Genome-wide kinetics of DNA excision repair in relation to chromatin state and mutagenesis
We recently developed a high-resolution genome-wide assay for mapping DNA excision repair named eXcision Repair-sequencing (XR-seq) and have now used XR-seq to determine which regions of the genome are subject to repair very soon after UV exposure and which regions are repaired later. Over a time co...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 113; no. 15; pp. E2124 - E2133 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
12.04.2016
National Acad Sciences |
Series | PNAS Plus |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We recently developed a high-resolution genome-wide assay for mapping DNA excision repair named eXcision Repair-sequencing (XR-seq) and have now used XR-seq to determine which regions of the genome are subject to repair very soon after UV exposure and which regions are repaired later. Over a time course, we measured repair of the UV-induced damage of cyclobutane pyrimidine dimers (CPDs) (at 1, 4, 8, 16, 24, and 48 h) and (6-4)pyrimidine-pyrimidone photoproducts [(6-4)PPs] (at 5 and 20 min and 1, 2, and 4 h) in normal human skin fibroblasts. Each type of damage has distinct repair kinetics. The (6-4)PPs are detected as early as 5 min after UV treatment, with the bulk of repair completed by 4 h. Repair of CPDs, which we previously showed is intimately coupled to transcription, is slower and in certain regions persists even 2 d after UV irradiation. We compared our results to the Encyclopedia of DNA Elements data regarding histone modifications, chromatin state, and transcription. For both damage types, and for both transcription-coupled and general excision repair, the earliest repair occurred preferentially in active and open chromatin states. Conversely, repair in regions classified as “heterochromatic” and “repressed” was relatively low at early time points, with repair persisting into the late time points. Damage that remains during DNA replication increases the risk for mutagenesis. Indeed, laterepaired regions are associated with a higher level of cancer-linked mutations. In summary, we show that XR-seq is a powerful approach for studying relationships among chromatin state, DNA repair, genome stability, mutagenesis, and carcinogenesis. |
---|---|
AbstractList | We recently developed a high-resolution genome-wide assay for mapping DNA excision repair named eXcision Repair-sequencing (XR-seq) and have now used XR-seq to determine which regions of the genome are subject to repair very soon after UV exposure and which regions are repaired later. Over a time course, we measured repair of the UV-induced damage of cyclobutane pyrimidine dimers (CPDs) (at 1, 4, 8, 16, 24, and 48 h) and (6-4)pyrimidine-pyrimidone photoproducts [(6-4)PPs] (at 5 and 20 min and 1, 2, and 4 h) in normal human skin fibroblasts. Each type of damage has distinct repair kinetics. The (6-4)PPs are detected as early as 5 min after UV treatment, with the bulk of repair completed by 4 h. Repair of CPDs, which we previously showed is intimately coupled to transcription, is slower and in certain regions persists even 2 d after UV irradiation. We compared our results to the Encyclopedia of DNA Elements data regarding histone modifications, chromatin state, and transcription. For both damage types, and for both transcription-coupled and general excision repair, the earliest repair occurred preferentially in active and open chromatin states. Conversely, repair in regions classified as “heterochromatic” and “repressed” was relatively low at early time points, with repair persisting into the late time points. Damage that remains during DNA replication increases the risk for mutagenesis. Indeed, laterepaired regions are associated with a higher level of cancer-linked mutations. In summary, we show that XR-seq is a powerful approach for studying relationships among chromatin state, DNA repair, genome stability, mutagenesis, and carcinogenesis. We recently developed a high-resolution genome-wide assay for mapping DNA excision repair named eXcision Repair-sequencing (XR-seq) and have now used XR-seq to determine which regions of the genome are subject to repair very soon after UV exposure and which regions are repaired later. Over a time course, we measured repair of the UV-induced damage of cyclobutane pyrimidine dimers (CPDs) (at 1, 4, 8, 16, 24, and 48 h) and (6-4)pyrimidine-pyrimidone photoproducts [(6-4)PPs] (at 5 and 20 min and 1, 2, and 4 h) in normal human skin fibroblasts. Each type of damage has distinct repair kinetics. The (6-4)PPs are detected as early as 5 min after UV treatment, with the bulk of repair completed by 4 h. Repair of CPDs, which we previously showed is intimately coupled to transcription, is slower and in certain regions persists even 2 d after UV irradiation. We compared our results to the Encyclopedia of DNA Elements data regarding histone modifications, chromatin state, and transcription. For both damage types, and for both transcription-coupled and general excision repair, the earliest repair occurred preferentially in active and open chromatin states. Conversely, repair in regions classified as "heterochromatic" and "repressed" was relatively low at early time points, with repair persisting into the late time points. Damage that remains during DNA replication increases the risk for mutagenesis. Indeed, late-repaired regions are associated with a higher level of cancer-linked mutations. In summary, we show that XR-seq is a powerful approach for studying relationships among chromatin state, DNA repair, genome stability, mutagenesis, and carcinogenesis. Nucleotide excision repair is the sole mechanism for removing bulky adducts from the human genome, including those formed by UV radiation and chemotherapeutic drugs. We used eXcision Repair-sequencing, a genomic assay for measuring DNA repair, to map the kinetics of repair after UV treatment. These genome-wide repair maps, in turn, allowed us to infer how excision repair is influenced by DNA packaging. Active and open chromatin regions were repaired more rapidly than other genomic regions. Repair in repressed and heterochromatic regions is slower and persists for up to 2 d. Furthermore, late-repaired regions are associated with a higher level of cancer-linked somatic mutations, highlighting the importance of efficient DNA repair and linking chromatin organization to cancer mutagenesis. We recently developed a high-resolution genome-wide assay for mapping DNA excision repair named eXcision Repair-sequencing (XR-seq) and have now used XR-seq to determine which regions of the genome are subject to repair very soon after UV exposure and which regions are repaired later. Over a time course, we measured repair of the UV-induced damage of cyclobutane pyrimidine dimers (CPDs) (at 1, 4, 8, 16, 24, and 48 h) and (6-4)pyrimidine-pyrimidone photoproducts [(6-4)PPs] (at 5 and 20 min and 1, 2, and 4 h) in normal human skin fibroblasts. Each type of damage has distinct repair kinetics. The (6-4)PPs are detected as early as 5 min after UV treatment, with the bulk of repair completed by 4 h. Repair of CPDs, which we previously showed is intimately coupled to transcription, is slower and in certain regions persists even 2 d after UV irradiation. We compared our results to the Encyclopedia of DNA Elements data regarding histone modifications, chromatin state, and transcription. For both damage types, and for both transcription-coupled and general excision repair, the earliest repair occurred preferentially in active and open chromatin states. Conversely, repair in regions classified as “heterochromatic” and “repressed” was relatively low at early time points, with repair persisting into the late time points. Damage that remains during DNA replication increases the risk for mutagenesis. Indeed, late-repaired regions are associated with a higher level of cancer-linked mutations. In summary, we show that XR-seq is a powerful approach for studying relationships among chromatin state, DNA repair, genome stability, mutagenesis, and carcinogenesis. We recently developed a high-resolution genome-wide assay for mapping DNA excision repair named eXcision Repair-sequencing (XR-seq) and have now used XR-seq to determine which regions of the genome are subject to repair very soon after UV exposure and which regions are repaired later. Over a time course, we measured repair of the UV-induced damage of cyclobutane pyrimidine dimers (CPDs) (at 1, 4, 8, 16, 24, and 48 h) and (6-4)pyrimidine-pyrimidone photoproducts [(6-4)PPs] (at 5 and 20 min and 1, 2, and 4 h) in normal human skin fibroblasts. Each type of damage has distinct repair kinetics. The (6-4)PPs are detected as early as 5 min after UV treatment, with the bulk of repair completed by 4 h. Repair of CPDs, which we previously showed is intimately coupled to transcription, is slower and in certain regions persists even 2 d after UV irradiation. We compared our results to the Encyclopedia of DNA Elements data regarding histone modifications, chromatin state, and transcription. For both damage types, and for both transcription-coupled and general excision repair, the earliest repair occurred preferentially in active and open chromatin states. Conversely, repair in regions classified as "heterochromatic" and "repressed" was relatively low at early time points, with repair persisting into the late time points. Damage that remains during DNA replication increases the risk for mutagenesis. Indeed, late-repaired regions are associated with a higher level of cancer-linked mutations. In summary, we show that XR-seq is a powerful approach for studying relationships among chromatin state, DNA repair, genome stability, mutagenesis, and carcinogenesis.We recently developed a high-resolution genome-wide assay for mapping DNA excision repair named eXcision Repair-sequencing (XR-seq) and have now used XR-seq to determine which regions of the genome are subject to repair very soon after UV exposure and which regions are repaired later. Over a time course, we measured repair of the UV-induced damage of cyclobutane pyrimidine dimers (CPDs) (at 1, 4, 8, 16, 24, and 48 h) and (6-4)pyrimidine-pyrimidone photoproducts [(6-4)PPs] (at 5 and 20 min and 1, 2, and 4 h) in normal human skin fibroblasts. Each type of damage has distinct repair kinetics. The (6-4)PPs are detected as early as 5 min after UV treatment, with the bulk of repair completed by 4 h. Repair of CPDs, which we previously showed is intimately coupled to transcription, is slower and in certain regions persists even 2 d after UV irradiation. We compared our results to the Encyclopedia of DNA Elements data regarding histone modifications, chromatin state, and transcription. For both damage types, and for both transcription-coupled and general excision repair, the earliest repair occurred preferentially in active and open chromatin states. Conversely, repair in regions classified as "heterochromatic" and "repressed" was relatively low at early time points, with repair persisting into the late time points. Damage that remains during DNA replication increases the risk for mutagenesis. Indeed, late-repaired regions are associated with a higher level of cancer-linked mutations. In summary, we show that XR-seq is a powerful approach for studying relationships among chromatin state, DNA repair, genome stability, mutagenesis, and carcinogenesis. |
Author | Adar, Sheera Lieb, Jason D. Hu, Jinchuan Sancar, Aziz |
Author_xml | – sequence: 1 givenname: Sheera surname: Adar fullname: Adar, Sheera organization: Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599 – sequence: 2 givenname: Jinchuan surname: Hu fullname: Hu, Jinchuan organization: Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599 – sequence: 3 givenname: Jason D. surname: Lieb fullname: Lieb, Jason D. organization: Department of Human Genetics, University of Chicago, Chicago, IL 60637 – sequence: 4 givenname: Aziz surname: Sancar fullname: Sancar, Aziz organization: Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27036006$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkstv1DAQxi1URLcLZ04gS1y4pB0_4iQXpKqUglTBBS5cLK930npJ7MV2ePz3OOy2hUpIyLL8mN98-jyeI3Lgg0dCnjI4ZtCIk6036ZgpEKJtGRMPyIJBxyolOzggCwDeVK3k8pAcpbQBgK5u4RE55A0IBaAW5PMF-jBi9d2tkX5xHrOziYaevn5_SvGHdckFTyNujYvUzbvB5PkqB2qvYxjLydOUTUZq_JqOUzZX6DG59Jg87M2Q8Ml-XZJPb84_nr2tLj9cvDs7vaxsrZpcKez62jSgWNO2HTK5NlBzJnpjaluDFBbnWSxb2XJjuEHB0UgLK9uuEMWSvNrpbqfViGuLPkcz6G10o4k_dTBO_x3x7lpfhW9atqKTAorAy71ADF8nTFmPLlkcBuMxTEmzppRNCV7Gf6CyLmUv0kvy4h66CVP0pRKFamWnhABWqOd_mr91ffNDBah3gI0hpYi9ti7__oLyFjdoBnruBD13gr7rhJJ3ci_vRvrfGXRvZQ7c0kxoVutzzrgsyLMdskk5xDuzSqqOd0z8ArvayiY |
CitedBy_id | crossref_primary_10_1016_j_dnarep_2023_103529 crossref_primary_10_1146_annurev_cellbio_100617_062653 crossref_primary_10_1016_j_cell_2019_02_051 crossref_primary_10_1074_jbc_R117_807453 crossref_primary_10_1186_s13059_018_1509_y crossref_primary_10_1186_s12864_021_07898_3 crossref_primary_10_1016_j_coisb_2020_05_001 crossref_primary_10_1074_jbc_RA119_009579 crossref_primary_10_1016_j_biocel_2024_106724 crossref_primary_10_1073_pnas_2310854121 crossref_primary_10_1038_s41467_023_39635_7 crossref_primary_10_1016_j_tig_2021_08_016 crossref_primary_10_1021_jacs_8b03715 crossref_primary_10_1016_j_dnarep_2018_08_008 crossref_primary_10_1016_j_dnarep_2019_03_007 crossref_primary_10_1016_j_tig_2025_01_010 crossref_primary_10_1016_j_dnarep_2018_08_005 crossref_primary_10_1038_s41388_021_02032_9 crossref_primary_10_1093_nar_gkab587 crossref_primary_10_3389_fcell_2021_799971 crossref_primary_10_1007_s00216_022_04302_1 crossref_primary_10_1002_cbic_201700520 crossref_primary_10_1039_c7pp00395a crossref_primary_10_1021_acssynbio_3c00229 crossref_primary_10_1002_anie_202111829 crossref_primary_10_1111_php_12668 crossref_primary_10_1371_journal_pone_0197534 crossref_primary_10_26508_lsa_202101134 crossref_primary_10_1371_journal_pgen_1007823 crossref_primary_10_1016_j_dnarep_2021_103240 crossref_primary_10_1021_acs_biochem_3c00128 crossref_primary_10_1101_gr_209106_116 crossref_primary_10_1038_s41419_022_04634_x crossref_primary_10_1093_nar_gkz1229 crossref_primary_10_1002_cam4_4749 crossref_primary_10_1093_nar_gkad974 crossref_primary_10_26508_lsa_202302328 crossref_primary_10_1038_s41596_018_0093_7 crossref_primary_10_1073_pnas_1801687115 crossref_primary_10_1021_acs_chemrestox_8b00050 crossref_primary_10_1016_j_dnarep_2023_103549 crossref_primary_10_1007_s42764_020_00009_8 crossref_primary_10_1073_pnas_1606667113 crossref_primary_10_1371_journal_pgen_1010426 crossref_primary_10_1111_php_13245 crossref_primary_10_1016_j_trecan_2017_03_009 crossref_primary_10_1038_s41467_017_02145_4 crossref_primary_10_1158_0008_5472_CAN_16_3033 crossref_primary_10_1038_s41467_019_08290_2 crossref_primary_10_1007_s00018_021_03984_7 crossref_primary_10_1016_j_bpr_2021_100017 crossref_primary_10_1093_narcan_zcad005 crossref_primary_10_1038_s41467_020_14566_9 crossref_primary_10_3390_ijms22083902 crossref_primary_10_15252_embj_201796717 crossref_primary_10_1038_s41467_020_15903_8 crossref_primary_10_3390_life12010108 crossref_primary_10_1093_nar_gkae721 crossref_primary_10_1021_acs_jproteome_9b00260 crossref_primary_10_1016_j_jbc_2023_105118 crossref_primary_10_1093_nar_gkad593 crossref_primary_10_1016_j_mrfmmm_2021_111758 crossref_primary_10_3390_ijms25020970 crossref_primary_10_1038_s41598_018_20527_6 crossref_primary_10_1016_j_dnarep_2021_103201 crossref_primary_10_1021_acsnano_0c09254 crossref_primary_10_1016_j_celrep_2020_108401 crossref_primary_10_1101_gr_253146_119 crossref_primary_10_1007_s42764_024_00131_x crossref_primary_10_1093_nar_gkab144 crossref_primary_10_1016_j_jbc_2023_104679 crossref_primary_10_1073_pnas_2210176119 crossref_primary_10_1016_j_dnarep_2024_103739 crossref_primary_10_1016_j_tibs_2018_02_010 crossref_primary_10_15252_embj_201797944 crossref_primary_10_1093_nargab_lqab020 crossref_primary_10_3390_ijms25084393 crossref_primary_10_1002_bies_201800152 crossref_primary_10_1038_s41467_020_15660_8 crossref_primary_10_1186_s12885_023_10892_5 crossref_primary_10_1021_acs_analchem_7b04247 crossref_primary_10_1016_j_jphotobiol_2021_112169 crossref_primary_10_1172_JCI123159 crossref_primary_10_3389_fgene_2022_1102593 crossref_primary_10_1111_php_13551 crossref_primary_10_1073_pnas_1706021114 crossref_primary_10_1007_s00412_018_0669_6 crossref_primary_10_1021_jacs_1c10490 crossref_primary_10_1111_febs_16561 crossref_primary_10_1038_s41568_018_0076_6 crossref_primary_10_1073_pnas_1706522114 crossref_primary_10_1111_eva_13730 crossref_primary_10_3724_abbs_2022054 crossref_primary_10_1016_j_jmb_2024_168450 crossref_primary_10_1074_jbc_RA117_000971 crossref_primary_10_3389_fcell_2022_847051 crossref_primary_10_3390_ijms22115814 crossref_primary_10_1093_femsyr_fow090 crossref_primary_10_15252_embj_2021107795 crossref_primary_10_1038_s41467_021_22575_5 crossref_primary_10_1016_j_csbj_2022_12_013 crossref_primary_10_1093_nar_gkz359 crossref_primary_10_1016_j_tibs_2022_10_003 crossref_primary_10_1080_21541264_2024_2379161 crossref_primary_10_1111_php_12638 crossref_primary_10_1093_nar_gkad1195 crossref_primary_10_3390_ijms18102212 crossref_primary_10_1016_j_dnarep_2019_102645 crossref_primary_10_1073_pnas_1614430113 crossref_primary_10_1038_s42003_024_07140_2 crossref_primary_10_1126_science_aba7408 crossref_primary_10_1093_nar_gkaf048 crossref_primary_10_1073_pnas_1603823113 crossref_primary_10_1016_j_jbc_2022_101863 crossref_primary_10_1093_nar_gkae517 crossref_primary_10_1038_s41588_018_0285_7 crossref_primary_10_1093_nar_gkae755 crossref_primary_10_1016_j_molcel_2022_02_020 crossref_primary_10_1016_j_semcdb_2018_07_008 crossref_primary_10_1021_acscentsci_2c01100 crossref_primary_10_1158_0008_5472_CAN_22_1731 crossref_primary_10_1002_ange_202111829 crossref_primary_10_1038_s41467_018_05064_0 crossref_primary_10_1080_19491034_2025_2476935 crossref_primary_10_1038_s41576_021_00376_2 crossref_primary_10_1111_php_12646 crossref_primary_10_1016_j_jbc_2021_100581 crossref_primary_10_1073_pnas_2217422120 crossref_primary_10_3390_genes12060851 crossref_primary_10_1016_j_jphotobiol_2018_06_005 crossref_primary_10_1111_php_12641 crossref_primary_10_1038_ng_3991 crossref_primary_10_1038_s41467_025_57915_2 crossref_primary_10_1016_j_celrep_2016_11_055 |
Cites_doi | 10.1128/MCB.22.24.8552-8561.2002 10.1186/gb-2009-10-3-r25 10.1101/gad.1131003 10.1038/jid.2011.426 10.1038/nrg2905 10.1021/bi034264k 10.1074/jbc.M113.482257 10.1111/j.1751-1097.1988.tb02785.x 10.1016/j.cell.2015.08.008 10.1016/j.cell.2015.12.050 10.1038/nature08658 10.1016/j.cell.2012.06.024 10.1093/bioinformatics/btu170 10.1016/S1097-2765(00)80132-X 10.1016/S0021-9258(19)39363-9 10.1016/j.dnarep.2015.09.014 10.1128/MCB.22.19.6779-6787.2002 10.1146/annurev.bi.65.070196.000355 10.1016/S0079-6603(04)79004-2 10.1101/gad.261271.115 10.1073/pnas.95.12.6669 10.1093/nar/gkt912 10.1016/0092-8674(87)90151-6 10.1038/nature12477 10.1038/srep07975 10.1038/nrm2549 10.1101/gr.139105.112 10.1038/218652a0 10.1074/jbc.272.38.23465 10.1111/j.1751-1097.1990.tb01732.x 10.1038/nbt.2778 10.1128/MCB.20.24.9173-9181.2000 10.1158/0008-5472.CAN-04-1328 10.1073/pnas.0501458102 10.1158/0008-5472.CAN-10-0095 10.1038/nature11247 10.1016/j.mrrev.2012.10.001 10.1038/nature09906 10.1039/C1PP05144J 10.1073/pnas.89.8.3664 10.1146/annurev-biophys-051013-023114 10.1074/jbc.270.6.2415 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Apr 12, 2016 |
Copyright_xml | – notice: Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Apr 12, 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1603388113 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Genetics Abstracts Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Human DNA repair maps, chromatin, and mutagenesis |
EISSN | 1091-6490 |
EndPage | E2133 |
ExternalDocumentID | PMC4839430 4038169441 27036006 10_1073_pnas_1603388113 113_15_E2124 26469291 |
Genre | Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R35 GM118102 – fundername: NIEHS NIH HHS grantid: P30 ES010126 – fundername: NIGMS NIH HHS grantid: R01 GM031082 – fundername: NIGMS NIH HHS grantid: R37 GM031082 – fundername: NIGMS NIH HHS grantid: R01 GM032833 – fundername: NCI NIH HHS grantid: P30 CA016086 – fundername: NHGRI NIH HHS grantid: R01 HG006787 – fundername: HHS | NIH | National Human Genome Research Institute (NHGRI) grantid: HG006787 – fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS) grantid: GM32833 – fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS) grantid: GM31082 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX AFOSN CITATION CGR CUY CVF ECM EIF NPM YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c567t-6e9f5a70617889e14da05213faa5c5043ce43ce270c482aa2ae32ea4c0bc8bee3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 17:40:01 EDT 2025 Fri Jul 11 03:08:38 EDT 2025 Thu Jul 10 19:02:12 EDT 2025 Mon Jun 30 07:50:13 EDT 2025 Wed Feb 19 01:56:19 EST 2025 Tue Jul 01 01:53:43 EDT 2025 Thu Apr 24 23:08:34 EDT 2025 Wed Nov 11 00:29:21 EST 2020 Sun Aug 24 12:10:51 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | mutation transcription chromatin DNA repair DNA damage |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c567t-6e9f5a70617889e14da05213faa5c5043ce43ce270c482aa2ae32ea4c0bc8bee3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Reviewers: P.N., University of Washington; and D.W., University of California, San Diego. Author contributions: S.A., J.H., J.D.L., and A.S. designed research; J.H. performed research; S.A. analyzed data; and S.A., J.H., J.D.L., and A.S. wrote the paper. Contributed by Aziz Sancar, March 1, 2016 (sent for review January 4, 2016; reviewed by Paul Nghiem and Dong Wang) 1S.A. and J.H. contributed equally to this work. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4839430 |
PMID | 27036006 |
PQID | 1784963301 |
PQPubID | 42026 |
ParticipantIDs | crossref_primary_10_1073_pnas_1603388113 jstor_primary_26469291 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4839430 proquest_miscellaneous_1794500248 pubmed_primary_27036006 pnas_primary_113_15_E2124 crossref_citationtrail_10_1073_pnas_1603388113 proquest_journals_1784963301 proquest_miscellaneous_1795863232 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-04-12 |
PublicationDateYYYYMMDD | 2016-04-12 |
PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-12 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2016 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Mu D (e_1_3_4_10_2) 1995; 270 Langmead B (e_1_3_4_43_2) 2009; 10 Mellon I (e_1_3_4_8_2) 1987; 51 Pleasance ED (e_1_3_4_34_2) 2010; 463 Hu J (e_1_3_4_13_2) 2013; 288 Pfeifer GP (e_1_3_4_40_2) 2012; 11 Hara R (e_1_3_4_30_2) 2000; 20 Reardon JT (e_1_3_4_1_2) 2005; 79 Bassett E (e_1_3_4_14_2) 2004; 64 Gale JM (e_1_3_4_23_2) 1990; 51 Gospodinov A (e_1_3_4_18_2) 2013; 752 Bolger AM (e_1_3_4_42_2) 2014; 30 Ernst J (e_1_3_4_19_2) 2011; 473 Gaddameedhi S (e_1_3_4_12_2) 2010; 70 Mitchell DL (e_1_3_4_15_2) 1988; 48 Hu J (e_1_3_4_11_2) 2015; 29 Haradhvala NJ (e_1_3_4_39_2) 2016; 164 Reardon JT (e_1_3_4_4_2) 2003; 17 Powell JR (e_1_3_4_27_2) 2015; 5 Polak P (e_1_3_4_38_2) 2014; 32 Hanawalt PC (e_1_3_4_7_2) 2008; 9 Huang JC (e_1_3_4_9_2) 1992; 89 Zhou VW (e_1_3_4_16_2) 2011; 12 Sancar A (e_1_3_4_2_2) 1996; 65 Cleaver JE (e_1_3_4_36_2) 1968; 218 Sugasawa K (e_1_3_4_5_2) 1998; 2 Kim TK (e_1_3_4_20_2) 2015; 162 Hughes AL (e_1_3_4_29_2) 2014; 43 Wakasugi M (e_1_3_4_6_2) 1998; 95 DiGiovanna JJ (e_1_3_4_37_2) 2012; 132 Alexandrov LB (e_1_3_4_21_2) 2013; 500 Hara R (e_1_3_4_24_2) 2002; 22 Hodis E (e_1_3_4_35_2) 2012; 150 Heffernan TP (e_1_3_4_41_2) 2002; 22 Mitchell DL (e_1_3_4_22_2) 1990; 265 Yu Y (e_1_3_4_33_2) 2005; 102 Polo SE (e_1_3_4_31_2) 2015; 36 Wood RD (e_1_3_4_3_2) 1997; 272 Consortium EP (e_1_3_4_17_2) 2012; 489 Zavala AG (e_1_3_4_28_2) 2014; 42 Wang J (e_1_3_4_26_2) 2012; 22 Wang D (e_1_3_4_25_2) 2003; 42 Schick S (e_1_3_4_32_2) 2015; 128 12779329 - Biochemistry. 2003 Jun 10;42(22):6747-53 7852297 - J Biol Chem. 1995 Feb 10;270(6):2415-8 3217442 - Photochem Photobiol. 1988 Jul;48(1):51-7 1314396 - Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3664-8 23945592 - Nature. 2013 Aug 22;500(7463):415-21 21441907 - Nature. 2011 May 5;473(7345):43-9 9295277 - J Biol Chem. 1997 Sep 19;272(38):23465-8 24336318 - Nat Biotechnol. 2014 Jan;32(1):71-5 20016485 - Nature. 2010 Jan 14;463(7278):191-6 2318816 - J Biol Chem. 1990 Apr 5;265(10):5353-6 26446258 - J Cell Sci. 2015 Dec 1;128(23):4380-94 22217736 - J Invest Dermatol. 2012 Mar;132(3 Pt 2):785-96 26317464 - Cell. 2015 Aug 27;162(5):948-59 25609656 - Sci Rep. 2015 Jan 22;5:7975 25934506 - Genes Dev. 2015 May 1;29(9):948-60 9734359 - Mol Cell. 1998 Aug;2(2):223-32 15374956 - Cancer Res. 2004 Sep 15;64(18):6469-75 12215535 - Mol Cell Biol. 2002 Oct;22(19):6779-87 5655953 - Nature. 1968 May 18;218(5142):652-6 12446774 - Mol Cell Biol. 2002 Dec;22(24):8552-61 14522951 - Genes Dev. 2003 Oct 15;17(20):2539-51 9618470 - Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6669-74 19023283 - Nat Rev Mol Cell Biol. 2008 Dec;9(12):958-70 23749995 - J Biol Chem. 2013 Jul 19;288(29):20918-26 20501836 - Cancer Res. 2010 Jun 15;70(12):4922-30 26429064 - DNA Repair (Amst). 2015 Dec;36:114-21 22955990 - Genome Res. 2012 Sep;22(9):1798-812 8811174 - Annu Rev Biochem. 1996;65:43-81 23085398 - Mutat Res. 2013 Jan-Mar;752(1):45-60 19261174 - Genome Biol. 2009;10(3):R25 26806129 - Cell. 2016 Jan 28;164(3):538-49 3664636 - Cell. 1987 Oct 23;51(2):241-9 22817889 - Cell. 2012 Jul 20;150(2):251-63 16096029 - Prog Nucleic Acid Res Mol Biol. 2005;79:183-235 24695404 - Bioinformatics. 2014 Aug 1;30(15):2114-20 22955616 - Nature. 2012 Sep 6;489(7414):57-74 24702039 - Annu Rev Biophys. 2014;43:41-63 15939881 - Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8650-5 21804977 - Photochem Photobiol Sci. 2012 Jan;11(1):90-7 11094069 - Mol Cell Biol. 2000 Dec;20(24):9173-81 21116306 - Nat Rev Genet. 2011 Jan;12(1):7-18 2160660 - Photochem Photobiol. 1990 Apr;51(4):411-7 24137003 - Nucleic Acids Res. 2014 Jan;42(2):893-905 |
References_xml | – volume: 22 start-page: 8552 year: 2002 ident: e_1_3_4_41_2 article-title: An ATR- and Chk1-dependent S checkpoint inhibits replicon initiation following UVC-induced DNA damage publication-title: Mol Cell Biol doi: 10.1128/MCB.22.24.8552-8561.2002 – volume: 10 start-page: R25 year: 2009 ident: e_1_3_4_43_2 article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome publication-title: Genome Biol doi: 10.1186/gb-2009-10-3-r25 – volume: 17 start-page: 2539 year: 2003 ident: e_1_3_4_4_2 article-title: Recognition and repair of the cyclobutane thymine dimer, a major cause of skin cancers, by the human excision nuclease publication-title: Genes Dev doi: 10.1101/gad.1131003 – volume: 128 start-page: 4380 year: 2015 ident: e_1_3_4_32_2 article-title: Dynamics of chromatin accessibility and epigenetic state in response to UV damage publication-title: J Cell Sci – volume: 132 start-page: 785 year: 2012 ident: e_1_3_4_37_2 article-title: Shining a light on xeroderma pigmentosum publication-title: J Invest Dermatol doi: 10.1038/jid.2011.426 – volume: 12 start-page: 7 year: 2011 ident: e_1_3_4_16_2 article-title: Charting histone modifications and the functional organization of mammalian genomes publication-title: Nat Rev Genet doi: 10.1038/nrg2905 – volume: 42 start-page: 6747 year: 2003 ident: e_1_3_4_25_2 article-title: Nucleosomes inhibit nucleotide excision repair of site-specific platinum-DNA adducts publication-title: Biochemistry doi: 10.1021/bi034264k – volume: 288 start-page: 20918 year: 2013 ident: e_1_3_4_13_2 article-title: Nucleotide excision repair in human cells: Fate of the excised oligonucleotide carrying DNA damage in vivo publication-title: J Biol Chem doi: 10.1074/jbc.M113.482257 – volume: 48 start-page: 51 year: 1988 ident: e_1_3_4_15_2 article-title: The relative cytotoxicity of (6-4) photoproducts and cyclobutane dimers in mammalian cells publication-title: Photochem Photobiol doi: 10.1111/j.1751-1097.1988.tb02785.x – volume: 162 start-page: 948 year: 2015 ident: e_1_3_4_20_2 article-title: Architectural and functional commonalities between enhancers and promoters publication-title: Cell doi: 10.1016/j.cell.2015.08.008 – volume: 164 start-page: 538 year: 2016 ident: e_1_3_4_39_2 article-title: Mutational strand asymmetries in cancer genomes reveal mechanisms of DNA damage and repair publication-title: Cell doi: 10.1016/j.cell.2015.12.050 – volume: 463 start-page: 191 year: 2010 ident: e_1_3_4_34_2 article-title: A comprehensive catalogue of somatic mutations from a human cancer genome publication-title: Nature doi: 10.1038/nature08658 – volume: 150 start-page: 251 year: 2012 ident: e_1_3_4_35_2 article-title: A landscape of driver mutations in melanoma publication-title: Cell doi: 10.1016/j.cell.2012.06.024 – volume: 30 start-page: 2114 year: 2014 ident: e_1_3_4_42_2 article-title: Trimmomatic: A flexible trimmer for Illumina sequence data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu170 – volume: 2 start-page: 223 year: 1998 ident: e_1_3_4_5_2 article-title: Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair publication-title: Mol Cell doi: 10.1016/S1097-2765(00)80132-X – volume: 265 start-page: 5353 year: 1990 ident: e_1_3_4_22_2 article-title: Nonrandom induction of pyrimidine-pyrimidone (6-4) photoproducts in ultraviolet-irradiated human chromatin publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)39363-9 – volume: 36 start-page: 114 year: 2015 ident: e_1_3_4_31_2 article-title: Chromatin dynamics after DNA damage: The legacy of the access-repair-restore model publication-title: DNA Repair (Amst) doi: 10.1016/j.dnarep.2015.09.014 – volume: 22 start-page: 6779 year: 2002 ident: e_1_3_4_24_2 article-title: The SWI/SNF chromatin-remodeling factor stimulates repair by human excision nuclease in the mononucleosome core particle publication-title: Mol Cell Biol doi: 10.1128/MCB.22.19.6779-6787.2002 – volume: 65 start-page: 43 year: 1996 ident: e_1_3_4_2_2 article-title: DNA excision repair publication-title: Annu Rev Biochem doi: 10.1146/annurev.bi.65.070196.000355 – volume: 79 start-page: 183 year: 2005 ident: e_1_3_4_1_2 article-title: Nucleotide excision repair publication-title: Prog Nucleic Acid Res Mol Biol doi: 10.1016/S0079-6603(04)79004-2 – volume: 29 start-page: 948 year: 2015 ident: e_1_3_4_11_2 article-title: Genome-wide analysis of human global and transcription-coupled excision repair of UV damage at single-nucleotide resolution publication-title: Genes Dev doi: 10.1101/gad.261271.115 – volume: 95 start-page: 6669 year: 1998 ident: e_1_3_4_6_2 article-title: Assembly, subunit composition, and footprint of human DNA repair excision nuclease publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.12.6669 – volume: 42 start-page: 893 year: 2014 ident: e_1_3_4_28_2 article-title: High-resolution characterization of CPD hotspot formation in human fibroblasts publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt912 – volume: 51 start-page: 241 year: 1987 ident: e_1_3_4_8_2 article-title: Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene publication-title: Cell doi: 10.1016/0092-8674(87)90151-6 – volume: 500 start-page: 415 year: 2013 ident: e_1_3_4_21_2 article-title: Signatures of mutational processes in human cancer publication-title: Nature doi: 10.1038/nature12477 – volume: 5 start-page: 7975 year: 2015 ident: e_1_3_4_27_2 article-title: 3D-DIP-Chip: A microarray-based method to measure genomic DNA damage publication-title: Sci Rep doi: 10.1038/srep07975 – volume: 9 start-page: 958 year: 2008 ident: e_1_3_4_7_2 article-title: Transcription-coupled DNA repair: Two decades of progress and surprises publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2549 – volume: 22 start-page: 1798 year: 2012 ident: e_1_3_4_26_2 article-title: Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors publication-title: Genome Res doi: 10.1101/gr.139105.112 – volume: 218 start-page: 652 year: 1968 ident: e_1_3_4_36_2 article-title: Defective repair replication of DNA in xeroderma pigmentosum publication-title: Nature doi: 10.1038/218652a0 – volume: 272 start-page: 23465 year: 1997 ident: e_1_3_4_3_2 article-title: Nucleotide excision repair in mammalian cells publication-title: J Biol Chem doi: 10.1074/jbc.272.38.23465 – volume: 51 start-page: 411 year: 1990 ident: e_1_3_4_23_2 article-title: UV induced (6-4) photoproducts are distributed differently than cyclobutane dimers in nucleosomes publication-title: Photochem Photobiol doi: 10.1111/j.1751-1097.1990.tb01732.x – volume: 32 start-page: 71 year: 2014 ident: e_1_3_4_38_2 article-title: Reduced local mutation density in regulatory DNA of cancer genomes is linked to DNA repair publication-title: Nat Biotechnol doi: 10.1038/nbt.2778 – volume: 20 start-page: 9173 year: 2000 ident: e_1_3_4_30_2 article-title: DNA damage in the nucleosome core is refractory to repair by human excision nuclease publication-title: Mol Cell Biol doi: 10.1128/MCB.20.24.9173-9181.2000 – volume: 64 start-page: 6469 year: 2004 ident: e_1_3_4_14_2 article-title: The role of DNA polymerase eta in translesion synthesis past platinum-DNA adducts in human fibroblasts publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-04-1328 – volume: 102 start-page: 8650 year: 2005 ident: e_1_3_4_33_2 article-title: UV irradiation stimulates histone acetylation and chromatin remodeling at a repressed yeast locus publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0501458102 – volume: 70 start-page: 4922 year: 2010 ident: e_1_3_4_12_2 article-title: Similar nucleotide excision repair capacity in melanocytes and melanoma cells publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-10-0095 – volume: 489 start-page: 57 year: 2012 ident: e_1_3_4_17_2 article-title: An integrated encyclopedia of DNA elements in the human genome publication-title: Nature doi: 10.1038/nature11247 – volume: 752 start-page: 45 year: 2013 ident: e_1_3_4_18_2 article-title: Shaping chromatin for repair publication-title: Mutat Res doi: 10.1016/j.mrrev.2012.10.001 – volume: 473 start-page: 43 year: 2011 ident: e_1_3_4_19_2 article-title: Mapping and analysis of chromatin state dynamics in nine human cell types publication-title: Nature doi: 10.1038/nature09906 – volume: 11 start-page: 90 year: 2012 ident: e_1_3_4_40_2 article-title: UV wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer publication-title: Photochem Photobiol Sci doi: 10.1039/C1PP05144J – volume: 89 start-page: 3664 year: 1992 ident: e_1_3_4_9_2 article-title: Human nucleotide excision nuclease removes thymine dimers from DNA by incising the 22nd phosphodiester bond 5′ and the 6th phosphodiester bond 3′ to the photodimer publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.89.8.3664 – volume: 43 start-page: 41 year: 2014 ident: e_1_3_4_29_2 article-title: Mechanisms underlying nucleosome positioning in vivo publication-title: Annu Rev Biophys doi: 10.1146/annurev-biophys-051013-023114 – volume: 270 start-page: 2415 year: 1995 ident: e_1_3_4_10_2 article-title: Reconstitution of human DNA repair excision nuclease in a highly defined system publication-title: J Biol Chem doi: 10.1074/jbc.270.6.2415 – reference: 8811174 - Annu Rev Biochem. 1996;65:43-81 – reference: 2318816 - J Biol Chem. 1990 Apr 5;265(10):5353-6 – reference: 3664636 - Cell. 1987 Oct 23;51(2):241-9 – reference: 5655953 - Nature. 1968 May 18;218(5142):652-6 – reference: 2160660 - Photochem Photobiol. 1990 Apr;51(4):411-7 – reference: 25609656 - Sci Rep. 2015 Jan 22;5:7975 – reference: 20016485 - Nature. 2010 Jan 14;463(7278):191-6 – reference: 26806129 - Cell. 2016 Jan 28;164(3):538-49 – reference: 12779329 - Biochemistry. 2003 Jun 10;42(22):6747-53 – reference: 23085398 - Mutat Res. 2013 Jan-Mar;752(1):45-60 – reference: 26446258 - J Cell Sci. 2015 Dec 1;128(23):4380-94 – reference: 24702039 - Annu Rev Biophys. 2014;43:41-63 – reference: 23749995 - J Biol Chem. 2013 Jul 19;288(29):20918-26 – reference: 24137003 - Nucleic Acids Res. 2014 Jan;42(2):893-905 – reference: 15374956 - Cancer Res. 2004 Sep 15;64(18):6469-75 – reference: 21804977 - Photochem Photobiol Sci. 2012 Jan;11(1):90-7 – reference: 21441907 - Nature. 2011 May 5;473(7345):43-9 – reference: 7852297 - J Biol Chem. 1995 Feb 10;270(6):2415-8 – reference: 22955616 - Nature. 2012 Sep 6;489(7414):57-74 – reference: 3217442 - Photochem Photobiol. 1988 Jul;48(1):51-7 – reference: 15939881 - Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8650-5 – reference: 26429064 - DNA Repair (Amst). 2015 Dec;36:114-21 – reference: 22955990 - Genome Res. 2012 Sep;22(9):1798-812 – reference: 21116306 - Nat Rev Genet. 2011 Jan;12(1):7-18 – reference: 9734359 - Mol Cell. 1998 Aug;2(2):223-32 – reference: 24336318 - Nat Biotechnol. 2014 Jan;32(1):71-5 – reference: 20501836 - Cancer Res. 2010 Jun 15;70(12):4922-30 – reference: 25934506 - Genes Dev. 2015 May 1;29(9):948-60 – reference: 24695404 - Bioinformatics. 2014 Aug 1;30(15):2114-20 – reference: 16096029 - Prog Nucleic Acid Res Mol Biol. 2005;79:183-235 – reference: 14522951 - Genes Dev. 2003 Oct 15;17(20):2539-51 – reference: 19261174 - Genome Biol. 2009;10(3):R25 – reference: 22817889 - Cell. 2012 Jul 20;150(2):251-63 – reference: 1314396 - Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3664-8 – reference: 12215535 - Mol Cell Biol. 2002 Oct;22(19):6779-87 – reference: 26317464 - Cell. 2015 Aug 27;162(5):948-59 – reference: 9618470 - Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6669-74 – reference: 22217736 - J Invest Dermatol. 2012 Mar;132(3 Pt 2):785-96 – reference: 19023283 - Nat Rev Mol Cell Biol. 2008 Dec;9(12):958-70 – reference: 23945592 - Nature. 2013 Aug 22;500(7463):415-21 – reference: 11094069 - Mol Cell Biol. 2000 Dec;20(24):9173-81 – reference: 12446774 - Mol Cell Biol. 2002 Dec;22(24):8552-61 – reference: 9295277 - J Biol Chem. 1997 Sep 19;272(38):23465-8 |
SSID | ssj0009580 |
Score | 2.555379 |
Snippet | We recently developed a high-resolution genome-wide assay for mapping DNA excision repair named eXcision Repair-sequencing (XR-seq) and have now used XR-seq to... Nucleotide excision repair is the sole mechanism for removing bulky adducts from the human genome, including those formed by UV radiation and chemotherapeutic... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | E2124 |
SubjectTerms | Biological Sciences Cancer Carcinogenesis Cell Line Chromatin Chromatin - genetics Deoxyribonucleic acid DNA DNA Repair - genetics Genome, Human - genetics Genomes Humans Irradiation Kinetics Melanoma - genetics Mutagenesis Mutagenesis - genetics PNAS Plus Risk assessment Sequence Analysis, DNA - methods Ultraviolet radiation Ultraviolet Rays - adverse effects |
Title | Genome-wide kinetics of DNA excision repair in relation to chromatin state and mutagenesis |
URI | https://www.jstor.org/stable/26469291 http://www.pnas.org/content/113/15/E2124.abstract https://www.ncbi.nlm.nih.gov/pubmed/27036006 https://www.proquest.com/docview/1784963301 https://www.proquest.com/docview/1794500248 https://www.proquest.com/docview/1795863232 https://pubmed.ncbi.nlm.nih.gov/PMC4839430 |
Volume | 113 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgvPCCGDAIDGQkHoaijCR2fvSxgo4JjTKJVqp4iWzHUaOxBLWpQP3rOdtxkk4FDR4aRYnjpLkv5zv77juE3kScC14UxAs54R6lfOQxHkqPUAYak8koZCo5-fM0Pp_TT4to0c8q6eyShp-K7d68kv-RKhwDuaos2X-QbNcpHIB9kC9sQcKwvZWMP8qqvpbezzKX7hWYi5pyGay_D9OxK3-Z4jlqVYCVqz5vRa0O1K5YrmplrFauTinSawjXmwa0C-i-cj20WS-7MW5tIwqmdgpx3CektFpi7Xru5bQvbzzOTQj316WUK9ajSMOnrMRyM4gKKiU3obuqLmIfi6zmXUzR7W25Hc5TBLGnCREHqhUsEy-mpjjoqdxzzOpjk5xqgRcN1OsEBlq6V_GDplLViiu2VvNl4Hentpsdiu3pl-xsfnGRzSaL2V10LwTfgtgpno6pOTUUFu2jWT6ohLy70f2OKWOiWRVFLjTa567cjLodmDGzh-hB63_gsQHTIbojq0fo0MoOn7Q05G8fo28DdGGLLlwXGNCFLbqwQRcu1Z5BF25q3KELa3RhQBceoOsJmp9NZu_PvbYShyeiOGm8WI6KiCXK3E3TkQxozlTSNykYi4TiwBNS_cLEFzQNGQuZJKFkVPhcpFxKcoQOqrqSzxAGhZ-L1C-4pAEVScBSmoNVnwo_9xnlwkGn9qVmoqWpV9VSvmc6XCIhmXrBWS8FB510F_wwDC1_bnqkpdS1A28gBv8gcJCjm3bXByQLokzDzUHHVpZZ--1Dn0lK4Z_A6Oig191p0MxquY1Vst6oNiMaac7Av7aJ0pjAC3DQUwOP_uEUNx4Mig5KdoDTNVDM8LtnqnKpGeIpuD2U-M9vcd8X6H7_tR6jg2a1kS_Bzm74K_1d_Aag49QH |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-wide+kinetics+of+DNA+excision+repair+in+relation+to+chromatin+state+and+mutagenesis&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Adar%2C+Sheera&rft.au=Hu%2C+Jinchuan&rft.au=Lieb%2C+Jason+D&rft.au=Sancar%2C+Aziz&rft.date=2016-04-12&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=113&rft.issue=15&rft.spage=E2124&rft_id=info:doi/10.1073%2Fpnas.1603388113&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F113%2F15.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F113%2F15.cover.gif |