6eBJenFE9vt2414BDuv1cTC8nyIELyY priority: 102 providerName: Springer Nature |
Title | Pseudoknot length modulates the folding, conformational dynamics, and robustness of Xrn1 resistance of flaviviral xrRNAs |
URI | https://link.springer.com/article/10.1038/s41467-021-26616-x https://www.ncbi.nlm.nih.gov/pubmed/34741027 https://www.proquest.com/docview/2593744969 https://www.proquest.com/docview/2594298058 https://www.osti.gov/servlets/purl/1854162 https://pubmed.ncbi.nlm.nih.gov/PMC8571300 https://doaj.org/article/3b81654980444e4c84dfee67e84640e0 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFBZby2AvY_d57YIGe1tMHVu2lKeRhmYl0FC6FfImdHNbltmd7Yzs3-8c2XHJLn2xQZaNpXOO9OlcCfmQjK1TeRaHCuB3yJQZhSrOecgty1mGAQkag5PPFtnpJZsv02WncKs7t8rtmugXalsa1JEfAUxPOGPjbPzp9keIVaPQutqV0HhI9jF1Gbp08SXvdSyY_Vww1sXKRIk4qplfGdAvAXemLNzs7Ec-bT_cShCvf0HOvz0n_zCf-l1p9pQ86eAknbT0f0YeuOI5edQWmPz1gmzOa7e25beibCiWTGmu6ffSYsUuV1OAfjRvjU9DCsfiPo4RPmjbQvX1kKrC0qrU67rBRZGWOV1WxYjCKR2RJ7AMNuUr9fMG3YVXdFNdLCb1S3I5O_k6PQ27WguhSTPehJzZSHOd6chGZqS1RqAEy4GJmcq4y7WzCVAv5TlARmN57FTixlqJiMNsCJO8IntFWbg36CxltWAGoEiqGB6otM2VEFab1LB8JAIy2s64NF0icqyHsZLeIJ4I2VJJApWkp5LcBORj_85tm4bj3t7HSMi-J6bQ9g1ldSU7iZSJFhjJNRaYMc8xI5jNnYOxAiJjkYsCcoBsIAGJYDpdg35HppGAbwDDxgE53HKH7KS-lnc8GpD3_WOQVzTCqMKVa98HIICIUpiH1y0z9f-ZMMB3UcwDwnfYbGcgu0-Km2ufE1ykHA2TARluGfLut_4_UW_vH8UBeRyjqKAWPT0ke021du8AgzV64AUNrmL2eUD2J5P5lzncj08W5xfQOs2mA6_dgOsZE78BdzM3sg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEYILYie0gJHgRKNmEif2HBAqSzWl7QihVpqb6y10xDQpSQZm_hS_kfeyVcPSW0-RHCey_RZ_9tsIeRkNrVNpEvoK4LfPlBn4Kky5zy1LWYIBCRqDkw_HyeiYfZrEkzXyq4uFQbfKTifWitrmBu_ItwGmR5yxYTJ8e_7dx6pRaF3tSmg0bLHvlj_hyFa-2fsA9H0Vhrsfj96P_LaqgG_ihFc-ZzbQXCc6sIEZaK0REgDjm5CphLtUOxvBOGOeAjgylodORW6olQi4s0aYCP57jVyHjTdAieIT3t_pYLZ1wVgbmxNEYrtktSZCPwjcCRN_sbL_1WUC4JGDOP8L4v7tqfmHubbeBXfvkNstfKU7Db_dJWsuu0duNAUtl_fJ4nPp5jb_luUVxRIt1Sk9yy1WCHMlBahJ08bYtUXhGN7HTcIP7TJTZ1NTblGVWVrkel5WqIRpntJJkQ1o4UpEusCi2JTO1I8puifP6KL4Mt4pH5DjK6HCQ7Ke5Zl7jM5ZVgtmAPrEiuEBTttUCWG1iQ1LB8Ijg27FpWkTn2P9jZmsDfCRkA2VJFBJ1lSSC4-87r85b9J-XNr7HRKy74kpu-uGvPgqWw0gIy0wcmwoMEOfY0YwmzoHcwUEyAIXeGQD2UAC8sH0vQb9nEwlAU8BZg49stlxh2y1TCkvZMIjL_rXoB_Q6KMyl8_rPgA5RBDDOjxqmKkfZ8QATwYh9whfYbOViay-yaandQ5yEXM0hHpkq2PIi2H9f6GeXD6L5-Tm6OjwQB7sjfc3yK0QxQZv8ONNsl4Vc_cU8F-ln9VCR8nJVUv5b76Xb2M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEYgLYie0gJHgRKPJ4sSeA0KFMmopjCpEpbkZb6EjpklJMjDz1_h1vJdkUg1Lbz1FcpzI9lv82W8j5Hk8tE5laeQrgN8-Uyb0VZRxn1uWsRQDEjQGJ38cp_vH7P0kmWyQX6tYGHSrXOnERlHbwuAd-QBgeswZG6bDQda5RRztjV6fffexghRaWlflNFoWOXTLn3B8q14d7AGtX0TR6N3nt_t-V2HAN0nKa58zG2iuUx3YwIRaa4QHIAQmYirlLtPOxjDmhGcAlIzlkVOxG2olAu6sESaG_14hV3mchChjfML7-x3MvC4Y6-J0glgMKtZoJfSJwF0x9Rdre2FTMgAeBYj2v-Du316bf5humx1xdIvc7KAs3W157zbZcPkdcq0tbrm8SxZHlZvb4lte1BTLtdQn9LSwWC3MVRRgJ81aw9cOhSN5H0MJP7TLXJ1OTbVDVW5pWeh5VaNCpkVGJ2Ue0tJViHqBXbEpm6kfU3RVntFF-Wm8W90jx5dChftkMy9y9xAdtawWzAAMShTDw5y2mRLCapMYloXCI-FqxaXpkqBjLY6ZbIzxsZAtlSRQSTZUkguPvOy_OWtTgFzY-w0Ssu-J6bubhqL8KjttIGMtMIpsKDBbn2NGMJs5B3MFNMgCF3hkC9lAAgrCVL4GfZ5MLQFbAX6OPLK94g7ZaZxKnsuHR571r0FXoAFI5a6YN30AfogggXV40DJTP86YAbYMIu4RvsZmaxNZf5NPT5p85CLhaBT1yM6KIc-H9f-FenTxLJ6S6yDf8sPB-HCL3IhQavAyP9kmm3U5d48BCtb6SSNzlHy5bCH_DdOJc5k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pseudoknot+length+modulates+the+folding%2C+conformational+dynamics%2C+and+robustness+of+Xrn1+resistance+of+flaviviral+xrRNAs&rft.jtitle=Nature+communications&rft.au=Niu+Xiaolin&rft.au=Sun+Ruirui&rft.au=Chen%2C+Zhifeng&rft.au=Yao+Yirong&rft.date=2021-11-05&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-021-26616-x&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |