Genome-wide kinetics of DNA excision repair in relation to chromatin state and mutagenesis

We recently developed a high-resolution genome-wide assay for mapping DNA excision repair named eXcision Repair-sequencing (XR-seq) and have now used XR-seq to determine which regions of the genome are subject to repair very soon after UV exposure and which regions are repaired later. Over a time co...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 113; no. 15; pp. E2124 - E2133
Main Authors Adar, Sheera, Hu, Jinchuan, Lieb, Jason D., Sancar, Aziz
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 12.04.2016
National Acad Sciences
SeriesPNAS Plus
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We recently developed a high-resolution genome-wide assay for mapping DNA excision repair named eXcision Repair-sequencing (XR-seq) and have now used XR-seq to determine which regions of the genome are subject to repair very soon after UV exposure and which regions are repaired later. Over a time course, we measured repair of the UV-induced damage of cyclobutane pyrimidine dimers (CPDs) (at 1, 4, 8, 16, 24, and 48 h) and (6-4)pyrimidine-pyrimidone photoproducts [(6-4)PPs] (at 5 and 20 min and 1, 2, and 4 h) in normal human skin fibroblasts. Each type of damage has distinct repair kinetics. The (6-4)PPs are detected as early as 5 min after UV treatment, with the bulk of repair completed by 4 h. Repair of CPDs, which we previously showed is intimately coupled to transcription, is slower and in certain regions persists even 2 d after UV irradiation. We compared our results to the Encyclopedia of DNA Elements data regarding histone modifications, chromatin state, and transcription. For both damage types, and for both transcription-coupled and general excision repair, the earliest repair occurred preferentially in active and open chromatin states. Conversely, repair in regions classified as “heterochromatic” and “repressed” was relatively low at early time points, with repair persisting into the late time points. Damage that remains during DNA replication increases the risk for mutagenesis. Indeed, laterepaired regions are associated with a higher level of cancer-linked mutations. In summary, we show that XR-seq is a powerful approach for studying relationships among chromatin state, DNA repair, genome stability, mutagenesis, and carcinogenesis.
AbstractList We recently developed a high-resolution genome-wide assay for mapping DNA excision repair named eXcision Repair-sequencing (XR-seq) and have now used XR-seq to determine which regions of the genome are subject to repair very soon after UV exposure and which regions are repaired later. Over a time course, we measured repair of the UV-induced damage of cyclobutane pyrimidine dimers (CPDs) (at 1, 4, 8, 16, 24, and 48 h) and (6-4)pyrimidine-pyrimidone photoproducts [(6-4)PPs] (at 5 and 20 min and 1, 2, and 4 h) in normal human skin fibroblasts. Each type of damage has distinct repair kinetics. The (6-4)PPs are detected as early as 5 min after UV treatment, with the bulk of repair completed by 4 h. Repair of CPDs, which we previously showed is intimately coupled to transcription, is slower and in certain regions persists even 2 d after UV irradiation. We compared our results to the Encyclopedia of DNA Elements data regarding histone modifications, chromatin state, and transcription. For both damage types, and for both transcription-coupled and general excision repair, the earliest repair occurred preferentially in active and open chromatin states. Conversely, repair in regions classified as “heterochromatic” and “repressed” was relatively low at early time points, with repair persisting into the late time points. Damage that remains during DNA replication increases the risk for mutagenesis. Indeed, laterepaired regions are associated with a higher level of cancer-linked mutations. In summary, we show that XR-seq is a powerful approach for studying relationships among chromatin state, DNA repair, genome stability, mutagenesis, and carcinogenesis.
We recently developed a high-resolution genome-wide assay for mapping DNA excision repair named eXcision Repair-sequencing (XR-seq) and have now used XR-seq to determine which regions of the genome are subject to repair very soon after UV exposure and which regions are repaired later. Over a time course, we measured repair of the UV-induced damage of cyclobutane pyrimidine dimers (CPDs) (at 1, 4, 8, 16, 24, and 48 h) and (6-4)pyrimidine-pyrimidone photoproducts [(6-4)PPs] (at 5 and 20 min and 1, 2, and 4 h) in normal human skin fibroblasts. Each type of damage has distinct repair kinetics. The (6-4)PPs are detected as early as 5 min after UV treatment, with the bulk of repair completed by 4 h. Repair of CPDs, which we previously showed is intimately coupled to transcription, is slower and in certain regions persists even 2 d after UV irradiation. We compared our results to the Encyclopedia of DNA Elements data regarding histone modifications, chromatin state, and transcription. For both damage types, and for both transcription-coupled and general excision repair, the earliest repair occurred preferentially in active and open chromatin states. Conversely, repair in regions classified as "heterochromatic" and "repressed" was relatively low at early time points, with repair persisting into the late time points. Damage that remains during DNA replication increases the risk for mutagenesis. Indeed, late-repaired regions are associated with a higher level of cancer-linked mutations. In summary, we show that XR-seq is a powerful approach for studying relationships among chromatin state, DNA repair, genome stability, mutagenesis, and carcinogenesis.
Nucleotide excision repair is the sole mechanism for removing bulky adducts from the human genome, including those formed by UV radiation and chemotherapeutic drugs. We used eXcision Repair-sequencing, a genomic assay for measuring DNA repair, to map the kinetics of repair after UV treatment. These genome-wide repair maps, in turn, allowed us to infer how excision repair is influenced by DNA packaging. Active and open chromatin regions were repaired more rapidly than other genomic regions. Repair in repressed and heterochromatic regions is slower and persists for up to 2 d. Furthermore, late-repaired regions are associated with a higher level of cancer-linked somatic mutations, highlighting the importance of efficient DNA repair and linking chromatin organization to cancer mutagenesis. We recently developed a high-resolution genome-wide assay for mapping DNA excision repair named eXcision Repair-sequencing (XR-seq) and have now used XR-seq to determine which regions of the genome are subject to repair very soon after UV exposure and which regions are repaired later. Over a time course, we measured repair of the UV-induced damage of cyclobutane pyrimidine dimers (CPDs) (at 1, 4, 8, 16, 24, and 48 h) and (6-4)pyrimidine-pyrimidone photoproducts [(6-4)PPs] (at 5 and 20 min and 1, 2, and 4 h) in normal human skin fibroblasts. Each type of damage has distinct repair kinetics. The (6-4)PPs are detected as early as 5 min after UV treatment, with the bulk of repair completed by 4 h. Repair of CPDs, which we previously showed is intimately coupled to transcription, is slower and in certain regions persists even 2 d after UV irradiation. We compared our results to the Encyclopedia of DNA Elements data regarding histone modifications, chromatin state, and transcription. For both damage types, and for both transcription-coupled and general excision repair, the earliest repair occurred preferentially in active and open chromatin states. Conversely, repair in regions classified as “heterochromatic” and “repressed” was relatively low at early time points, with repair persisting into the late time points. Damage that remains during DNA replication increases the risk for mutagenesis. Indeed, late-repaired regions are associated with a higher level of cancer-linked mutations. In summary, we show that XR-seq is a powerful approach for studying relationships among chromatin state, DNA repair, genome stability, mutagenesis, and carcinogenesis.
We recently developed a high-resolution genome-wide assay for mapping DNA excision repair named eXcision Repair-sequencing (XR-seq) and have now used XR-seq to determine which regions of the genome are subject to repair very soon after UV exposure and which regions are repaired later. Over a time course, we measured repair of the UV-induced damage of cyclobutane pyrimidine dimers (CPDs) (at 1, 4, 8, 16, 24, and 48 h) and (6-4)pyrimidine-pyrimidone photoproducts [(6-4)PPs] (at 5 and 20 min and 1, 2, and 4 h) in normal human skin fibroblasts. Each type of damage has distinct repair kinetics. The (6-4)PPs are detected as early as 5 min after UV treatment, with the bulk of repair completed by 4 h. Repair of CPDs, which we previously showed is intimately coupled to transcription, is slower and in certain regions persists even 2 d after UV irradiation. We compared our results to the Encyclopedia of DNA Elements data regarding histone modifications, chromatin state, and transcription. For both damage types, and for both transcription-coupled and general excision repair, the earliest repair occurred preferentially in active and open chromatin states. Conversely, repair in regions classified as "heterochromatic" and "repressed" was relatively low at early time points, with repair persisting into the late time points. Damage that remains during DNA replication increases the risk for mutagenesis. Indeed, late-repaired regions are associated with a higher level of cancer-linked mutations. In summary, we show that XR-seq is a powerful approach for studying relationships among chromatin state, DNA repair, genome stability, mutagenesis, and carcinogenesis.We recently developed a high-resolution genome-wide assay for mapping DNA excision repair named eXcision Repair-sequencing (XR-seq) and have now used XR-seq to determine which regions of the genome are subject to repair very soon after UV exposure and which regions are repaired later. Over a time course, we measured repair of the UV-induced damage of cyclobutane pyrimidine dimers (CPDs) (at 1, 4, 8, 16, 24, and 48 h) and (6-4)pyrimidine-pyrimidone photoproducts [(6-4)PPs] (at 5 and 20 min and 1, 2, and 4 h) in normal human skin fibroblasts. Each type of damage has distinct repair kinetics. The (6-4)PPs are detected as early as 5 min after UV treatment, with the bulk of repair completed by 4 h. Repair of CPDs, which we previously showed is intimately coupled to transcription, is slower and in certain regions persists even 2 d after UV irradiation. We compared our results to the Encyclopedia of DNA Elements data regarding histone modifications, chromatin state, and transcription. For both damage types, and for both transcription-coupled and general excision repair, the earliest repair occurred preferentially in active and open chromatin states. Conversely, repair in regions classified as "heterochromatic" and "repressed" was relatively low at early time points, with repair persisting into the late time points. Damage that remains during DNA replication increases the risk for mutagenesis. Indeed, late-repaired regions are associated with a higher level of cancer-linked mutations. In summary, we show that XR-seq is a powerful approach for studying relationships among chromatin state, DNA repair, genome stability, mutagenesis, and carcinogenesis.
Author Adar, Sheera
Lieb, Jason D.
Hu, Jinchuan
Sancar, Aziz
Author_xml – sequence: 1
  givenname: Sheera
  surname: Adar
  fullname: Adar, Sheera
  organization: Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599
– sequence: 2
  givenname: Jinchuan
  surname: Hu
  fullname: Hu, Jinchuan
  organization: Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599
– sequence: 3
  givenname: Jason D.
  surname: Lieb
  fullname: Lieb, Jason D.
  organization: Department of Human Genetics, University of Chicago, Chicago, IL 60637
– sequence: 4
  givenname: Aziz
  surname: Sancar
  fullname: Sancar, Aziz
  organization: Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27036006$$D View this record in MEDLINE/PubMed
BookMark eNqNkstv1DAQxi1URLcLZ04gS1y4pB0_4iQXpKqUglTBBS5cLK930npJ7MV2ePz3OOy2hUpIyLL8mN98-jyeI3Lgg0dCnjI4ZtCIk6036ZgpEKJtGRMPyIJBxyolOzggCwDeVK3k8pAcpbQBgK5u4RE55A0IBaAW5PMF-jBi9d2tkX5xHrOziYaevn5_SvGHdckFTyNujYvUzbvB5PkqB2qvYxjLydOUTUZq_JqOUzZX6DG59Jg87M2Q8Ml-XZJPb84_nr2tLj9cvDs7vaxsrZpcKez62jSgWNO2HTK5NlBzJnpjaluDFBbnWSxb2XJjuEHB0UgLK9uuEMWSvNrpbqfViGuLPkcz6G10o4k_dTBO_x3x7lpfhW9atqKTAorAy71ADF8nTFmPLlkcBuMxTEmzppRNCV7Gf6CyLmUv0kvy4h66CVP0pRKFamWnhABWqOd_mr91ffNDBah3gI0hpYi9ti7__oLyFjdoBnruBD13gr7rhJJ3ci_vRvrfGXRvZQ7c0kxoVutzzrgsyLMdskk5xDuzSqqOd0z8ArvayiY
CitedBy_id crossref_primary_10_1016_j_dnarep_2023_103529
crossref_primary_10_1146_annurev_cellbio_100617_062653
crossref_primary_10_1016_j_cell_2019_02_051
crossref_primary_10_1074_jbc_R117_807453
crossref_primary_10_1186_s13059_018_1509_y
crossref_primary_10_1186_s12864_021_07898_3
crossref_primary_10_1016_j_coisb_2020_05_001
crossref_primary_10_1074_jbc_RA119_009579
crossref_primary_10_1016_j_biocel_2024_106724
crossref_primary_10_1073_pnas_2310854121
crossref_primary_10_1038_s41467_023_39635_7
crossref_primary_10_1016_j_tig_2021_08_016
crossref_primary_10_1021_jacs_8b03715
crossref_primary_10_1016_j_dnarep_2018_08_008
crossref_primary_10_1016_j_dnarep_2019_03_007
crossref_primary_10_1016_j_tig_2025_01_010
crossref_primary_10_1016_j_dnarep_2018_08_005
crossref_primary_10_1038_s41388_021_02032_9
crossref_primary_10_1093_nar_gkab587
crossref_primary_10_3389_fcell_2021_799971
crossref_primary_10_1007_s00216_022_04302_1
crossref_primary_10_1002_cbic_201700520
crossref_primary_10_1039_c7pp00395a
crossref_primary_10_1021_acssynbio_3c00229
crossref_primary_10_1002_anie_202111829
crossref_primary_10_1111_php_12668
crossref_primary_10_1371_journal_pone_0197534
crossref_primary_10_26508_lsa_202101134
crossref_primary_10_1371_journal_pgen_1007823
crossref_primary_10_1016_j_dnarep_2021_103240
crossref_primary_10_1021_acs_biochem_3c00128
crossref_primary_10_1101_gr_209106_116
crossref_primary_10_1038_s41419_022_04634_x
crossref_primary_10_1093_nar_gkz1229
crossref_primary_10_1002_cam4_4749
crossref_primary_10_1093_nar_gkad974
crossref_primary_10_26508_lsa_202302328
crossref_primary_10_1038_s41596_018_0093_7
crossref_primary_10_1073_pnas_1801687115
crossref_primary_10_1021_acs_chemrestox_8b00050
crossref_primary_10_1016_j_dnarep_2023_103549
crossref_primary_10_1007_s42764_020_00009_8
crossref_primary_10_1073_pnas_1606667113
crossref_primary_10_1371_journal_pgen_1010426
crossref_primary_10_1111_php_13245
crossref_primary_10_1016_j_trecan_2017_03_009
crossref_primary_10_1038_s41467_017_02145_4
crossref_primary_10_1158_0008_5472_CAN_16_3033
crossref_primary_10_1038_s41467_019_08290_2
crossref_primary_10_1007_s00018_021_03984_7
crossref_primary_10_1016_j_bpr_2021_100017
crossref_primary_10_1093_narcan_zcad005
crossref_primary_10_1038_s41467_020_14566_9
crossref_primary_10_3390_ijms22083902
crossref_primary_10_15252_embj_201796717
crossref_primary_10_1038_s41467_020_15903_8
crossref_primary_10_3390_life12010108
crossref_primary_10_1093_nar_gkae721
crossref_primary_10_1021_acs_jproteome_9b00260
crossref_primary_10_1016_j_jbc_2023_105118
crossref_primary_10_1093_nar_gkad593
crossref_primary_10_1016_j_mrfmmm_2021_111758
crossref_primary_10_3390_ijms25020970
crossref_primary_10_1038_s41598_018_20527_6
crossref_primary_10_1016_j_dnarep_2021_103201
crossref_primary_10_1021_acsnano_0c09254
crossref_primary_10_1016_j_celrep_2020_108401
crossref_primary_10_1101_gr_253146_119
crossref_primary_10_1007_s42764_024_00131_x
crossref_primary_10_1093_nar_gkab144
crossref_primary_10_1016_j_jbc_2023_104679
crossref_primary_10_1073_pnas_2210176119
crossref_primary_10_1016_j_dnarep_2024_103739
crossref_primary_10_1016_j_tibs_2018_02_010
crossref_primary_10_15252_embj_201797944
crossref_primary_10_1093_nargab_lqab020
crossref_primary_10_3390_ijms25084393
crossref_primary_10_1002_bies_201800152
crossref_primary_10_1038_s41467_020_15660_8
crossref_primary_10_1186_s12885_023_10892_5
crossref_primary_10_1021_acs_analchem_7b04247
crossref_primary_10_1016_j_jphotobiol_2021_112169
crossref_primary_10_1172_JCI123159
crossref_primary_10_3389_fgene_2022_1102593
crossref_primary_10_1111_php_13551
crossref_primary_10_1073_pnas_1706021114
crossref_primary_10_1007_s00412_018_0669_6
crossref_primary_10_1021_jacs_1c10490
crossref_primary_10_1111_febs_16561
crossref_primary_10_1038_s41568_018_0076_6
crossref_primary_10_1073_pnas_1706522114
crossref_primary_10_1111_eva_13730
crossref_primary_10_3724_abbs_2022054
crossref_primary_10_1016_j_jmb_2024_168450
crossref_primary_10_1074_jbc_RA117_000971
crossref_primary_10_3389_fcell_2022_847051
crossref_primary_10_3390_ijms22115814
crossref_primary_10_1093_femsyr_fow090
crossref_primary_10_15252_embj_2021107795
crossref_primary_10_1038_s41467_021_22575_5
crossref_primary_10_1016_j_csbj_2022_12_013
crossref_primary_10_1093_nar_gkz359
crossref_primary_10_1016_j_tibs_2022_10_003
crossref_primary_10_1080_21541264_2024_2379161
crossref_primary_10_1111_php_12638
crossref_primary_10_1093_nar_gkad1195
crossref_primary_10_3390_ijms18102212
crossref_primary_10_1016_j_dnarep_2019_102645
crossref_primary_10_1073_pnas_1614430113
crossref_primary_10_1038_s42003_024_07140_2
crossref_primary_10_1126_science_aba7408
crossref_primary_10_1093_nar_gkaf048
crossref_primary_10_1073_pnas_1603823113
crossref_primary_10_1016_j_jbc_2022_101863
crossref_primary_10_1093_nar_gkae517
crossref_primary_10_1038_s41588_018_0285_7
crossref_primary_10_1093_nar_gkae755
crossref_primary_10_1016_j_molcel_2022_02_020
crossref_primary_10_1016_j_semcdb_2018_07_008
crossref_primary_10_1021_acscentsci_2c01100
crossref_primary_10_1158_0008_5472_CAN_22_1731
crossref_primary_10_1002_ange_202111829
crossref_primary_10_1038_s41467_018_05064_0
crossref_primary_10_1080_19491034_2025_2476935
crossref_primary_10_1038_s41576_021_00376_2
crossref_primary_10_1111_php_12646
crossref_primary_10_1016_j_jbc_2021_100581
crossref_primary_10_1073_pnas_2217422120
crossref_primary_10_3390_genes12060851
crossref_primary_10_1016_j_jphotobiol_2018_06_005
crossref_primary_10_1111_php_12641
crossref_primary_10_1038_ng_3991
crossref_primary_10_1038_s41467_025_57915_2
crossref_primary_10_1016_j_celrep_2016_11_055
Cites_doi 10.1128/MCB.22.24.8552-8561.2002
10.1186/gb-2009-10-3-r25
10.1101/gad.1131003
10.1038/jid.2011.426
10.1038/nrg2905
10.1021/bi034264k
10.1074/jbc.M113.482257
10.1111/j.1751-1097.1988.tb02785.x
10.1016/j.cell.2015.08.008
10.1016/j.cell.2015.12.050
10.1038/nature08658
10.1016/j.cell.2012.06.024
10.1093/bioinformatics/btu170
10.1016/S1097-2765(00)80132-X
10.1016/S0021-9258(19)39363-9
10.1016/j.dnarep.2015.09.014
10.1128/MCB.22.19.6779-6787.2002
10.1146/annurev.bi.65.070196.000355
10.1016/S0079-6603(04)79004-2
10.1101/gad.261271.115
10.1073/pnas.95.12.6669
10.1093/nar/gkt912
10.1016/0092-8674(87)90151-6
10.1038/nature12477
10.1038/srep07975
10.1038/nrm2549
10.1101/gr.139105.112
10.1038/218652a0
10.1074/jbc.272.38.23465
10.1111/j.1751-1097.1990.tb01732.x
10.1038/nbt.2778
10.1128/MCB.20.24.9173-9181.2000
10.1158/0008-5472.CAN-04-1328
10.1073/pnas.0501458102
10.1158/0008-5472.CAN-10-0095
10.1038/nature11247
10.1016/j.mrrev.2012.10.001
10.1038/nature09906
10.1039/C1PP05144J
10.1073/pnas.89.8.3664
10.1146/annurev-biophys-051013-023114
10.1074/jbc.270.6.2415
ContentType Journal Article
Copyright Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Apr 12, 2016
Copyright_xml – notice: Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Apr 12, 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1603388113
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
CrossRef
MEDLINE - Academic
Genetics Abstracts

Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Human DNA repair maps, chromatin, and mutagenesis
EISSN 1091-6490
EndPage E2133
ExternalDocumentID PMC4839430
4038169441
27036006
10_1073_pnas_1603388113
113_15_E2124
26469291
Genre Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM118102
– fundername: NIEHS NIH HHS
  grantid: P30 ES010126
– fundername: NIGMS NIH HHS
  grantid: R01 GM031082
– fundername: NIGMS NIH HHS
  grantid: R37 GM031082
– fundername: NIGMS NIH HHS
  grantid: R01 GM032833
– fundername: NCI NIH HHS
  grantid: P30 CA016086
– fundername: NHGRI NIH HHS
  grantid: R01 HG006787
– fundername: HHS | NIH | National Human Genome Research Institute (NHGRI)
  grantid: HG006787
– fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: GM32833
– fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: GM31082
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
AFOSN
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c567t-6e9f5a70617889e14da05213faa5c5043ce43ce270c482aa2ae32ea4c0bc8bee3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 17:40:01 EDT 2025
Fri Jul 11 03:08:38 EDT 2025
Thu Jul 10 19:02:12 EDT 2025
Mon Jun 30 07:50:13 EDT 2025
Wed Feb 19 01:56:19 EST 2025
Tue Jul 01 01:53:43 EDT 2025
Thu Apr 24 23:08:34 EDT 2025
Wed Nov 11 00:29:21 EST 2020
Sun Aug 24 12:10:51 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords mutation
transcription
chromatin
DNA repair
DNA damage
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c567t-6e9f5a70617889e14da05213faa5c5043ce43ce270c482aa2ae32ea4c0bc8bee3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Reviewers: P.N., University of Washington; and D.W., University of California, San Diego.
Author contributions: S.A., J.H., J.D.L., and A.S. designed research; J.H. performed research; S.A. analyzed data; and S.A., J.H., J.D.L., and A.S. wrote the paper.
Contributed by Aziz Sancar, March 1, 2016 (sent for review January 4, 2016; reviewed by Paul Nghiem and Dong Wang)
1S.A. and J.H. contributed equally to this work.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4839430
PMID 27036006
PQID 1784963301
PQPubID 42026
ParticipantIDs crossref_primary_10_1073_pnas_1603388113
jstor_primary_26469291
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4839430
proquest_miscellaneous_1794500248
pubmed_primary_27036006
pnas_primary_113_15_E2124
crossref_citationtrail_10_1073_pnas_1603388113
proquest_journals_1784963301
proquest_miscellaneous_1795863232
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-04-12
PublicationDateYYYYMMDD 2016-04-12
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-12
  day: 12
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2016
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Mu D (e_1_3_4_10_2) 1995; 270
Langmead B (e_1_3_4_43_2) 2009; 10
Mellon I (e_1_3_4_8_2) 1987; 51
Pleasance ED (e_1_3_4_34_2) 2010; 463
Hu J (e_1_3_4_13_2) 2013; 288
Pfeifer GP (e_1_3_4_40_2) 2012; 11
Hara R (e_1_3_4_30_2) 2000; 20
Reardon JT (e_1_3_4_1_2) 2005; 79
Bassett E (e_1_3_4_14_2) 2004; 64
Gale JM (e_1_3_4_23_2) 1990; 51
Gospodinov A (e_1_3_4_18_2) 2013; 752
Bolger AM (e_1_3_4_42_2) 2014; 30
Ernst J (e_1_3_4_19_2) 2011; 473
Gaddameedhi S (e_1_3_4_12_2) 2010; 70
Mitchell DL (e_1_3_4_15_2) 1988; 48
Hu J (e_1_3_4_11_2) 2015; 29
Haradhvala NJ (e_1_3_4_39_2) 2016; 164
Reardon JT (e_1_3_4_4_2) 2003; 17
Powell JR (e_1_3_4_27_2) 2015; 5
Polak P (e_1_3_4_38_2) 2014; 32
Hanawalt PC (e_1_3_4_7_2) 2008; 9
Huang JC (e_1_3_4_9_2) 1992; 89
Zhou VW (e_1_3_4_16_2) 2011; 12
Sancar A (e_1_3_4_2_2) 1996; 65
Cleaver JE (e_1_3_4_36_2) 1968; 218
Sugasawa K (e_1_3_4_5_2) 1998; 2
Kim TK (e_1_3_4_20_2) 2015; 162
Hughes AL (e_1_3_4_29_2) 2014; 43
Wakasugi M (e_1_3_4_6_2) 1998; 95
DiGiovanna JJ (e_1_3_4_37_2) 2012; 132
Alexandrov LB (e_1_3_4_21_2) 2013; 500
Hara R (e_1_3_4_24_2) 2002; 22
Hodis E (e_1_3_4_35_2) 2012; 150
Heffernan TP (e_1_3_4_41_2) 2002; 22
Mitchell DL (e_1_3_4_22_2) 1990; 265
Yu Y (e_1_3_4_33_2) 2005; 102
Polo SE (e_1_3_4_31_2) 2015; 36
Wood RD (e_1_3_4_3_2) 1997; 272
Consortium EP (e_1_3_4_17_2) 2012; 489
Zavala AG (e_1_3_4_28_2) 2014; 42
Wang J (e_1_3_4_26_2) 2012; 22
Wang D (e_1_3_4_25_2) 2003; 42
Schick S (e_1_3_4_32_2) 2015; 128
12779329 - Biochemistry. 2003 Jun 10;42(22):6747-53
7852297 - J Biol Chem. 1995 Feb 10;270(6):2415-8
3217442 - Photochem Photobiol. 1988 Jul;48(1):51-7
1314396 - Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3664-8
23945592 - Nature. 2013 Aug 22;500(7463):415-21
21441907 - Nature. 2011 May 5;473(7345):43-9
9295277 - J Biol Chem. 1997 Sep 19;272(38):23465-8
24336318 - Nat Biotechnol. 2014 Jan;32(1):71-5
20016485 - Nature. 2010 Jan 14;463(7278):191-6
2318816 - J Biol Chem. 1990 Apr 5;265(10):5353-6
26446258 - J Cell Sci. 2015 Dec 1;128(23):4380-94
22217736 - J Invest Dermatol. 2012 Mar;132(3 Pt 2):785-96
26317464 - Cell. 2015 Aug 27;162(5):948-59
25609656 - Sci Rep. 2015 Jan 22;5:7975
25934506 - Genes Dev. 2015 May 1;29(9):948-60
9734359 - Mol Cell. 1998 Aug;2(2):223-32
15374956 - Cancer Res. 2004 Sep 15;64(18):6469-75
12215535 - Mol Cell Biol. 2002 Oct;22(19):6779-87
5655953 - Nature. 1968 May 18;218(5142):652-6
12446774 - Mol Cell Biol. 2002 Dec;22(24):8552-61
14522951 - Genes Dev. 2003 Oct 15;17(20):2539-51
9618470 - Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6669-74
19023283 - Nat Rev Mol Cell Biol. 2008 Dec;9(12):958-70
23749995 - J Biol Chem. 2013 Jul 19;288(29):20918-26
20501836 - Cancer Res. 2010 Jun 15;70(12):4922-30
26429064 - DNA Repair (Amst). 2015 Dec;36:114-21
22955990 - Genome Res. 2012 Sep;22(9):1798-812
8811174 - Annu Rev Biochem. 1996;65:43-81
23085398 - Mutat Res. 2013 Jan-Mar;752(1):45-60
19261174 - Genome Biol. 2009;10(3):R25
26806129 - Cell. 2016 Jan 28;164(3):538-49
3664636 - Cell. 1987 Oct 23;51(2):241-9
22817889 - Cell. 2012 Jul 20;150(2):251-63
16096029 - Prog Nucleic Acid Res Mol Biol. 2005;79:183-235
24695404 - Bioinformatics. 2014 Aug 1;30(15):2114-20
22955616 - Nature. 2012 Sep 6;489(7414):57-74
24702039 - Annu Rev Biophys. 2014;43:41-63
15939881 - Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8650-5
21804977 - Photochem Photobiol Sci. 2012 Jan;11(1):90-7
11094069 - Mol Cell Biol. 2000 Dec;20(24):9173-81
21116306 - Nat Rev Genet. 2011 Jan;12(1):7-18
2160660 - Photochem Photobiol. 1990 Apr;51(4):411-7
24137003 - Nucleic Acids Res. 2014 Jan;42(2):893-905
References_xml – volume: 22
  start-page: 8552
  year: 2002
  ident: e_1_3_4_41_2
  article-title: An ATR- and Chk1-dependent S checkpoint inhibits replicon initiation following UVC-induced DNA damage
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.22.24.8552-8561.2002
– volume: 10
  start-page: R25
  year: 2009
  ident: e_1_3_4_43_2
  article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
  publication-title: Genome Biol
  doi: 10.1186/gb-2009-10-3-r25
– volume: 17
  start-page: 2539
  year: 2003
  ident: e_1_3_4_4_2
  article-title: Recognition and repair of the cyclobutane thymine dimer, a major cause of skin cancers, by the human excision nuclease
  publication-title: Genes Dev
  doi: 10.1101/gad.1131003
– volume: 128
  start-page: 4380
  year: 2015
  ident: e_1_3_4_32_2
  article-title: Dynamics of chromatin accessibility and epigenetic state in response to UV damage
  publication-title: J Cell Sci
– volume: 132
  start-page: 785
  year: 2012
  ident: e_1_3_4_37_2
  article-title: Shining a light on xeroderma pigmentosum
  publication-title: J Invest Dermatol
  doi: 10.1038/jid.2011.426
– volume: 12
  start-page: 7
  year: 2011
  ident: e_1_3_4_16_2
  article-title: Charting histone modifications and the functional organization of mammalian genomes
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2905
– volume: 42
  start-page: 6747
  year: 2003
  ident: e_1_3_4_25_2
  article-title: Nucleosomes inhibit nucleotide excision repair of site-specific platinum-DNA adducts
  publication-title: Biochemistry
  doi: 10.1021/bi034264k
– volume: 288
  start-page: 20918
  year: 2013
  ident: e_1_3_4_13_2
  article-title: Nucleotide excision repair in human cells: Fate of the excised oligonucleotide carrying DNA damage in vivo
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M113.482257
– volume: 48
  start-page: 51
  year: 1988
  ident: e_1_3_4_15_2
  article-title: The relative cytotoxicity of (6-4) photoproducts and cyclobutane dimers in mammalian cells
  publication-title: Photochem Photobiol
  doi: 10.1111/j.1751-1097.1988.tb02785.x
– volume: 162
  start-page: 948
  year: 2015
  ident: e_1_3_4_20_2
  article-title: Architectural and functional commonalities between enhancers and promoters
  publication-title: Cell
  doi: 10.1016/j.cell.2015.08.008
– volume: 164
  start-page: 538
  year: 2016
  ident: e_1_3_4_39_2
  article-title: Mutational strand asymmetries in cancer genomes reveal mechanisms of DNA damage and repair
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.050
– volume: 463
  start-page: 191
  year: 2010
  ident: e_1_3_4_34_2
  article-title: A comprehensive catalogue of somatic mutations from a human cancer genome
  publication-title: Nature
  doi: 10.1038/nature08658
– volume: 150
  start-page: 251
  year: 2012
  ident: e_1_3_4_35_2
  article-title: A landscape of driver mutations in melanoma
  publication-title: Cell
  doi: 10.1016/j.cell.2012.06.024
– volume: 30
  start-page: 2114
  year: 2014
  ident: e_1_3_4_42_2
  article-title: Trimmomatic: A flexible trimmer for Illumina sequence data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu170
– volume: 2
  start-page: 223
  year: 1998
  ident: e_1_3_4_5_2
  article-title: Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(00)80132-X
– volume: 265
  start-page: 5353
  year: 1990
  ident: e_1_3_4_22_2
  article-title: Nonrandom induction of pyrimidine-pyrimidone (6-4) photoproducts in ultraviolet-irradiated human chromatin
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)39363-9
– volume: 36
  start-page: 114
  year: 2015
  ident: e_1_3_4_31_2
  article-title: Chromatin dynamics after DNA damage: The legacy of the access-repair-restore model
  publication-title: DNA Repair (Amst)
  doi: 10.1016/j.dnarep.2015.09.014
– volume: 22
  start-page: 6779
  year: 2002
  ident: e_1_3_4_24_2
  article-title: The SWI/SNF chromatin-remodeling factor stimulates repair by human excision nuclease in the mononucleosome core particle
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.22.19.6779-6787.2002
– volume: 65
  start-page: 43
  year: 1996
  ident: e_1_3_4_2_2
  article-title: DNA excision repair
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.bi.65.070196.000355
– volume: 79
  start-page: 183
  year: 2005
  ident: e_1_3_4_1_2
  article-title: Nucleotide excision repair
  publication-title: Prog Nucleic Acid Res Mol Biol
  doi: 10.1016/S0079-6603(04)79004-2
– volume: 29
  start-page: 948
  year: 2015
  ident: e_1_3_4_11_2
  article-title: Genome-wide analysis of human global and transcription-coupled excision repair of UV damage at single-nucleotide resolution
  publication-title: Genes Dev
  doi: 10.1101/gad.261271.115
– volume: 95
  start-page: 6669
  year: 1998
  ident: e_1_3_4_6_2
  article-title: Assembly, subunit composition, and footprint of human DNA repair excision nuclease
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.95.12.6669
– volume: 42
  start-page: 893
  year: 2014
  ident: e_1_3_4_28_2
  article-title: High-resolution characterization of CPD hotspot formation in human fibroblasts
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt912
– volume: 51
  start-page: 241
  year: 1987
  ident: e_1_3_4_8_2
  article-title: Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene
  publication-title: Cell
  doi: 10.1016/0092-8674(87)90151-6
– volume: 500
  start-page: 415
  year: 2013
  ident: e_1_3_4_21_2
  article-title: Signatures of mutational processes in human cancer
  publication-title: Nature
  doi: 10.1038/nature12477
– volume: 5
  start-page: 7975
  year: 2015
  ident: e_1_3_4_27_2
  article-title: 3D-DIP-Chip: A microarray-based method to measure genomic DNA damage
  publication-title: Sci Rep
  doi: 10.1038/srep07975
– volume: 9
  start-page: 958
  year: 2008
  ident: e_1_3_4_7_2
  article-title: Transcription-coupled DNA repair: Two decades of progress and surprises
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2549
– volume: 22
  start-page: 1798
  year: 2012
  ident: e_1_3_4_26_2
  article-title: Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors
  publication-title: Genome Res
  doi: 10.1101/gr.139105.112
– volume: 218
  start-page: 652
  year: 1968
  ident: e_1_3_4_36_2
  article-title: Defective repair replication of DNA in xeroderma pigmentosum
  publication-title: Nature
  doi: 10.1038/218652a0
– volume: 272
  start-page: 23465
  year: 1997
  ident: e_1_3_4_3_2
  article-title: Nucleotide excision repair in mammalian cells
  publication-title: J Biol Chem
  doi: 10.1074/jbc.272.38.23465
– volume: 51
  start-page: 411
  year: 1990
  ident: e_1_3_4_23_2
  article-title: UV induced (6-4) photoproducts are distributed differently than cyclobutane dimers in nucleosomes
  publication-title: Photochem Photobiol
  doi: 10.1111/j.1751-1097.1990.tb01732.x
– volume: 32
  start-page: 71
  year: 2014
  ident: e_1_3_4_38_2
  article-title: Reduced local mutation density in regulatory DNA of cancer genomes is linked to DNA repair
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2778
– volume: 20
  start-page: 9173
  year: 2000
  ident: e_1_3_4_30_2
  article-title: DNA damage in the nucleosome core is refractory to repair by human excision nuclease
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.20.24.9173-9181.2000
– volume: 64
  start-page: 6469
  year: 2004
  ident: e_1_3_4_14_2
  article-title: The role of DNA polymerase eta in translesion synthesis past platinum-DNA adducts in human fibroblasts
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-04-1328
– volume: 102
  start-page: 8650
  year: 2005
  ident: e_1_3_4_33_2
  article-title: UV irradiation stimulates histone acetylation and chromatin remodeling at a repressed yeast locus
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0501458102
– volume: 70
  start-page: 4922
  year: 2010
  ident: e_1_3_4_12_2
  article-title: Similar nucleotide excision repair capacity in melanocytes and melanoma cells
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-10-0095
– volume: 489
  start-page: 57
  year: 2012
  ident: e_1_3_4_17_2
  article-title: An integrated encyclopedia of DNA elements in the human genome
  publication-title: Nature
  doi: 10.1038/nature11247
– volume: 752
  start-page: 45
  year: 2013
  ident: e_1_3_4_18_2
  article-title: Shaping chromatin for repair
  publication-title: Mutat Res
  doi: 10.1016/j.mrrev.2012.10.001
– volume: 473
  start-page: 43
  year: 2011
  ident: e_1_3_4_19_2
  article-title: Mapping and analysis of chromatin state dynamics in nine human cell types
  publication-title: Nature
  doi: 10.1038/nature09906
– volume: 11
  start-page: 90
  year: 2012
  ident: e_1_3_4_40_2
  article-title: UV wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer
  publication-title: Photochem Photobiol Sci
  doi: 10.1039/C1PP05144J
– volume: 89
  start-page: 3664
  year: 1992
  ident: e_1_3_4_9_2
  article-title: Human nucleotide excision nuclease removes thymine dimers from DNA by incising the 22nd phosphodiester bond 5′ and the 6th phosphodiester bond 3′ to the photodimer
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.89.8.3664
– volume: 43
  start-page: 41
  year: 2014
  ident: e_1_3_4_29_2
  article-title: Mechanisms underlying nucleosome positioning in vivo
  publication-title: Annu Rev Biophys
  doi: 10.1146/annurev-biophys-051013-023114
– volume: 270
  start-page: 2415
  year: 1995
  ident: e_1_3_4_10_2
  article-title: Reconstitution of human DNA repair excision nuclease in a highly defined system
  publication-title: J Biol Chem
  doi: 10.1074/jbc.270.6.2415
– reference: 8811174 - Annu Rev Biochem. 1996;65:43-81
– reference: 2318816 - J Biol Chem. 1990 Apr 5;265(10):5353-6
– reference: 3664636 - Cell. 1987 Oct 23;51(2):241-9
– reference: 5655953 - Nature. 1968 May 18;218(5142):652-6
– reference: 2160660 - Photochem Photobiol. 1990 Apr;51(4):411-7
– reference: 25609656 - Sci Rep. 2015 Jan 22;5:7975
– reference: 20016485 - Nature. 2010 Jan 14;463(7278):191-6
– reference: 26806129 - Cell. 2016 Jan 28;164(3):538-49
– reference: 12779329 - Biochemistry. 2003 Jun 10;42(22):6747-53
– reference: 23085398 - Mutat Res. 2013 Jan-Mar;752(1):45-60
– reference: 26446258 - J Cell Sci. 2015 Dec 1;128(23):4380-94
– reference: 24702039 - Annu Rev Biophys. 2014;43:41-63
– reference: 23749995 - J Biol Chem. 2013 Jul 19;288(29):20918-26
– reference: 24137003 - Nucleic Acids Res. 2014 Jan;42(2):893-905
– reference: 15374956 - Cancer Res. 2004 Sep 15;64(18):6469-75
– reference: 21804977 - Photochem Photobiol Sci. 2012 Jan;11(1):90-7
– reference: 21441907 - Nature. 2011 May 5;473(7345):43-9
– reference: 7852297 - J Biol Chem. 1995 Feb 10;270(6):2415-8
– reference: 22955616 - Nature. 2012 Sep 6;489(7414):57-74
– reference: 3217442 - Photochem Photobiol. 1988 Jul;48(1):51-7
– reference: 15939881 - Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8650-5
– reference: 26429064 - DNA Repair (Amst). 2015 Dec;36:114-21
– reference: 22955990 - Genome Res. 2012 Sep;22(9):1798-812
– reference: 21116306 - Nat Rev Genet. 2011 Jan;12(1):7-18
– reference: 9734359 - Mol Cell. 1998 Aug;2(2):223-32
– reference: 24336318 - Nat Biotechnol. 2014 Jan;32(1):71-5
– reference: 20501836 - Cancer Res. 2010 Jun 15;70(12):4922-30
– reference: 25934506 - Genes Dev. 2015 May 1;29(9):948-60
– reference: 24695404 - Bioinformatics. 2014 Aug 1;30(15):2114-20
– reference: 16096029 - Prog Nucleic Acid Res Mol Biol. 2005;79:183-235
– reference: 14522951 - Genes Dev. 2003 Oct 15;17(20):2539-51
– reference: 19261174 - Genome Biol. 2009;10(3):R25
– reference: 22817889 - Cell. 2012 Jul 20;150(2):251-63
– reference: 1314396 - Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3664-8
– reference: 12215535 - Mol Cell Biol. 2002 Oct;22(19):6779-87
– reference: 26317464 - Cell. 2015 Aug 27;162(5):948-59
– reference: 9618470 - Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6669-74
– reference: 22217736 - J Invest Dermatol. 2012 Mar;132(3 Pt 2):785-96
– reference: 19023283 - Nat Rev Mol Cell Biol. 2008 Dec;9(12):958-70
– reference: 23945592 - Nature. 2013 Aug 22;500(7463):415-21
– reference: 11094069 - Mol Cell Biol. 2000 Dec;20(24):9173-81
– reference: 12446774 - Mol Cell Biol. 2002 Dec;22(24):8552-61
– reference: 9295277 - J Biol Chem. 1997 Sep 19;272(38):23465-8
SSID ssj0009580
Score 2.555379
Snippet We recently developed a high-resolution genome-wide assay for mapping DNA excision repair named eXcision Repair-sequencing (XR-seq) and have now used XR-seq to...
Nucleotide excision repair is the sole mechanism for removing bulky adducts from the human genome, including those formed by UV radiation and chemotherapeutic...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage E2124
SubjectTerms Biological Sciences
Cancer
Carcinogenesis
Cell Line
Chromatin
Chromatin - genetics
Deoxyribonucleic acid
DNA
DNA Repair - genetics
Genome, Human - genetics
Genomes
Humans
Irradiation
Kinetics
Melanoma - genetics
Mutagenesis
Mutagenesis - genetics
PNAS Plus
Risk assessment
Sequence Analysis, DNA - methods
Ultraviolet radiation
Ultraviolet Rays - adverse effects
Title Genome-wide kinetics of DNA excision repair in relation to chromatin state and mutagenesis
URI https://www.jstor.org/stable/26469291
http://www.pnas.org/content/113/15/E2124.abstract
https://www.ncbi.nlm.nih.gov/pubmed/27036006
https://www.proquest.com/docview/1784963301
https://www.proquest.com/docview/1794500248
https://www.proquest.com/docview/1795863232
https://pubmed.ncbi.nlm.nih.gov/PMC4839430
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgvPCCGDAIDGQkHoaijCR2fvSxgo4JjTKJVqp4iWzHUaOxBLWpQP3rOdtxkk4FDR4aRYnjpLkv5zv77juE3kScC14UxAs54R6lfOQxHkqPUAYak8koZCo5-fM0Pp_TT4to0c8q6eyShp-K7d68kv-RKhwDuaos2X-QbNcpHIB9kC9sQcKwvZWMP8qqvpbezzKX7hWYi5pyGay_D9OxK3-Z4jlqVYCVqz5vRa0O1K5YrmplrFauTinSawjXmwa0C-i-cj20WS-7MW5tIwqmdgpx3CektFpi7Xru5bQvbzzOTQj316WUK9ajSMOnrMRyM4gKKiU3obuqLmIfi6zmXUzR7W25Hc5TBLGnCREHqhUsEy-mpjjoqdxzzOpjk5xqgRcN1OsEBlq6V_GDplLViiu2VvNl4Hentpsdiu3pl-xsfnGRzSaL2V10LwTfgtgpno6pOTUUFu2jWT6ohLy70f2OKWOiWRVFLjTa567cjLodmDGzh-hB63_gsQHTIbojq0fo0MoOn7Q05G8fo28DdGGLLlwXGNCFLbqwQRcu1Z5BF25q3KELa3RhQBceoOsJmp9NZu_PvbYShyeiOGm8WI6KiCXK3E3TkQxozlTSNykYi4TiwBNS_cLEFzQNGQuZJKFkVPhcpFxKcoQOqrqSzxAGhZ-L1C-4pAEVScBSmoNVnwo_9xnlwkGn9qVmoqWpV9VSvmc6XCIhmXrBWS8FB510F_wwDC1_bnqkpdS1A28gBv8gcJCjm3bXByQLokzDzUHHVpZZ--1Dn0lK4Z_A6Oig191p0MxquY1Vst6oNiMaac7Av7aJ0pjAC3DQUwOP_uEUNx4Mig5KdoDTNVDM8LtnqnKpGeIpuD2U-M9vcd8X6H7_tR6jg2a1kS_Bzm74K_1d_Aag49QH
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-wide+kinetics+of+DNA+excision+repair+in+relation+to+chromatin+state+and+mutagenesis&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Adar%2C+Sheera&rft.au=Hu%2C+Jinchuan&rft.au=Lieb%2C+Jason+D&rft.au=Sancar%2C+Aziz&rft.date=2016-04-12&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=113&rft.issue=15&rft.spage=E2124&rft_id=info:doi/10.1073%2Fpnas.1603388113&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F113%2F15.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F113%2F15.cover.gif