Structures of the ISWI–nucleosome complex reveal a conserved mechanism of chromatin remodeling

Chromatin remodelers are diverse enzymes, and different models have been proposed to explain how these proteins work. Here we report the 3.3 Å-resolution cryogenic electron microscopy (cryo-EM) structures of Saccharomyces cerevisiae ISWI (ISW1) in complex with the nucleosome in adenosine diphosphate...

Full description

Saved in:
Bibliographic Details
Published inNature structural & molecular biology Vol. 26; no. 4; pp. 258 - 266
Main Authors Yan, Lijuan, Wu, Hao, Li, Xuemei, Gao, Ning, Chen, Zhucheng
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.04.2019
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Chromatin remodelers are diverse enzymes, and different models have been proposed to explain how these proteins work. Here we report the 3.3 Å-resolution cryogenic electron microscopy (cryo-EM) structures of Saccharomyces cerevisiae ISWI (ISW1) in complex with the nucleosome in adenosine diphosphate (ADP)-bound and ADP-BeF x -bound states. The data show that after nucleosome binding, ISW1 is activated by substantial rearrangement of the catalytic domains, with the regulatory AutoN domain packing the first RecA-like core and the NegC domain being disordered. The high-resolution structure reveals local DNA distortion and translocation induced by ISW1 in the ADP-bound state, which is essentially identical to that induced by the Snf2 chromatin remodeler, suggesting a common mechanism of DNA translocation. The histone core remains largely unperturbed, and prevention of histone distortion by crosslinking did not inhibit the activity of yeast ISW1 or its human homolog. Together, our findings suggest a general mechanism of chromatin remodeling involving local DNA distortion without notable histone deformation. Cryo-EM structures of the chromatin remodeler ISWI in complex with the nucleosome show local DNA distortion nearly identical to that induced by Snf2, while the histone core remains largely unperturbed.
AbstractList Chromatin remodelers are diverse enzymes, and different models have been proposed to explain how these proteins work. Here we report the 3.3 Å-resolution cryogenic electron microscopy (cryo-EM) structures of Saccharomyces cerevisiae ISWI (ISW1) in complex with the nucleosome in adenosine diphosphate (ADP)-bound and ADP-BeFx-bound states. The data show that after nucleosome binding, ISW1 is activated by substantial rearrangement of the catalytic domains, with the regulatory AutoN domain packing the first RecA-like core and the NegC domain being disordered. The high-resolution structure reveals local DNA distortion and translocation induced by ISW1 in the ADP-bound state, which is essentially identical to that induced by the Snf2 chromatin remodeler, suggesting a common mechanism of DNA translocation. The histone core remains largely unperturbed, and prevention of histone distortion by crosslinking did not inhibit the activity of yeast ISW1 or its human homolog. Together, our findings suggest a general mechanism of chromatin remodeling involving local DNA distortion without notable histone deformation.Cryo-EM structures of the chromatin remodeler ISWI in complex with the nucleosome show local DNA distortion nearly identical to that induced by Snf2, while the histone core remains largely unperturbed.
Chromatin remodelers are diverse enzymes, and different models have been proposed to explain how these proteins work. Here we report the 3.3 Å-resolution cryogenic electron microscopy (cryo-EM) structures of Saccharomyces cerevisiae ISWI (ISW1) in complex with the nucleosome in adenosine diphosphate (ADP)-bound and ADP-BeF.sub.x-bound states. The data show that after nucleosome binding, ISW1 is activated by substantial rearrangement of the catalytic domains, with the regulatory AutoN domain packing the first RecA-like core and the NegC domain being disordered. The high-resolution structure reveals local DNA distortion and translocation induced by ISW1 in the ADP-bound state, which is essentially identical to that induced by the Snf2 chromatin remodeler, suggesting a common mechanism of DNA translocation. The histone core remains largely unperturbed, and prevention of histone distortion by crosslinking did not inhibit the activity of yeast ISW1 or its human homolog. Together, our findings suggest a general mechanism of chromatin remodeling involving local DNA distortion without notable histone deformation.
Chromatin remodelers are diverse enzymes, and different models have been proposed to explain how these proteins work. Here we report the 3.3 Å-resolution cryogenic electron microscopy (cryo-EM) structures of Saccharomyces cerevisiae ISWI (ISW1) in complex with the nucleosome in adenosine diphosphate (ADP)-bound and ADP-BeFx-bound states. The data show that after nucleosome binding, ISW1 is activated by substantial rearrangement of the catalytic domains, with the regulatory AutoN domain packing the first RecA-like core and the NegC domain being disordered. The high-resolution structure reveals local DNA distortion and translocation induced by ISW1 in the ADP-bound state, which is essentially identical to that induced by the Snf2 chromatin remodeler, suggesting a common mechanism of DNA translocation. The histone core remains largely unperturbed, and prevention of histone distortion by crosslinking did not inhibit the activity of yeast ISW1 or its human homolog. Together, our findings suggest a general mechanism of chromatin remodeling involving local DNA distortion without notable histone deformation.Chromatin remodelers are diverse enzymes, and different models have been proposed to explain how these proteins work. Here we report the 3.3 Å-resolution cryogenic electron microscopy (cryo-EM) structures of Saccharomyces cerevisiae ISWI (ISW1) in complex with the nucleosome in adenosine diphosphate (ADP)-bound and ADP-BeFx-bound states. The data show that after nucleosome binding, ISW1 is activated by substantial rearrangement of the catalytic domains, with the regulatory AutoN domain packing the first RecA-like core and the NegC domain being disordered. The high-resolution structure reveals local DNA distortion and translocation induced by ISW1 in the ADP-bound state, which is essentially identical to that induced by the Snf2 chromatin remodeler, suggesting a common mechanism of DNA translocation. The histone core remains largely unperturbed, and prevention of histone distortion by crosslinking did not inhibit the activity of yeast ISW1 or its human homolog. Together, our findings suggest a general mechanism of chromatin remodeling involving local DNA distortion without notable histone deformation.
Chromatin remodelers are diverse enzymes, and different models have been proposed to explain how these proteins work. Here we report the 3.3 Å-resolution cryogenic electron microscopy (cryo-EM) structures of Saccharomyces cerevisiae ISWI (ISW1) in complex with the nucleosome in adenosine diphosphate (ADP)-bound and ADP-BeF.sub.x-bound states. The data show that after nucleosome binding, ISW1 is activated by substantial rearrangement of the catalytic domains, with the regulatory AutoN domain packing the first RecA-like core and the NegC domain being disordered. The high-resolution structure reveals local DNA distortion and translocation induced by ISW1 in the ADP-bound state, which is essentially identical to that induced by the Snf2 chromatin remodeler, suggesting a common mechanism of DNA translocation. The histone core remains largely unperturbed, and prevention of histone distortion by crosslinking did not inhibit the activity of yeast ISW1 or its human homolog. Together, our findings suggest a general mechanism of chromatin remodeling involving local DNA distortion without notable histone deformation. Cryo-EM structures of the chromatin remodeler ISWI in complex with the nucleosome show local DNA distortion nearly identical to that induced by Snf2, while the histone core remains largely unperturbed.
Chromatin remodelers are diverse enzymes, and different models have been proposed to explain how these proteins work. Here we report the 3.3 Å-resolution cryogenic electron microscopy (cryo-EM) structures of Saccharomyces cerevisiae ISWI (ISW1) in complex with the nucleosome in adenosine diphosphate (ADP)-bound and ADP-BeF x -bound states. The data show that after nucleosome binding, ISW1 is activated by substantial rearrangement of the catalytic domains, with the regulatory AutoN domain packing the first RecA-like core and the NegC domain being disordered. The high-resolution structure reveals local DNA distortion and translocation induced by ISW1 in the ADP-bound state, which is essentially identical to that induced by the Snf2 chromatin remodeler, suggesting a common mechanism of DNA translocation. The histone core remains largely unperturbed, and prevention of histone distortion by crosslinking did not inhibit the activity of yeast ISW1 or its human homolog. Together, our findings suggest a general mechanism of chromatin remodeling involving local DNA distortion without notable histone deformation. Cryo-EM structures of the chromatin remodeler ISWI in complex with the nucleosome show local DNA distortion nearly identical to that induced by Snf2, while the histone core remains largely unperturbed.
Chromatin remodelers are diverse enzymes, and different models have been proposed to explain how these proteins work. Here we report the 3.3 Å-resolution cryogenic electron microscopy (cryo-EM) structures of Saccharomyces cerevisiae ISWI (ISW1) in complex with the nucleosome in adenosine diphosphate (ADP)-bound and ADP-BeF -bound states. The data show that after nucleosome binding, ISW1 is activated by substantial rearrangement of the catalytic domains, with the regulatory AutoN domain packing the first RecA-like core and the NegC domain being disordered. The high-resolution structure reveals local DNA distortion and translocation induced by ISW1 in the ADP-bound state, which is essentially identical to that induced by the Snf2 chromatin remodeler, suggesting a common mechanism of DNA translocation. The histone core remains largely unperturbed, and prevention of histone distortion by crosslinking did not inhibit the activity of yeast ISW1 or its human homolog. Together, our findings suggest a general mechanism of chromatin remodeling involving local DNA distortion without notable histone deformation.
Audience Academic
Author Gao, Ning
Wu, Hao
Yan, Lijuan
Li, Xuemei
Chen, Zhucheng
Author_xml – sequence: 1
  givenname: Lijuan
  surname: Yan
  fullname: Yan, Lijuan
  organization: MOE Key Laboratory of Protein Science, Tsinghua University, School of Life Science, Tsinghua University
– sequence: 2
  givenname: Hao
  surname: Wu
  fullname: Wu, Hao
  organization: School of Life Science, Tsinghua University, Peking University–Tsinghua University–National Institute of Biological Sciences Joint Graduate Program
– sequence: 3
  givenname: Xuemei
  surname: Li
  fullname: Li, Xuemei
  organization: Electron Microscopy Laboratory, School of Physics, Peking University
– sequence: 4
  givenname: Ning
  surname: Gao
  fullname: Gao, Ning
  email: gaon@pku.edu.cn
  organization: State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University
– sequence: 5
  givenname: Zhucheng
  orcidid: 0000-0002-8684-0339
  surname: Chen
  fullname: Chen, Zhucheng
  email: zhucheng_chen@tsinghua.edu.cn
  organization: MOE Key Laboratory of Protein Science, Tsinghua University, School of Life Science, Tsinghua University, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30872815$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAQxy1URL94AC4oEhc4pMR2HNvHqqKwUiUkloqjcZzJrqvEXmynam-8A2_Ik-BoS6utoLJGtsa__8xoZg7RnvMOEHqFqxNcUfE-1pjJuqywnE2W8hk6wKxmpZSC7d2_Jd1HhzFeVRVhjNMXaJ9WghOB2QH6vkxhMmkKEAvfF2kNxWL5bfH75y83mQF89CMUxo-bAW6KANegh0Jnh4sQrqErRjBr7WwcZ7VZBz_qZF0mR9_BYN3qGD3v9RDh5d19hC7PP3w9-1RefP64ODu9KA1reCobo3kjmroxtewEw20riGgZFdAKSquOUCPrRkI__0gBvG4lkYKwWvaGsYYeobfbuJvgf0wQkxptNDAM2oGfoiJYUtwwRkRG3zxCr_wUXK5O5XiMSyYYe5IiFeGc1A1_oFZ6AGVd71PQZk6tTpmkVJDc60yd_IPKp4PR5mZCb7N_R_BuR5CZBDdppacY1WL5ZZd9fVfo1I7QqU2wow636u-QM4C3gAk-xgD9PYIrNS-S2i6Syks0m1Qya_gjjbEpjzbXEbQdnlSSrTLmLG4F4aFv_xf9Afpz2M8
CitedBy_id crossref_primary_10_1016_j_jmb_2020_09_007
crossref_primary_10_1038_s41467_024_46178_y
crossref_primary_10_1093_plcell_koac211
crossref_primary_10_1038_s41467_021_24320_4
crossref_primary_10_1038_s41467_020_17959_y
crossref_primary_10_15252_embr_201948029
crossref_primary_10_1038_s41594_021_00621_6
crossref_primary_10_1093_nar_gkaf064
crossref_primary_10_21769_BioProtoc_4094
crossref_primary_10_1038_s41467_020_19700_1
crossref_primary_10_1016_j_sbi_2021_05_006
crossref_primary_10_1038_s41467_021_22636_9
crossref_primary_10_1038_s41586_022_04658_5
crossref_primary_10_1038_s41598_021_82842_9
crossref_primary_10_1073_pnas_2103723118
crossref_primary_10_1016_j_sbi_2020_06_024
crossref_primary_10_1016_j_str_2024_05_013
crossref_primary_10_3389_fonc_2022_935877
crossref_primary_10_1016_j_sbi_2019_09_002
crossref_primary_10_1016_j_tibs_2020_08_010
crossref_primary_10_3389_fgene_2020_600615
crossref_primary_10_1016_j_sbi_2020_06_008
crossref_primary_10_1016_j_tibs_2019_09_002
crossref_primary_10_1038_s41467_019_12007_w
crossref_primary_10_1360_TB_2024_0480
crossref_primary_10_1146_annurev_biophys_082520_080201
crossref_primary_10_1038_s41589_019_0413_4
crossref_primary_10_3390_polym15071763
crossref_primary_10_3389_fcell_2020_560098
crossref_primary_10_1016_j_cell_2023_08_001
crossref_primary_10_1038_s41467_024_45237_8
crossref_primary_10_1038_s41594_023_01174_6
crossref_primary_10_1021_jacs_4c14136
crossref_primary_10_1038_s41467_019_13550_2
crossref_primary_10_1038_s41467_020_14856_2
crossref_primary_10_1042_BST20230070
crossref_primary_10_1101_gr_278402_123
crossref_primary_10_1016_j_sbi_2019_11_013
crossref_primary_10_1016_j_jmb_2021_166929
crossref_primary_10_1093_nar_gkad738
crossref_primary_10_1128_mbio_03456_21
crossref_primary_10_3390_ijms22010076
crossref_primary_10_7554_eLife_71420
crossref_primary_10_1016_j_celrep_2019_05_106
crossref_primary_10_1073_pnas_2014498118
crossref_primary_10_1107_S2053230X24004655
crossref_primary_10_1016_j_molcel_2021_08_010
crossref_primary_10_1038_s44318_025_00407_2
crossref_primary_10_1038_s41586_020_2088_0
crossref_primary_10_1016_j_molcel_2022_01_028
crossref_primary_10_3390_ijms22115578
crossref_primary_10_1016_j_molcel_2024_08_022
crossref_primary_10_1038_s41594_021_00620_7
crossref_primary_10_1016_j_molcel_2020_09_024
crossref_primary_10_1016_j_molcel_2020_10_038
crossref_primary_10_1093_nar_gkz670
crossref_primary_10_1186_s13046_021_02151_x
crossref_primary_10_7554_eLife_56178
crossref_primary_10_1016_j_tibs_2019_05_001
crossref_primary_10_1038_s41580_023_00683_y
crossref_primary_10_1074_jbc_RA119_009782
crossref_primary_10_1038_s41392_024_02030_9
crossref_primary_10_1038_s41594_021_00719_x
crossref_primary_10_1126_science_adf4197
crossref_primary_10_1002_bies_201900234
crossref_primary_10_1126_sciadv_abd4413
crossref_primary_10_3390_ijms242015245
Cites_doi 10.1038/s41586-018-0029-y
10.1126/science.aaa3761
10.1038/nsmb.3394
10.1146/annurev-biochem-051810-093157
10.1016/j.molcel.2015.01.008
10.1038/nature09321
10.1016/j.jmb.2017.10.029
10.1038/nmeth.4193
10.1016/S0092-8674(02)00654-2
10.1016/S1097-2765(03)00039-X
10.1038/nature08621
10.1038/nature20590
10.1038/nature24046
10.1038/nrm.2017.26
10.1016/S0076-6879(03)75002-2
10.1038/nsmb973
10.1016/j.jsb.2015.08.008
10.1038/nsmb1071
10.1038/s41586-018-0021-6
10.1038/nrm1945
10.1038/nature11625
10.1074/jbc.275.16.11545
10.1016/j.molcel.2010.02.040
10.1038/nature24658
10.1002/jcc.20084
10.1038/nsmb.2457
10.1093/embo-reports/kvf056
10.1128/MCB.21.3.875-883.2001
10.1038/nature23671
10.1038/nsmb.2648
10.1126/science.aam5403
10.1146/annurev.biochem.77.062706.153223
10.7554/eLife.35322
10.1074/jbc.M608301200
10.1016/j.cell.2013.07.011
10.1016/j.jmb.2011.11.010
10.1101/cshperspect.a017905
10.1016/j.sbi.2009.12.002
10.1128/MCB.19.2.1470
10.1038/nature22036
10.1038/s41594-017-0005-5
10.1006/jsbi.2000.4314
10.1038/ncomms15616
10.1016/0022-2836(84)90383-8
10.1107/S0907444912001308
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature America, Inc. 2019
COPYRIGHT 2019 Nature Publishing Group
2019© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019
The Author(s), under exclusive licence to Springer Nature America, Inc. 2019.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2019
– notice: COPYRIGHT 2019 Nature Publishing Group
– notice: 2019© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019
– notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2019.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QL
7QP
7QR
7TK
7TM
7U9
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7N
M7P
MBDVC
P64
PADUT
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
DOI 10.1038/s41594-019-0199-9
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Research Library
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Research Library China
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Research Library China
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Research Library Prep

MEDLINE - Academic


Research Library Prep
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1545-9985
EndPage 266
ExternalDocumentID A593382308
30872815
10_1038_s41594_019_0199_9
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
.55
.GJ
0R~
123
29M
36B
39C
3V.
4.4
53G
5BI
5S5
6TJ
70F
7X7
88A
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAEEF
AAHBH
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABNNU
ABUWG
ACBWK
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACRPL
ACUHS
ADBBV
ADFRT
ADNMO
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFRAH
AFSHS
AGAYW
AGGDT
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
AIYXT
AJQPL
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
DB5
DWQXO
EAD
EAP
EBC
EBD
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IGS
IH2
IHR
INH
INR
ISR
ITC
L-9
L7B
LK8
M0L
M1P
M2O
M7P
MVM
N9A
NNMJJ
O9-
ODYON
P2P
PADUT
PKN
PQQKQ
PROAC
PSQYO
Q2X
QF4
QM4
QN7
QO4
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
X7M
XJT
ZXP
~8M
AAYXX
ABFSG
ACMFV
ACSTC
AETEA
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
AEIIB
PMFND
7QL
7QP
7QR
7TK
7TM
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c567t-6ca768646c49d851bb828b538eb8330d23c9469ef1bb898e74b92982549fc5563
IEDL.DBID 7X7
ISSN 1545-9993
1545-9985
IngestDate Fri Jul 11 06:14:40 EDT 2025
Fri Jul 25 09:01:27 EDT 2025
Sat Aug 23 12:52:46 EDT 2025
Tue Jun 17 21:09:28 EDT 2025
Tue Jun 10 20:48:23 EDT 2025
Fri Jun 27 03:57:01 EDT 2025
Thu Apr 03 06:59:37 EDT 2025
Tue Jul 01 01:59:43 EDT 2025
Thu Apr 24 23:07:59 EDT 2025
Fri Feb 21 02:40:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c567t-6ca768646c49d851bb828b538eb8330d23c9469ef1bb898e74b92982549fc5563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8684-0339
PMID 30872815
PQID 2202772467
PQPubID 27587
PageCount 9
ParticipantIDs proquest_miscellaneous_2193165528
proquest_journals_2545795855
proquest_journals_2202772467
gale_infotracmisc_A593382308
gale_infotracacademiconefile_A593382308
gale_incontextgauss_ISR_A593382308
pubmed_primary_30872815
crossref_primary_10_1038_s41594_019_0199_9
crossref_citationtrail_10_1038_s41594_019_0199_9
springer_journals_10_1038_s41594_019_0199_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Nature structural & molecular biology
PublicationTitleAbbrev Nat Struct Mol Biol
PublicationTitleAlternate Nat Struct Mol Biol
PublicationYear 2019
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Zheng (CR43) 2017; 14
Bartholomew (CR4) 2014; 83
Clapier, Iwasa, Cairns, Peterson (CR2) 2017; 18
Frouws, Barth, Richmond (CR30) 2018; 430
Chen, Durkin, Casida (CR38) 2006; 281
Xu (CR40) 2017; 551
Mueller-Planitz, Klinker, Ludwigsen, Becker (CR14) 2013; 20
Narlikar, Fan, Kingston (CR35) 2002; 108
Gamarra, Johnson, Trnka, Burlingame, Narlikar (CR24) 2018; 7
Ayala (CR33) 2018; 556
Carragher (CR41) 2000; 132
CR12
Clapier, Cairns (CR13) 2012; 492
Liu, Li, Xia, Li, Chen (CR11) 2017; 544
Bowman (CR9) 2010; 20
Corona, Clapier, Becker, Tamkun (CR26) 2002; 3
Mueller-Planitz, Klinker, Becker (CR8) 2013; 20
Bilokapic, Strauss, Halic (CR28) 2018; 25
Narlikar, Sundaramoorthy, Owen-Hughes (CR3) 2013; 154
Clapier, Langst, Corona, Becker, Nightingale (CR25) 2001; 21
Saha, Wittmeyer, Cairns (CR7) 2006; 7
Yan, Wang, Tian, Xia, Chen (CR15) 2016; 540
Singh, Murawska, Ladurner (CR19) 2017; 24
Boyer, Shao, Ebright, Peterson (CR21) 2000; 275
Scheres (CR42) 2012; 415
Pettersen (CR45) 2004; 25
Eustermann (CR34) 2018; 556
Sinha, Gross, Narlikar (CR17) 2017; 355
Dechassa (CR36) 2010; 38
Racki (CR23) 2009; 462
Afonine (CR46) 2012; 68
Farnung, Vos, Wigge, Cramer (CR31) 2017; 550
Rohou, Grigorieff (CR44) 2015; 192
Becker, Workman (CR5) 2013; 5
Clapier, Cairns (CR1) 2009; 78
Makde, England, Yennawar, Tan (CR29) 2010; 467
Brahma (CR32) 2017; 8
Zofall, Persinger, Kassabov, Bartholomew (CR10) 2006; 13
Bazett-Jones, Cote, Landel, Peterson, Workman (CR20) 1999; 19
Ausio, Seger, Eisenberg (CR39) 1984; 176
Leonard, Narlikar (CR16) 2015; 57
Dann (CR27) 2017; 548
Dyer (CR37) 2004; 375
Flaus, Owen-Hughes (CR18) 2017; 355
Kassabov, Zhang, Persinger, Bartholomew (CR22) 2003; 11
Saha, Wittmeyer, Cairns (CR6) 2005; 12
CR Clapier (199_CR1) 2009; 78
GD Bowman (199_CR9) 2010; 20
ML Dechassa (199_CR36) 2010; 38
F Mueller-Planitz (199_CR14) 2013; 20
KK Sinha (199_CR17) 2017; 355
199_CR12
M Zofall (199_CR10) 2006; 13
J Ausio (199_CR39) 1984; 176
N Gamarra (199_CR24) 2018; 7
L Farnung (199_CR31) 2017; 550
B Bartholomew (199_CR4) 2014; 83
F Mueller-Planitz (199_CR8) 2013; 20
A Rohou (199_CR44) 2015; 192
EF Pettersen (199_CR45) 2004; 25
A Saha (199_CR7) 2006; 7
CR Clapier (199_CR25) 2001; 21
L Chen (199_CR38) 2006; 281
DP Bazett-Jones (199_CR20) 1999; 19
S Brahma (199_CR32) 2017; 8
SH Scheres (199_CR42) 2012; 415
RD Makde (199_CR29) 2010; 467
CR Clapier (199_CR2) 2017; 18
A Flaus (199_CR18) 2017; 355
S Bilokapic (199_CR28) 2018; 25
PV Afonine (199_CR46) 2012; 68
R Ayala (199_CR33) 2018; 556
B Carragher (199_CR41) 2000; 132
SR Kassabov (199_CR22) 2003; 11
CR Clapier (199_CR13) 2012; 492
PB Becker (199_CR5) 2013; 5
X Liu (199_CR11) 2017; 544
GP Dann (199_CR27) 2017; 548
PN Dyer (199_CR37) 2004; 375
DF Corona (199_CR26) 2002; 3
S Eustermann (199_CR34) 2018; 556
LA Boyer (199_CR21) 2000; 275
SQ Zheng (199_CR43) 2017; 14
HR Singh (199_CR19) 2017; 24
A Saha (199_CR6) 2005; 12
TD Frouws (199_CR30) 2018; 430
J Xu (199_CR40) 2017; 551
GJ Narlikar (199_CR35) 2002; 108
GJ Narlikar (199_CR3) 2013; 154
L Yan (199_CR15) 2016; 540
JD Leonard (199_CR16) 2015; 57
LR Racki (199_CR23) 2009; 462
31171402 - Trends Biochem Sci. 2019 Aug;44(8):643-645
31015735 - Nat Struct Mol Biol. 2019 May;26(5):389
References_xml – volume: 556
  start-page: 386
  year: 2018
  end-page: 390
  ident: CR34
  article-title: Structural basis for ATP-dependent chromatin remodelling by the INO80 complex
  publication-title: Nature
  doi: 10.1038/s41586-018-0029-y
– volume: 355
  start-page: eaaa3761
  year: 2017
  ident: CR17
  article-title: Distortion of histone octamer core promotes nucleosome mobilization by a chromatin remodeler
  publication-title: Science
  doi: 10.1126/science.aaa3761
– volume: 24
  start-page: 341
  year: 2017
  end-page: 343
  ident: CR19
  article-title: Remodelers tap into nucleosome plasticity
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.3394
– volume: 83
  start-page: 671
  year: 2014
  end-page: 696
  ident: CR4
  article-title: Regulating the chromatin landscape: structural and mechanistic perspectives
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-051810-093157
– volume: 57
  start-page: 850
  year: 2015
  end-page: 859
  ident: CR16
  article-title: A nucleotide-driven switch regulates flanking DNA length sensing by a dimeric chromatin remodeler
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.01.008
– volume: 467
  start-page: 562
  year: 2010
  end-page: 566
  ident: CR29
  article-title: Structure of RCC1 chromatin factor bound to the nucleosome core particle
  publication-title: Nature
  doi: 10.1038/nature09321
– volume: 430
  start-page: 45
  year: 2018
  end-page: 57
  ident: CR30
  article-title: Site-specific disulfide crosslinked nucleosomes with enhanced stability
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2017.10.029
– volume: 14
  start-page: 331
  year: 2017
  end-page: 332
  ident: CR43
  article-title: MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4193
– volume: 108
  start-page: 475
  year: 2002
  end-page: 487
  ident: CR35
  article-title: Cooperation between complexes that regulate chromatin structure and transcription
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00654-2
– volume: 11
  start-page: 391
  year: 2003
  end-page: 403
  ident: CR22
  article-title: SWI/SNF unwraps, slides, and rewraps the nucleosome
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(03)00039-X
– volume: 462
  start-page: 1016
  year: 2009
  end-page: 1021
  ident: CR23
  article-title: The chromatin remodeller ACF acts as a dimeric motor to space nucleosomes
  publication-title: Nature
  doi: 10.1038/nature08621
– ident: CR12
– volume: 540
  start-page: 466
  year: 2016
  end-page: 469
  ident: CR15
  article-title: Structure and regulation of the chromatin remodeller ISWI
  publication-title: Nature
  doi: 10.1038/nature20590
– volume: 550
  start-page: 539
  year: 2017
  end-page: 542
  ident: CR31
  article-title: Nucleosome-Chd1 structure and implications for chromatin remodelling
  publication-title: Nature
  doi: 10.1038/nature24046
– volume: 18
  start-page: 407
  year: 2017
  end-page: 422
  ident: CR2
  article-title: Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2017.26
– volume: 375
  start-page: 23
  year: 2004
  end-page: 44
  ident: CR37
  article-title: Reconstitution of nucleosome core particles from recombinant histones and DNA
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(03)75002-2
– volume: 12
  start-page: 747
  year: 2005
  end-page: 755
  ident: CR6
  article-title: Chromatin remodeling through directional DNA translocation from an internal nucleosomal site
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb973
– volume: 192
  start-page: 216
  year: 2015
  end-page: 221
  ident: CR44
  article-title: CTFFIND4: Fast and accurate defocus estimation from electron micrographs
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2015.08.008
– volume: 13
  start-page: 339
  year: 2006
  end-page: 346
  ident: CR10
  article-title: Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb1071
– volume: 556
  start-page: 391
  year: 2018
  end-page: 395
  ident: CR33
  article-title: Structure and regulation of the human INO80-nucleosome complex
  publication-title: Nature
  doi: 10.1038/s41586-018-0021-6
– volume: 7
  start-page: 437
  year: 2006
  end-page: 447
  ident: CR7
  article-title: Chromatin remodelling: the industrial revolution of DNA around histones
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1945
– volume: 492
  start-page: 280
  year: 2012
  end-page: 284
  ident: CR13
  article-title: Regulation of ISWI involves inhibitory modules antagonized by nucleosomal epitopes
  publication-title: Nature
  doi: 10.1038/nature11625
– volume: 275
  start-page: 11545
  year: 2000
  end-page: 11552
  ident: CR21
  article-title: Roles of the histone H2A-H2B dimers and the (H3-H4)(2) tetramer in nucleosome remodeling by the SWI-SNF complex
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.275.16.11545
– volume: 38
  start-page: 590
  year: 2010
  end-page: 602
  ident: CR36
  article-title: SWI/SNF has intrinsic nucleosome disassembly activity that is dependent on adjacent nucleosomes
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.02.040
– volume: 551
  start-page: 653
  year: 2017
  end-page: 657
  ident: CR40
  article-title: Structural basis for the initiation of eukaryotic transcription-coupled DNA repair
  publication-title: Nature
  doi: 10.1038/nature24658
– volume: 25
  start-page: 1605
  year: 2004
  end-page: 1612
  ident: CR45
  article-title: UCSF Chimera—a visualization system for exploratory research and analysis
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20084
– volume: 20
  start-page: 82
  year: 2013
  end-page: 89
  ident: CR14
  article-title: The ATPase domain of ISWI is an autonomous nucleosome remodeling machine
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2457
– volume: 3
  start-page: 242
  year: 2002
  end-page: 247
  ident: CR26
  article-title: Modulation of ISWI function by site-specific histone acetylation
  publication-title: EMBO Rep.
  doi: 10.1093/embo-reports/kvf056
– volume: 21
  start-page: 875
  year: 2001
  end-page: 883
  ident: CR25
  article-title: Critical role for the histone H4 N terminus in nucleosome remodeling by ISWI
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.21.3.875-883.2001
– volume: 548
  start-page: 607
  year: 2017
  end-page: 611
  ident: CR27
  article-title: ISWI chromatin remodellers sense nucleosome modifications to determine substrate preference
  publication-title: Nature
  doi: 10.1038/nature23671
– volume: 20
  start-page: 1026
  year: 2013
  end-page: 1032
  ident: CR8
  article-title: Nucleosome sliding mechanisms: new twists in a looped history
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2648
– volume: 355
  start-page: 245
  year: 2017
  end-page: 246
  ident: CR18
  article-title: Unlocking the nucleosome
  publication-title: Science
  doi: 10.1126/science.aam5403
– volume: 78
  start-page: 273
  year: 2009
  end-page: 304
  ident: CR1
  article-title: The biology of chromatin remodeling complexes
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.77.062706.153223
– volume: 7
  start-page: e35322
  year: 2018
  ident: CR24
  article-title: The nucleosomal acidic patch relieves auto-inhibition by the ISWI remodeler SNF2h
  publication-title: eLife
  doi: 10.7554/eLife.35322
– volume: 281
  start-page: 38871
  year: 2006
  end-page: 38878
  ident: CR38
  article-title: Spontaneous mobility of GABAA receptor M2 extracellular half relative to noncompetitive antagonist action
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M608301200
– volume: 154
  start-page: 490
  year: 2013
  end-page: 503
  ident: CR3
  article-title: Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes
  publication-title: Cell
  doi: 10.1016/j.cell.2013.07.011
– volume: 415
  start-page: 406
  year: 2012
  end-page: 418
  ident: CR42
  article-title: A Bayesian view on cryo-EM structure determination
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2011.11.010
– volume: 5
  start-page: 1
  year: 2013
  end-page: 19
  ident: CR5
  article-title: Nucleosome remodeling and epigenetics
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a017905
– volume: 20
  start-page: 73
  year: 2010
  end-page: 81
  ident: CR9
  article-title: Mechanisms of ATP-dependent nucleosome sliding
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2009.12.002
– volume: 19
  start-page: 1470
  year: 1999
  end-page: 1478
  ident: CR20
  article-title: The SWI/SNF complex creates loop domains in DNA and polynucleosome arrays and can disrupt DNA-histone contacts within these domains
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.19.2.1470
– volume: 544
  start-page: 440
  year: 2017
  end-page: 445
  ident: CR11
  article-title: Mechanism of chromatin remodelling revealed by the Snf2-nucleosome structure
  publication-title: Nature
  doi: 10.1038/nature22036
– volume: 25
  start-page: 101
  year: 2018
  end-page: 108
  ident: CR28
  article-title: Histone octamer rearranges to adapt to DNA unwrapping
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-017-0005-5
– volume: 132
  start-page: 33
  year: 2000
  end-page: 45
  ident: CR41
  article-title: Leginon: an automated system for acquisition of images from vitreous ice specimens
  publication-title: J. Struct. Biol.
  doi: 10.1006/jsbi.2000.4314
– volume: 8
  year: 2017
  ident: CR32
  article-title: INO80 exchanges H2A.Z for H2A by translocating on DNA proximal to histone dimers
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15616
– volume: 176
  start-page: 77
  year: 1984
  end-page: 104
  ident: CR39
  article-title: Nucleosome core particle stability and conformational change. Effect of temperature, particle and NaCl concentrations, and crosslinking of histone H3 sulfhydryl groups
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(84)90383-8
– volume: 68
  start-page: 352
  year: 2012
  end-page: 367
  ident: CR46
  article-title: Towards automated crystallographic structure refinement with phenix.refine
  publication-title: Acta Crystallogr. D
  doi: 10.1107/S0907444912001308
– ident: 199_CR12
– volume: 5
  start-page: 1
  year: 2013
  ident: 199_CR5
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a017905
– volume: 24
  start-page: 341
  year: 2017
  ident: 199_CR19
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.3394
– volume: 83
  start-page: 671
  year: 2014
  ident: 199_CR4
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-051810-093157
– volume: 18
  start-page: 407
  year: 2017
  ident: 199_CR2
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2017.26
– volume: 275
  start-page: 11545
  year: 2000
  ident: 199_CR21
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.275.16.11545
– volume: 11
  start-page: 391
  year: 2003
  ident: 199_CR22
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(03)00039-X
– volume: 25
  start-page: 1605
  year: 2004
  ident: 199_CR45
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20084
– volume: 13
  start-page: 339
  year: 2006
  ident: 199_CR10
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb1071
– volume: 38
  start-page: 590
  year: 2010
  ident: 199_CR36
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.02.040
– volume: 78
  start-page: 273
  year: 2009
  ident: 199_CR1
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.77.062706.153223
– volume: 176
  start-page: 77
  year: 1984
  ident: 199_CR39
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(84)90383-8
– volume: 192
  start-page: 216
  year: 2015
  ident: 199_CR44
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2015.08.008
– volume: 544
  start-page: 440
  year: 2017
  ident: 199_CR11
  publication-title: Nature
  doi: 10.1038/nature22036
– volume: 556
  start-page: 386
  year: 2018
  ident: 199_CR34
  publication-title: Nature
  doi: 10.1038/s41586-018-0029-y
– volume: 492
  start-page: 280
  year: 2012
  ident: 199_CR13
  publication-title: Nature
  doi: 10.1038/nature11625
– volume: 132
  start-page: 33
  year: 2000
  ident: 199_CR41
  publication-title: J. Struct. Biol.
  doi: 10.1006/jsbi.2000.4314
– volume: 8
  year: 2017
  ident: 199_CR32
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15616
– volume: 12
  start-page: 747
  year: 2005
  ident: 199_CR6
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb973
– volume: 19
  start-page: 1470
  year: 1999
  ident: 199_CR20
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.19.2.1470
– volume: 108
  start-page: 475
  year: 2002
  ident: 199_CR35
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00654-2
– volume: 68
  start-page: 352
  year: 2012
  ident: 199_CR46
  publication-title: Acta Crystallogr. D
  doi: 10.1107/S0907444912001308
– volume: 20
  start-page: 73
  year: 2010
  ident: 199_CR9
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2009.12.002
– volume: 20
  start-page: 82
  year: 2013
  ident: 199_CR14
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2457
– volume: 550
  start-page: 539
  year: 2017
  ident: 199_CR31
  publication-title: Nature
  doi: 10.1038/nature24046
– volume: 556
  start-page: 391
  year: 2018
  ident: 199_CR33
  publication-title: Nature
  doi: 10.1038/s41586-018-0021-6
– volume: 415
  start-page: 406
  year: 2012
  ident: 199_CR42
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2011.11.010
– volume: 548
  start-page: 607
  year: 2017
  ident: 199_CR27
  publication-title: Nature
  doi: 10.1038/nature23671
– volume: 57
  start-page: 850
  year: 2015
  ident: 199_CR16
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.01.008
– volume: 375
  start-page: 23
  year: 2004
  ident: 199_CR37
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(03)75002-2
– volume: 14
  start-page: 331
  year: 2017
  ident: 199_CR43
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4193
– volume: 462
  start-page: 1016
  year: 2009
  ident: 199_CR23
  publication-title: Nature
  doi: 10.1038/nature08621
– volume: 21
  start-page: 875
  year: 2001
  ident: 199_CR25
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.21.3.875-883.2001
– volume: 7
  start-page: e35322
  year: 2018
  ident: 199_CR24
  publication-title: eLife
  doi: 10.7554/eLife.35322
– volume: 430
  start-page: 45
  year: 2018
  ident: 199_CR30
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2017.10.029
– volume: 355
  start-page: eaaa3761
  year: 2017
  ident: 199_CR17
  publication-title: Science
  doi: 10.1126/science.aaa3761
– volume: 7
  start-page: 437
  year: 2006
  ident: 199_CR7
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1945
– volume: 3
  start-page: 242
  year: 2002
  ident: 199_CR26
  publication-title: EMBO Rep.
  doi: 10.1093/embo-reports/kvf056
– volume: 281
  start-page: 38871
  year: 2006
  ident: 199_CR38
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M608301200
– volume: 467
  start-page: 562
  year: 2010
  ident: 199_CR29
  publication-title: Nature
  doi: 10.1038/nature09321
– volume: 154
  start-page: 490
  year: 2013
  ident: 199_CR3
  publication-title: Cell
  doi: 10.1016/j.cell.2013.07.011
– volume: 20
  start-page: 1026
  year: 2013
  ident: 199_CR8
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2648
– volume: 25
  start-page: 101
  year: 2018
  ident: 199_CR28
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-017-0005-5
– volume: 551
  start-page: 653
  year: 2017
  ident: 199_CR40
  publication-title: Nature
  doi: 10.1038/nature24658
– volume: 540
  start-page: 466
  year: 2016
  ident: 199_CR15
  publication-title: Nature
  doi: 10.1038/nature20590
– volume: 355
  start-page: 245
  year: 2017
  ident: 199_CR18
  publication-title: Science
  doi: 10.1126/science.aam5403
– reference: 31015735 - Nat Struct Mol Biol. 2019 May;26(5):389
– reference: 31171402 - Trends Biochem Sci. 2019 Aug;44(8):643-645
SSID ssj0025573
Score 2.5440555
Snippet Chromatin remodelers are diverse enzymes, and different models have been proposed to explain how these proteins work. Here we report the 3.3 Å-resolution...
Chromatin remodelers are diverse enzymes, and different models have been proposed to explain how these proteins work. Here we report the 3.3 Å-resolution...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 258
SubjectTerms 631/337/100/102
631/535/1258/1259
Adenosine
Adenosine diphosphate
Adenosine Diphosphate - metabolism
Adenosine Triphosphatases - metabolism
Adenosine Triphosphatases - ultrastructure
ATPases
Baking yeast
Biochemistry
Biological Microscopy
Biomedical and Life Sciences
Catalysis
Chromatin
Chromatin Assembly and Disassembly - genetics
Chromatin Assembly and Disassembly - physiology
Chromatin remodeling
Crosslinking
Cryoelectron Microscopy - methods
Deformation mechanisms
Deoxyribonucleic acid
Distortion
DNA
DNA structure
DNA-Binding Proteins - metabolism
DNA-Binding Proteins - ultrastructure
Domains
Electron microscopy
Enzymes
Fluorides
Histones
Histones - metabolism
Homology
Humans
Life Sciences
Membrane Biology
Microscopy
Nucleosomes - metabolism
Nucleosomes - ultrastructure
Polymer crosslinking
Protein Structure
Proteins
RecA protein
Saccharomyces cerevisiae
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae - ultrastructure
Saccharomyces cerevisiae Proteins - metabolism
Saccharomyces cerevisiae Proteins - ultrastructure
Transcription Factors - metabolism
Translocation
Yeast
Title Structures of the ISWI–nucleosome complex reveal a conserved mechanism of chromatin remodeling
URI https://link.springer.com/article/10.1038/s41594-019-0199-9
https://www.ncbi.nlm.nih.gov/pubmed/30872815
https://www.proquest.com/docview/2202772467
https://www.proquest.com/docview/2545795855
https://www.proquest.com/docview/2193165528
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1db9MwFLVgExIviO8VxhQQEhIoWhPHifOEWrRqRaJCKxN9M7HjABJNtmWV4I3_wD_kl3CP43R0gj1Ukeprx7Gv7XN97XMZe24l9taEDkmD0zDJChpSdihBBJnoUpQ8l7go_G6WHh4nbxdi4TfcWn-ssp8T3URdNgZ75PtkyIgsJ3ArXp-chogaBe-qD6FxnW2DugxHurLFhcElhPMwAyWEBIR479Xkcr-lhQukuLjCE4GkcmNdujw7_7U8XfKXumVocpvd8vgxGHUdfodds_VddqOLKPnjHvs0d3ywKzKig6YKCN0F0_nH6e-fv2oQFzdts7SBO0Zuvwdgb6KyCvqjxuasLYOlxU3gr-0Suc2XswaAtiZJFzGHanSfHU8OPrw5DH0QhdCINDsPU1OQRZEmqUnykuCV1mRjaZrmrJacD8uYm5xMZFshhTomSzQhJmc3VgbsYQ_YVt3UdocFZNnkvMoTzYsoMVIXktAH15EuLWhd5IAN-yZUxjOMI9DFN-U83VyqrtUVtTh-ucoH7OU6y0lHr3GV8DP0iwJtRY1zMZ-LVduq6fxIjUTO4dFEJV54oaqhl5vCXzOgTwDT1Ybk7oYkjSuzmdx3v_LjulUx9oqymFaXfyevlXTAnq6TUTCOstW2WZEMQeYoFSKmNzzstGr96aBnjGVEuV_1anZR-H_b5dHVVXnMbsZOz6Huu2yL9NA-ISR1rvfccNlj26PJeDyj5_hg9v7oDzofGSc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrRBcEP8sFDAIhASK2sR24hwQKtBqQ9sV6raiNzd2HFqJTQrpCnrjHXgPHoonYSZ_sBX01sNe1mPHsWfibzz2NwBPnKK9NWk81ODQE1GKJuVWFBFBCpPJjMeKLgpvjcPRrni3J_cW4Gd3F4aOVXbfxPpDnZWW9siX0ZGRUYzgVr46-uxR1iiKrnYpNBq12HAnX9Flq14mb3F-nwbB-trOm5HXZhXwrAyjYy-0KULsUIRWxBniDWPQ6TBo984odO6zgNsYfUaXUwn2NBIGIUTtSOWW6LSw3QuwKDi6MgNYfL02fr_du3hS1jFtwiUeQi_exVG5Wq5wqSQaXro05BMt5txKeHo9-GtBPBWhrRe-9atwpUWsbLVRsWuw4IrrcLHJYXlyA_YnNQPtDN12VuYM8SRLJh-SX99_FESVXFbl1LH64Lr7xogvCttK8Y-CtoNdxqaO7h4fVlOqbQ--lAShC5Ssc_Rgj27C7rkM8C0YFGXh7gBDXyrmeSwMT31hlUkV4h1ufJM5IpJRQ1jphlDbltOcUmt80nVsnSvdjLrGEadfrOMhPO-rHDWEHmcJP6Z50USUUdBJnI_prKp0MtnWqzLmFEOlTjxrhfISH27T9mIDvgJxa81JLs1JoiXb-eJu-nX7Jal0QLtTUYDr2b-Le7MYwqO-mBqmw3OFK2cogyDdD6UM8Am3G63qX50IIQPlY-0XnZr9afy_43L37K48hEujna1NvZmMN-7B5aDWeVL9JRigTrr7iOOOzYPWeBjsn7e9_gZqBVKs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structures+of+the+ISWI%E2%80%93nucleosome+complex+reveal+a+conserved+mechanism+of+chromatin+remodeling&rft.jtitle=Nature+structural+%26+molecular+biology&rft.au=Yan%2C+Lijuan&rft.au=Wu%2C+Hao&rft.au=Li%2C+Xuemei&rft.au=Gao%2C+Ning&rft.date=2019-04-01&rft.pub=Nature+Publishing+Group+US&rft.issn=1545-9993&rft.eissn=1545-9985&rft.volume=26&rft.issue=4&rft.spage=258&rft.epage=266&rft_id=info:doi/10.1038%2Fs41594-019-0199-9&rft.externalDocID=10_1038_s41594_019_0199_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-9993&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-9993&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-9993&client=summon