Comparison of predicted and actual consequences of missense mutations

Each person’s genome sequence has thousands of missense variants. Practical interpretation of their functional significance must rely on computational inferences in the absence of exhaustive experimental measurements. Here we analyzed the efficacy of these inferences in 33 de novo missense mutations...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 112; no. 37; pp. E5189 - E5198
Main Authors Miosge, Lisa A., Field, Matthew A., Sontani, Yovina, Cho, Vicky, Johnson, Simon, Palkova, Anna, Balakishnan, Bhavani, Liang, Rong, Zhang, Yafei, Lyon, Stephen, Beutler, Bruce, Whittle, Belinda, Bertram, Edward M., Enders, Anselm, Goodnow, Christopher C., Andrews, T. Daniel
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 15.09.2015
National Acad Sciences
SeriesPNAS Plus
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Each person’s genome sequence has thousands of missense variants. Practical interpretation of their functional significance must rely on computational inferences in the absence of exhaustive experimental measurements. Here we analyzed the efficacy of these inferences in 33 de novo missense mutations revealed by sequencing in first-generation progeny ofN-ethyl-N-nitrosourea–treated mice, involving 23 essential immune system genes. Poly-Phen2, SIFT, MutationAssessor, Panther, CADD, and Condel were used to predict each mutation’s functional importance, whereas the actual effect was measured by breeding and testing homozygotes for the expected in vivo loss-of-function phenotype. Only 20% of mutations predicted to be deleterious by PolyPhen2 (and 15% by CADD) showed a discernible phenotype in individual homozygotes. Half of all possible missense mutations in the same 23 immune genes were predicted to be deleterious, and most of these appear to become subject to purifying selection because few persist between separate mouse substrains, rodents, or primates. Because defects in immune genes could be phenotypically masked in vivo by compensation and environment, we compared inferences by the same tools with the in vitro phenotype of all 2,314 possible missense variants inTP53; 42% of mutations predicted by PolyPhen2 to be deleterious (and 45% by CADD) had little measurable consequence forTP53-promoted transcription. We conclude that for de novo or low-frequency missense mutations found by genome sequencing, half those inferred as deleterious correspond to nearly neutral mutations that have little impact on the clinical phenotype of individual cases but will nevertheless become subject to purifying selection.
AbstractList Computational tools applied to any human genome sequence identify hundreds of genetic variants predicted to disrupt the function of individual proteins as the result of a single codon change. These tools have been trained on disease mutations and common polymorphisms but have yet to be tested against an unbiased spectrum of random mutations arising de novo. Here we perform such a test comparing the predicted and actual effects of de novo mutations in 23 genes with essential functions for normal immunity and all possible mutations in the TP53 tumor suppressor gene. These results highlight an important gap in our ability to relate genotype to phenotype in clinical genome sequencing: the inability to differentiate immediately clinically relevant mutations from nearly neutral mutations. Each person’s genome sequence has thousands of missense variants. Practical interpretation of their functional significance must rely on computational inferences in the absence of exhaustive experimental measurements. Here we analyzed the efficacy of these inferences in 33 de novo missense mutations revealed by sequencing in first-generation progeny of N -ethyl- N -nitrosourea–treated mice, involving 23 essential immune system genes. PolyPhen2, SIFT, MutationAssessor, Panther, CADD, and Condel were used to predict each mutation’s functional importance, whereas the actual effect was measured by breeding and testing homozygotes for the expected in vivo loss-of-function phenotype. Only 20% of mutations predicted to be deleterious by PolyPhen2 (and 15% by CADD) showed a discernible phenotype in individual homozygotes. Half of all possible missense mutations in the same 23 immune genes were predicted to be deleterious, and most of these appear to become subject to purifying selection because few persist between separate mouse substrains, rodents, or primates. Because defects in immune genes could be phenotypically masked in vivo by compensation and environment, we compared inferences by the same tools with the in vitro phenotype of all 2,314 possible missense variants in TP53 ; 42% of mutations predicted by PolyPhen2 to be deleterious (and 45% by CADD) had little measurable consequence for TP53 -promoted transcription. We conclude that for de novo or low-frequency missense mutations found by genome sequencing, half those inferred as deleterious correspond to nearly neutral mutations that have little impact on the clinical phenotype of individual cases but will nevertheless become subject to purifying selection.
Each person's genome sequence has thousands of missense variants. Practical interpretation of their functional significance must rely on computational inferences in the absence of exhaustive experimental measurements. Here we analyzed the efficacy of these inferences in 33 de novo missense mutations revealed by sequencing in first-generation progeny of N-ethyl-N-nitrosourea-treated mice, involving 23 essential immune system genes. PolyPhen2, SIFT, MutationAssessor, Panther, CADD, and Condel were used to predict each mutation's functional importance, whereas the actual effect was measured by breeding and testing homozygotes for the expected in vivo loss-of-function phenotype. Only 20% of mutations predicted to be deleterious by PolyPhen2 (and 15% by CADD) showed a discernible phenotype in individual homozygotes. Half of all possible missense mutations in the same 23 immune genes were predicted to be deleterious, and most of these appear to become subject to purifying selection because few persist between separate mouse substrains, rodents, or primates. Because defects in immune genes could be phenotypically masked in vivo by compensation and environment, we compared inferences by the same tools with the in vitro phenotype of all 2,314 possible missense variants in TP53; 42% of mutations predicted by PolyPhen2 to be deleterious (and 45% by CADD) had little measurable consequence for TP53-promoted transcription. We conclude that for de novo or low-frequency missense mutations found by genome sequencing, half those inferred as deleterious correspond to nearly neutral mutations that have little impact on the clinical phenotype of individual cases but will nevertheless become subject to purifying selection.
Each person’s genome sequence has thousands of missense variants. Practical interpretation of their functional significance must rely on computational inferences in the absence of exhaustive experimental measurements. Here we analyzed the efficacy of these inferences in 33 de novo missense mutations revealed by sequencing in first-generation progeny ofN-ethyl-N-nitrosourea–treated mice, involving 23 essential immune system genes. Poly-Phen2, SIFT, MutationAssessor, Panther, CADD, and Condel were used to predict each mutation’s functional importance, whereas the actual effect was measured by breeding and testing homozygotes for the expected in vivo loss-of-function phenotype. Only 20% of mutations predicted to be deleterious by PolyPhen2 (and 15% by CADD) showed a discernible phenotype in individual homozygotes. Half of all possible missense mutations in the same 23 immune genes were predicted to be deleterious, and most of these appear to become subject to purifying selection because few persist between separate mouse substrains, rodents, or primates. Because defects in immune genes could be phenotypically masked in vivo by compensation and environment, we compared inferences by the same tools with the in vitro phenotype of all 2,314 possible missense variants inTP53; 42% of mutations predicted by PolyPhen2 to be deleterious (and 45% by CADD) had little measurable consequence forTP53-promoted transcription. We conclude that for de novo or low-frequency missense mutations found by genome sequencing, half those inferred as deleterious correspond to nearly neutral mutations that have little impact on the clinical phenotype of individual cases but will nevertheless become subject to purifying selection.
Each person's genome sequence has thousands of missense variants. Practical interpretation of their functional significance must rely on computational inferences in the absence of exhaustive experimental measurements. Here we analyzed the efficacy of these inferences in 33 de novo missense mutations revealed by sequencing in first-generation progeny of N-ethyl-N-nitrosourea-treated mice, involving 23 essential immune system genes. PolyPhen2, SIFT, MutationAssessor, Panther, CADD, and Condel were used to predict each mutation's functional importance, whereas the actual effect was measured by breeding and testing homozygotes for the expected in vivo loss-of-function phenotype. Only 20% of mutations predicted to be deleterious by PolyPhen2 (and 15% by CADD) showed a discernible phenotype in individual homozygotes. Half of all possible missense mutations in the same 23 immune genes were predicted to be deleterious, and most of these appear to become subject to purifying selection because few persist between separate mouse substrains, rodents, or primates. Because defects in immune genes could be phenotypically masked in vivo by compensation and environment, we compared inferences by the same tools with the in vitro phenotype of all 2,314 possible missense variants in TP53; 42% of mutations predicted by PolyPhen2 to be deleterious (and 45% by CADD) had little measurable consequence for TP53-promoted transcription. We conclude that for de novo or low-frequency missense mutations found by genome sequencing, half those inferred as deleterious correspond to nearly neutral mutations that have little impact on the clinical phenotype of individual cases but will nevertheless become subject to purifying selection.Each person's genome sequence has thousands of missense variants. Practical interpretation of their functional significance must rely on computational inferences in the absence of exhaustive experimental measurements. Here we analyzed the efficacy of these inferences in 33 de novo missense mutations revealed by sequencing in first-generation progeny of N-ethyl-N-nitrosourea-treated mice, involving 23 essential immune system genes. PolyPhen2, SIFT, MutationAssessor, Panther, CADD, and Condel were used to predict each mutation's functional importance, whereas the actual effect was measured by breeding and testing homozygotes for the expected in vivo loss-of-function phenotype. Only 20% of mutations predicted to be deleterious by PolyPhen2 (and 15% by CADD) showed a discernible phenotype in individual homozygotes. Half of all possible missense mutations in the same 23 immune genes were predicted to be deleterious, and most of these appear to become subject to purifying selection because few persist between separate mouse substrains, rodents, or primates. Because defects in immune genes could be phenotypically masked in vivo by compensation and environment, we compared inferences by the same tools with the in vitro phenotype of all 2,314 possible missense variants in TP53; 42% of mutations predicted by PolyPhen2 to be deleterious (and 45% by CADD) had little measurable consequence for TP53-promoted transcription. We conclude that for de novo or low-frequency missense mutations found by genome sequencing, half those inferred as deleterious correspond to nearly neutral mutations that have little impact on the clinical phenotype of individual cases but will nevertheless become subject to purifying selection.
Author Field, Matthew A.
Balakishnan, Bhavani
Cho, Vicky
Palkova, Anna
Sontani, Yovina
Whittle, Belinda
Beutler, Bruce
Bertram, Edward M.
Johnson, Simon
Zhang, Yafei
Enders, Anselm
Miosge, Lisa A.
Liang, Rong
Goodnow, Christopher C.
Andrews, T. Daniel
Lyon, Stephen
Author_xml – sequence: 1
  givenname: Lisa A.
  surname: Miosge
  fullname: Miosge, Lisa A.
  organization: Immunogenomics Laboratory, John Curtin School of Medical Research, Australian National University, Canberra City, ACT 2601, Australia
– sequence: 2
  givenname: Matthew A.
  surname: Field
  fullname: Field, Matthew A.
  organization: Immunogenomics Laboratory, John Curtin School of Medical Research, Australian National University, Canberra City, ACT 2601, Australia
– sequence: 3
  givenname: Yovina
  surname: Sontani
  fullname: Sontani, Yovina
  organization: Immunogenomics Laboratory, John Curtin School of Medical Research, Australian National University, Canberra City, ACT 2601, Australia
– sequence: 4
  givenname: Vicky
  surname: Cho
  fullname: Cho, Vicky
  organization: Immunogenomics Laboratory, John Curtin School of Medical Research, Australian National University, Canberra City, ACT 2601, Australia
– sequence: 5
  givenname: Simon
  surname: Johnson
  fullname: Johnson, Simon
  organization: Immunogenomics Laboratory, John Curtin School of Medical Research, Australian National University, Canberra City, ACT 2601, Australia
– sequence: 6
  givenname: Anna
  surname: Palkova
  fullname: Palkova, Anna
  organization: Immunogenomics Laboratory, John Curtin School of Medical Research, Australian National University, Canberra City, ACT 2601, Australia
– sequence: 7
  givenname: Bhavani
  surname: Balakishnan
  fullname: Balakishnan, Bhavani
  organization: Australian Phenomics Facility, John Curtin School of Medical Research, Australian National University, Canberra City, ACT 2601, Australia
– sequence: 8
  givenname: Rong
  surname: Liang
  fullname: Liang, Rong
  organization: Australian Phenomics Facility, John Curtin School of Medical Research, Australian National University, Canberra City, ACT 2601, Australia
– sequence: 9
  givenname: Yafei
  surname: Zhang
  fullname: Zhang, Yafei
  organization: Australian Phenomics Facility, John Curtin School of Medical Research, Australian National University, Canberra City, ACT 2601, Australia
– sequence: 10
  givenname: Stephen
  surname: Lyon
  fullname: Lyon, Stephen
  organization: Center for Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
– sequence: 11
  givenname: Bruce
  surname: Beutler
  fullname: Beutler, Bruce
  organization: Center for Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
– sequence: 12
  givenname: Belinda
  surname: Whittle
  fullname: Whittle, Belinda
  organization: Australian Phenomics Facility, John Curtin School of Medical Research, Australian National University, Canberra City, ACT 2601, Australia
– sequence: 13
  givenname: Edward M.
  surname: Bertram
  fullname: Bertram, Edward M.
  organization: Australian Phenomics Facility, John Curtin School of Medical Research, Australian National University, Canberra City, ACT 2601, Australia
– sequence: 14
  givenname: Anselm
  surname: Enders
  fullname: Enders, Anselm
  organization: Ramaciotti Immunisation Genomics Laboratory, John Curtin School of Medical Research, Australian National University, Canberra City, ACT 2601, Australia
– sequence: 15
  givenname: Christopher C.
  surname: Goodnow
  fullname: Goodnow, Christopher C.
  organization: Immunogenomics Laboratory, John Curtin School of Medical Research, Australian National University, Canberra City, ACT 2601, Australia
– sequence: 16
  givenname: T. Daniel
  surname: Andrews
  fullname: Andrews, T. Daniel
  organization: Immunogenomics Laboratory, John Curtin School of Medical Research, Australian National University, Canberra City, ACT 2601, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26269570$$D View this record in MEDLINE/PubMed
BookMark eNqNkc2LFDEQxYOsuLOrZ09KgxcvvZtK5_MiyDB-wIIXPYdMulp76E7GpHvB_940PbuuC4KHJJD61eNVvQtyFmJAQl4CvQKqmutjcPkKBIDQ5WJPyAaogVpyQ8_IhlKmas0ZPycXOR8opUZo-oycM8mkEYpuyG4bx6NLfY6hil11TNj2fsK2cqEcP81uqHwMGX_OGDzmBRr7nLF8VeM8uakv1efkaeeGjC9O7yX59mH3dfupvvny8fP2_U3thVRTLYRpAQwyY1Cp1oBGjsLvW0clA72XqtOdkwJbdCCbVnApS4dWXGvWGGwuybtV9zjvR2w9him5wR5TP7r0y0bX278rof9hv8dby4VSwE0ReHsSSLFMlCdbhvE4DC5gnLMFxZTUQDn_DxQawUzhC_rmEXqIcwplEwvFi9gq-Pqh-XvXd2EUQKyATzHnhJ31_brgMks_WKB2Cd0uods_oZe-60d9d9L_7qhOVpbCPQ3MNsruBOhlU69W5JCnmB6Y5VJQY5rfSRfCZw
CitedBy_id crossref_primary_10_3389_fimmu_2017_00847
crossref_primary_10_3389_fgene_2019_00168
crossref_primary_10_1186_s13048_020_00654_3
crossref_primary_10_1080_17460441_2019_1588883
crossref_primary_10_1093_hmg_ddx310
crossref_primary_10_1002_humu_23193
crossref_primary_10_1016_j_csbj_2019_01_008
crossref_primary_10_1093_nargab_lqab079
crossref_primary_10_1016_j_freeradbiomed_2018_12_010
crossref_primary_10_3390_ijms24065198
crossref_primary_10_1016_j_coisb_2018_09_006
crossref_primary_10_1007_s00439_016_1658_6
crossref_primary_10_3389_fendo_2022_891586
crossref_primary_10_3389_fneur_2020_625428
crossref_primary_10_1016_j_cyto_2018_03_021
crossref_primary_10_1016_j_cancergen_2021_11_004
crossref_primary_10_1590_1519_6984_188655
crossref_primary_10_1002_humu_23873
crossref_primary_10_1371_journal_pgen_1006506
crossref_primary_10_7717_peerj_7667
crossref_primary_10_1038_s41598_018_38189_9
crossref_primary_10_1002_mgg3_928
crossref_primary_10_1073_pnas_1515057112
crossref_primary_10_1038_s41698_023_00420_w
crossref_primary_10_1002_jimd_12227
crossref_primary_10_1002_ajmg_b_32816
crossref_primary_10_1093_bioadv_vbae138
crossref_primary_10_1007_s10549_016_3944_3
crossref_primary_10_1016_j_breast_2017_09_007
crossref_primary_10_1073_pnas_1518646112
crossref_primary_10_3390_life13071532
crossref_primary_10_1038_s41598_024_76202_6
crossref_primary_10_1016_j_ajhg_2017_07_014
crossref_primary_10_3389_fendo_2021_698511
crossref_primary_10_7717_peerj_cs_1942
crossref_primary_10_1093_hmg_ddz051
crossref_primary_10_1002_ece3_2989
crossref_primary_10_1182_blood_2021011075
crossref_primary_10_1073_pnas_1705795114
crossref_primary_10_3390_membranes11080599
crossref_primary_10_1093_molbev_msw182
crossref_primary_10_1038_ncomms12353
crossref_primary_10_1007_s12038_023_00408_5
crossref_primary_10_1016_j_ygeno_2023_110589
crossref_primary_10_1016_j_cca_2017_04_012
crossref_primary_10_1016_j_cell_2017_11_033
crossref_primary_10_7717_peerj_11774
crossref_primary_10_1371_journal_pcbi_1007701
crossref_primary_10_1101_gr_252601_119
crossref_primary_10_1136_jmedgenet_2016_104064
crossref_primary_10_1038_srep37298
crossref_primary_10_3389_fgene_2018_00729
crossref_primary_10_1007_s12687_016_0289_x
crossref_primary_10_1371_journal_pone_0170386
crossref_primary_10_1038_sdata_2016_112
crossref_primary_10_1158_2326_6066_CIR_19_0866
crossref_primary_10_1002_humu_23930
crossref_primary_10_1016_j_sbi_2018_02_006
crossref_primary_10_1002_ajmg_a_38622
crossref_primary_10_1038_s41598_018_22531_2
crossref_primary_10_1186_s12920_018_0353_y
crossref_primary_10_1038_s41587_022_01276_4
crossref_primary_10_1186_s13000_021_01086_3
crossref_primary_10_3389_fgene_2019_00258
crossref_primary_10_3390_ijms232112975
crossref_primary_10_1038_emi_2017_65
crossref_primary_10_1038_s41467_017_02806_4
crossref_primary_10_4049_jimmunol_1901464
crossref_primary_10_1021_acs_chemrestox_6b00244
crossref_primary_10_1096_fj_201901455R
crossref_primary_10_1242_dmm_036517
crossref_primary_10_1186_s40246_017_0104_8
crossref_primary_10_1016_j_molmed_2016_02_006
crossref_primary_10_3390_genes13020382
crossref_primary_10_3389_fmolb_2020_00169
crossref_primary_10_2174_0113892029236347240308054538
crossref_primary_10_1016_j_jaci_2023_03_028
crossref_primary_10_1016_j_pediatrneurol_2017_12_005
crossref_primary_10_1007_s00439_021_02316_w
crossref_primary_10_1016_j_ejmg_2017_08_005
crossref_primary_10_1093_bib_bbx049
crossref_primary_10_1002_ajmg_c_31745
crossref_primary_10_1074_jbc_RA119_009251
crossref_primary_10_1080_10495398_2023_2295926
crossref_primary_10_3389_fgene_2019_00248
crossref_primary_10_1155_2023_5162256
crossref_primary_10_1093_hmg_ddy286
crossref_primary_10_3103_S0891416823030072
crossref_primary_10_1111_andr_12815
crossref_primary_10_1371_journal_pgen_1009774
crossref_primary_10_1038_s41435_017_0002_z
crossref_primary_10_1038_s41467_024_44804_3
crossref_primary_10_1126_scitranslmed_abc1739
crossref_primary_10_1002_humu_23832
crossref_primary_10_1186_s12885_017_3099_6
crossref_primary_10_1002_humu_23313
crossref_primary_10_1038_s41467_022_31686_6
crossref_primary_10_1002_humu_22987
crossref_primary_10_1093_bja_aew065
crossref_primary_10_1007_s00439_020_02246_z
crossref_primary_10_1016_j_csbj_2022_04_028
crossref_primary_10_3389_fmed_2022_806696
crossref_primary_10_1073_pnas_1715896115
crossref_primary_10_1093_biolre_ioz089
crossref_primary_10_3390_genes15030333
crossref_primary_10_1002_humu_23266
crossref_primary_10_1016_j_xhgg_2024_100344
crossref_primary_10_1038_s41467_020_19669_x
crossref_primary_10_1038_s41467_023_43249_4
crossref_primary_10_1371_journal_pone_0192446
crossref_primary_10_3389_fgene_2022_962449
crossref_primary_10_3390_ijms19010100
crossref_primary_10_1073_pnas_1524016113
crossref_primary_10_1016_j_pbi_2016_02_008
crossref_primary_10_3390_genes12060827
crossref_primary_10_7554_eLife_48339
crossref_primary_10_1016_j_heliyon_2024_e27655
crossref_primary_10_2144_000114492
crossref_primary_10_1158_0008_5472_CAN_17_0992
crossref_primary_10_1016_j_trecan_2022_04_009
crossref_primary_10_1016_j_dnarep_2023_103563
crossref_primary_10_1016_j_jmb_2019_04_009
crossref_primary_10_2139_ssrn_4201188
crossref_primary_10_1152_ajplung_00009_2021
crossref_primary_10_1111_cge_13190
crossref_primary_10_1093_hmg_ddae082
crossref_primary_10_3390_ijms24065819
crossref_primary_10_1002_humu_23293
crossref_primary_10_1002_mgg3_959
crossref_primary_10_1038_s41416_022_02059_z
crossref_primary_10_1111_imcb_12372
crossref_primary_10_1371_journal_pone_0214015
crossref_primary_10_1002_gcc_22487
crossref_primary_10_1016_j_ajhg_2017_04_010
crossref_primary_10_1089_gtmb_2016_0051
crossref_primary_10_3390_ijms21165857
crossref_primary_10_1038_s41467_025_57757_y
crossref_primary_10_1007_s00439_022_02457_6
crossref_primary_10_1038_s41593_020_00765_6
crossref_primary_10_1038_s41598_017_05081_x
crossref_primary_10_1146_annurev_genom_083118_014845
crossref_primary_10_1186_s12864_020_6446_y
crossref_primary_10_1093_hmg_ddab344
crossref_primary_10_1038_s41525_024_00416_w
crossref_primary_10_1038_s41598_019_50302_0
crossref_primary_10_1210_js_2018_00077
crossref_primary_10_1016_j_isci_2020_101368
crossref_primary_10_1016_j_jacc_2016_11_060
crossref_primary_10_1084_jem_20210566
crossref_primary_10_3390_ijms25052910
crossref_primary_10_1016_j_jaci_2016_09_035
crossref_primary_10_1016_j_ajhg_2022_05_003
crossref_primary_10_1073_pnas_2219925120
crossref_primary_10_1016_j_smim_2017_12_008
crossref_primary_10_1038_nrc_2016_35
crossref_primary_10_1210_jc_2017_02434
crossref_primary_10_1111_trf_15992
crossref_primary_10_1186_s12859_016_1325_x
crossref_primary_10_3389_fphar_2018_01437
crossref_primary_10_1534_g3_118_200563
crossref_primary_10_1016_j_jaci_2016_08_003
Cites_doi 10.1002/humu.20495
10.1038/35049558
10.1084/jem.177.6.1699
10.1038/nrg3463
10.1038/nature04072
10.1007/s00439-014-1470-0
10.1016/1074-7613(95)90114-0
10.1093/nar/gkr407
10.1038/nmeth0410-248
10.1101/gad.14.5.521
10.1073/pnas.0404380101
10.1101/gr.3804205
10.1093/nar/gki070
10.1038/sj.ejhg.5201649
10.1126/science.8372353
10.1126/science.1215040
10.4049/jimmunol.151.5.2546
10.1101/gr.3577405
10.1038/ng.2892
10.1038/gim.2012.157
10.1038/ni980
10.1128/MCB.19.5.3877
10.1016/S1074-7613(00)80618-4
10.1016/0092-8674(92)90030-G
10.1016/0092-8674(92)90029-C
10.1016/S1074-7613(00)80554-3
10.1073/pnas.0509585102
10.1002/humu.21445
10.1016/1074-7613(95)90115-9
10.1084/jem.183.4.1707
10.1098/rsob.120061
10.1093/nar/gkt1168
10.1038/384634a0
10.1084/jem.180.5.1955
10.1126/science.8023157
10.1016/0092-8674(93)90369-2
10.1093/emboj/18.22.6455
10.1016/S1074-7613(00)80619-6
10.1038/ni.1820
10.1016/1074-7613(95)90180-9
10.1038/nature10413
10.4049/jimmunol.1103142
10.1074/jbc.M009476200
10.1016/S1097-2765(02)00755-4
10.1126/science.274.5288.798
10.1126/science.270.5237.794
10.1038/nrg2146
10.1038/377635a0
10.1002/humu.22516
10.1126/science.1219240
10.1093/nar/gkt1223
10.1016/1074-7613(95)90066-7
10.1038/ni763
10.1186/s13059-014-0438-7
10.1016/0092-8674(93)90081-Z
10.1038/79766
10.1111/j.1399-0004.2009.01351.x
10.1093/nar/gki138
10.1093/bioinformatics/btn435
10.1016/j.it.2012.12.001
10.1002/humu.21490
10.1038/ni.2011
10.1038/nprot.2009.86
10.1002/j.1460-2075.1996.tb00867.x
10.1016/j.ajhg.2011.03.004
10.1038/35094077
10.1186/gb-2013-14-7-r82
10.1093/bioinformatics/btq330
10.1002/humu.22375
10.1093/oxfordjournals.molbev.a003860
10.1016/S1074-7613(00)80270-8
10.1186/1471-2164-14-S3-S7
10.1084/jem.20140520
10.1126/science.1065543
10.1038/377639a0
10.1093/nar/gkj518
10.1038/nature05875
10.1084/jem.20121076
10.1016/S1074-7613(04)00076-7
10.1073/pnas.0334222100
10.1038/ng0693-124
10.1038/nature02426
10.1016/j.ympev.2004.08.003
10.1038/nrc3711
10.1146/annurev.es.23.110192.001403
10.1038/nature11396
10.1073/pnas.1431692100
10.1101/gr.080531.108
ContentType Journal Article
Copyright Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Sep 15, 2015
Copyright_xml – notice: Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Sep 15, 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7U7
5PM
DOI 10.1073/pnas.1511585112
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Toxicology Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
Toxicology Abstracts
DatabaseTitleList CrossRef
Ecology Abstracts

MEDLINE
Virology and AIDS Abstracts

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Functional impact of missense mutations
EISSN 1091-6490
EndPage E5198
ExternalDocumentID PMC4577149
3814488841
26269570
10_1073_pnas_1511585112
112_37_E5189
26465099
Genre Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: Wellcome Trust
– fundername: NIAID NIH HHS
  grantid: U19 AI100627
– fundername: Wellcome Trust
  grantid: 082030/B/07/Z
– fundername: NIAID NIH HHS
  grantid: AI100627
– fundername: Department of Health, Australian Government | National Health and Medical Research Council (NHMRC)
  grantid: 1016953
– fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
  grantid: AI100627
– fundername: Department of Health, Australian Government | National Health and Medical Research Council (NHMRC)
  grantid: 585490
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7U7
5PM
ID FETCH-LOGICAL-c567t-559d119e299e77d918e4e5cbda06218b67f8fa65edea163d54669d187488239e3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:20:59 EDT 2025
Fri Jul 11 04:35:43 EDT 2025
Thu Jul 10 18:40:40 EDT 2025
Sat Aug 23 12:56:21 EDT 2025
Wed Feb 19 02:22:28 EST 2025
Tue Jul 01 01:53:32 EDT 2025
Thu Apr 24 22:55:12 EDT 2025
Wed Nov 11 00:29:35 EST 2020
Fri May 30 12:01:41 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 37
Keywords de novo mutation
nearly neutral
cancer
immunodeficiency
evolution
Language English
License Freely available online through the PNAS open access option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c567t-559d119e299e77d918e4e5cbda06218b67f8fa65edea163d54669d187488239e3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Contributed by Christopher C. Goodnow, July 9, 2015 (sent for review February 24, 2015; reviewed by Jean-Laurent Casanova and Alain Fischer)
Reviewers: J.-L.C., The Rockefeller University; and A.F., Imagine Institute, Hôpital Necker Enfants Malades.
2C.C.G. and T.D.A. contributed equally to this work.
Author contributions: L.A.M., M.A.F., B. Beutler, B.W., E.M.B., A.E., C.C.G., and T.D.A. designed research; L.A.M., M.A.F., Y.S., V.C., S.J., A.P., B. Balakishnan, R.L., Y.Z., S.L., B.W., and T.D.A. performed research; S.L., B. Beutler, and T.D.A. contributed new reagents/analytic tools; L.A.M., M.A.F., Y.S., V.C., S.J., A.P., B. Balakishnan, R.L., Y.Z., S.L., B. Beutler, B.W., E.M.B., A.E., C.C.G., and T.D.A. analyzed data; and M.A.F., C.C.G. and T.D.A. wrote the paper.
1L.A.M. and M.A.F. contributed equally to this work.
OpenAccessLink https://www.pnas.org/content/pnas/112/37/E5189.full.pdf
PMID 26269570
PQID 1714443044
PQPubID 42026
ParticipantIDs jstor_primary_26465099
proquest_miscellaneous_1713529276
proquest_journals_1714443044
crossref_citationtrail_10_1073_pnas_1511585112
crossref_primary_10_1073_pnas_1511585112
proquest_miscellaneous_1727681044
pubmed_primary_26269570
pnas_primary_112_37_E5189
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4577149
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-09-15
PublicationDateYYYYMMDD 2015-09-15
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2015
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_50_2
e_1_3_3_75_2
e_1_3_3_71_2
e_1_3_3_77_2
e_1_3_3_79_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_73_2
e_1_3_3_40_2
e_1_3_3_61_2
e_1_3_3_86_2
e_1_3_3_88_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_69_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_67_2
e_1_3_3_80_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_65_2
e_1_3_3_82_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_84_2
e_1_3_3_51_2
e_1_3_3_74_2
e_1_3_3_76_2
e_1_3_3_70_2
e_1_3_3_78_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_72_2
e_1_3_3_62_2
e_1_3_3_85_2
e_1_3_3_60_2
e_1_3_3_87_2
Veis DJ (e_1_3_3_57_2) 1993; 151
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_68_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_81_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
e_1_3_3_83_2
26351682 - Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11426-7
References_xml – ident: e_1_3_3_40_2
  doi: 10.1002/humu.20495
– ident: e_1_3_3_46_2
  doi: 10.1038/35049558
– ident: e_1_3_3_64_2
  doi: 10.1084/jem.177.6.1699
– ident: e_1_3_3_20_2
  doi: 10.1038/nrg3463
– ident: e_1_3_3_34_2
  doi: 10.1038/nature04072
– ident: e_1_3_3_17_2
  doi: 10.1007/s00439-014-1470-0
– ident: e_1_3_3_60_2
  doi: 10.1016/1074-7613(95)90114-0
– ident: e_1_3_3_7_2
  doi: 10.1093/nar/gkr407
– ident: e_1_3_3_12_2
  doi: 10.1038/nmeth0410-248
– ident: e_1_3_3_86_2
  doi: 10.1101/gad.14.5.521
– ident: e_1_3_3_10_2
  doi: 10.1073/pnas.0404380101
– ident: e_1_3_3_8_2
  doi: 10.1101/gr.3804205
– ident: e_1_3_3_50_2
  doi: 10.1093/nar/gki070
– ident: e_1_3_3_25_2
  doi: 10.1038/sj.ejhg.5201649
– ident: e_1_3_3_56_2
  doi: 10.1126/science.8372353
– ident: e_1_3_3_1_2
  doi: 10.1126/science.1215040
– volume: 151
  start-page: 2546
  year: 1993
  ident: e_1_3_3_57_2
  article-title: Expression of the Bcl-2 protein in murine and human thymocytes and in peripheral T lymphocytes
  publication-title: J Immunol
  doi: 10.4049/jimmunol.151.5.2546
– ident: e_1_3_3_11_2
  doi: 10.1101/gr.3577405
– ident: e_1_3_3_13_2
  doi: 10.1038/ng.2892
– ident: e_1_3_3_19_2
  doi: 10.1038/gim.2012.157
– ident: e_1_3_3_74_2
  doi: 10.1038/ni980
– ident: e_1_3_3_78_2
  doi: 10.1128/MCB.19.5.3877
– ident: e_1_3_3_79_2
  doi: 10.1016/S1074-7613(00)80618-4
– ident: e_1_3_3_83_2
  doi: 10.1016/0092-8674(92)90030-G
– ident: e_1_3_3_84_2
  doi: 10.1016/0092-8674(92)90029-C
– ident: e_1_3_3_47_2
  doi: 10.1016/S1074-7613(00)80554-3
– ident: e_1_3_3_35_2
  doi: 10.1073/pnas.0509585102
– ident: e_1_3_3_4_2
  doi: 10.1002/humu.21445
– ident: e_1_3_3_59_2
  doi: 10.1016/1074-7613(95)90115-9
– ident: e_1_3_3_82_2
  doi: 10.1084/jem.183.4.1707
– ident: e_1_3_3_23_2
  doi: 10.1098/rsob.120061
– ident: e_1_3_3_54_2
  doi: 10.1093/nar/gkt1168
– ident: e_1_3_3_62_2
  doi: 10.1038/384634a0
– ident: e_1_3_3_72_2
  doi: 10.1084/jem.180.5.1955
– ident: e_1_3_3_41_2
  doi: 10.1126/science.8023157
– ident: e_1_3_3_80_2
  doi: 10.1016/0092-8674(93)90369-2
– ident: e_1_3_3_44_2
  doi: 10.1093/emboj/18.22.6455
– ident: e_1_3_3_77_2
  doi: 10.1016/S1074-7613(00)80619-6
– ident: e_1_3_3_67_2
  doi: 10.1038/ni.1820
– ident: e_1_3_3_71_2
  doi: 10.1016/1074-7613(95)90180-9
– ident: e_1_3_3_31_2
  doi: 10.1038/nature10413
– ident: e_1_3_3_70_2
  doi: 10.4049/jimmunol.1103142
– ident: e_1_3_3_43_2
  doi: 10.1074/jbc.M009476200
– ident: e_1_3_3_66_2
  doi: 10.1016/S1097-2765(02)00755-4
– ident: e_1_3_3_61_2
  doi: 10.1126/science.274.5288.798
– ident: e_1_3_3_76_2
  doi: 10.1126/science.270.5237.794
– ident: e_1_3_3_45_2
  doi: 10.1038/nrg2146
– ident: e_1_3_3_68_2
  doi: 10.1038/377635a0
– ident: e_1_3_3_22_2
  doi: 10.1002/humu.22516
– ident: e_1_3_3_36_2
  doi: 10.1126/science.1219240
– ident: e_1_3_3_51_2
  doi: 10.1093/nar/gkt1223
– ident: e_1_3_3_75_2
  doi: 10.1016/1074-7613(95)90066-7
– ident: e_1_3_3_73_2
  doi: 10.1038/ni763
– ident: e_1_3_3_18_2
  doi: 10.1186/s13059-014-0438-7
– ident: e_1_3_3_65_2
  doi: 10.1016/0092-8674(93)90081-Z
– ident: e_1_3_3_85_2
  doi: 10.1038/79766
– ident: e_1_3_3_16_2
  doi: 10.1111/j.1399-0004.2009.01351.x
– ident: e_1_3_3_28_2
  doi: 10.1093/nar/gki138
– ident: e_1_3_3_14_2
  doi: 10.1093/bioinformatics/btn435
– ident: e_1_3_3_2_2
  doi: 10.1016/j.it.2012.12.001
– ident: e_1_3_3_5_2
  doi: 10.1002/humu.21490
– ident: e_1_3_3_55_2
  doi: 10.1038/ni.2011
– ident: e_1_3_3_6_2
  doi: 10.1038/nprot.2009.86
– ident: e_1_3_3_58_2
  doi: 10.1002/j.1460-2075.1996.tb00867.x
– ident: e_1_3_3_15_2
  doi: 10.1016/j.ajhg.2011.03.004
– ident: e_1_3_3_42_2
  doi: 10.1038/35094077
– ident: e_1_3_3_32_2
  doi: 10.1186/gb-2013-14-7-r82
– ident: e_1_3_3_53_2
  doi: 10.1093/bioinformatics/btq330
– ident: e_1_3_3_21_2
  doi: 10.1002/humu.22375
– ident: e_1_3_3_29_2
  doi: 10.1093/oxfordjournals.molbev.a003860
– ident: e_1_3_3_63_2
  doi: 10.1016/S1074-7613(00)80270-8
– ident: e_1_3_3_3_2
  doi: 10.1186/1471-2164-14-S3-S7
– ident: e_1_3_3_49_2
  doi: 10.1084/jem.20140520
– ident: e_1_3_3_88_2
  doi: 10.1126/science.1065543
– ident: e_1_3_3_69_2
  doi: 10.1038/377639a0
– ident: e_1_3_3_9_2
  doi: 10.1093/nar/gkj518
– ident: e_1_3_3_48_2
  doi: 10.1038/nature05875
– ident: e_1_3_3_26_2
  doi: 10.1084/jem.20121076
– ident: e_1_3_3_87_2
  doi: 10.1016/S1074-7613(04)00076-7
– ident: e_1_3_3_30_2
  doi: 10.1073/pnas.0334222100
– ident: e_1_3_3_81_2
  doi: 10.1038/ng0693-124
– ident: e_1_3_3_27_2
  doi: 10.1038/nature02426
– ident: e_1_3_3_33_2
  doi: 10.1016/j.ympev.2004.08.003
– ident: e_1_3_3_38_2
  doi: 10.1038/nrc3711
– ident: e_1_3_3_39_2
  doi: 10.1146/annurev.es.23.110192.001403
– ident: e_1_3_3_24_2
  doi: 10.1038/nature11396
– ident: e_1_3_3_37_2
  doi: 10.1073/pnas.1431692100
– ident: e_1_3_3_52_2
  doi: 10.1101/gr.080531.108
– reference: 26351682 - Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11426-7
SSID ssj0009580
Score 2.5605245
Snippet Each person’s genome sequence has thousands of missense variants. Practical interpretation of their functional significance must rely on computational...
Computational tools applied to any human genome sequence identify hundreds of genetic variants predicted to disrupt the function of individual proteins as the...
Each person's genome sequence has thousands of missense variants. Practical interpretation of their functional significance must rely on computational...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage E5189
SubjectTerms Animals
Biological Sciences
Codon
Comparative analysis
Computational Biology
Computer Simulation
Exome
Experiments
Genetic Variation
Genome
Genome, Human
Genomes
Genotype
Humans
Immune System
Immunologic Deficiency Syndromes - genetics
Mice
Mice, Inbred C57BL
Models, Genetic
Mutation
Mutation, Missense
Neoplasms - genetics
Phenotype
PNAS Plus
Predictions
Rodents
Software
Tumor Suppressor Protein p53 - genetics
Title Comparison of predicted and actual consequences of missense mutations
URI https://www.jstor.org/stable/26465099
http://www.pnas.org/content/112/37/E5189.abstract
https://www.ncbi.nlm.nih.gov/pubmed/26269570
https://www.proquest.com/docview/1714443044
https://www.proquest.com/docview/1713529276
https://www.proquest.com/docview/1727681044
https://pubmed.ncbi.nlm.nih.gov/PMC4577149
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuHBBGzAIDBQkDkNRQp34K8dqKpoQqyaxoXGK4sTRokGK1vQw_nqe7cRJy4YGl6iyny3X7_n5Z_t9IPQuqZQOtK9CIWUVEqn1YI7TMJYJ7HeJTIXJdXiyYMfn5NMFvZhMbkZWS-tWRsWvW_1K_oerUAZ81V6y_8BZ1ykUwG_gL3yBw_C9F4-PxkkEtbt_WRcaQZoArNYzpBhZS5u3dP3-DkXBj3U7uqzr4Omp285WvfHAor8tnA2-J51CWAVhcLoYMhmf1MuVzdT-uV7lwSxywtHnwe6yi4-qviyb1qaVCr7py43BcOjSXOJ-rYurm_HVBKbajsI6ZzpXAWA9sU7SkbIaFgBKyIjNEepUMI5HsmajwPyh20EZ6YTETb6KAKZgarDisI31T_dbu5uzOTSv7TzJdAfZ0MED9DCGE0bSX_S4eM3Cei91_6CPCsWTD1sj2AA01qZVB8oFotsOLdu2tyMwc7aLHnenEH9mRWoPTVTzBO31bPUPu2Dk75-i-SBj_rLynYz5IGO-lTF_LGOaqJcx38nYM3T-cX52dBx2qTfCgjLehnDOLDFOFYAVxXmZYqGIooUs8ykDUCgZr0SVM6pKlQOiLylhDFoIDvtBnKQq2Uc7zbJRL5DPMOYVBVXPAQmWkkpRCF4K7SAd47yKPRT185cVXVx6nR7le3YHxzx06Br8tCFZ7ibdNwxxdAD_dcjI1EOeIXXtcZwlPJtTLKDuoGdb1i126JNjQkgyJcRDb101zKd-X8sbtVwbGjjOpDFnf6OBaoFNP8-tJIwGF7OU8qmH-IaMOAIdCn6zpqkvTUh4QjkMMH15_6l5hR4NS_YA7bTXa_Ua8HUr35iV8BtzKM0i
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+predicted+and+actual+consequences+of+missense+mutations&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Miosge%2C+Lisa+A.&rft.au=Field%2C+Matthew+A.&rft.au=Sontani%2C+Yovina&rft.au=Cho%2C+Vicky&rft.date=2015-09-15&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=112&rft.issue=37&rft_id=info:doi/10.1073%2Fpnas.1511585112&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1511585112
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F37.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F37.cover.gif