Overcoming the thermodynamic equilibrium of an isomerization reaction through oxidoreductive reactions for biotransformation
Isomerases perform biotransformations without cofactors but often cause an undesirable mixture of substrate and product due to unfavorable thermodynamic equilibria. We demonstrate the feasibility of using an engineered yeast strain harboring oxidoreductase reactions to overcome the thermodynamic lim...
Saved in:
Published in | Nature communications Vol. 10; no. 1; pp. 1356 - 8 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
22.03.2019
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Isomerases perform biotransformations without cofactors but often cause an undesirable mixture of substrate and product due to unfavorable thermodynamic equilibria. We demonstrate the feasibility of using an engineered yeast strain harboring oxidoreductase reactions to overcome the thermodynamic limit of an isomerization reaction. Specifically, a yeast strain capable of consuming lactose intracellularly is engineered to produce tagatose from lactose through three layers of manipulations. First,
GAL1
coding for galactose kinase is deleted to eliminate galactose utilization. Second, heterologous xylose reductase (XR) and galactitol dehydrogenase (GDH) are introduced into the
∆gal1
strain. Third, the expression levels of XR and GDH are adjusted to maximize tagatose production. The resulting engineered yeast produces 37.69 g/L of tagatose from lactose with a tagatose and galactose ratio of 9:1 in the reaction broth. These results suggest that in vivo oxidoreaductase reactions can be employed to replace isomerases in vitro for biotransformation.
A desired product cannot be obtained at higher concentration than its equilibrium concentration when isomerases are used for biotransformation. Here, the authors engineer in vivo oxidoreductive reactions in yeast to overcome the equilibrium limitation of in vitro isomerases-based tagatose production. |
---|---|
AbstractList | Isomerases perform biotransformations without cofactors but often cause an undesirable mixture of substrate and product due to unfavorable thermodynamic equilibria. We demonstrate the feasibility of using an engineered yeast strain harboring oxidoreductase reactions to overcome the thermodynamic limit of an isomerization reaction. Specifically, a yeast strain capable of consuming lactose intracellularly is engineered to produce tagatose from lactose through three layers of manipulations. First,
GAL1
coding for galactose kinase is deleted to eliminate galactose utilization. Second, heterologous xylose reductase (XR) and galactitol dehydrogenase (GDH) are introduced into the
∆gal1
strain. Third, the expression levels of XR and GDH are adjusted to maximize tagatose production. The resulting engineered yeast produces 37.69 g/L of tagatose from lactose with a tagatose and galactose ratio of 9:1 in the reaction broth. These results suggest that in vivo oxidoreaductase reactions can be employed to replace isomerases in vitro for biotransformation.
A desired product cannot be obtained at higher concentration than its equilibrium concentration when isomerases are used for biotransformation. Here, the authors engineer in vivo oxidoreductive reactions in yeast to overcome the equilibrium limitation of in vitro isomerases-based tagatose production. Isomerases perform biotransformations without cofactors but often cause an undesirable mixture of substrate and product due to unfavorable thermodynamic equilibria. We demonstrate the feasibility of using an engineered yeast strain harboring oxidoreductase reactions to overcome the thermodynamic limit of an isomerization reaction. Specifically, a yeast strain capable of consuming lactose intracellularly is engineered to produce tagatose from lactose through three layers of manipulations. First, GAL1 coding for galactose kinase is deleted to eliminate galactose utilization. Second, heterologous xylose reductase (XR) and galactitol dehydrogenase (GDH) are introduced into the Δgal1 strain. Third, the expression levels of XR and GDH are adjusted to maximize tagatose production. The resulting engineered yeast produces 37.69 g/L of tagatose from lactose with a tagatose and galactose ratio of 9:1 in the reaction broth. These results suggest that in vivo oxidoreaductase reactions can be employed to replace isomerases in vitro for biotransformation. A desired product cannot be obtained at higher concentration than its equilibrium concentration when isomerases are used for biotransformation. Here, the authors engineer in vivo oxidoreductive reactions in yeast to overcome the equilibrium limitation of in vitro isomerases-based tagatose production. Isomerases perform biotransformations without cofactors but often cause an undesirable mixture of substrate and product due to unfavorable thermodynamic equilibria. We demonstrate the feasibility of using an engineered yeast strain harboring oxidoreductase reactions to overcome the thermodynamic limit of an isomerization reaction. Specifically, a yeast strain capable of consuming lactose intracellularly is engineered to produce tagatose from lactose through three layers of manipulations. First, GAL1 coding for galactose kinase is deleted to eliminate galactose utilization. Second, heterologous xylose reductase (XR) and galactitol dehydrogenase (GDH) are introduced into the ∆gal1 strain. Third, the expression levels of XR and GDH are adjusted to maximize tagatose production. The resulting engineered yeast produces 37.69 g/L of tagatose from lactose with a tagatose and galactose ratio of 9:1 in the reaction broth. These results suggest that in vivo oxidoreaductase reactions can be employed to replace isomerases in vitro for biotransformation. Isomerases perform biotransformations without cofactors but often cause an undesirable mixture of substrate and product due to unfavorable thermodynamic equilibria. We demonstrate the feasibility of using an engineered yeast strain harboring oxidoreductase reactions to overcome the thermodynamic limit of an isomerization reaction. Specifically, a yeast strain capable of consuming lactose intracellularly is engineered to produce tagatose from lactose through three layers of manipulations. First, GAL1 coding for galactose kinase is deleted to eliminate galactose utilization. Second, heterologous xylose reductase (XR) and galactitol dehydrogenase (GDH) are introduced into the ∆gal1 strain. Third, the expression levels of XR and GDH are adjusted to maximize tagatose production. The resulting engineered yeast produces 37.69 g/L of tagatose from lactose with a tagatose and galactose ratio of 9:1 in the reaction broth. These results suggest that in vivo oxidoreaductase reactions can be employed to replace isomerases in vitro for biotransformation. Isomerases perform biotransformations without cofactors but often cause an undesirable mixture of substrate and product due to unfavorable thermodynamic equilibria. We demonstrate the feasibility of using an engineered yeast strain harboring oxidoreductase reactions to overcome the thermodynamic limit of an isomerization reaction. Specifically, a yeast strain capable of consuming lactose intracellularly is engineered to produce tagatose from lactose through three layers of manipulations. First, GAL1 coding for galactose kinase is deleted to eliminate galactose utilization. Second, heterologous xylose reductase (XR) and galactitol dehydrogenase (GDH) are introduced into the ∆gal1 strain. Third, the expression levels of XR and GDH are adjusted to maximize tagatose production. The resulting engineered yeast produces 37.69 g/L of tagatose from lactose with a tagatose and galactose ratio of 9:1 in the reaction broth. These results suggest that in vivo oxidoreaductase reactions can be employed to replace isomerases in vitro for biotransformation.Isomerases perform biotransformations without cofactors but often cause an undesirable mixture of substrate and product due to unfavorable thermodynamic equilibria. We demonstrate the feasibility of using an engineered yeast strain harboring oxidoreductase reactions to overcome the thermodynamic limit of an isomerization reaction. Specifically, a yeast strain capable of consuming lactose intracellularly is engineered to produce tagatose from lactose through three layers of manipulations. First, GAL1 coding for galactose kinase is deleted to eliminate galactose utilization. Second, heterologous xylose reductase (XR) and galactitol dehydrogenase (GDH) are introduced into the ∆gal1 strain. Third, the expression levels of XR and GDH are adjusted to maximize tagatose production. The resulting engineered yeast produces 37.69 g/L of tagatose from lactose with a tagatose and galactose ratio of 9:1 in the reaction broth. These results suggest that in vivo oxidoreaductase reactions can be employed to replace isomerases in vitro for biotransformation. Isomerases perform biotransformations without cofactors but often cause an undesirable mixture of substrate and product due to unfavorable thermodynamic equilibria. We demonstrate the feasibility of using an engineered yeast strain harboring oxidoreductase reactions to overcome the thermodynamic limit of an isomerization reaction. Specifically, a yeast strain capable of consuming lactose intracellularly is engineered to produce tagatose from lactose through three layers of manipulations. First, GAL1 coding for galactose kinase is deleted to eliminate galactose utilization. Second, heterologous xylose reductase (XR) and galactitol dehydrogenase (GDH) are introduced into the ∆gal1 strain. Third, the expression levels of XR and GDH are adjusted to maximize tagatose production. The resulting engineered yeast produces 37.69 g/L of tagatose from lactose with a tagatose and galactose ratio of 9:1 in the reaction broth. These results suggest that in vivo oxidoreaductase reactions can be employed to replace isomerases in vitro for biotransformation.A desired product cannot be obtained at higher concentration than its equilibrium concentration when isomerases are used for biotransformation. Here, the authors engineer in vivo oxidoreductive reactions in yeast to overcome the equilibrium limitation of in vitro isomerases-based tagatose production. |
ArticleNumber | 1356 |
Author | Zhang, Guo-Chang Kwak, Suryang Yun, Eun Ju Liu, Jing-Jing Oh, Eun Joong Chomvong, Kulika Cate, Jamie H. D. Jin, Yong-Su |
Author_xml | – sequence: 1 givenname: Jing-Jing orcidid: 0000-0002-2302-2726 surname: Liu fullname: Liu, Jing-Jing organization: Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign – sequence: 2 givenname: Guo-Chang orcidid: 0000-0003-4081-0799 surname: Zhang fullname: Zhang, Guo-Chang organization: Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign – sequence: 3 givenname: Suryang surname: Kwak fullname: Kwak, Suryang organization: Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign – sequence: 4 givenname: Eun Joong surname: Oh fullname: Oh, Eun Joong organization: Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign – sequence: 5 givenname: Eun Ju surname: Yun fullname: Yun, Eun Ju organization: Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Department of Biotechnology, Graduate School, Korea University – sequence: 6 givenname: Kulika surname: Chomvong fullname: Chomvong, Kulika organization: National Center for Genetic Engineering and Biotechnology (BIOTEC) – sequence: 7 givenname: Jamie H. D. orcidid: 0000-0001-5965-7902 surname: Cate fullname: Cate, Jamie H. D. organization: Department of Molecular and Cell Biology, University of California – sequence: 8 givenname: Yong-Su surname: Jin fullname: Jin, Yong-Su email: ysjin@illinois.edu organization: Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30902987$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1504466$$D View this record in Osti.gov |
BookMark | eNp9Uk1r3DAUFCWlSbf5Az0U0156cStZ35dCCf0IBHJpz0KWn3cVbCmR7CUp_fHVrpM0ySECoYc0M28kzWt0EGIAhN4S_Ilgqj5nRpiQNSa6xrpRqhYv0FGDGamJbOjBg_oQHed8gcugmijGXqFDijVutJJH6O_5FpKLow_ratrAbqYxdjfBjt5VcDX7wbfJz2MV-8qGyuc4QvJ_7ORjqBJYty-mTYrzelPFa9_FBN1ctrdwf56rPqaq9XFKNuRSj3v-G_Syt0OG49t1hX5___br5Gd9dv7j9OTrWe24kFPNGJMaE0FKQSjvWkf7XgnSA5aSc9d3LZCu1ZJaSiijvKEFJZlWoseYSbpCp4tuF-2FuUx-tOnGROvNfiOmtbFp8m4AYyW0kqim7RgwjZ0lSgLmTkqtMFhetL4sWpdzO0LnIJQ7DY9EH58EvzHruDWCUSyFLgLvF4GYJ2-y8xO4jYshgJsM4ZgxIQro422XFK9myJMZfXYwDDZAnLNpiBa84bJEYYU-PIFexDmF8p47FNdEU7Xr-u6h7Xu_d0koALUAXIo5J-hNcbb_pXILPxiCzS53ZsmdKbkz-9yZndnmCfVO_VkSXUi5gMMa0n_bz7D-AUE17Cc |
CitedBy_id | crossref_primary_10_1021_acs_jafc_4c08630 crossref_primary_10_1016_j_ijbiomac_2024_131518 crossref_primary_10_1002_adma_202303952 crossref_primary_10_1016_j_lwt_2024_115787 crossref_primary_10_3390_molecules29122909 crossref_primary_10_1080_10408398_2021_2023091 crossref_primary_10_1016_j_foodres_2023_112637 crossref_primary_10_1016_j_mec_2020_e00148 crossref_primary_10_1021_acssynbio_2c00507 crossref_primary_10_1021_acs_jafc_9b06748 crossref_primary_10_1021_jacs_9b12358 crossref_primary_10_3390_fermentation11030139 crossref_primary_10_1017_S0007114521003524 crossref_primary_10_1073_pnas_2317058121 crossref_primary_10_1016_j_foodres_2025_116058 crossref_primary_10_3390_jof9090907 crossref_primary_10_1021_acs_jafc_4c08619 crossref_primary_10_3390_catal13111437 crossref_primary_10_1007_s00253_020_10427_z crossref_primary_10_1021_acs_jafc_4c09796 crossref_primary_10_1039_D0SC06017H crossref_primary_10_1016_j_fbio_2024_105626 crossref_primary_10_1039_D0CY01915A crossref_primary_10_1002_bit_28159 crossref_primary_10_1128_aem_01135_24 crossref_primary_10_1007_s00253_025_13417_1 crossref_primary_10_1016_j_apcatb_2024_124095 crossref_primary_10_1016_j_ymben_2020_01_005 crossref_primary_10_1039_C9GC04265B crossref_primary_10_1016_j_biombioe_2025_107631 crossref_primary_10_1021_acs_jafc_4c12842 crossref_primary_10_1021_acssynbio_9b00217 crossref_primary_10_1039_D1CC04243B crossref_primary_10_1007_s00253_021_11394_9 crossref_primary_10_1016_j_jtice_2024_105585 crossref_primary_10_1016_j_foodres_2025_116109 crossref_primary_10_1016_j_enzmictec_2021_109850 crossref_primary_10_1021_acscatal_0c02922 crossref_primary_10_1007_s10529_023_03415_6 crossref_primary_10_1016_j_bbadva_2025_100143 crossref_primary_10_1016_j_fbio_2025_106027 crossref_primary_10_1016_j_tibtech_2022_01_002 crossref_primary_10_3390_fermentation11020046 |
Cites_doi | 10.1002/jsfa.3938 10.1128/AEM.00057-16 10.1089/109662002753723197 10.1128/AEM.00410-16 10.1080/10408398.2015.1126550 10.1111/j.1463-1326.2008.00866.x 10.1016/j.jbiotec.2016.07.018 10.1093/nar/gkt135 10.1371/journal.pone.0196099 10.1128/AEM.00490-13 10.1002/bit.26369 10.1016/j.tifs.2016.06.004 10.1016/S1389-1723(04)70223-6 10.1073/pnas.1010456108 10.1128/AEM.72.2.981-985.2006 10.1128/AEM.02310-14 10.1042/bse0590001 10.1016/j.cbpa.2015.09.008 10.1371/journal.pone.0160044 10.1016/j.btre.2016.01.003 10.1021/jf404785m 10.1371/journal.pone.0062987 10.2144/000112040 10.1021/acs.jafc.6b03588 10.1186/1475-2859-11-113 10.1016/S0021-9258(17)30628-2 10.1021/jf4042485 10.1016/j.bbagen.2004.06.003 10.1111/j.1365-2958.2007.05953.x 10.1016/S0021-9258(18)66103-4 10.1002/bp070056y 10.1111/j.1574-6968.2007.00961.x 10.1016/0378-1119(95)00037-7 10.1385/ABAB:106:1-3:277 10.2147/DDDT.S71289 10.1126/science.127.3288.28 10.1016/j.enzmictec.2014.02.012 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Univ. of Illinois, Champaign, IL (United States). Center for Advanced Bioenergy and Bioproducts Innovation |
CorporateAuthor_xml | – name: Univ. of Illinois, Champaign, IL (United States). Center for Advanced Bioenergy and Bioproducts Innovation |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 OIOZB OTOTI 5PM DOA |
DOI | 10.1038/s41467-019-09288-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_a7eb7182bd4e490ca187e05c77980ea5 PMC6430769 1504466 30902987 10_1038_s41467_019_09288_6 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 AAADF AAPBV AAYJO ADQMX AEDAW OIOZB OTOTI ZA5 5PM PUEGO |
ID | FETCH-LOGICAL-c567t-444790161444135dbc3ff861fe07755cfdbe1db973a3134352335d74986f00473 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:25:52 EDT 2025 Thu Aug 21 17:57:18 EDT 2025 Mon Jul 03 03:58:34 EDT 2023 Fri Jul 11 01:59:17 EDT 2025 Wed Aug 13 09:47:34 EDT 2025 Thu Apr 03 07:06:24 EDT 2025 Tue Jul 01 02:21:26 EDT 2025 Thu Apr 24 22:50:24 EDT 2025 Fri Feb 21 02:39:00 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c567t-444790161444135dbc3ff861fe07755cfdbe1db973a3134352335d74986f00473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 SC0018420 USDOE Office of Science (SC), Biological and Environmental Research (BER) |
ORCID | 0000-0001-5965-7902 0000-0003-4081-0799 0000-0002-2302-2726 0000000340810799 0000000223022726 0000000159657902 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-019-09288-6 |
PMID | 30902987 |
PQID | 2195919389 |
PQPubID | 546298 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a7eb7182bd4e490ca187e05c77980ea5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6430769 osti_scitechconnect_1504466 proquest_miscellaneous_2196525710 proquest_journals_2195919389 pubmed_primary_30902987 crossref_citationtrail_10_1038_s41467_019_09288_6 crossref_primary_10_1038_s41467_019_09288_6 springer_journals_10_1038_s41467_019_09288_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-22 |
PublicationDateYYYYMMDD | 2019-03-22 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United States |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | StaudiglPHaltrichDPeterbauerCKL-Arabinose isomerase and D-xylose isomerase from Lactobacillus reuteri: characterization, coexpression in the food grade host Lactobacillus plantarum, and application in the conversion of D-galactose and D-glucoseJ. Agric. Food Chem.201462161716241:CAS:528:DC%2BC2cXpt12rsg%3D%3D10.1021/jf404785m LiXComparison of xylose fermentation by two high-performance engineered strains of Saccharomyces cerevisiaeBiotechnol. Rep. (Amst.)2016953561:CAS:528:DC%2BC1cXhtFensL3L10.1016/j.btre.2016.01.003 KimHJHyunEKKimYSLeeYJOhDKCharacterization of an Agrobacterium tumefaciens D-psicose 3-epimerase that converts D-fructose to D-psicoseAppl. Environ. Microbiol.2006729819851:CAS:528:DC%2BD28Xhs1Ghs78%3D10.1128/AEM.72.2.981-985.2006 KimBCCloning, expression and characterization of L-arabinose isomerase from Thermotoga neapolitana: bioconversion of D-galactose to D-tagatose using the enzymeFEMS Microbiol. Let.20022121211261:CAS:528:DC%2BD38XksF2jsrY%3D ZhanYCoexpression of beta-D-galactosidase and L-arabinose isomerase in the production of D-tagatose: a functional sweetenerJ. Agric. Food Chem.201462241224171:CAS:528:DC%2BC2cXjt1yls7c%3D10.1021/jf4042485 KwakSEnhanced isoprenoid production from xylose by engineered Saccharomyces cerevisiaeBiotechnol. Bioeng.2017114258125911:CAS:528:DC%2BC2sXht1arsr7M10.1002/bit.26369 JinYSJeffriesTWChanging flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiaeAppl. Biochem. Biotechnol.2003105 -10827728610.1385/ABAB:106:1-3:277 SeibothBGamaufCPailMHartlLKubicekCPThe D-xylose reductase of Hypocrea jecorina is the major aldose reductase in pentose and D-galactose catabolism and necessary for beta-galactosidase and cellulase induction by lactoseMol. Microbiol.2007668909001:CAS:528:DC%2BD2sXhtl2qs7jI10.1111/j.1365-2958.2007.05953.x ChengLMuWJiangBThermostable L-arabinose isomerase from Bacillus stearothermophilus IAM 11001 for D-tagatose production: gene cloning, purification and characterisationJ. Sci. Food Agric.201090132713331:CAS:528:DC%2BC3cXmtV2jsLY%3D10.1002/jsfa.3938 ChouayekhHCharacterization of an l-arabinose isomerase from the Lactobacillus plantarum NC8 strain showing pronounced stability at acidic pHFEMS Microbiol. Lett.20072772602671:CAS:528:DC%2BD2sXhsVersLzI10.1111/j.1574-6968.2007.00961.x LevinGVTagatose, the new GRAS sweetener and health productJ. Med. Food2002523361:CAS:528:DC%2BD38XktlSjt7o%3D10.1089/109662002753723197 LiuJJLactose fermentation by engineered Saccharomyces cerevisiae capable of fermenting cellobioseJ. Biotechnol.2016234991041:CAS:528:DC%2BC28XhtlWjtLnJ10.1016/j.jbiotec.2016.07.018 ZhangGCConstruction of a quadruple auxotrophic mutant of an industrial polyploid saccharomyces cerevisiae strain by using RNA-guided Cas9 nucleaseAppl. Environ. Microbiol.2014807694770110.1128/AEM.02310-14 MumbergDMullerRFunkMYeast vectors for the controlled expression of heterologous proteins in different genetic backgroundsGene19951561191221:CAS:528:DyaK2MXkvVamsb4%3D10.1016/0378-1119(95)00037-7 TaxisCKnopMSystem of centromeric, episomal, and integrative vectors based on drug resistance markers for Saccharomyces cerevisiaeBiotechniques20064073781:CAS:528:DC%2BD28XntVSksw%3D%3D10.2144/000112040 LeangKA novel enzymatic approach to the massproduction of L-galactose from L-sorboseJ. Biosci. Bioeng.2004973833881:CAS:528:DC%2BD2cXmvFehsLY%3D10.1016/S1389-1723(04)70223-6 ZhangWCharacterization of a novel metal-dependent D-psicose 3-epimerase from Clostridium scindens 35704PLoS One20138e629872013PLoSO...862987Z1:CAS:528:DC%2BC3sXnsVKhur4%3D10.1371/journal.pone.0062987 JayamuthunagaiJGautamPSrisowmeyaGChakravarthyMBiocatalytic production of D-tagatose: a potential rare sugar with versatile applicationsCrit. Rev. Food Sci. Nutr.201757343034371:CAS:528:DC%2BC2sXos1ehurY%3D10.1080/10408398.2015.1126550 LeangKNovel reactions of L-rhamnose isomerase from Pseudomonas stutzeri and its relation with D-xylose isomerase via substrate specificityBiochim. Et. Biophys. Acta (BBA)—General Subj.2004167468771:CAS:528:DC%2BD2cXntlSmu74%3D10.1016/j.bbagen.2004.06.003 De Robichon-SzulmajsterHInduction of enzymes of the galactose pathway in mutants of Saccharomyces cerevisiaeScience195812728291958Sci...127...28D10.1126/science.127.3288.28 ZargaraanAKamaliroostaLYaghoubiASMirmoghtadaieLEffect of substitution of sugar by high fructose corn syrup on the physicochemical properties of bakery and dairy products: a review. NutrFood Sci. Res.201633111:CAS:528:DC%2BC1cXhtVaksLfK HossainARare sugar D-psicose prevents progression and development of diabetes in T2DM model Otsuka Long-Evans Tokushima Fatty ratsDrug Des. Dev. Ther.201595255351:CAS:528:DC%2BC1cXlsVOhtLk%3D10.2147/DDDT.S71289 ZhangGCLiuJJKongIIKwakSJinYSCombining C6 and C5 sugar metabolism for enhancing microbial bioconversionCurr. Opin. Chem. Biol.201529495710.1016/j.cbpa.2015.09.008 ParkCSD-allulose production from D-fructose by permeabilized recombinant cells of Corynebacterium glutamicum cells expressing D-allulose 3-epimerase Flavonifractor plautiiPLoS One201611e016004410.1371/journal.pone.0160044 Robinson, P. K., Enzymes: principles and biotechnological applications. Essays Biochem. 59, 1–41 (2015). MitsuhashiSLampenJOConversion of D-xylose to D-xylulose in extracts of Lactobacillus pentosusJ. Biol. Chem.1953204101110181:CAS:528:DyaG2cXktFyh13117877 KimPCurrent studies on biological tagatose production using D-arabinose isomerase: a review and future perspectiveAppl. Microbiol. Biotechnol.2004652432491:CAS:528:DC%2BD2cXmsVCgurg%3D15248040 ShinKCSimDHSeoMJOhDKIncreased production of food-grade D-tagatose from D-galactose by permeabilized and immobilized cells of Corynebacterium glutamicum, a GRAS host, expressing d-galactose isomerase from Geobacillus thermodenitrificansJ. Agric. Food Chem.201664814681531:CAS:528:DC%2BC28Xhs1Kmt7fP10.1021/acs.jafc.6b03588 WeiNXuHKimSRJinYSDeletion of FPS1, encoding aquaglyceroporin Fps1p, improves xylose fermentation by engineered Saccharomyces cerevisiaeAppl. Environ. Microbiol.201379319332011:CAS:528:DC%2BC3sXnt1ajtr8%3D10.1128/AEM.00490-13 LuYLevinGVDonnerTWTagatose, a new antidiabetic and obesity control drugDiabetes Obes. Metab.2008101091341:CAS:528:DC%2BD1cXivVOrtrg%3D10.1111/j.1463-1326.2008.00866.x OhEJGene amplification on demand accelerates cellobiose utilization in engineered Saccharomyces cerevisiaeAppl. Environ. Microbiol.201682363136391:CAS:528:DC%2BC28XhvFyqsbvK10.1128/AEM.00410-16 NguyenTKHongMGChangPSLeeBHYooSHBiochemical properties of L-arabinose isomerase from Clostridium hylemonae to produce D-tagatose as a functional sweetenerPLoS One201813e019609910.1371/journal.pone.0196099 LeeCYBagdasarianMMengMHZeikusJGCatalytic mechanism of xylose (glucose) isomerase from Clostridium thermosulfurogenes. Characterization of the structural gene and function of active site histidineJ. Biol. Chem.199026519082190901:CAS:528:DyaK3MXpslentg%3D%3D2229064 LimBCKimHJOhDKHigh production of D-tagatose by the addition of boric acidBiotechnol. Prog.2007238248281:CAS:528:DC%2BD2sXms1eqtbo%3D10.1002/bp070056y WanarskaMKurJA method for the production of D-tagatose using a recombinant Pichia pastoris strain secreting beta-D-galactosidase from Arthrobacter chlorophenolicus and a recombinant L-arabinose isomerase from Arthrobacter sp. 22cMicrob. Cell. Fact.2012111131:CAS:528:DC%2BC3sXhsFyitrk%3D10.1186/1475-2859-11-113 DiCarloJEGenome engineering in Saccharomyces cerevisiae using CRISPR-Cas systemsNucleic Acids Res.201341433643431:CAS:528:DC%2BC3sXlvVKis7o%3D10.1093/nar/gkt135 HaSJEngineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentationProc. Natl. Acad. Sci. USA20111085045092011PNAS..108..504H1:CAS:528:DC%2BC3MXptFKntg%3D%3D10.1073/pnas.1010456108 LiuJJMetabolic engineering of probiotic Saccharomyces boulardiiAppl. Environ. Microbiol.201682228022871:CAS:528:DC%2BC28Xht1Cqs7jJ10.1128/AEM.00057-16 JagtapSSSinghRKangYCZhaoHLeeJKCloning and characterization of a galactitol 2-dehydrogenase from Rhizobium legumenosarum and its application in D-tagatose productionEnzym. Microb. Technol.201458-5944511:CAS:528:DC%2BC2cXmtFags74%3D10.1016/j.enzmictec.2014.02.012 ZhangWYuSZhangTJiangBMuWRecent advances in D-allulose: physiological functionalities, applications, and biological productionTrends Food Sci. Tech.20165412713710.1016/j.tifs.2016.06.004 HJ Kim (9288_CR11) 2006; 72 JE DiCarlo (9288_CR24) 2013; 41 D Mumberg (9288_CR38) 1995; 156 C Taxis (9288_CR39) 2006; 40 M Wanarska (9288_CR18) 2012; 11 GC Zhang (9288_CR35) 2015; 29 W Zhang (9288_CR10) 2013; 8 EJ Oh (9288_CR22) 2016; 82 H De Robichon-Szulmajster (9288_CR23) 1958; 127 X Li (9288_CR29) 2016; 9 H Chouayekh (9288_CR9) 2007; 277 A Hossain (9288_CR12) 2015; 9 JJ Liu (9288_CR36) 2016; 82 YS Jin (9288_CR37) 2003; 105 -108 Y Zhan (9288_CR33) 2014; 62 BC Kim (9288_CR27) 2002; 212 Y Lu (9288_CR14) 2008; 10 P Staudigl (9288_CR8) 2014; 62 9288_CR1 GC Zhang (9288_CR25) 2014; 80 N Wei (9288_CR32) 2013; 79 K Leang (9288_CR17) 2004; 97 SJ Ha (9288_CR34) 2011; 108 B Seiboth (9288_CR20) 2007; 66 L Cheng (9288_CR26) 2010; 90 K Leang (9288_CR16) 2004; 1674 SS Jagtap (9288_CR21) 2014; 58-59 CY Lee (9288_CR31) 1990; 265 KC Shin (9288_CR3) 2016; 64 TK Nguyen (9288_CR28) 2018; 13 CS Park (9288_CR6) 2016; 11 BC Lim (9288_CR5) 2007; 23 A Zargaraan (9288_CR2) 2016; 3 S Kwak (9288_CR40) 2017; 114 S Mitsuhashi (9288_CR30) 1953; 204 P Kim (9288_CR15) 2004; 65 GV Levin (9288_CR13) 2002; 5 J Jayamuthunagai (9288_CR4) 2017; 57 JJ Liu (9288_CR19) 2016; 234 W Zhang (9288_CR7) 2016; 54 |
References_xml | – reference: ZhangWYuSZhangTJiangBMuWRecent advances in D-allulose: physiological functionalities, applications, and biological productionTrends Food Sci. Tech.20165412713710.1016/j.tifs.2016.06.004 – reference: ZhangWCharacterization of a novel metal-dependent D-psicose 3-epimerase from Clostridium scindens 35704PLoS One20138e629872013PLoSO...862987Z1:CAS:528:DC%2BC3sXnsVKhur4%3D10.1371/journal.pone.0062987 – reference: SeibothBGamaufCPailMHartlLKubicekCPThe D-xylose reductase of Hypocrea jecorina is the major aldose reductase in pentose and D-galactose catabolism and necessary for beta-galactosidase and cellulase induction by lactoseMol. Microbiol.2007668909001:CAS:528:DC%2BD2sXhtl2qs7jI10.1111/j.1365-2958.2007.05953.x – reference: DiCarloJEGenome engineering in Saccharomyces cerevisiae using CRISPR-Cas systemsNucleic Acids Res.201341433643431:CAS:528:DC%2BC3sXlvVKis7o%3D10.1093/nar/gkt135 – reference: KwakSEnhanced isoprenoid production from xylose by engineered Saccharomyces cerevisiaeBiotechnol. Bioeng.2017114258125911:CAS:528:DC%2BC2sXht1arsr7M10.1002/bit.26369 – reference: Robinson, P. K., Enzymes: principles and biotechnological applications. Essays Biochem. 59, 1–41 (2015). – reference: ChouayekhHCharacterization of an l-arabinose isomerase from the Lactobacillus plantarum NC8 strain showing pronounced stability at acidic pHFEMS Microbiol. Lett.20072772602671:CAS:528:DC%2BD2sXhsVersLzI10.1111/j.1574-6968.2007.00961.x – reference: JinYSJeffriesTWChanging flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiaeAppl. Biochem. Biotechnol.2003105 -10827728610.1385/ABAB:106:1-3:277 – reference: LimBCKimHJOhDKHigh production of D-tagatose by the addition of boric acidBiotechnol. Prog.2007238248281:CAS:528:DC%2BD2sXms1eqtbo%3D10.1002/bp070056y – reference: WanarskaMKurJA method for the production of D-tagatose using a recombinant Pichia pastoris strain secreting beta-D-galactosidase from Arthrobacter chlorophenolicus and a recombinant L-arabinose isomerase from Arthrobacter sp. 22cMicrob. Cell. Fact.2012111131:CAS:528:DC%2BC3sXhsFyitrk%3D10.1186/1475-2859-11-113 – reference: ZhangGCConstruction of a quadruple auxotrophic mutant of an industrial polyploid saccharomyces cerevisiae strain by using RNA-guided Cas9 nucleaseAppl. Environ. Microbiol.2014807694770110.1128/AEM.02310-14 – reference: KimBCCloning, expression and characterization of L-arabinose isomerase from Thermotoga neapolitana: bioconversion of D-galactose to D-tagatose using the enzymeFEMS Microbiol. Let.20022121211261:CAS:528:DC%2BD38XksF2jsrY%3D – reference: JagtapSSSinghRKangYCZhaoHLeeJKCloning and characterization of a galactitol 2-dehydrogenase from Rhizobium legumenosarum and its application in D-tagatose productionEnzym. Microb. Technol.201458-5944511:CAS:528:DC%2BC2cXmtFags74%3D10.1016/j.enzmictec.2014.02.012 – reference: LeeCYBagdasarianMMengMHZeikusJGCatalytic mechanism of xylose (glucose) isomerase from Clostridium thermosulfurogenes. Characterization of the structural gene and function of active site histidineJ. Biol. Chem.199026519082190901:CAS:528:DyaK3MXpslentg%3D%3D2229064 – reference: ParkCSD-allulose production from D-fructose by permeabilized recombinant cells of Corynebacterium glutamicum cells expressing D-allulose 3-epimerase Flavonifractor plautiiPLoS One201611e016004410.1371/journal.pone.0160044 – reference: NguyenTKHongMGChangPSLeeBHYooSHBiochemical properties of L-arabinose isomerase from Clostridium hylemonae to produce D-tagatose as a functional sweetenerPLoS One201813e019609910.1371/journal.pone.0196099 – reference: LiuJJLactose fermentation by engineered Saccharomyces cerevisiae capable of fermenting cellobioseJ. Biotechnol.2016234991041:CAS:528:DC%2BC28XhtlWjtLnJ10.1016/j.jbiotec.2016.07.018 – reference: ChengLMuWJiangBThermostable L-arabinose isomerase from Bacillus stearothermophilus IAM 11001 for D-tagatose production: gene cloning, purification and characterisationJ. Sci. Food Agric.201090132713331:CAS:528:DC%2BC3cXmtV2jsLY%3D10.1002/jsfa.3938 – reference: ZhanYCoexpression of beta-D-galactosidase and L-arabinose isomerase in the production of D-tagatose: a functional sweetenerJ. Agric. Food Chem.201462241224171:CAS:528:DC%2BC2cXjt1yls7c%3D10.1021/jf4042485 – reference: OhEJGene amplification on demand accelerates cellobiose utilization in engineered Saccharomyces cerevisiaeAppl. Environ. Microbiol.201682363136391:CAS:528:DC%2BC28XhvFyqsbvK10.1128/AEM.00410-16 – reference: LiXComparison of xylose fermentation by two high-performance engineered strains of Saccharomyces cerevisiaeBiotechnol. Rep. (Amst.)2016953561:CAS:528:DC%2BC1cXhtFensL3L10.1016/j.btre.2016.01.003 – reference: LeangKNovel reactions of L-rhamnose isomerase from Pseudomonas stutzeri and its relation with D-xylose isomerase via substrate specificityBiochim. Et. Biophys. Acta (BBA)—General Subj.2004167468771:CAS:528:DC%2BD2cXntlSmu74%3D10.1016/j.bbagen.2004.06.003 – reference: HaSJEngineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentationProc. Natl. Acad. Sci. USA20111085045092011PNAS..108..504H1:CAS:528:DC%2BC3MXptFKntg%3D%3D10.1073/pnas.1010456108 – reference: LuYLevinGVDonnerTWTagatose, a new antidiabetic and obesity control drugDiabetes Obes. Metab.2008101091341:CAS:528:DC%2BD1cXivVOrtrg%3D10.1111/j.1463-1326.2008.00866.x – reference: MumbergDMullerRFunkMYeast vectors for the controlled expression of heterologous proteins in different genetic backgroundsGene19951561191221:CAS:528:DyaK2MXkvVamsb4%3D10.1016/0378-1119(95)00037-7 – reference: HossainARare sugar D-psicose prevents progression and development of diabetes in T2DM model Otsuka Long-Evans Tokushima Fatty ratsDrug Des. Dev. Ther.201595255351:CAS:528:DC%2BC1cXlsVOhtLk%3D10.2147/DDDT.S71289 – reference: TaxisCKnopMSystem of centromeric, episomal, and integrative vectors based on drug resistance markers for Saccharomyces cerevisiaeBiotechniques20064073781:CAS:528:DC%2BD28XntVSksw%3D%3D10.2144/000112040 – reference: ShinKCSimDHSeoMJOhDKIncreased production of food-grade D-tagatose from D-galactose by permeabilized and immobilized cells of Corynebacterium glutamicum, a GRAS host, expressing d-galactose isomerase from Geobacillus thermodenitrificansJ. Agric. Food Chem.201664814681531:CAS:528:DC%2BC28Xhs1Kmt7fP10.1021/acs.jafc.6b03588 – reference: KimPCurrent studies on biological tagatose production using D-arabinose isomerase: a review and future perspectiveAppl. Microbiol. Biotechnol.2004652432491:CAS:528:DC%2BD2cXmsVCgurg%3D15248040 – reference: StaudiglPHaltrichDPeterbauerCKL-Arabinose isomerase and D-xylose isomerase from Lactobacillus reuteri: characterization, coexpression in the food grade host Lactobacillus plantarum, and application in the conversion of D-galactose and D-glucoseJ. Agric. Food Chem.201462161716241:CAS:528:DC%2BC2cXpt12rsg%3D%3D10.1021/jf404785m – reference: KimHJHyunEKKimYSLeeYJOhDKCharacterization of an Agrobacterium tumefaciens D-psicose 3-epimerase that converts D-fructose to D-psicoseAppl. Environ. Microbiol.2006729819851:CAS:528:DC%2BD28Xhs1Ghs78%3D10.1128/AEM.72.2.981-985.2006 – reference: WeiNXuHKimSRJinYSDeletion of FPS1, encoding aquaglyceroporin Fps1p, improves xylose fermentation by engineered Saccharomyces cerevisiaeAppl. Environ. Microbiol.201379319332011:CAS:528:DC%2BC3sXnt1ajtr8%3D10.1128/AEM.00490-13 – reference: ZhangGCLiuJJKongIIKwakSJinYSCombining C6 and C5 sugar metabolism for enhancing microbial bioconversionCurr. Opin. Chem. Biol.201529495710.1016/j.cbpa.2015.09.008 – reference: LiuJJMetabolic engineering of probiotic Saccharomyces boulardiiAppl. Environ. Microbiol.201682228022871:CAS:528:DC%2BC28Xht1Cqs7jJ10.1128/AEM.00057-16 – reference: LevinGVTagatose, the new GRAS sweetener and health productJ. Med. Food2002523361:CAS:528:DC%2BD38XktlSjt7o%3D10.1089/109662002753723197 – reference: De Robichon-SzulmajsterHInduction of enzymes of the galactose pathway in mutants of Saccharomyces cerevisiaeScience195812728291958Sci...127...28D10.1126/science.127.3288.28 – reference: LeangKA novel enzymatic approach to the massproduction of L-galactose from L-sorboseJ. Biosci. Bioeng.2004973833881:CAS:528:DC%2BD2cXmvFehsLY%3D10.1016/S1389-1723(04)70223-6 – reference: ZargaraanAKamaliroostaLYaghoubiASMirmoghtadaieLEffect of substitution of sugar by high fructose corn syrup on the physicochemical properties of bakery and dairy products: a review. NutrFood Sci. Res.201633111:CAS:528:DC%2BC1cXhtVaksLfK – reference: JayamuthunagaiJGautamPSrisowmeyaGChakravarthyMBiocatalytic production of D-tagatose: a potential rare sugar with versatile applicationsCrit. Rev. Food Sci. Nutr.201757343034371:CAS:528:DC%2BC2sXos1ehurY%3D10.1080/10408398.2015.1126550 – reference: MitsuhashiSLampenJOConversion of D-xylose to D-xylulose in extracts of Lactobacillus pentosusJ. Biol. Chem.1953204101110181:CAS:528:DyaG2cXktFyh13117877 – volume: 90 start-page: 1327 year: 2010 ident: 9288_CR26 publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.3938 – volume: 82 start-page: 2280 year: 2016 ident: 9288_CR36 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00057-16 – volume: 5 start-page: 23 year: 2002 ident: 9288_CR13 publication-title: J. Med. Food doi: 10.1089/109662002753723197 – volume: 82 start-page: 3631 year: 2016 ident: 9288_CR22 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00410-16 – volume: 57 start-page: 3430 year: 2017 ident: 9288_CR4 publication-title: Crit. Rev. Food Sci. Nutr. doi: 10.1080/10408398.2015.1126550 – volume: 10 start-page: 109 year: 2008 ident: 9288_CR14 publication-title: Diabetes Obes. Metab. doi: 10.1111/j.1463-1326.2008.00866.x – volume: 234 start-page: 99 year: 2016 ident: 9288_CR19 publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2016.07.018 – volume: 41 start-page: 4336 year: 2013 ident: 9288_CR24 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt135 – volume: 13 start-page: e0196099 year: 2018 ident: 9288_CR28 publication-title: PLoS One doi: 10.1371/journal.pone.0196099 – volume: 79 start-page: 3193 year: 2013 ident: 9288_CR32 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00490-13 – volume: 114 start-page: 2581 year: 2017 ident: 9288_CR40 publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.26369 – volume: 54 start-page: 127 year: 2016 ident: 9288_CR7 publication-title: Trends Food Sci. Tech. doi: 10.1016/j.tifs.2016.06.004 – volume: 97 start-page: 383 year: 2004 ident: 9288_CR17 publication-title: J. Biosci. Bioeng. doi: 10.1016/S1389-1723(04)70223-6 – volume: 108 start-page: 504 year: 2011 ident: 9288_CR34 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1010456108 – volume: 72 start-page: 981 year: 2006 ident: 9288_CR11 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.72.2.981-985.2006 – volume: 80 start-page: 7694 year: 2014 ident: 9288_CR25 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02310-14 – ident: 9288_CR1 doi: 10.1042/bse0590001 – volume: 29 start-page: 49 year: 2015 ident: 9288_CR35 publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2015.09.008 – volume: 11 start-page: e0160044 year: 2016 ident: 9288_CR6 publication-title: PLoS One doi: 10.1371/journal.pone.0160044 – volume: 9 start-page: 53 year: 2016 ident: 9288_CR29 publication-title: Biotechnol. Rep. (Amst.) doi: 10.1016/j.btre.2016.01.003 – volume: 62 start-page: 1617 year: 2014 ident: 9288_CR8 publication-title: J. Agric. Food Chem. doi: 10.1021/jf404785m – volume: 8 start-page: e62987 year: 2013 ident: 9288_CR10 publication-title: PLoS One doi: 10.1371/journal.pone.0062987 – volume: 40 start-page: 73 year: 2006 ident: 9288_CR39 publication-title: Biotechniques doi: 10.2144/000112040 – volume: 64 start-page: 8146 year: 2016 ident: 9288_CR3 publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.6b03588 – volume: 11 start-page: 113 year: 2012 ident: 9288_CR18 publication-title: Microb. Cell. Fact. doi: 10.1186/1475-2859-11-113 – volume: 265 start-page: 19082 year: 1990 ident: 9288_CR31 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)30628-2 – volume: 212 start-page: 121 year: 2002 ident: 9288_CR27 publication-title: FEMS Microbiol. Let. – volume: 62 start-page: 2412 year: 2014 ident: 9288_CR33 publication-title: J. Agric. Food Chem. doi: 10.1021/jf4042485 – volume: 1674 start-page: 68 year: 2004 ident: 9288_CR16 publication-title: Biochim. Et. Biophys. Acta (BBA)—General Subj. doi: 10.1016/j.bbagen.2004.06.003 – volume: 66 start-page: 890 year: 2007 ident: 9288_CR20 publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2007.05953.x – volume: 204 start-page: 1011 year: 1953 ident: 9288_CR30 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)66103-4 – volume: 23 start-page: 824 year: 2007 ident: 9288_CR5 publication-title: Biotechnol. Prog. doi: 10.1002/bp070056y – volume: 277 start-page: 260 year: 2007 ident: 9288_CR9 publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.2007.00961.x – volume: 156 start-page: 119 year: 1995 ident: 9288_CR38 publication-title: Gene doi: 10.1016/0378-1119(95)00037-7 – volume: 65 start-page: 243 year: 2004 ident: 9288_CR15 publication-title: Appl. Microbiol. Biotechnol. – volume: 3 start-page: 3 year: 2016 ident: 9288_CR2 publication-title: Food Sci. Res. – volume: 105 -108 start-page: 277 year: 2003 ident: 9288_CR37 publication-title: Appl. Biochem. Biotechnol. doi: 10.1385/ABAB:106:1-3:277 – volume: 9 start-page: 525 year: 2015 ident: 9288_CR12 publication-title: Drug Des. Dev. Ther. doi: 10.2147/DDDT.S71289 – volume: 127 start-page: 28 year: 1958 ident: 9288_CR23 publication-title: Science doi: 10.1126/science.127.3288.28 – volume: 58-59 start-page: 44 year: 2014 ident: 9288_CR21 publication-title: Enzym. Microb. Technol. doi: 10.1016/j.enzmictec.2014.02.012 |
SSID | ssj0000391844 |
Score | 2.500422 |
Snippet | Isomerases perform biotransformations without cofactors but often cause an undesirable mixture of substrate and product due to unfavorable thermodynamic... A desired product cannot be obtained at higher concentration than its equilibrium concentration when isomerases are used for biotransformation. Here, the... |
SourceID | doaj pubmedcentral osti proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1356 |
SubjectTerms | 38/22 38/44 38/77 45/41 631/1647/1511 631/326/2522 631/61/318 82/80 Aldehyde Reductase - metabolism BASIC BIOLOGICAL SCIENCES Bioreactors - microbiology Biotransformation Cofactors Galactose Galactose - metabolism Gene Dosage Hexoses - metabolism Humanities and Social Sciences Intracellular Space - metabolism Isomerism Isomerization Lactose Lactose - metabolism Models, Biological multidisciplinary Oxidation-Reduction Oxidoreductase Oxidoreductases - metabolism Saccharomyces cerevisiae - metabolism Science Science (multidisciplinary) Substrates Sugar Alcohol Dehydrogenases - metabolism Thermodynamic equilibrium Thermodynamics Xylose Xylose - metabolism Xylose reductase Yeast |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9QwFA6ysOBF_G3ddYngTcs2TZo0R112WQT14sLeQpImWHBb3emAgn-87yWdOuPPi4ehQ5POpC9fkq99L98j5BmsGIzFTpZtA90AlLoqLSCnDE53QOYcUGh83_HmrTy_EK8vm8utVF8YE5blgbPhjq0KDubP2nUiCF15-CUVqsYrpdsq2KReCmve1sNUmoO5hkcXMe-SqXh7vBJpTqhwz46uoV1yZyVKgv1wGGFg_Y5s_hoz-ZPjNK1HZ7fJrZlI0pf5Bu6QG2G4S_Zzasmv98i3d4BRQBNcS4Hj4ef6auxy_nkaPq_7FOy_vqJjpHag_WpE303elEmBSab9DnRO40PHLz2mJEFxWJgel_IVBc5LXT9OW_x3HO6Ti7PT9yfn5ZxpofSNVFMphFAayR98YbzpnOcxtpLFgAp5jY-dC6xzWnHLGQeGVXOopYRuZUS9Sf6A7A3jEB4RGgKcRNF8GbnQ3NrOWe8ja5TTrXK2IGxjdeNnGXLMhvHRJHc4b03uKQM9ZVJPGVmQ58s1n7IIx19rv8LOXGqigHY6AbAyM6zMv2BVkAOEggEegmK6HqOO_GSAPqMDvCCHG4SYecyvTI06PcCHW12Qp0sxjFZ0wdghjOtUR6L-LKsK8jADamknxxBZsFFB1A7Udm5kt2ToPyRFcKCVlZLwvy82oPzRrD8b6vH_MNQBuVmnQcXLuj4ke9P1OjwBnja5ozQkvwNyAjm0 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96IvgiflvvlAi-abmmSZvkSVRcD0F98eDeQpOmWvCau20XFPzjnUmzPdePe1h2aVI2ycxkfmQmvyHkGXgMxrq2zlUFYgBIXeQNaE7urW4BzFmA0Hje8eFjfXQs3p9UJ-nAbUxplds9MW7UbXB4Rn5YIgsKoA2lX56d51g1CqOrqYTGVXKNgafBlC61erecsSD7uRIi3ZUpuDocRdwZCry5o0sYXb3jjyJtP3wFMK9_Qc6_Myf_CJ9Gr7S6RW4mOElfzfK_Ta744Q65PheY_HGX_PwEmgrzg3cpID38rE9DO1ehp_5808eU_80pDR1tBtqPASM489VMCngy3nqgqZgPDd97LEyCFLGwSS7tIwXkS20fpt9QcBjukePV289vjvJUbyF3VS2nXAghNUJA-MF41VrHu07VrPPIk1e5rrWetVZL3nDGAWeVHHpJoVXdIeskv0_2hjD4h4R6Dw-ROr_uuNC8aVrbONexSlqtpG0ywrarblwiI8eaGN9MDIpzZWZJGZCUiZIydUaeL--czVQcl_Z-jcJceiKNdnwQ1l9MskrTSG_BOZe2FV7owoGaSl9UTkqtCt9UGdlHVTCARpBS12HukZsMgGgMg2fkYKshJln-aC70NCNPl2awWQzENIMPm9inRhZaVmTkwaxQyzg5JsrCGmVE7qjazkR2W4b-a-QFB3BZyBr-98VWKS-G9f-FenT5LPbJjTKaC8_L8oDsTeuNfww4bLJPorH9AqmGMSw priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OOwRfDr-td0oE37TYNmnSPq7icSyoD3pwbyFJU13wGt3twgn-8c6kH7p6Cj6ULc2kmyYzzY_OzG8AnuKOkedtI9OqxGVASJ2lBjUn9bZuEMxZhND0vePNW3l6Jpbn5fkeFFMuTAzaj5SW8TU9RYe92Iho0hml3NQF3lZegwOiakfdPlgslu-X85cV4jyvhBgzZDJeXdF5ZxeKZP34E9CorgKaf8ZL_uY0jXvRyU04HEEkWwzDvgV7vrsN14eykt_uwPd3qJ_4XNiXIb6jY30RmqH2PPNft6sY6L-9YKFlpmOrTSC_zZCQyRBFxlwHNpbwYeFyReVIiBgWX41z-4Yh3mV2FfpfsG_o7sLZyesPr07TscpC6kqp-lQIoWoCfniS87KxjrdtJfPWEzte6drG-ryxteKG5xzRVcFRSom6ki1xTfJ7sN-Fzj8A5j1eJMJ82XJRc2Maa5xr81LZulLWJJBPs67dSEFOlTA-6-gK55UeVkrjSum4Ulom8Gzu82Ug4Pin9EtazFmSyLPjhbD-qEdl0kZ5i1tyYRvhRZ05VE7ls9IpVVeZN2UCR6QKGjEIEek6ijhyvUboTM7vBI4nDdGjvW90QRw9iIWrOoEnczNaKrlfTOfDNspI4p7NswTuDwo1j5NTeCzOUQJqR9V2HmS3pVt9imzgCCkzJfF_n09K-XNYf5-oh_8nfgQ3img-PC2KY9jv11v_CNFYbx-P5vcDvoMwUQ priority: 102 providerName: Springer Nature |
Title | Overcoming the thermodynamic equilibrium of an isomerization reaction through oxidoreductive reactions for biotransformation |
URI | https://link.springer.com/article/10.1038/s41467-019-09288-6 https://www.ncbi.nlm.nih.gov/pubmed/30902987 https://www.proquest.com/docview/2195919389 https://www.proquest.com/docview/2196525710 https://www.osti.gov/servlets/purl/1504466 https://pubmed.ncbi.nlm.nih.gov/PMC6430769 https://doaj.org/article/a7eb7182bd4e490ca187e05c77980ea5 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD7aRUi8IO6EjcpIvEEgiRM7fkCoq1amShsIqNQ3K06cUWlLWJtKm8SP5xwnDRQKTzy0qXxRUvs7OV9in-8AvECPEYZlIfw0wWlASh34GSLHt0YVSOYMUmh633F6Jk6m8WSWzHZgne6oG8Dl1kc7yic1XVy8vr66eYcG_7YNGU_fLGNn7gGF46gITyl2YR89k6SMBqcd3Xd3Zq7wgSbuYme2d93wT07GHw81mts2CvrnTsrfllOdlxrfhTsdvWTDFg_3YMdW9-FWm3Dy5gF8_4DIRYxhX4bMjz6Ly7pos9Ize7WauxCA1SWrS5ZVbL6saUWnDdVkyC9dFATrkvuw-npOiUpIMhZvmn39kiETZmZeN7-w4rp6CNPx8ZfRid_lX_DzRMjGj-NYKqKE-CPkSWFyXpapCEtLunlJXhbGhoVRkmc85Mi7Io6tZKxSUZIKJX8Ee1Vd2SfArMVCktIXJY8Vz7LCZHlehok0KpUm8yBcj7rOO3FyypFxod0iOU91O1MaZ0q7mdLCg5d9n2-tNMc_Wx_RZPYtSVbbFdSLc91Zqc6kNeisI1PENlZBjrCVNkhyKVUa2Czx4ICgoJGdkMRuTnuR8kYjqaZlcQ8O1wjRayDriNR7kCWnyoPnfTXaMC3MZJWtV66NIFXaMPDgcQuo_jo5bZzFMfJAbkBt449s1lTzr04nHMlmIAWe99UalD8v6-8D9fR_DNQB3I6cUXE_ig5hr1ms7DNkb40ZwK6cSfxOx-8HsD8cTj5P8Hh0fPbxE5aOxGjg3osMnOn-AMEPSCQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRQguiJ3QAkaCE0RNYidODgixDVO6cGml3tzYcWAkGrezCCrxm_iNvOcsZVh66yGaKHZmEr_F3_j5fQ_gKc4YcVxXWZinKAaE1FFYouaEVhcVgjmNEJrWO3Z2s_G--HiQHqzAzz4XhrZV9j7RO-rKGVoj30iIBQXRRl68Oj4JqWoURVf7EhqtWmzZ02_4l232cvMdyvdZkoze770dh11VgdCkmZyHQghZENDBk5inlTa8rvMsri2xwaWmrrSNK11IXvKYI5pIOPaSosizmrgVOX7vJbgsOM7klJk--jCs6RDbei5El5sT8XxjJrwniihTqEhwNLKl-c-XCcAPh-b8L4j7907NP8K1fhYc3YDrHXxlr1t9uwkrtrkFV9qClqe34ccntAwcT7yXIbKkY3rkqrbqPbMni4lPMVgcMVezsmGTmaOIUZsKyhC_-iwL1hUPYu77hAqhECUtOuWhfcYQaTM9cfPfULdr7sD-hUjiLqw2rrH3gVmLF4mqP6u5KHhZVro0po5TqYtc6jKAuB91ZTryc6rB8VX5IDzPVSsphZJSXlIqC-D5cM9xS_1xbu83JMyhJ9F2-wtu-ll1XkCV0moEA4muhBVFZNAspI1SI2WRR7ZMA1gjVVCIfojC19BeJzNXCNop7B7Aeq8hqvM0M3VmFwE8GZrRR1Dgp2ysW_g-GbHexlEA91qFGp6T08ZcHKMA5JKqLb3Icksz-eJ5yBHMRjLD333RK-XZY_1_oB6c_xaP4ep4b2dbbW_ubq3BtcSbDg-TZB1W59OFfYgYcK4fecNjcHjRlv4LdJprTA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG9CCxgJThBtEidxckCI0q5aCkuFqNSbiR2njcQm7T4EK_HL-HXMOI-yPHrrYbWr2Mkmnoe_eDzfADzDGcP3izx2kwjFgJDaczPUHNeoNEcwpxBC03rHh3G8exi-O4qO1uBnlwtD2yo7n2gddV5rWiMfBsSCgmgjSYdFuy3iYHv0-vTMpQpSFGntymk0KrJvlt_w9W32am8bZf08CEY7n9_uum2FAVdHsZi7YRiKlEAP_vB5lCvNiyKJ_cIQM1yki1wZP1ep4Bn3OSKLgGMvEaZJXBDPIsfrXoF1QW9FA1jf2hkffOpXeIh7PQnDNlPH48lwFlq_5FHeUBrg2MQrs6EtGoBfNRr3vwDv3_s2_wje2jlxdBNutGCWvWm07xasmeo2XG3KWy7vwI-PaCc4unguQ5xJn-mkzpdVNik1M2eL0iYcLCasLlhWsXJWU_yoSQxliGZtzgVrSwmx-ntJZVGIoBZddN8-Y4i7mSrr-W8YvK7uwuGlyOIeDKq6Mg-AGYMHibg_LniY8izLVaZ14UdCpYlQmQN-N-pSt1ToVJHjq7QheZ7IRlISJSWtpGTswIv-nNOGCOTC3lskzL4nkXjbA_X0WLY-QWbCKIQGgcpDE6aeRiMRxou0EGnimSxyYINUQSIWIkJfTTuf9FwihKcgvAObnYbI1u_M5LmVOPC0b0aPQWGgrDL1wvaJiQPX9xy43yhUf5-ctuniGDkgVlRt5UFWW6ryxLKSI7T1RIz_-7JTyvPb-v9APbz4KZ7ANbRy-X5vvL8B1wNrOdwNgk0YzKcL8wgB4Vw9bi2PwZfLNvZfnlRw3g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overcoming+the+thermodynamic+equilibrium+of+an+isomerization+reaction+through+oxidoreductive+reactions+for+biotransformation&rft.jtitle=Nature+communications&rft.au=Jing-Jing+Liu&rft.au=Guo-Chang+Zhang&rft.au=Suryang+Kwak&rft.au=Eun+Joong+Oh&rft.date=2019-03-22&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=10&rft.issue=1&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1038%2Fs41467-019-09288-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a7eb7182bd4e490ca187e05c77980ea5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |