Structures of the ISWI–nucleosome complex reveal a conserved mechanism of chromatin remodeling
Chromatin remodelers are diverse enzymes, and different models have been proposed to explain how these proteins work. Here we report the 3.3 Å-resolution cryogenic electron microscopy (cryo-EM) structures of Saccharomyces cerevisiae ISWI (ISW1) in complex with the nucleosome in adenosine diphosphate...
Saved in:
Published in | Nature structural & molecular biology Vol. 26; no. 4; pp. 258 - 266 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.04.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chromatin remodelers are diverse enzymes, and different models have been proposed to explain how these proteins work. Here we report the 3.3 Å-resolution cryogenic electron microscopy (cryo-EM) structures of
Saccharomyces cerevisiae
ISWI (ISW1) in complex with the nucleosome in adenosine diphosphate (ADP)-bound and ADP-BeF
x
-bound states. The data show that after nucleosome binding, ISW1 is activated by substantial rearrangement of the catalytic domains, with the regulatory AutoN domain packing the first RecA-like core and the NegC domain being disordered. The high-resolution structure reveals local DNA distortion and translocation induced by ISW1 in the ADP-bound state, which is essentially identical to that induced by the Snf2 chromatin remodeler, suggesting a common mechanism of DNA translocation. The histone core remains largely unperturbed, and prevention of histone distortion by crosslinking did not inhibit the activity of yeast ISW1 or its human homolog. Together, our findings suggest a general mechanism of chromatin remodeling involving local DNA distortion without notable histone deformation.
Cryo-EM structures of the chromatin remodeler ISWI in complex with the nucleosome show local DNA distortion nearly identical to that induced by Snf2, while the histone core remains largely unperturbed. |
---|---|
AbstractList | Chromatin remodelers are diverse enzymes, and different models have been proposed to explain how these proteins work. Here we report the 3.3 Å-resolution cryogenic electron microscopy (cryo-EM) structures of Saccharomyces cerevisiae ISWI (ISW1) in complex with the nucleosome in adenosine diphosphate (ADP)-bound and ADP-BeFx-bound states. The data show that after nucleosome binding, ISW1 is activated by substantial rearrangement of the catalytic domains, with the regulatory AutoN domain packing the first RecA-like core and the NegC domain being disordered. The high-resolution structure reveals local DNA distortion and translocation induced by ISW1 in the ADP-bound state, which is essentially identical to that induced by the Snf2 chromatin remodeler, suggesting a common mechanism of DNA translocation. The histone core remains largely unperturbed, and prevention of histone distortion by crosslinking did not inhibit the activity of yeast ISW1 or its human homolog. Together, our findings suggest a general mechanism of chromatin remodeling involving local DNA distortion without notable histone deformation.Cryo-EM structures of the chromatin remodeler ISWI in complex with the nucleosome show local DNA distortion nearly identical to that induced by Snf2, while the histone core remains largely unperturbed. Chromatin remodelers are diverse enzymes, and different models have been proposed to explain how these proteins work. Here we report the 3.3 Å-resolution cryogenic electron microscopy (cryo-EM) structures of Saccharomyces cerevisiae ISWI (ISW1) in complex with the nucleosome in adenosine diphosphate (ADP)-bound and ADP-BeF.sub.x-bound states. The data show that after nucleosome binding, ISW1 is activated by substantial rearrangement of the catalytic domains, with the regulatory AutoN domain packing the first RecA-like core and the NegC domain being disordered. The high-resolution structure reveals local DNA distortion and translocation induced by ISW1 in the ADP-bound state, which is essentially identical to that induced by the Snf2 chromatin remodeler, suggesting a common mechanism of DNA translocation. The histone core remains largely unperturbed, and prevention of histone distortion by crosslinking did not inhibit the activity of yeast ISW1 or its human homolog. Together, our findings suggest a general mechanism of chromatin remodeling involving local DNA distortion without notable histone deformation. Chromatin remodelers are diverse enzymes, and different models have been proposed to explain how these proteins work. Here we report the 3.3 Å-resolution cryogenic electron microscopy (cryo-EM) structures of Saccharomyces cerevisiae ISWI (ISW1) in complex with the nucleosome in adenosine diphosphate (ADP)-bound and ADP-BeFx-bound states. The data show that after nucleosome binding, ISW1 is activated by substantial rearrangement of the catalytic domains, with the regulatory AutoN domain packing the first RecA-like core and the NegC domain being disordered. The high-resolution structure reveals local DNA distortion and translocation induced by ISW1 in the ADP-bound state, which is essentially identical to that induced by the Snf2 chromatin remodeler, suggesting a common mechanism of DNA translocation. The histone core remains largely unperturbed, and prevention of histone distortion by crosslinking did not inhibit the activity of yeast ISW1 or its human homolog. Together, our findings suggest a general mechanism of chromatin remodeling involving local DNA distortion without notable histone deformation.Chromatin remodelers are diverse enzymes, and different models have been proposed to explain how these proteins work. Here we report the 3.3 Å-resolution cryogenic electron microscopy (cryo-EM) structures of Saccharomyces cerevisiae ISWI (ISW1) in complex with the nucleosome in adenosine diphosphate (ADP)-bound and ADP-BeFx-bound states. The data show that after nucleosome binding, ISW1 is activated by substantial rearrangement of the catalytic domains, with the regulatory AutoN domain packing the first RecA-like core and the NegC domain being disordered. The high-resolution structure reveals local DNA distortion and translocation induced by ISW1 in the ADP-bound state, which is essentially identical to that induced by the Snf2 chromatin remodeler, suggesting a common mechanism of DNA translocation. The histone core remains largely unperturbed, and prevention of histone distortion by crosslinking did not inhibit the activity of yeast ISW1 or its human homolog. Together, our findings suggest a general mechanism of chromatin remodeling involving local DNA distortion without notable histone deformation. Chromatin remodelers are diverse enzymes, and different models have been proposed to explain how these proteins work. Here we report the 3.3 Å-resolution cryogenic electron microscopy (cryo-EM) structures of Saccharomyces cerevisiae ISWI (ISW1) in complex with the nucleosome in adenosine diphosphate (ADP)-bound and ADP-BeF.sub.x-bound states. The data show that after nucleosome binding, ISW1 is activated by substantial rearrangement of the catalytic domains, with the regulatory AutoN domain packing the first RecA-like core and the NegC domain being disordered. The high-resolution structure reveals local DNA distortion and translocation induced by ISW1 in the ADP-bound state, which is essentially identical to that induced by the Snf2 chromatin remodeler, suggesting a common mechanism of DNA translocation. The histone core remains largely unperturbed, and prevention of histone distortion by crosslinking did not inhibit the activity of yeast ISW1 or its human homolog. Together, our findings suggest a general mechanism of chromatin remodeling involving local DNA distortion without notable histone deformation. Cryo-EM structures of the chromatin remodeler ISWI in complex with the nucleosome show local DNA distortion nearly identical to that induced by Snf2, while the histone core remains largely unperturbed. Chromatin remodelers are diverse enzymes, and different models have been proposed to explain how these proteins work. Here we report the 3.3 Å-resolution cryogenic electron microscopy (cryo-EM) structures of Saccharomyces cerevisiae ISWI (ISW1) in complex with the nucleosome in adenosine diphosphate (ADP)-bound and ADP-BeF x -bound states. The data show that after nucleosome binding, ISW1 is activated by substantial rearrangement of the catalytic domains, with the regulatory AutoN domain packing the first RecA-like core and the NegC domain being disordered. The high-resolution structure reveals local DNA distortion and translocation induced by ISW1 in the ADP-bound state, which is essentially identical to that induced by the Snf2 chromatin remodeler, suggesting a common mechanism of DNA translocation. The histone core remains largely unperturbed, and prevention of histone distortion by crosslinking did not inhibit the activity of yeast ISW1 or its human homolog. Together, our findings suggest a general mechanism of chromatin remodeling involving local DNA distortion without notable histone deformation. Cryo-EM structures of the chromatin remodeler ISWI in complex with the nucleosome show local DNA distortion nearly identical to that induced by Snf2, while the histone core remains largely unperturbed. Chromatin remodelers are diverse enzymes, and different models have been proposed to explain how these proteins work. Here we report the 3.3 Å-resolution cryogenic electron microscopy (cryo-EM) structures of Saccharomyces cerevisiae ISWI (ISW1) in complex with the nucleosome in adenosine diphosphate (ADP)-bound and ADP-BeF -bound states. The data show that after nucleosome binding, ISW1 is activated by substantial rearrangement of the catalytic domains, with the regulatory AutoN domain packing the first RecA-like core and the NegC domain being disordered. The high-resolution structure reveals local DNA distortion and translocation induced by ISW1 in the ADP-bound state, which is essentially identical to that induced by the Snf2 chromatin remodeler, suggesting a common mechanism of DNA translocation. The histone core remains largely unperturbed, and prevention of histone distortion by crosslinking did not inhibit the activity of yeast ISW1 or its human homolog. Together, our findings suggest a general mechanism of chromatin remodeling involving local DNA distortion without notable histone deformation. |
Audience | Academic |
Author | Gao, Ning Wu, Hao Yan, Lijuan Li, Xuemei Chen, Zhucheng |
Author_xml | – sequence: 1 givenname: Lijuan surname: Yan fullname: Yan, Lijuan organization: MOE Key Laboratory of Protein Science, Tsinghua University, School of Life Science, Tsinghua University – sequence: 2 givenname: Hao surname: Wu fullname: Wu, Hao organization: School of Life Science, Tsinghua University, Peking University–Tsinghua University–National Institute of Biological Sciences Joint Graduate Program – sequence: 3 givenname: Xuemei surname: Li fullname: Li, Xuemei organization: Electron Microscopy Laboratory, School of Physics, Peking University – sequence: 4 givenname: Ning surname: Gao fullname: Gao, Ning email: gaon@pku.edu.cn organization: State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University – sequence: 5 givenname: Zhucheng orcidid: 0000-0002-8684-0339 surname: Chen fullname: Chen, Zhucheng email: zhucheng_chen@tsinghua.edu.cn organization: MOE Key Laboratory of Protein Science, Tsinghua University, School of Life Science, Tsinghua University, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30872815$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1u1DAQxy1URL94AC4oEhc4pMR2HNvHqqKwUiUkloqjcZzJrqvEXmynam-8A2_Ik-BoS6utoLJGtsa__8xoZg7RnvMOEHqFqxNcUfE-1pjJuqywnE2W8hk6wKxmpZSC7d2_Jd1HhzFeVRVhjNMXaJ9WghOB2QH6vkxhMmkKEAvfF2kNxWL5bfH75y83mQF89CMUxo-bAW6KANegh0Jnh4sQrqErRjBr7WwcZ7VZBz_qZF0mR9_BYN3qGD3v9RDh5d19hC7PP3w9-1RefP64ODu9KA1reCobo3kjmroxtewEw20riGgZFdAKSquOUCPrRkI__0gBvG4lkYKwWvaGsYYeobfbuJvgf0wQkxptNDAM2oGfoiJYUtwwRkRG3zxCr_wUXK5O5XiMSyYYe5IiFeGc1A1_oFZ6AGVd71PQZk6tTpmkVJDc60yd_IPKp4PR5mZCb7N_R_BuR5CZBDdppacY1WL5ZZd9fVfo1I7QqU2wow636u-QM4C3gAk-xgD9PYIrNS-S2i6Syks0m1Qya_gjjbEpjzbXEbQdnlSSrTLmLG4F4aFv_xf9Afpz2M8 |
CitedBy_id | crossref_primary_10_1016_j_jmb_2020_09_007 crossref_primary_10_1038_s41467_024_46178_y crossref_primary_10_1093_plcell_koac211 crossref_primary_10_1038_s41467_021_24320_4 crossref_primary_10_1038_s41467_020_17959_y crossref_primary_10_15252_embr_201948029 crossref_primary_10_1038_s41594_021_00621_6 crossref_primary_10_1093_nar_gkaf064 crossref_primary_10_21769_BioProtoc_4094 crossref_primary_10_1038_s41467_020_19700_1 crossref_primary_10_1016_j_sbi_2021_05_006 crossref_primary_10_1038_s41467_021_22636_9 crossref_primary_10_1038_s41586_022_04658_5 crossref_primary_10_1038_s41598_021_82842_9 crossref_primary_10_1073_pnas_2103723118 crossref_primary_10_1016_j_sbi_2020_06_024 crossref_primary_10_1016_j_str_2024_05_013 crossref_primary_10_3389_fonc_2022_935877 crossref_primary_10_1016_j_sbi_2019_09_002 crossref_primary_10_1016_j_tibs_2020_08_010 crossref_primary_10_3389_fgene_2020_600615 crossref_primary_10_1016_j_sbi_2020_06_008 crossref_primary_10_1016_j_tibs_2019_09_002 crossref_primary_10_1038_s41467_019_12007_w crossref_primary_10_1360_TB_2024_0480 crossref_primary_10_1146_annurev_biophys_082520_080201 crossref_primary_10_1038_s41589_019_0413_4 crossref_primary_10_3390_polym15071763 crossref_primary_10_3389_fcell_2020_560098 crossref_primary_10_1016_j_cell_2023_08_001 crossref_primary_10_1038_s41467_024_45237_8 crossref_primary_10_1038_s41594_023_01174_6 crossref_primary_10_1021_jacs_4c14136 crossref_primary_10_1038_s41467_019_13550_2 crossref_primary_10_1038_s41467_020_14856_2 crossref_primary_10_1042_BST20230070 crossref_primary_10_1101_gr_278402_123 crossref_primary_10_1016_j_sbi_2019_11_013 crossref_primary_10_1016_j_jmb_2021_166929 crossref_primary_10_1093_nar_gkad738 crossref_primary_10_1128_mbio_03456_21 crossref_primary_10_3390_ijms22010076 crossref_primary_10_7554_eLife_71420 crossref_primary_10_1016_j_celrep_2019_05_106 crossref_primary_10_1073_pnas_2014498118 crossref_primary_10_1107_S2053230X24004655 crossref_primary_10_1016_j_molcel_2021_08_010 crossref_primary_10_1038_s44318_025_00407_2 crossref_primary_10_1038_s41586_020_2088_0 crossref_primary_10_1016_j_molcel_2022_01_028 crossref_primary_10_3390_ijms22115578 crossref_primary_10_1016_j_molcel_2024_08_022 crossref_primary_10_1038_s41594_021_00620_7 crossref_primary_10_1016_j_molcel_2020_09_024 crossref_primary_10_1016_j_molcel_2020_10_038 crossref_primary_10_1093_nar_gkz670 crossref_primary_10_1186_s13046_021_02151_x crossref_primary_10_7554_eLife_56178 crossref_primary_10_1016_j_tibs_2019_05_001 crossref_primary_10_1038_s41580_023_00683_y crossref_primary_10_1074_jbc_RA119_009782 crossref_primary_10_1038_s41392_024_02030_9 crossref_primary_10_1038_s41594_021_00719_x crossref_primary_10_1126_science_adf4197 crossref_primary_10_1002_bies_201900234 crossref_primary_10_1126_sciadv_abd4413 crossref_primary_10_3390_ijms242015245 |
Cites_doi | 10.1038/s41586-018-0029-y 10.1126/science.aaa3761 10.1038/nsmb.3394 10.1146/annurev-biochem-051810-093157 10.1016/j.molcel.2015.01.008 10.1038/nature09321 10.1016/j.jmb.2017.10.029 10.1038/nmeth.4193 10.1016/S0092-8674(02)00654-2 10.1016/S1097-2765(03)00039-X 10.1038/nature08621 10.1038/nature20590 10.1038/nature24046 10.1038/nrm.2017.26 10.1016/S0076-6879(03)75002-2 10.1038/nsmb973 10.1016/j.jsb.2015.08.008 10.1038/nsmb1071 10.1038/s41586-018-0021-6 10.1038/nrm1945 10.1038/nature11625 10.1074/jbc.275.16.11545 10.1016/j.molcel.2010.02.040 10.1038/nature24658 10.1002/jcc.20084 10.1038/nsmb.2457 10.1093/embo-reports/kvf056 10.1128/MCB.21.3.875-883.2001 10.1038/nature23671 10.1038/nsmb.2648 10.1126/science.aam5403 10.1146/annurev.biochem.77.062706.153223 10.7554/eLife.35322 10.1074/jbc.M608301200 10.1016/j.cell.2013.07.011 10.1016/j.jmb.2011.11.010 10.1101/cshperspect.a017905 10.1016/j.sbi.2009.12.002 10.1128/MCB.19.2.1470 10.1038/nature22036 10.1038/s41594-017-0005-5 10.1006/jsbi.2000.4314 10.1038/ncomms15616 10.1016/0022-2836(84)90383-8 10.1107/S0907444912001308 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature America, Inc. 2019 COPYRIGHT 2019 Nature Publishing Group 2019© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019 The Author(s), under exclusive licence to Springer Nature America, Inc. 2019. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2019 – notice: COPYRIGHT 2019 Nature Publishing Group – notice: 2019© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019 – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2019. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QL 7QP 7QR 7TK 7TM 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M7N M7P MBDVC P64 PADUT PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 |
DOI | 10.1038/s41594-019-0199-9 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Research Library Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts Research Library China ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) Research Library China ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Research Library Prep MEDLINE - Academic Research Library Prep MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1545-9985 |
EndPage | 266 |
ExternalDocumentID | A593382308 30872815 10_1038_s41594_019_0199_9 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ .55 .GJ 0R~ 123 29M 36B 39C 3V. 4.4 53G 5BI 5S5 6TJ 70F 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAEEF AAHBH AARCD AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABNNU ABUWG ACBWK ACGFO ACGFS ACIWK ACNCT ACPRK ACRPL ACUHS ADBBV ADFRT ADNMO AENEX AEUYN AFBBN AFFNX AFKRA AFRAH AFSHS AGAYW AGGDT AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ AIYXT AJQPL ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC B0M BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU DB5 DWQXO EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HMCUK HVGLF HZ~ IAO IGS IH2 IHR INH INR ISR ITC L-9 L7B LK8 M0L M1P M2O M7P MVM N9A NNMJJ O9- ODYON P2P PADUT PKN PQQKQ PROAC PSQYO Q2X QF4 QM4 QN7 QO4 RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP X7M XJT ZXP ~8M AAYXX ABFSG ACMFV ACSTC AETEA AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NFIDA NPM AEIIB PMFND 7QL 7QP 7QR 7TK 7TM 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c567t-6ca768646c49d851bb828b538eb8330d23c9469ef1bb898e74b92982549fc5563 |
IEDL.DBID | 7X7 |
ISSN | 1545-9993 1545-9985 |
IngestDate | Fri Jul 11 06:14:40 EDT 2025 Fri Jul 25 09:01:27 EDT 2025 Sat Aug 23 12:52:46 EDT 2025 Tue Jun 17 21:09:28 EDT 2025 Tue Jun 10 20:48:23 EDT 2025 Fri Jun 27 03:57:01 EDT 2025 Thu Apr 03 06:59:37 EDT 2025 Tue Jul 01 01:59:43 EDT 2025 Thu Apr 24 23:07:59 EDT 2025 Fri Feb 21 02:40:14 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c567t-6ca768646c49d851bb828b538eb8330d23c9469ef1bb898e74b92982549fc5563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8684-0339 |
PMID | 30872815 |
PQID | 2202772467 |
PQPubID | 27587 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2193165528 proquest_journals_2545795855 proquest_journals_2202772467 gale_infotracmisc_A593382308 gale_infotracacademiconefile_A593382308 gale_incontextgauss_ISR_A593382308 pubmed_primary_30872815 crossref_primary_10_1038_s41594_019_0199_9 crossref_citationtrail_10_1038_s41594_019_0199_9 springer_journals_10_1038_s41594_019_0199_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-01 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Nature structural & molecular biology |
PublicationTitleAbbrev | Nat Struct Mol Biol |
PublicationTitleAlternate | Nat Struct Mol Biol |
PublicationYear | 2019 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | Zheng (CR43) 2017; 14 Bartholomew (CR4) 2014; 83 Clapier, Iwasa, Cairns, Peterson (CR2) 2017; 18 Frouws, Barth, Richmond (CR30) 2018; 430 Chen, Durkin, Casida (CR38) 2006; 281 Xu (CR40) 2017; 551 Mueller-Planitz, Klinker, Ludwigsen, Becker (CR14) 2013; 20 Narlikar, Fan, Kingston (CR35) 2002; 108 Gamarra, Johnson, Trnka, Burlingame, Narlikar (CR24) 2018; 7 Ayala (CR33) 2018; 556 Carragher (CR41) 2000; 132 CR12 Clapier, Cairns (CR13) 2012; 492 Liu, Li, Xia, Li, Chen (CR11) 2017; 544 Bowman (CR9) 2010; 20 Corona, Clapier, Becker, Tamkun (CR26) 2002; 3 Mueller-Planitz, Klinker, Becker (CR8) 2013; 20 Bilokapic, Strauss, Halic (CR28) 2018; 25 Narlikar, Sundaramoorthy, Owen-Hughes (CR3) 2013; 154 Clapier, Langst, Corona, Becker, Nightingale (CR25) 2001; 21 Saha, Wittmeyer, Cairns (CR7) 2006; 7 Yan, Wang, Tian, Xia, Chen (CR15) 2016; 540 Singh, Murawska, Ladurner (CR19) 2017; 24 Boyer, Shao, Ebright, Peterson (CR21) 2000; 275 Scheres (CR42) 2012; 415 Pettersen (CR45) 2004; 25 Eustermann (CR34) 2018; 556 Sinha, Gross, Narlikar (CR17) 2017; 355 Dechassa (CR36) 2010; 38 Racki (CR23) 2009; 462 Afonine (CR46) 2012; 68 Farnung, Vos, Wigge, Cramer (CR31) 2017; 550 Rohou, Grigorieff (CR44) 2015; 192 Becker, Workman (CR5) 2013; 5 Clapier, Cairns (CR1) 2009; 78 Makde, England, Yennawar, Tan (CR29) 2010; 467 Brahma (CR32) 2017; 8 Zofall, Persinger, Kassabov, Bartholomew (CR10) 2006; 13 Bazett-Jones, Cote, Landel, Peterson, Workman (CR20) 1999; 19 Ausio, Seger, Eisenberg (CR39) 1984; 176 Leonard, Narlikar (CR16) 2015; 57 Dann (CR27) 2017; 548 Dyer (CR37) 2004; 375 Flaus, Owen-Hughes (CR18) 2017; 355 Kassabov, Zhang, Persinger, Bartholomew (CR22) 2003; 11 Saha, Wittmeyer, Cairns (CR6) 2005; 12 CR Clapier (199_CR1) 2009; 78 GD Bowman (199_CR9) 2010; 20 ML Dechassa (199_CR36) 2010; 38 F Mueller-Planitz (199_CR14) 2013; 20 KK Sinha (199_CR17) 2017; 355 199_CR12 M Zofall (199_CR10) 2006; 13 J Ausio (199_CR39) 1984; 176 N Gamarra (199_CR24) 2018; 7 L Farnung (199_CR31) 2017; 550 B Bartholomew (199_CR4) 2014; 83 F Mueller-Planitz (199_CR8) 2013; 20 A Rohou (199_CR44) 2015; 192 EF Pettersen (199_CR45) 2004; 25 A Saha (199_CR7) 2006; 7 CR Clapier (199_CR25) 2001; 21 L Chen (199_CR38) 2006; 281 DP Bazett-Jones (199_CR20) 1999; 19 S Brahma (199_CR32) 2017; 8 SH Scheres (199_CR42) 2012; 415 RD Makde (199_CR29) 2010; 467 CR Clapier (199_CR2) 2017; 18 A Flaus (199_CR18) 2017; 355 S Bilokapic (199_CR28) 2018; 25 PV Afonine (199_CR46) 2012; 68 R Ayala (199_CR33) 2018; 556 B Carragher (199_CR41) 2000; 132 SR Kassabov (199_CR22) 2003; 11 CR Clapier (199_CR13) 2012; 492 PB Becker (199_CR5) 2013; 5 X Liu (199_CR11) 2017; 544 GP Dann (199_CR27) 2017; 548 PN Dyer (199_CR37) 2004; 375 DF Corona (199_CR26) 2002; 3 S Eustermann (199_CR34) 2018; 556 LA Boyer (199_CR21) 2000; 275 SQ Zheng (199_CR43) 2017; 14 HR Singh (199_CR19) 2017; 24 A Saha (199_CR6) 2005; 12 TD Frouws (199_CR30) 2018; 430 J Xu (199_CR40) 2017; 551 GJ Narlikar (199_CR35) 2002; 108 GJ Narlikar (199_CR3) 2013; 154 L Yan (199_CR15) 2016; 540 JD Leonard (199_CR16) 2015; 57 LR Racki (199_CR23) 2009; 462 31171402 - Trends Biochem Sci. 2019 Aug;44(8):643-645 31015735 - Nat Struct Mol Biol. 2019 May;26(5):389 |
References_xml | – volume: 556 start-page: 386 year: 2018 end-page: 390 ident: CR34 article-title: Structural basis for ATP-dependent chromatin remodelling by the INO80 complex publication-title: Nature doi: 10.1038/s41586-018-0029-y – volume: 355 start-page: eaaa3761 year: 2017 ident: CR17 article-title: Distortion of histone octamer core promotes nucleosome mobilization by a chromatin remodeler publication-title: Science doi: 10.1126/science.aaa3761 – volume: 24 start-page: 341 year: 2017 end-page: 343 ident: CR19 article-title: Remodelers tap into nucleosome plasticity publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3394 – volume: 83 start-page: 671 year: 2014 end-page: 696 ident: CR4 article-title: Regulating the chromatin landscape: structural and mechanistic perspectives publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-051810-093157 – volume: 57 start-page: 850 year: 2015 end-page: 859 ident: CR16 article-title: A nucleotide-driven switch regulates flanking DNA length sensing by a dimeric chromatin remodeler publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.01.008 – volume: 467 start-page: 562 year: 2010 end-page: 566 ident: CR29 article-title: Structure of RCC1 chromatin factor bound to the nucleosome core particle publication-title: Nature doi: 10.1038/nature09321 – volume: 430 start-page: 45 year: 2018 end-page: 57 ident: CR30 article-title: Site-specific disulfide crosslinked nucleosomes with enhanced stability publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2017.10.029 – volume: 14 start-page: 331 year: 2017 end-page: 332 ident: CR43 article-title: MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy publication-title: Nat. Methods doi: 10.1038/nmeth.4193 – volume: 108 start-page: 475 year: 2002 end-page: 487 ident: CR35 article-title: Cooperation between complexes that regulate chromatin structure and transcription publication-title: Cell doi: 10.1016/S0092-8674(02)00654-2 – volume: 11 start-page: 391 year: 2003 end-page: 403 ident: CR22 article-title: SWI/SNF unwraps, slides, and rewraps the nucleosome publication-title: Mol. Cell doi: 10.1016/S1097-2765(03)00039-X – volume: 462 start-page: 1016 year: 2009 end-page: 1021 ident: CR23 article-title: The chromatin remodeller ACF acts as a dimeric motor to space nucleosomes publication-title: Nature doi: 10.1038/nature08621 – ident: CR12 – volume: 540 start-page: 466 year: 2016 end-page: 469 ident: CR15 article-title: Structure and regulation of the chromatin remodeller ISWI publication-title: Nature doi: 10.1038/nature20590 – volume: 550 start-page: 539 year: 2017 end-page: 542 ident: CR31 article-title: Nucleosome-Chd1 structure and implications for chromatin remodelling publication-title: Nature doi: 10.1038/nature24046 – volume: 18 start-page: 407 year: 2017 end-page: 422 ident: CR2 article-title: Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.26 – volume: 375 start-page: 23 year: 2004 end-page: 44 ident: CR37 article-title: Reconstitution of nucleosome core particles from recombinant histones and DNA publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(03)75002-2 – volume: 12 start-page: 747 year: 2005 end-page: 755 ident: CR6 article-title: Chromatin remodeling through directional DNA translocation from an internal nucleosomal site publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb973 – volume: 192 start-page: 216 year: 2015 end-page: 221 ident: CR44 article-title: CTFFIND4: Fast and accurate defocus estimation from electron micrographs publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2015.08.008 – volume: 13 start-page: 339 year: 2006 end-page: 346 ident: CR10 article-title: Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb1071 – volume: 556 start-page: 391 year: 2018 end-page: 395 ident: CR33 article-title: Structure and regulation of the human INO80-nucleosome complex publication-title: Nature doi: 10.1038/s41586-018-0021-6 – volume: 7 start-page: 437 year: 2006 end-page: 447 ident: CR7 article-title: Chromatin remodelling: the industrial revolution of DNA around histones publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1945 – volume: 492 start-page: 280 year: 2012 end-page: 284 ident: CR13 article-title: Regulation of ISWI involves inhibitory modules antagonized by nucleosomal epitopes publication-title: Nature doi: 10.1038/nature11625 – volume: 275 start-page: 11545 year: 2000 end-page: 11552 ident: CR21 article-title: Roles of the histone H2A-H2B dimers and the (H3-H4)(2) tetramer in nucleosome remodeling by the SWI-SNF complex publication-title: J. Biol. Chem. doi: 10.1074/jbc.275.16.11545 – volume: 38 start-page: 590 year: 2010 end-page: 602 ident: CR36 article-title: SWI/SNF has intrinsic nucleosome disassembly activity that is dependent on adjacent nucleosomes publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.02.040 – volume: 551 start-page: 653 year: 2017 end-page: 657 ident: CR40 article-title: Structural basis for the initiation of eukaryotic transcription-coupled DNA repair publication-title: Nature doi: 10.1038/nature24658 – volume: 25 start-page: 1605 year: 2004 end-page: 1612 ident: CR45 article-title: UCSF Chimera—a visualization system for exploratory research and analysis publication-title: J. Comput. Chem. doi: 10.1002/jcc.20084 – volume: 20 start-page: 82 year: 2013 end-page: 89 ident: CR14 article-title: The ATPase domain of ISWI is an autonomous nucleosome remodeling machine publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2457 – volume: 3 start-page: 242 year: 2002 end-page: 247 ident: CR26 article-title: Modulation of ISWI function by site-specific histone acetylation publication-title: EMBO Rep. doi: 10.1093/embo-reports/kvf056 – volume: 21 start-page: 875 year: 2001 end-page: 883 ident: CR25 article-title: Critical role for the histone H4 N terminus in nucleosome remodeling by ISWI publication-title: Mol. Cell Biol. doi: 10.1128/MCB.21.3.875-883.2001 – volume: 548 start-page: 607 year: 2017 end-page: 611 ident: CR27 article-title: ISWI chromatin remodellers sense nucleosome modifications to determine substrate preference publication-title: Nature doi: 10.1038/nature23671 – volume: 20 start-page: 1026 year: 2013 end-page: 1032 ident: CR8 article-title: Nucleosome sliding mechanisms: new twists in a looped history publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2648 – volume: 355 start-page: 245 year: 2017 end-page: 246 ident: CR18 article-title: Unlocking the nucleosome publication-title: Science doi: 10.1126/science.aam5403 – volume: 78 start-page: 273 year: 2009 end-page: 304 ident: CR1 article-title: The biology of chromatin remodeling complexes publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.77.062706.153223 – volume: 7 start-page: e35322 year: 2018 ident: CR24 article-title: The nucleosomal acidic patch relieves auto-inhibition by the ISWI remodeler SNF2h publication-title: eLife doi: 10.7554/eLife.35322 – volume: 281 start-page: 38871 year: 2006 end-page: 38878 ident: CR38 article-title: Spontaneous mobility of GABAA receptor M2 extracellular half relative to noncompetitive antagonist action publication-title: J. Biol. Chem. doi: 10.1074/jbc.M608301200 – volume: 154 start-page: 490 year: 2013 end-page: 503 ident: CR3 article-title: Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes publication-title: Cell doi: 10.1016/j.cell.2013.07.011 – volume: 415 start-page: 406 year: 2012 end-page: 418 ident: CR42 article-title: A Bayesian view on cryo-EM structure determination publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2011.11.010 – volume: 5 start-page: 1 year: 2013 end-page: 19 ident: CR5 article-title: Nucleosome remodeling and epigenetics publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a017905 – volume: 20 start-page: 73 year: 2010 end-page: 81 ident: CR9 article-title: Mechanisms of ATP-dependent nucleosome sliding publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2009.12.002 – volume: 19 start-page: 1470 year: 1999 end-page: 1478 ident: CR20 article-title: The SWI/SNF complex creates loop domains in DNA and polynucleosome arrays and can disrupt DNA-histone contacts within these domains publication-title: Mol. Cell Biol. doi: 10.1128/MCB.19.2.1470 – volume: 544 start-page: 440 year: 2017 end-page: 445 ident: CR11 article-title: Mechanism of chromatin remodelling revealed by the Snf2-nucleosome structure publication-title: Nature doi: 10.1038/nature22036 – volume: 25 start-page: 101 year: 2018 end-page: 108 ident: CR28 article-title: Histone octamer rearranges to adapt to DNA unwrapping publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-017-0005-5 – volume: 132 start-page: 33 year: 2000 end-page: 45 ident: CR41 article-title: Leginon: an automated system for acquisition of images from vitreous ice specimens publication-title: J. Struct. Biol. doi: 10.1006/jsbi.2000.4314 – volume: 8 year: 2017 ident: CR32 article-title: INO80 exchanges H2A.Z for H2A by translocating on DNA proximal to histone dimers publication-title: Nat. Commun. doi: 10.1038/ncomms15616 – volume: 176 start-page: 77 year: 1984 end-page: 104 ident: CR39 article-title: Nucleosome core particle stability and conformational change. Effect of temperature, particle and NaCl concentrations, and crosslinking of histone H3 sulfhydryl groups publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(84)90383-8 – volume: 68 start-page: 352 year: 2012 end-page: 367 ident: CR46 article-title: Towards automated crystallographic structure refinement with phenix.refine publication-title: Acta Crystallogr. D doi: 10.1107/S0907444912001308 – ident: 199_CR12 – volume: 5 start-page: 1 year: 2013 ident: 199_CR5 publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a017905 – volume: 24 start-page: 341 year: 2017 ident: 199_CR19 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3394 – volume: 83 start-page: 671 year: 2014 ident: 199_CR4 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-051810-093157 – volume: 18 start-page: 407 year: 2017 ident: 199_CR2 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.26 – volume: 275 start-page: 11545 year: 2000 ident: 199_CR21 publication-title: J. Biol. Chem. doi: 10.1074/jbc.275.16.11545 – volume: 11 start-page: 391 year: 2003 ident: 199_CR22 publication-title: Mol. Cell doi: 10.1016/S1097-2765(03)00039-X – volume: 25 start-page: 1605 year: 2004 ident: 199_CR45 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20084 – volume: 13 start-page: 339 year: 2006 ident: 199_CR10 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb1071 – volume: 38 start-page: 590 year: 2010 ident: 199_CR36 publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.02.040 – volume: 78 start-page: 273 year: 2009 ident: 199_CR1 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.77.062706.153223 – volume: 176 start-page: 77 year: 1984 ident: 199_CR39 publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(84)90383-8 – volume: 192 start-page: 216 year: 2015 ident: 199_CR44 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2015.08.008 – volume: 544 start-page: 440 year: 2017 ident: 199_CR11 publication-title: Nature doi: 10.1038/nature22036 – volume: 556 start-page: 386 year: 2018 ident: 199_CR34 publication-title: Nature doi: 10.1038/s41586-018-0029-y – volume: 492 start-page: 280 year: 2012 ident: 199_CR13 publication-title: Nature doi: 10.1038/nature11625 – volume: 132 start-page: 33 year: 2000 ident: 199_CR41 publication-title: J. Struct. Biol. doi: 10.1006/jsbi.2000.4314 – volume: 8 year: 2017 ident: 199_CR32 publication-title: Nat. Commun. doi: 10.1038/ncomms15616 – volume: 12 start-page: 747 year: 2005 ident: 199_CR6 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb973 – volume: 19 start-page: 1470 year: 1999 ident: 199_CR20 publication-title: Mol. Cell Biol. doi: 10.1128/MCB.19.2.1470 – volume: 108 start-page: 475 year: 2002 ident: 199_CR35 publication-title: Cell doi: 10.1016/S0092-8674(02)00654-2 – volume: 68 start-page: 352 year: 2012 ident: 199_CR46 publication-title: Acta Crystallogr. D doi: 10.1107/S0907444912001308 – volume: 20 start-page: 73 year: 2010 ident: 199_CR9 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2009.12.002 – volume: 20 start-page: 82 year: 2013 ident: 199_CR14 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2457 – volume: 550 start-page: 539 year: 2017 ident: 199_CR31 publication-title: Nature doi: 10.1038/nature24046 – volume: 556 start-page: 391 year: 2018 ident: 199_CR33 publication-title: Nature doi: 10.1038/s41586-018-0021-6 – volume: 415 start-page: 406 year: 2012 ident: 199_CR42 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2011.11.010 – volume: 548 start-page: 607 year: 2017 ident: 199_CR27 publication-title: Nature doi: 10.1038/nature23671 – volume: 57 start-page: 850 year: 2015 ident: 199_CR16 publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.01.008 – volume: 375 start-page: 23 year: 2004 ident: 199_CR37 publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(03)75002-2 – volume: 14 start-page: 331 year: 2017 ident: 199_CR43 publication-title: Nat. Methods doi: 10.1038/nmeth.4193 – volume: 462 start-page: 1016 year: 2009 ident: 199_CR23 publication-title: Nature doi: 10.1038/nature08621 – volume: 21 start-page: 875 year: 2001 ident: 199_CR25 publication-title: Mol. Cell Biol. doi: 10.1128/MCB.21.3.875-883.2001 – volume: 7 start-page: e35322 year: 2018 ident: 199_CR24 publication-title: eLife doi: 10.7554/eLife.35322 – volume: 430 start-page: 45 year: 2018 ident: 199_CR30 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2017.10.029 – volume: 355 start-page: eaaa3761 year: 2017 ident: 199_CR17 publication-title: Science doi: 10.1126/science.aaa3761 – volume: 7 start-page: 437 year: 2006 ident: 199_CR7 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1945 – volume: 3 start-page: 242 year: 2002 ident: 199_CR26 publication-title: EMBO Rep. doi: 10.1093/embo-reports/kvf056 – volume: 281 start-page: 38871 year: 2006 ident: 199_CR38 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M608301200 – volume: 467 start-page: 562 year: 2010 ident: 199_CR29 publication-title: Nature doi: 10.1038/nature09321 – volume: 154 start-page: 490 year: 2013 ident: 199_CR3 publication-title: Cell doi: 10.1016/j.cell.2013.07.011 – volume: 20 start-page: 1026 year: 2013 ident: 199_CR8 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2648 – volume: 25 start-page: 101 year: 2018 ident: 199_CR28 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-017-0005-5 – volume: 551 start-page: 653 year: 2017 ident: 199_CR40 publication-title: Nature doi: 10.1038/nature24658 – volume: 540 start-page: 466 year: 2016 ident: 199_CR15 publication-title: Nature doi: 10.1038/nature20590 – volume: 355 start-page: 245 year: 2017 ident: 199_CR18 publication-title: Science doi: 10.1126/science.aam5403 – reference: 31015735 - Nat Struct Mol Biol. 2019 May;26(5):389 – reference: 31171402 - Trends Biochem Sci. 2019 Aug;44(8):643-645 |
SSID | ssj0025573 |
Score | 2.5440555 |
Snippet | Chromatin remodelers are diverse enzymes, and different models have been proposed to explain how these proteins work. Here we report the 3.3 Å-resolution... Chromatin remodelers are diverse enzymes, and different models have been proposed to explain how these proteins work. Here we report the 3.3 Å-resolution... |
SourceID | proquest gale pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 258 |
SubjectTerms | 631/337/100/102 631/535/1258/1259 Adenosine Adenosine diphosphate Adenosine Diphosphate - metabolism Adenosine Triphosphatases - metabolism Adenosine Triphosphatases - ultrastructure ATPases Baking yeast Biochemistry Biological Microscopy Biomedical and Life Sciences Catalysis Chromatin Chromatin Assembly and Disassembly - genetics Chromatin Assembly and Disassembly - physiology Chromatin remodeling Crosslinking Cryoelectron Microscopy - methods Deformation mechanisms Deoxyribonucleic acid Distortion DNA DNA structure DNA-Binding Proteins - metabolism DNA-Binding Proteins - ultrastructure Domains Electron microscopy Enzymes Fluorides Histones Histones - metabolism Homology Humans Life Sciences Membrane Biology Microscopy Nucleosomes - metabolism Nucleosomes - ultrastructure Polymer crosslinking Protein Structure Proteins RecA protein Saccharomyces cerevisiae Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae - ultrastructure Saccharomyces cerevisiae Proteins - metabolism Saccharomyces cerevisiae Proteins - ultrastructure Transcription Factors - metabolism Translocation Yeast |
Title | Structures of the ISWI–nucleosome complex reveal a conserved mechanism of chromatin remodeling |
URI | https://link.springer.com/article/10.1038/s41594-019-0199-9 https://www.ncbi.nlm.nih.gov/pubmed/30872815 https://www.proquest.com/docview/2202772467 https://www.proquest.com/docview/2545795855 https://www.proquest.com/docview/2193165528 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1db9MwFLVgExIviO8VxhQQEhIoWhPHifOEWrRqRaJCKxN9M7HjABJNtmWV4I3_wD_kl3CP43R0gj1Ukeprx7Gv7XN97XMZe24l9taEDkmD0zDJChpSdihBBJnoUpQ8l7go_G6WHh4nbxdi4TfcWn-ssp8T3URdNgZ75PtkyIgsJ3ArXp-chogaBe-qD6FxnW2DugxHurLFhcElhPMwAyWEBIR479Xkcr-lhQukuLjCE4GkcmNdujw7_7U8XfKXumVocpvd8vgxGHUdfodds_VddqOLKPnjHvs0d3ywKzKig6YKCN0F0_nH6e-fv2oQFzdts7SBO0Zuvwdgb6KyCvqjxuasLYOlxU3gr-0Suc2XswaAtiZJFzGHanSfHU8OPrw5DH0QhdCINDsPU1OQRZEmqUnykuCV1mRjaZrmrJacD8uYm5xMZFshhTomSzQhJmc3VgbsYQ_YVt3UdocFZNnkvMoTzYsoMVIXktAH15EuLWhd5IAN-yZUxjOMI9DFN-U83VyqrtUVtTh-ucoH7OU6y0lHr3GV8DP0iwJtRY1zMZ-LVduq6fxIjUTO4dFEJV54oaqhl5vCXzOgTwDT1Ybk7oYkjSuzmdx3v_LjulUx9oqymFaXfyevlXTAnq6TUTCOstW2WZEMQeYoFSKmNzzstGr96aBnjGVEuV_1anZR-H_b5dHVVXnMbsZOz6Huu2yL9NA-ISR1rvfccNlj26PJeDyj5_hg9v7oDzofGSc |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrRBcEP8sFDAIhASK2sR24hwQKtBqQ9sV6raiNzd2HFqJTQrpCnrjHXgPHoonYSZ_sBX01sNe1mPHsWfibzz2NwBPnKK9NWk81ODQE1GKJuVWFBFBCpPJjMeKLgpvjcPRrni3J_cW4Gd3F4aOVXbfxPpDnZWW9siX0ZGRUYzgVr46-uxR1iiKrnYpNBq12HAnX9Flq14mb3F-nwbB-trOm5HXZhXwrAyjYy-0KULsUIRWxBniDWPQ6TBo984odO6zgNsYfUaXUwn2NBIGIUTtSOWW6LSw3QuwKDi6MgNYfL02fr_du3hS1jFtwiUeQi_exVG5Wq5wqSQaXro05BMt5txKeHo9-GtBPBWhrRe-9atwpUWsbLVRsWuw4IrrcLHJYXlyA_YnNQPtDN12VuYM8SRLJh-SX99_FESVXFbl1LH64Lr7xogvCttK8Y-CtoNdxqaO7h4fVlOqbQ--lAShC5Ssc_Rgj27C7rkM8C0YFGXh7gBDXyrmeSwMT31hlUkV4h1ufJM5IpJRQ1jphlDbltOcUmt80nVsnSvdjLrGEadfrOMhPO-rHDWEHmcJP6Z50USUUdBJnI_prKp0MtnWqzLmFEOlTjxrhfISH27T9mIDvgJxa81JLs1JoiXb-eJu-nX7Jal0QLtTUYDr2b-Le7MYwqO-mBqmw3OFK2cogyDdD6UM8Am3G63qX50IIQPlY-0XnZr9afy_43L37K48hEujna1NvZmMN-7B5aDWeVL9JRigTrr7iOOOzYPWeBjsn7e9_gZqBVKs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structures+of+the+ISWI%E2%80%93nucleosome+complex+reveal+a+conserved+mechanism+of+chromatin+remodeling&rft.jtitle=Nature+structural+%26+molecular+biology&rft.au=Yan%2C+Lijuan&rft.au=Wu%2C+Hao&rft.au=Li%2C+Xuemei&rft.au=Gao%2C+Ning&rft.date=2019-04-01&rft.pub=Nature+Publishing+Group+US&rft.issn=1545-9993&rft.eissn=1545-9985&rft.volume=26&rft.issue=4&rft.spage=258&rft.epage=266&rft_id=info:doi/10.1038%2Fs41594-019-0199-9&rft.externalDocID=10_1038_s41594_019_0199_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-9993&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-9993&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-9993&client=summon |