Comparison of predicted and actual consequences of missense mutations
Each person’s genome sequence has thousands of missense variants. Practical interpretation of their functional significance must rely on computational inferences in the absence of exhaustive experimental measurements. Here we analyzed the efficacy of these inferences in 33 de novo missense mutations...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 112; no. 37; pp. E5189 - E5198 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
15.09.2015
National Acad Sciences |
Series | PNAS Plus |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Each person’s genome sequence has thousands of missense variants. Practical interpretation of their functional significance must rely on computational inferences in the absence of exhaustive experimental measurements. Here we analyzed the efficacy of these inferences in 33 de novo missense mutations revealed by sequencing in first-generation progeny ofN-ethyl-N-nitrosourea–treated mice, involving 23 essential immune system genes. Poly-Phen2, SIFT, MutationAssessor, Panther, CADD, and Condel were used to predict each mutation’s functional importance, whereas the actual effect was measured by breeding and testing homozygotes for the expected in vivo loss-of-function phenotype. Only 20% of mutations predicted to be deleterious by PolyPhen2 (and 15% by CADD) showed a discernible phenotype in individual homozygotes. Half of all possible missense mutations in the same 23 immune genes were predicted to be deleterious, and most of these appear to become subject to purifying selection because few persist between separate mouse substrains, rodents, or primates. Because defects in immune genes could be phenotypically masked in vivo by compensation and environment, we compared inferences by the same tools with the in vitro phenotype of all 2,314 possible missense variants inTP53; 42% of mutations predicted by PolyPhen2 to be deleterious (and 45% by CADD) had little measurable consequence forTP53-promoted transcription. We conclude that for de novo or low-frequency missense mutations found by genome sequencing, half those inferred as deleterious correspond to nearly neutral mutations that have little impact on the clinical phenotype of individual cases but will nevertheless become subject to purifying selection. |
---|---|
AbstractList | Computational tools applied to any human genome sequence identify hundreds of genetic variants predicted to disrupt the function of individual proteins as the result of a single codon change. These tools have been trained on disease mutations and common polymorphisms but have yet to be tested against an unbiased spectrum of random mutations arising de novo. Here we perform such a test comparing the predicted and actual effects of de novo mutations in 23 genes with essential functions for normal immunity and all possible mutations in the
TP53
tumor suppressor gene. These results highlight an important gap in our ability to relate genotype to phenotype in clinical genome sequencing: the inability to differentiate immediately clinically relevant mutations from nearly neutral mutations.
Each person’s genome sequence has thousands of missense variants. Practical interpretation of their functional significance must rely on computational inferences in the absence of exhaustive experimental measurements. Here we analyzed the efficacy of these inferences in 33 de novo missense mutations revealed by sequencing in first-generation progeny of
N
-ethyl-
N
-nitrosourea–treated mice, involving 23 essential immune system genes. PolyPhen2, SIFT, MutationAssessor, Panther, CADD, and Condel were used to predict each mutation’s functional importance, whereas the actual effect was measured by breeding and testing homozygotes for the expected in vivo loss-of-function phenotype. Only 20% of mutations predicted to be deleterious by PolyPhen2 (and 15% by CADD) showed a discernible phenotype in individual homozygotes. Half of all possible missense mutations in the same 23 immune genes were predicted to be deleterious, and most of these appear to become subject to purifying selection because few persist between separate mouse substrains, rodents, or primates. Because defects in immune genes could be phenotypically masked in vivo by compensation and environment, we compared inferences by the same tools with the in vitro phenotype of all 2,314 possible missense variants in
TP53
; 42% of mutations predicted by PolyPhen2 to be deleterious (and 45% by CADD) had little measurable consequence for
TP53
-promoted transcription. We conclude that for de novo or low-frequency missense mutations found by genome sequencing, half those inferred as deleterious correspond to nearly neutral mutations that have little impact on the clinical phenotype of individual cases but will nevertheless become subject to purifying selection. Each person's genome sequence has thousands of missense variants. Practical interpretation of their functional significance must rely on computational inferences in the absence of exhaustive experimental measurements. Here we analyzed the efficacy of these inferences in 33 de novo missense mutations revealed by sequencing in first-generation progeny of N-ethyl-N-nitrosourea-treated mice, involving 23 essential immune system genes. PolyPhen2, SIFT, MutationAssessor, Panther, CADD, and Condel were used to predict each mutation's functional importance, whereas the actual effect was measured by breeding and testing homozygotes for the expected in vivo loss-of-function phenotype. Only 20% of mutations predicted to be deleterious by PolyPhen2 (and 15% by CADD) showed a discernible phenotype in individual homozygotes. Half of all possible missense mutations in the same 23 immune genes were predicted to be deleterious, and most of these appear to become subject to purifying selection because few persist between separate mouse substrains, rodents, or primates. Because defects in immune genes could be phenotypically masked in vivo by compensation and environment, we compared inferences by the same tools with the in vitro phenotype of all 2,314 possible missense variants in TP53; 42% of mutations predicted by PolyPhen2 to be deleterious (and 45% by CADD) had little measurable consequence for TP53-promoted transcription. We conclude that for de novo or low-frequency missense mutations found by genome sequencing, half those inferred as deleterious correspond to nearly neutral mutations that have little impact on the clinical phenotype of individual cases but will nevertheless become subject to purifying selection. Each person’s genome sequence has thousands of missense variants. Practical interpretation of their functional significance must rely on computational inferences in the absence of exhaustive experimental measurements. Here we analyzed the efficacy of these inferences in 33 de novo missense mutations revealed by sequencing in first-generation progeny ofN-ethyl-N-nitrosourea–treated mice, involving 23 essential immune system genes. Poly-Phen2, SIFT, MutationAssessor, Panther, CADD, and Condel were used to predict each mutation’s functional importance, whereas the actual effect was measured by breeding and testing homozygotes for the expected in vivo loss-of-function phenotype. Only 20% of mutations predicted to be deleterious by PolyPhen2 (and 15% by CADD) showed a discernible phenotype in individual homozygotes. Half of all possible missense mutations in the same 23 immune genes were predicted to be deleterious, and most of these appear to become subject to purifying selection because few persist between separate mouse substrains, rodents, or primates. Because defects in immune genes could be phenotypically masked in vivo by compensation and environment, we compared inferences by the same tools with the in vitro phenotype of all 2,314 possible missense variants inTP53; 42% of mutations predicted by PolyPhen2 to be deleterious (and 45% by CADD) had little measurable consequence forTP53-promoted transcription. We conclude that for de novo or low-frequency missense mutations found by genome sequencing, half those inferred as deleterious correspond to nearly neutral mutations that have little impact on the clinical phenotype of individual cases but will nevertheless become subject to purifying selection. Each person's genome sequence has thousands of missense variants. Practical interpretation of their functional significance must rely on computational inferences in the absence of exhaustive experimental measurements. Here we analyzed the efficacy of these inferences in 33 de novo missense mutations revealed by sequencing in first-generation progeny of N-ethyl-N-nitrosourea-treated mice, involving 23 essential immune system genes. PolyPhen2, SIFT, MutationAssessor, Panther, CADD, and Condel were used to predict each mutation's functional importance, whereas the actual effect was measured by breeding and testing homozygotes for the expected in vivo loss-of-function phenotype. Only 20% of mutations predicted to be deleterious by PolyPhen2 (and 15% by CADD) showed a discernible phenotype in individual homozygotes. Half of all possible missense mutations in the same 23 immune genes were predicted to be deleterious, and most of these appear to become subject to purifying selection because few persist between separate mouse substrains, rodents, or primates. Because defects in immune genes could be phenotypically masked in vivo by compensation and environment, we compared inferences by the same tools with the in vitro phenotype of all 2,314 possible missense variants in TP53; 42% of mutations predicted by PolyPhen2 to be deleterious (and 45% by CADD) had little measurable consequence for TP53-promoted transcription. We conclude that for de novo or low-frequency missense mutations found by genome sequencing, half those inferred as deleterious correspond to nearly neutral mutations that have little impact on the clinical phenotype of individual cases but will nevertheless become subject to purifying selection.Each person's genome sequence has thousands of missense variants. Practical interpretation of their functional significance must rely on computational inferences in the absence of exhaustive experimental measurements. Here we analyzed the efficacy of these inferences in 33 de novo missense mutations revealed by sequencing in first-generation progeny of N-ethyl-N-nitrosourea-treated mice, involving 23 essential immune system genes. PolyPhen2, SIFT, MutationAssessor, Panther, CADD, and Condel were used to predict each mutation's functional importance, whereas the actual effect was measured by breeding and testing homozygotes for the expected in vivo loss-of-function phenotype. Only 20% of mutations predicted to be deleterious by PolyPhen2 (and 15% by CADD) showed a discernible phenotype in individual homozygotes. Half of all possible missense mutations in the same 23 immune genes were predicted to be deleterious, and most of these appear to become subject to purifying selection because few persist between separate mouse substrains, rodents, or primates. Because defects in immune genes could be phenotypically masked in vivo by compensation and environment, we compared inferences by the same tools with the in vitro phenotype of all 2,314 possible missense variants in TP53; 42% of mutations predicted by PolyPhen2 to be deleterious (and 45% by CADD) had little measurable consequence for TP53-promoted transcription. We conclude that for de novo or low-frequency missense mutations found by genome sequencing, half those inferred as deleterious correspond to nearly neutral mutations that have little impact on the clinical phenotype of individual cases but will nevertheless become subject to purifying selection. |
Author | Field, Matthew A. Balakishnan, Bhavani Cho, Vicky Palkova, Anna Sontani, Yovina Whittle, Belinda Beutler, Bruce Bertram, Edward M. Johnson, Simon Zhang, Yafei Enders, Anselm Miosge, Lisa A. Liang, Rong Goodnow, Christopher C. Andrews, T. Daniel Lyon, Stephen |
Author_xml | – sequence: 1 givenname: Lisa A. surname: Miosge fullname: Miosge, Lisa A. organization: Immunogenomics Laboratory, John Curtin School of Medical Research, Australian National University, Canberra City, ACT 2601, Australia – sequence: 2 givenname: Matthew A. surname: Field fullname: Field, Matthew A. organization: Immunogenomics Laboratory, John Curtin School of Medical Research, Australian National University, Canberra City, ACT 2601, Australia – sequence: 3 givenname: Yovina surname: Sontani fullname: Sontani, Yovina organization: Immunogenomics Laboratory, John Curtin School of Medical Research, Australian National University, Canberra City, ACT 2601, Australia – sequence: 4 givenname: Vicky surname: Cho fullname: Cho, Vicky organization: Immunogenomics Laboratory, John Curtin School of Medical Research, Australian National University, Canberra City, ACT 2601, Australia – sequence: 5 givenname: Simon surname: Johnson fullname: Johnson, Simon organization: Immunogenomics Laboratory, John Curtin School of Medical Research, Australian National University, Canberra City, ACT 2601, Australia – sequence: 6 givenname: Anna surname: Palkova fullname: Palkova, Anna organization: Immunogenomics Laboratory, John Curtin School of Medical Research, Australian National University, Canberra City, ACT 2601, Australia – sequence: 7 givenname: Bhavani surname: Balakishnan fullname: Balakishnan, Bhavani organization: Australian Phenomics Facility, John Curtin School of Medical Research, Australian National University, Canberra City, ACT 2601, Australia – sequence: 8 givenname: Rong surname: Liang fullname: Liang, Rong organization: Australian Phenomics Facility, John Curtin School of Medical Research, Australian National University, Canberra City, ACT 2601, Australia – sequence: 9 givenname: Yafei surname: Zhang fullname: Zhang, Yafei organization: Australian Phenomics Facility, John Curtin School of Medical Research, Australian National University, Canberra City, ACT 2601, Australia – sequence: 10 givenname: Stephen surname: Lyon fullname: Lyon, Stephen organization: Center for Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390 – sequence: 11 givenname: Bruce surname: Beutler fullname: Beutler, Bruce organization: Center for Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390 – sequence: 12 givenname: Belinda surname: Whittle fullname: Whittle, Belinda organization: Australian Phenomics Facility, John Curtin School of Medical Research, Australian National University, Canberra City, ACT 2601, Australia – sequence: 13 givenname: Edward M. surname: Bertram fullname: Bertram, Edward M. organization: Australian Phenomics Facility, John Curtin School of Medical Research, Australian National University, Canberra City, ACT 2601, Australia – sequence: 14 givenname: Anselm surname: Enders fullname: Enders, Anselm organization: Ramaciotti Immunisation Genomics Laboratory, John Curtin School of Medical Research, Australian National University, Canberra City, ACT 2601, Australia – sequence: 15 givenname: Christopher C. surname: Goodnow fullname: Goodnow, Christopher C. organization: Immunogenomics Laboratory, John Curtin School of Medical Research, Australian National University, Canberra City, ACT 2601, Australia – sequence: 16 givenname: T. Daniel surname: Andrews fullname: Andrews, T. Daniel organization: Immunogenomics Laboratory, John Curtin School of Medical Research, Australian National University, Canberra City, ACT 2601, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26269570$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc2LFDEQxYOsuLOrZ09KgxcvvZtK5_MiyDB-wIIXPYdMulp76E7GpHvB_940PbuuC4KHJJD61eNVvQtyFmJAQl4CvQKqmutjcPkKBIDQ5WJPyAaogVpyQ8_IhlKmas0ZPycXOR8opUZo-oycM8mkEYpuyG4bx6NLfY6hil11TNj2fsK2cqEcP81uqHwMGX_OGDzmBRr7nLF8VeM8uakv1efkaeeGjC9O7yX59mH3dfupvvny8fP2_U3thVRTLYRpAQwyY1Cp1oBGjsLvW0clA72XqtOdkwJbdCCbVnApS4dWXGvWGGwuybtV9zjvR2w9him5wR5TP7r0y0bX278rof9hv8dby4VSwE0ReHsSSLFMlCdbhvE4DC5gnLMFxZTUQDn_DxQawUzhC_rmEXqIcwplEwvFi9gq-Pqh-XvXd2EUQKyATzHnhJ31_brgMks_WKB2Cd0uods_oZe-60d9d9L_7qhOVpbCPQ3MNsruBOhlU69W5JCnmB6Y5VJQY5rfSRfCZw |
CitedBy_id | crossref_primary_10_3389_fimmu_2017_00847 crossref_primary_10_3389_fgene_2019_00168 crossref_primary_10_1186_s13048_020_00654_3 crossref_primary_10_1080_17460441_2019_1588883 crossref_primary_10_1093_hmg_ddx310 crossref_primary_10_1002_humu_23193 crossref_primary_10_1016_j_csbj_2019_01_008 crossref_primary_10_1093_nargab_lqab079 crossref_primary_10_1016_j_freeradbiomed_2018_12_010 crossref_primary_10_3390_ijms24065198 crossref_primary_10_1016_j_coisb_2018_09_006 crossref_primary_10_1007_s00439_016_1658_6 crossref_primary_10_3389_fendo_2022_891586 crossref_primary_10_3389_fneur_2020_625428 crossref_primary_10_1016_j_cyto_2018_03_021 crossref_primary_10_1016_j_cancergen_2021_11_004 crossref_primary_10_1590_1519_6984_188655 crossref_primary_10_1002_humu_23873 crossref_primary_10_1371_journal_pgen_1006506 crossref_primary_10_7717_peerj_7667 crossref_primary_10_1038_s41598_018_38189_9 crossref_primary_10_1002_mgg3_928 crossref_primary_10_1073_pnas_1515057112 crossref_primary_10_1038_s41698_023_00420_w crossref_primary_10_1002_jimd_12227 crossref_primary_10_1002_ajmg_b_32816 crossref_primary_10_1093_bioadv_vbae138 crossref_primary_10_1007_s10549_016_3944_3 crossref_primary_10_1016_j_breast_2017_09_007 crossref_primary_10_1073_pnas_1518646112 crossref_primary_10_3390_life13071532 crossref_primary_10_1038_s41598_024_76202_6 crossref_primary_10_1016_j_ajhg_2017_07_014 crossref_primary_10_3389_fendo_2021_698511 crossref_primary_10_7717_peerj_cs_1942 crossref_primary_10_1093_hmg_ddz051 crossref_primary_10_1002_ece3_2989 crossref_primary_10_1182_blood_2021011075 crossref_primary_10_1073_pnas_1705795114 crossref_primary_10_3390_membranes11080599 crossref_primary_10_1093_molbev_msw182 crossref_primary_10_1038_ncomms12353 crossref_primary_10_1007_s12038_023_00408_5 crossref_primary_10_1016_j_ygeno_2023_110589 crossref_primary_10_1016_j_cca_2017_04_012 crossref_primary_10_1016_j_cell_2017_11_033 crossref_primary_10_7717_peerj_11774 crossref_primary_10_1371_journal_pcbi_1007701 crossref_primary_10_1101_gr_252601_119 crossref_primary_10_1136_jmedgenet_2016_104064 crossref_primary_10_1038_srep37298 crossref_primary_10_3389_fgene_2018_00729 crossref_primary_10_1007_s12687_016_0289_x crossref_primary_10_1371_journal_pone_0170386 crossref_primary_10_1038_sdata_2016_112 crossref_primary_10_1158_2326_6066_CIR_19_0866 crossref_primary_10_1002_humu_23930 crossref_primary_10_1016_j_sbi_2018_02_006 crossref_primary_10_1002_ajmg_a_38622 crossref_primary_10_1038_s41598_018_22531_2 crossref_primary_10_1186_s12920_018_0353_y crossref_primary_10_1038_s41587_022_01276_4 crossref_primary_10_1186_s13000_021_01086_3 crossref_primary_10_3389_fgene_2019_00258 crossref_primary_10_3390_ijms232112975 crossref_primary_10_1038_emi_2017_65 crossref_primary_10_1038_s41467_017_02806_4 crossref_primary_10_4049_jimmunol_1901464 crossref_primary_10_1021_acs_chemrestox_6b00244 crossref_primary_10_1096_fj_201901455R crossref_primary_10_1242_dmm_036517 crossref_primary_10_1186_s40246_017_0104_8 crossref_primary_10_1016_j_molmed_2016_02_006 crossref_primary_10_3390_genes13020382 crossref_primary_10_3389_fmolb_2020_00169 crossref_primary_10_2174_0113892029236347240308054538 crossref_primary_10_1016_j_jaci_2023_03_028 crossref_primary_10_1016_j_pediatrneurol_2017_12_005 crossref_primary_10_1007_s00439_021_02316_w crossref_primary_10_1016_j_ejmg_2017_08_005 crossref_primary_10_1093_bib_bbx049 crossref_primary_10_1002_ajmg_c_31745 crossref_primary_10_1074_jbc_RA119_009251 crossref_primary_10_1080_10495398_2023_2295926 crossref_primary_10_3389_fgene_2019_00248 crossref_primary_10_1155_2023_5162256 crossref_primary_10_1093_hmg_ddy286 crossref_primary_10_3103_S0891416823030072 crossref_primary_10_1111_andr_12815 crossref_primary_10_1371_journal_pgen_1009774 crossref_primary_10_1038_s41435_017_0002_z crossref_primary_10_1038_s41467_024_44804_3 crossref_primary_10_1126_scitranslmed_abc1739 crossref_primary_10_1002_humu_23832 crossref_primary_10_1186_s12885_017_3099_6 crossref_primary_10_1002_humu_23313 crossref_primary_10_1038_s41467_022_31686_6 crossref_primary_10_1002_humu_22987 crossref_primary_10_1093_bja_aew065 crossref_primary_10_1007_s00439_020_02246_z crossref_primary_10_1016_j_csbj_2022_04_028 crossref_primary_10_3389_fmed_2022_806696 crossref_primary_10_1073_pnas_1715896115 crossref_primary_10_1093_biolre_ioz089 crossref_primary_10_3390_genes15030333 crossref_primary_10_1002_humu_23266 crossref_primary_10_1016_j_xhgg_2024_100344 crossref_primary_10_1038_s41467_020_19669_x crossref_primary_10_1038_s41467_023_43249_4 crossref_primary_10_1371_journal_pone_0192446 crossref_primary_10_3389_fgene_2022_962449 crossref_primary_10_3390_ijms19010100 crossref_primary_10_1073_pnas_1524016113 crossref_primary_10_1016_j_pbi_2016_02_008 crossref_primary_10_3390_genes12060827 crossref_primary_10_7554_eLife_48339 crossref_primary_10_1016_j_heliyon_2024_e27655 crossref_primary_10_2144_000114492 crossref_primary_10_1158_0008_5472_CAN_17_0992 crossref_primary_10_1016_j_trecan_2022_04_009 crossref_primary_10_1016_j_dnarep_2023_103563 crossref_primary_10_1016_j_jmb_2019_04_009 crossref_primary_10_2139_ssrn_4201188 crossref_primary_10_1152_ajplung_00009_2021 crossref_primary_10_1111_cge_13190 crossref_primary_10_1093_hmg_ddae082 crossref_primary_10_3390_ijms24065819 crossref_primary_10_1002_humu_23293 crossref_primary_10_1002_mgg3_959 crossref_primary_10_1038_s41416_022_02059_z crossref_primary_10_1111_imcb_12372 crossref_primary_10_1371_journal_pone_0214015 crossref_primary_10_1002_gcc_22487 crossref_primary_10_1016_j_ajhg_2017_04_010 crossref_primary_10_1089_gtmb_2016_0051 crossref_primary_10_3390_ijms21165857 crossref_primary_10_1038_s41467_025_57757_y crossref_primary_10_1007_s00439_022_02457_6 crossref_primary_10_1038_s41593_020_00765_6 crossref_primary_10_1038_s41598_017_05081_x crossref_primary_10_1146_annurev_genom_083118_014845 crossref_primary_10_1186_s12864_020_6446_y crossref_primary_10_1093_hmg_ddab344 crossref_primary_10_1038_s41525_024_00416_w crossref_primary_10_1038_s41598_019_50302_0 crossref_primary_10_1210_js_2018_00077 crossref_primary_10_1016_j_isci_2020_101368 crossref_primary_10_1016_j_jacc_2016_11_060 crossref_primary_10_1084_jem_20210566 crossref_primary_10_3390_ijms25052910 crossref_primary_10_1016_j_jaci_2016_09_035 crossref_primary_10_1016_j_ajhg_2022_05_003 crossref_primary_10_1073_pnas_2219925120 crossref_primary_10_1016_j_smim_2017_12_008 crossref_primary_10_1038_nrc_2016_35 crossref_primary_10_1210_jc_2017_02434 crossref_primary_10_1111_trf_15992 crossref_primary_10_1186_s12859_016_1325_x crossref_primary_10_3389_fphar_2018_01437 crossref_primary_10_1534_g3_118_200563 crossref_primary_10_1016_j_jaci_2016_08_003 |
Cites_doi | 10.1002/humu.20495 10.1038/35049558 10.1084/jem.177.6.1699 10.1038/nrg3463 10.1038/nature04072 10.1007/s00439-014-1470-0 10.1016/1074-7613(95)90114-0 10.1093/nar/gkr407 10.1038/nmeth0410-248 10.1101/gad.14.5.521 10.1073/pnas.0404380101 10.1101/gr.3804205 10.1093/nar/gki070 10.1038/sj.ejhg.5201649 10.1126/science.8372353 10.1126/science.1215040 10.4049/jimmunol.151.5.2546 10.1101/gr.3577405 10.1038/ng.2892 10.1038/gim.2012.157 10.1038/ni980 10.1128/MCB.19.5.3877 10.1016/S1074-7613(00)80618-4 10.1016/0092-8674(92)90030-G 10.1016/0092-8674(92)90029-C 10.1016/S1074-7613(00)80554-3 10.1073/pnas.0509585102 10.1002/humu.21445 10.1016/1074-7613(95)90115-9 10.1084/jem.183.4.1707 10.1098/rsob.120061 10.1093/nar/gkt1168 10.1038/384634a0 10.1084/jem.180.5.1955 10.1126/science.8023157 10.1016/0092-8674(93)90369-2 10.1093/emboj/18.22.6455 10.1016/S1074-7613(00)80619-6 10.1038/ni.1820 10.1016/1074-7613(95)90180-9 10.1038/nature10413 10.4049/jimmunol.1103142 10.1074/jbc.M009476200 10.1016/S1097-2765(02)00755-4 10.1126/science.274.5288.798 10.1126/science.270.5237.794 10.1038/nrg2146 10.1038/377635a0 10.1002/humu.22516 10.1126/science.1219240 10.1093/nar/gkt1223 10.1016/1074-7613(95)90066-7 10.1038/ni763 10.1186/s13059-014-0438-7 10.1016/0092-8674(93)90081-Z 10.1038/79766 10.1111/j.1399-0004.2009.01351.x 10.1093/nar/gki138 10.1093/bioinformatics/btn435 10.1016/j.it.2012.12.001 10.1002/humu.21490 10.1038/ni.2011 10.1038/nprot.2009.86 10.1002/j.1460-2075.1996.tb00867.x 10.1016/j.ajhg.2011.03.004 10.1038/35094077 10.1186/gb-2013-14-7-r82 10.1093/bioinformatics/btq330 10.1002/humu.22375 10.1093/oxfordjournals.molbev.a003860 10.1016/S1074-7613(00)80270-8 10.1186/1471-2164-14-S3-S7 10.1084/jem.20140520 10.1126/science.1065543 10.1038/377639a0 10.1093/nar/gkj518 10.1038/nature05875 10.1084/jem.20121076 10.1016/S1074-7613(04)00076-7 10.1073/pnas.0334222100 10.1038/ng0693-124 10.1038/nature02426 10.1016/j.ympev.2004.08.003 10.1038/nrc3711 10.1146/annurev.es.23.110192.001403 10.1038/nature11396 10.1073/pnas.1431692100 10.1101/gr.080531.108 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Sep 15, 2015 |
Copyright_xml | – notice: Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Sep 15, 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7U7 5PM |
DOI | 10.1073/pnas.1511585112 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Toxicology Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic Toxicology Abstracts |
DatabaseTitleList | CrossRef Ecology Abstracts MEDLINE Virology and AIDS Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Functional impact of missense mutations |
EISSN | 1091-6490 |
EndPage | E5198 |
ExternalDocumentID | PMC4577149 3814488841 26269570 10_1073_pnas_1511585112 112_37_E5189 26465099 |
Genre | Comparative Study Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: Wellcome Trust – fundername: NIAID NIH HHS grantid: U19 AI100627 – fundername: Wellcome Trust grantid: 082030/B/07/Z – fundername: NIAID NIH HHS grantid: AI100627 – fundername: Department of Health, Australian Government | National Health and Medical Research Council (NHMRC) grantid: 1016953 – fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID) grantid: AI100627 – fundername: Department of Health, Australian Government | National Health and Medical Research Council (NHMRC) grantid: 585490 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7U7 5PM |
ID | FETCH-LOGICAL-c567t-559d119e299e77d918e4e5cbda06218b67f8fa65edea163d54669d187488239e3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:20:59 EDT 2025 Fri Jul 11 04:35:43 EDT 2025 Thu Jul 10 18:40:40 EDT 2025 Sat Aug 23 12:56:21 EDT 2025 Wed Feb 19 02:22:28 EST 2025 Tue Jul 01 01:53:32 EDT 2025 Thu Apr 24 22:55:12 EDT 2025 Wed Nov 11 00:29:35 EST 2020 Fri May 30 12:01:41 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 37 |
Keywords | de novo mutation nearly neutral cancer immunodeficiency evolution |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c567t-559d119e299e77d918e4e5cbda06218b67f8fa65edea163d54669d187488239e3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Contributed by Christopher C. Goodnow, July 9, 2015 (sent for review February 24, 2015; reviewed by Jean-Laurent Casanova and Alain Fischer) Reviewers: J.-L.C., The Rockefeller University; and A.F., Imagine Institute, Hôpital Necker Enfants Malades. 2C.C.G. and T.D.A. contributed equally to this work. Author contributions: L.A.M., M.A.F., B. Beutler, B.W., E.M.B., A.E., C.C.G., and T.D.A. designed research; L.A.M., M.A.F., Y.S., V.C., S.J., A.P., B. Balakishnan, R.L., Y.Z., S.L., B.W., and T.D.A. performed research; S.L., B. Beutler, and T.D.A. contributed new reagents/analytic tools; L.A.M., M.A.F., Y.S., V.C., S.J., A.P., B. Balakishnan, R.L., Y.Z., S.L., B. Beutler, B.W., E.M.B., A.E., C.C.G., and T.D.A. analyzed data; and M.A.F., C.C.G. and T.D.A. wrote the paper. 1L.A.M. and M.A.F. contributed equally to this work. |
OpenAccessLink | https://www.pnas.org/content/pnas/112/37/E5189.full.pdf |
PMID | 26269570 |
PQID | 1714443044 |
PQPubID | 42026 |
ParticipantIDs | jstor_primary_26465099 proquest_miscellaneous_1713529276 proquest_journals_1714443044 crossref_citationtrail_10_1073_pnas_1511585112 crossref_primary_10_1073_pnas_1511585112 proquest_miscellaneous_1727681044 pubmed_primary_26269570 pnas_primary_112_37_E5189 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4577149 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-09-15 |
PublicationDateYYYYMMDD | 2015-09-15 |
PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2015 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_50_2 e_1_3_3_75_2 e_1_3_3_71_2 e_1_3_3_77_2 e_1_3_3_79_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_73_2 e_1_3_3_40_2 e_1_3_3_61_2 e_1_3_3_86_2 e_1_3_3_88_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_69_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_67_2 e_1_3_3_80_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_65_2 e_1_3_3_82_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_84_2 e_1_3_3_51_2 e_1_3_3_74_2 e_1_3_3_76_2 e_1_3_3_70_2 e_1_3_3_78_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_72_2 e_1_3_3_62_2 e_1_3_3_85_2 e_1_3_3_60_2 e_1_3_3_87_2 Veis DJ (e_1_3_3_57_2) 1993; 151 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_68_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_81_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 e_1_3_3_83_2 26351682 - Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11426-7 |
References_xml | – ident: e_1_3_3_40_2 doi: 10.1002/humu.20495 – ident: e_1_3_3_46_2 doi: 10.1038/35049558 – ident: e_1_3_3_64_2 doi: 10.1084/jem.177.6.1699 – ident: e_1_3_3_20_2 doi: 10.1038/nrg3463 – ident: e_1_3_3_34_2 doi: 10.1038/nature04072 – ident: e_1_3_3_17_2 doi: 10.1007/s00439-014-1470-0 – ident: e_1_3_3_60_2 doi: 10.1016/1074-7613(95)90114-0 – ident: e_1_3_3_7_2 doi: 10.1093/nar/gkr407 – ident: e_1_3_3_12_2 doi: 10.1038/nmeth0410-248 – ident: e_1_3_3_86_2 doi: 10.1101/gad.14.5.521 – ident: e_1_3_3_10_2 doi: 10.1073/pnas.0404380101 – ident: e_1_3_3_8_2 doi: 10.1101/gr.3804205 – ident: e_1_3_3_50_2 doi: 10.1093/nar/gki070 – ident: e_1_3_3_25_2 doi: 10.1038/sj.ejhg.5201649 – ident: e_1_3_3_56_2 doi: 10.1126/science.8372353 – ident: e_1_3_3_1_2 doi: 10.1126/science.1215040 – volume: 151 start-page: 2546 year: 1993 ident: e_1_3_3_57_2 article-title: Expression of the Bcl-2 protein in murine and human thymocytes and in peripheral T lymphocytes publication-title: J Immunol doi: 10.4049/jimmunol.151.5.2546 – ident: e_1_3_3_11_2 doi: 10.1101/gr.3577405 – ident: e_1_3_3_13_2 doi: 10.1038/ng.2892 – ident: e_1_3_3_19_2 doi: 10.1038/gim.2012.157 – ident: e_1_3_3_74_2 doi: 10.1038/ni980 – ident: e_1_3_3_78_2 doi: 10.1128/MCB.19.5.3877 – ident: e_1_3_3_79_2 doi: 10.1016/S1074-7613(00)80618-4 – ident: e_1_3_3_83_2 doi: 10.1016/0092-8674(92)90030-G – ident: e_1_3_3_84_2 doi: 10.1016/0092-8674(92)90029-C – ident: e_1_3_3_47_2 doi: 10.1016/S1074-7613(00)80554-3 – ident: e_1_3_3_35_2 doi: 10.1073/pnas.0509585102 – ident: e_1_3_3_4_2 doi: 10.1002/humu.21445 – ident: e_1_3_3_59_2 doi: 10.1016/1074-7613(95)90115-9 – ident: e_1_3_3_82_2 doi: 10.1084/jem.183.4.1707 – ident: e_1_3_3_23_2 doi: 10.1098/rsob.120061 – ident: e_1_3_3_54_2 doi: 10.1093/nar/gkt1168 – ident: e_1_3_3_62_2 doi: 10.1038/384634a0 – ident: e_1_3_3_72_2 doi: 10.1084/jem.180.5.1955 – ident: e_1_3_3_41_2 doi: 10.1126/science.8023157 – ident: e_1_3_3_80_2 doi: 10.1016/0092-8674(93)90369-2 – ident: e_1_3_3_44_2 doi: 10.1093/emboj/18.22.6455 – ident: e_1_3_3_77_2 doi: 10.1016/S1074-7613(00)80619-6 – ident: e_1_3_3_67_2 doi: 10.1038/ni.1820 – ident: e_1_3_3_71_2 doi: 10.1016/1074-7613(95)90180-9 – ident: e_1_3_3_31_2 doi: 10.1038/nature10413 – ident: e_1_3_3_70_2 doi: 10.4049/jimmunol.1103142 – ident: e_1_3_3_43_2 doi: 10.1074/jbc.M009476200 – ident: e_1_3_3_66_2 doi: 10.1016/S1097-2765(02)00755-4 – ident: e_1_3_3_61_2 doi: 10.1126/science.274.5288.798 – ident: e_1_3_3_76_2 doi: 10.1126/science.270.5237.794 – ident: e_1_3_3_45_2 doi: 10.1038/nrg2146 – ident: e_1_3_3_68_2 doi: 10.1038/377635a0 – ident: e_1_3_3_22_2 doi: 10.1002/humu.22516 – ident: e_1_3_3_36_2 doi: 10.1126/science.1219240 – ident: e_1_3_3_51_2 doi: 10.1093/nar/gkt1223 – ident: e_1_3_3_75_2 doi: 10.1016/1074-7613(95)90066-7 – ident: e_1_3_3_73_2 doi: 10.1038/ni763 – ident: e_1_3_3_18_2 doi: 10.1186/s13059-014-0438-7 – ident: e_1_3_3_65_2 doi: 10.1016/0092-8674(93)90081-Z – ident: e_1_3_3_85_2 doi: 10.1038/79766 – ident: e_1_3_3_16_2 doi: 10.1111/j.1399-0004.2009.01351.x – ident: e_1_3_3_28_2 doi: 10.1093/nar/gki138 – ident: e_1_3_3_14_2 doi: 10.1093/bioinformatics/btn435 – ident: e_1_3_3_2_2 doi: 10.1016/j.it.2012.12.001 – ident: e_1_3_3_5_2 doi: 10.1002/humu.21490 – ident: e_1_3_3_55_2 doi: 10.1038/ni.2011 – ident: e_1_3_3_6_2 doi: 10.1038/nprot.2009.86 – ident: e_1_3_3_58_2 doi: 10.1002/j.1460-2075.1996.tb00867.x – ident: e_1_3_3_15_2 doi: 10.1016/j.ajhg.2011.03.004 – ident: e_1_3_3_42_2 doi: 10.1038/35094077 – ident: e_1_3_3_32_2 doi: 10.1186/gb-2013-14-7-r82 – ident: e_1_3_3_53_2 doi: 10.1093/bioinformatics/btq330 – ident: e_1_3_3_21_2 doi: 10.1002/humu.22375 – ident: e_1_3_3_29_2 doi: 10.1093/oxfordjournals.molbev.a003860 – ident: e_1_3_3_63_2 doi: 10.1016/S1074-7613(00)80270-8 – ident: e_1_3_3_3_2 doi: 10.1186/1471-2164-14-S3-S7 – ident: e_1_3_3_49_2 doi: 10.1084/jem.20140520 – ident: e_1_3_3_88_2 doi: 10.1126/science.1065543 – ident: e_1_3_3_69_2 doi: 10.1038/377639a0 – ident: e_1_3_3_9_2 doi: 10.1093/nar/gkj518 – ident: e_1_3_3_48_2 doi: 10.1038/nature05875 – ident: e_1_3_3_26_2 doi: 10.1084/jem.20121076 – ident: e_1_3_3_87_2 doi: 10.1016/S1074-7613(04)00076-7 – ident: e_1_3_3_30_2 doi: 10.1073/pnas.0334222100 – ident: e_1_3_3_81_2 doi: 10.1038/ng0693-124 – ident: e_1_3_3_27_2 doi: 10.1038/nature02426 – ident: e_1_3_3_33_2 doi: 10.1016/j.ympev.2004.08.003 – ident: e_1_3_3_38_2 doi: 10.1038/nrc3711 – ident: e_1_3_3_39_2 doi: 10.1146/annurev.es.23.110192.001403 – ident: e_1_3_3_24_2 doi: 10.1038/nature11396 – ident: e_1_3_3_37_2 doi: 10.1073/pnas.1431692100 – ident: e_1_3_3_52_2 doi: 10.1101/gr.080531.108 – reference: 26351682 - Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11426-7 |
SSID | ssj0009580 |
Score | 2.5605245 |
Snippet | Each person’s genome sequence has thousands of missense variants. Practical interpretation of their functional significance must rely on computational... Computational tools applied to any human genome sequence identify hundreds of genetic variants predicted to disrupt the function of individual proteins as the... Each person's genome sequence has thousands of missense variants. Practical interpretation of their functional significance must rely on computational... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | E5189 |
SubjectTerms | Animals Biological Sciences Codon Comparative analysis Computational Biology Computer Simulation Exome Experiments Genetic Variation Genome Genome, Human Genomes Genotype Humans Immune System Immunologic Deficiency Syndromes - genetics Mice Mice, Inbred C57BL Models, Genetic Mutation Mutation, Missense Neoplasms - genetics Phenotype PNAS Plus Predictions Rodents Software Tumor Suppressor Protein p53 - genetics |
Title | Comparison of predicted and actual consequences of missense mutations |
URI | https://www.jstor.org/stable/26465099 http://www.pnas.org/content/112/37/E5189.abstract https://www.ncbi.nlm.nih.gov/pubmed/26269570 https://www.proquest.com/docview/1714443044 https://www.proquest.com/docview/1713529276 https://www.proquest.com/docview/1727681044 https://pubmed.ncbi.nlm.nih.gov/PMC4577149 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuHBBGzAIDBQkDkNRQp34K8dqKpoQqyaxoXGK4sTRokGK1vQw_nqe7cRJy4YGl6iyny3X7_n5Z_t9IPQuqZQOtK9CIWUVEqn1YI7TMJYJ7HeJTIXJdXiyYMfn5NMFvZhMbkZWS-tWRsWvW_1K_oerUAZ81V6y_8BZ1ykUwG_gL3yBw_C9F4-PxkkEtbt_WRcaQZoArNYzpBhZS5u3dP3-DkXBj3U7uqzr4Omp285WvfHAor8tnA2-J51CWAVhcLoYMhmf1MuVzdT-uV7lwSxywtHnwe6yi4-qviyb1qaVCr7py43BcOjSXOJ-rYurm_HVBKbajsI6ZzpXAWA9sU7SkbIaFgBKyIjNEepUMI5HsmajwPyh20EZ6YTETb6KAKZgarDisI31T_dbu5uzOTSv7TzJdAfZ0MED9DCGE0bSX_S4eM3Cei91_6CPCsWTD1sj2AA01qZVB8oFotsOLdu2tyMwc7aLHnenEH9mRWoPTVTzBO31bPUPu2Dk75-i-SBj_rLynYz5IGO-lTF_LGOaqJcx38nYM3T-cX52dBx2qTfCgjLehnDOLDFOFYAVxXmZYqGIooUs8ykDUCgZr0SVM6pKlQOiLylhDFoIDvtBnKQq2Uc7zbJRL5DPMOYVBVXPAQmWkkpRCF4K7SAd47yKPRT185cVXVx6nR7le3YHxzx06Br8tCFZ7ibdNwxxdAD_dcjI1EOeIXXtcZwlPJtTLKDuoGdb1i126JNjQkgyJcRDb101zKd-X8sbtVwbGjjOpDFnf6OBaoFNP8-tJIwGF7OU8qmH-IaMOAIdCn6zpqkvTUh4QjkMMH15_6l5hR4NS_YA7bTXa_Ua8HUr35iV8BtzKM0i |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+predicted+and+actual+consequences+of+missense+mutations&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Miosge%2C+Lisa+A.&rft.au=Field%2C+Matthew+A.&rft.au=Sontani%2C+Yovina&rft.au=Cho%2C+Vicky&rft.date=2015-09-15&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=112&rft.issue=37&rft_id=info:doi/10.1073%2Fpnas.1511585112&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1511585112 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F37.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F37.cover.gif |