Overcoming the thermodynamic equilibrium of an isomerization reaction through oxidoreductive reactions for biotransformation

Isomerases perform biotransformations without cofactors but often cause an undesirable mixture of substrate and product due to unfavorable thermodynamic equilibria. We demonstrate the feasibility of using an engineered yeast strain harboring oxidoreductase reactions to overcome the thermodynamic lim...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 10; no. 1; pp. 1356 - 8
Main Authors Liu, Jing-Jing, Zhang, Guo-Chang, Kwak, Suryang, Oh, Eun Joong, Yun, Eun Ju, Chomvong, Kulika, Cate, Jamie H. D., Jin, Yong-Su
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 22.03.2019
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Isomerases perform biotransformations without cofactors but often cause an undesirable mixture of substrate and product due to unfavorable thermodynamic equilibria. We demonstrate the feasibility of using an engineered yeast strain harboring oxidoreductase reactions to overcome the thermodynamic limit of an isomerization reaction. Specifically, a yeast strain capable of consuming lactose intracellularly is engineered to produce tagatose from lactose through three layers of manipulations. First, GAL1 coding for galactose kinase is deleted to eliminate galactose utilization. Second, heterologous xylose reductase (XR) and galactitol dehydrogenase (GDH) are introduced into the ∆gal1 strain. Third, the expression levels of XR and GDH are adjusted to maximize tagatose production. The resulting engineered yeast produces 37.69 g/L of tagatose from lactose with a tagatose and galactose ratio of 9:1 in the reaction broth. These results suggest that in vivo oxidoreaductase reactions can be employed to replace isomerases in vitro for biotransformation. A desired product cannot be obtained at higher concentration than its equilibrium concentration when isomerases are used for biotransformation. Here, the authors engineer in vivo oxidoreductive reactions in yeast to overcome the equilibrium limitation of in vitro isomerases-based tagatose production.
AbstractList Isomerases perform biotransformations without cofactors but often cause an undesirable mixture of substrate and product due to unfavorable thermodynamic equilibria. We demonstrate the feasibility of using an engineered yeast strain harboring oxidoreductase reactions to overcome the thermodynamic limit of an isomerization reaction. Specifically, a yeast strain capable of consuming lactose intracellularly is engineered to produce tagatose from lactose through three layers of manipulations. First, GAL1 coding for galactose kinase is deleted to eliminate galactose utilization. Second, heterologous xylose reductase (XR) and galactitol dehydrogenase (GDH) are introduced into the ∆gal1 strain. Third, the expression levels of XR and GDH are adjusted to maximize tagatose production. The resulting engineered yeast produces 37.69 g/L of tagatose from lactose with a tagatose and galactose ratio of 9:1 in the reaction broth. These results suggest that in vivo oxidoreaductase reactions can be employed to replace isomerases in vitro for biotransformation. A desired product cannot be obtained at higher concentration than its equilibrium concentration when isomerases are used for biotransformation. Here, the authors engineer in vivo oxidoreductive reactions in yeast to overcome the equilibrium limitation of in vitro isomerases-based tagatose production.
Isomerases perform biotransformations without cofactors but often cause an undesirable mixture of substrate and product due to unfavorable thermodynamic equilibria. We demonstrate the feasibility of using an engineered yeast strain harboring oxidoreductase reactions to overcome the thermodynamic limit of an isomerization reaction. Specifically, a yeast strain capable of consuming lactose intracellularly is engineered to produce tagatose from lactose through three layers of manipulations. First, GAL1 coding for galactose kinase is deleted to eliminate galactose utilization. Second, heterologous xylose reductase (XR) and galactitol dehydrogenase (GDH) are introduced into the Δgal1 strain. Third, the expression levels of XR and GDH are adjusted to maximize tagatose production. The resulting engineered yeast produces 37.69 g/L of tagatose from lactose with a tagatose and galactose ratio of 9:1 in the reaction broth. These results suggest that in vivo oxidoreaductase reactions can be employed to replace isomerases in vitro for biotransformation.
A desired product cannot be obtained at higher concentration than its equilibrium concentration when isomerases are used for biotransformation. Here, the authors engineer in vivo oxidoreductive reactions in yeast to overcome the equilibrium limitation of in vitro isomerases-based tagatose production.
Isomerases perform biotransformations without cofactors but often cause an undesirable mixture of substrate and product due to unfavorable thermodynamic equilibria. We demonstrate the feasibility of using an engineered yeast strain harboring oxidoreductase reactions to overcome the thermodynamic limit of an isomerization reaction. Specifically, a yeast strain capable of consuming lactose intracellularly is engineered to produce tagatose from lactose through three layers of manipulations. First, GAL1 coding for galactose kinase is deleted to eliminate galactose utilization. Second, heterologous xylose reductase (XR) and galactitol dehydrogenase (GDH) are introduced into the ∆gal1 strain. Third, the expression levels of XR and GDH are adjusted to maximize tagatose production. The resulting engineered yeast produces 37.69 g/L of tagatose from lactose with a tagatose and galactose ratio of 9:1 in the reaction broth. These results suggest that in vivo oxidoreaductase reactions can be employed to replace isomerases in vitro for biotransformation.
Isomerases perform biotransformations without cofactors but often cause an undesirable mixture of substrate and product due to unfavorable thermodynamic equilibria. We demonstrate the feasibility of using an engineered yeast strain harboring oxidoreductase reactions to overcome the thermodynamic limit of an isomerization reaction. Specifically, a yeast strain capable of consuming lactose intracellularly is engineered to produce tagatose from lactose through three layers of manipulations. First, GAL1 coding for galactose kinase is deleted to eliminate galactose utilization. Second, heterologous xylose reductase (XR) and galactitol dehydrogenase (GDH) are introduced into the ∆gal1 strain. Third, the expression levels of XR and GDH are adjusted to maximize tagatose production. The resulting engineered yeast produces 37.69 g/L of tagatose from lactose with a tagatose and galactose ratio of 9:1 in the reaction broth. These results suggest that in vivo oxidoreaductase reactions can be employed to replace isomerases in vitro for biotransformation.
Isomerases perform biotransformations without cofactors but often cause an undesirable mixture of substrate and product due to unfavorable thermodynamic equilibria. We demonstrate the feasibility of using an engineered yeast strain harboring oxidoreductase reactions to overcome the thermodynamic limit of an isomerization reaction. Specifically, a yeast strain capable of consuming lactose intracellularly is engineered to produce tagatose from lactose through three layers of manipulations. First, GAL1 coding for galactose kinase is deleted to eliminate galactose utilization. Second, heterologous xylose reductase (XR) and galactitol dehydrogenase (GDH) are introduced into the ∆gal1 strain. Third, the expression levels of XR and GDH are adjusted to maximize tagatose production. The resulting engineered yeast produces 37.69 g/L of tagatose from lactose with a tagatose and galactose ratio of 9:1 in the reaction broth. These results suggest that in vivo oxidoreaductase reactions can be employed to replace isomerases in vitro for biotransformation.Isomerases perform biotransformations without cofactors but often cause an undesirable mixture of substrate and product due to unfavorable thermodynamic equilibria. We demonstrate the feasibility of using an engineered yeast strain harboring oxidoreductase reactions to overcome the thermodynamic limit of an isomerization reaction. Specifically, a yeast strain capable of consuming lactose intracellularly is engineered to produce tagatose from lactose through three layers of manipulations. First, GAL1 coding for galactose kinase is deleted to eliminate galactose utilization. Second, heterologous xylose reductase (XR) and galactitol dehydrogenase (GDH) are introduced into the ∆gal1 strain. Third, the expression levels of XR and GDH are adjusted to maximize tagatose production. The resulting engineered yeast produces 37.69 g/L of tagatose from lactose with a tagatose and galactose ratio of 9:1 in the reaction broth. These results suggest that in vivo oxidoreaductase reactions can be employed to replace isomerases in vitro for biotransformation.
Isomerases perform biotransformations without cofactors but often cause an undesirable mixture of substrate and product due to unfavorable thermodynamic equilibria. We demonstrate the feasibility of using an engineered yeast strain harboring oxidoreductase reactions to overcome the thermodynamic limit of an isomerization reaction. Specifically, a yeast strain capable of consuming lactose intracellularly is engineered to produce tagatose from lactose through three layers of manipulations. First, GAL1 coding for galactose kinase is deleted to eliminate galactose utilization. Second, heterologous xylose reductase (XR) and galactitol dehydrogenase (GDH) are introduced into the ∆gal1 strain. Third, the expression levels of XR and GDH are adjusted to maximize tagatose production. The resulting engineered yeast produces 37.69 g/L of tagatose from lactose with a tagatose and galactose ratio of 9:1 in the reaction broth. These results suggest that in vivo oxidoreaductase reactions can be employed to replace isomerases in vitro for biotransformation.A desired product cannot be obtained at higher concentration than its equilibrium concentration when isomerases are used for biotransformation. Here, the authors engineer in vivo oxidoreductive reactions in yeast to overcome the equilibrium limitation of in vitro isomerases-based tagatose production.
ArticleNumber 1356
Author Zhang, Guo-Chang
Kwak, Suryang
Yun, Eun Ju
Liu, Jing-Jing
Oh, Eun Joong
Chomvong, Kulika
Cate, Jamie H. D.
Jin, Yong-Su
Author_xml – sequence: 1
  givenname: Jing-Jing
  orcidid: 0000-0002-2302-2726
  surname: Liu
  fullname: Liu, Jing-Jing
  organization: Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign
– sequence: 2
  givenname: Guo-Chang
  orcidid: 0000-0003-4081-0799
  surname: Zhang
  fullname: Zhang, Guo-Chang
  organization: Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign
– sequence: 3
  givenname: Suryang
  surname: Kwak
  fullname: Kwak, Suryang
  organization: Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign
– sequence: 4
  givenname: Eun Joong
  surname: Oh
  fullname: Oh, Eun Joong
  organization: Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign
– sequence: 5
  givenname: Eun Ju
  surname: Yun
  fullname: Yun, Eun Ju
  organization: Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Department of Biotechnology, Graduate School, Korea University
– sequence: 6
  givenname: Kulika
  surname: Chomvong
  fullname: Chomvong, Kulika
  organization: National Center for Genetic Engineering and Biotechnology (BIOTEC)
– sequence: 7
  givenname: Jamie H. D.
  orcidid: 0000-0001-5965-7902
  surname: Cate
  fullname: Cate, Jamie H. D.
  organization: Department of Molecular and Cell Biology, University of California
– sequence: 8
  givenname: Yong-Su
  surname: Jin
  fullname: Jin, Yong-Su
  email: ysjin@illinois.edu
  organization: Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30902987$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1504466$$D View this record in Osti.gov
BookMark eNp9Uk1r3DAUFCWlSbf5Az0U0156cStZ35dCCf0IBHJpz0KWn3cVbCmR7CUp_fHVrpM0ySECoYc0M28kzWt0EGIAhN4S_Ilgqj5nRpiQNSa6xrpRqhYv0FGDGamJbOjBg_oQHed8gcugmijGXqFDijVutJJH6O_5FpKLow_ratrAbqYxdjfBjt5VcDX7wbfJz2MV-8qGyuc4QvJ_7ORjqBJYty-mTYrzelPFa9_FBN1ctrdwf56rPqaq9XFKNuRSj3v-G_Syt0OG49t1hX5___br5Gd9dv7j9OTrWe24kFPNGJMaE0FKQSjvWkf7XgnSA5aSc9d3LZCu1ZJaSiijvKEFJZlWoseYSbpCp4tuF-2FuUx-tOnGROvNfiOmtbFp8m4AYyW0kqim7RgwjZ0lSgLmTkqtMFhetL4sWpdzO0LnIJQ7DY9EH58EvzHruDWCUSyFLgLvF4GYJ2-y8xO4jYshgJsM4ZgxIQro422XFK9myJMZfXYwDDZAnLNpiBa84bJEYYU-PIFexDmF8p47FNdEU7Xr-u6h7Xu_d0koALUAXIo5J-hNcbb_pXILPxiCzS53ZsmdKbkz-9yZndnmCfVO_VkSXUi5gMMa0n_bz7D-AUE17Cc
CitedBy_id crossref_primary_10_1021_acs_jafc_4c08630
crossref_primary_10_1016_j_ijbiomac_2024_131518
crossref_primary_10_1002_adma_202303952
crossref_primary_10_1016_j_lwt_2024_115787
crossref_primary_10_3390_molecules29122909
crossref_primary_10_1080_10408398_2021_2023091
crossref_primary_10_1016_j_foodres_2023_112637
crossref_primary_10_1016_j_mec_2020_e00148
crossref_primary_10_1021_acssynbio_2c00507
crossref_primary_10_1021_acs_jafc_9b06748
crossref_primary_10_1021_jacs_9b12358
crossref_primary_10_3390_fermentation11030139
crossref_primary_10_1017_S0007114521003524
crossref_primary_10_1073_pnas_2317058121
crossref_primary_10_1016_j_foodres_2025_116058
crossref_primary_10_3390_jof9090907
crossref_primary_10_1021_acs_jafc_4c08619
crossref_primary_10_3390_catal13111437
crossref_primary_10_1007_s00253_020_10427_z
crossref_primary_10_1021_acs_jafc_4c09796
crossref_primary_10_1039_D0SC06017H
crossref_primary_10_1016_j_fbio_2024_105626
crossref_primary_10_1039_D0CY01915A
crossref_primary_10_1002_bit_28159
crossref_primary_10_1128_aem_01135_24
crossref_primary_10_1007_s00253_025_13417_1
crossref_primary_10_1016_j_apcatb_2024_124095
crossref_primary_10_1016_j_ymben_2020_01_005
crossref_primary_10_1039_C9GC04265B
crossref_primary_10_1016_j_biombioe_2025_107631
crossref_primary_10_1021_acs_jafc_4c12842
crossref_primary_10_1021_acssynbio_9b00217
crossref_primary_10_1039_D1CC04243B
crossref_primary_10_1007_s00253_021_11394_9
crossref_primary_10_1016_j_jtice_2024_105585
crossref_primary_10_1016_j_foodres_2025_116109
crossref_primary_10_1016_j_enzmictec_2021_109850
crossref_primary_10_1021_acscatal_0c02922
crossref_primary_10_1007_s10529_023_03415_6
crossref_primary_10_1016_j_bbadva_2025_100143
crossref_primary_10_1016_j_fbio_2025_106027
crossref_primary_10_1016_j_tibtech_2022_01_002
crossref_primary_10_3390_fermentation11020046
Cites_doi 10.1002/jsfa.3938
10.1128/AEM.00057-16
10.1089/109662002753723197
10.1128/AEM.00410-16
10.1080/10408398.2015.1126550
10.1111/j.1463-1326.2008.00866.x
10.1016/j.jbiotec.2016.07.018
10.1093/nar/gkt135
10.1371/journal.pone.0196099
10.1128/AEM.00490-13
10.1002/bit.26369
10.1016/j.tifs.2016.06.004
10.1016/S1389-1723(04)70223-6
10.1073/pnas.1010456108
10.1128/AEM.72.2.981-985.2006
10.1128/AEM.02310-14
10.1042/bse0590001
10.1016/j.cbpa.2015.09.008
10.1371/journal.pone.0160044
10.1016/j.btre.2016.01.003
10.1021/jf404785m
10.1371/journal.pone.0062987
10.2144/000112040
10.1021/acs.jafc.6b03588
10.1186/1475-2859-11-113
10.1016/S0021-9258(17)30628-2
10.1021/jf4042485
10.1016/j.bbagen.2004.06.003
10.1111/j.1365-2958.2007.05953.x
10.1016/S0021-9258(18)66103-4
10.1002/bp070056y
10.1111/j.1574-6968.2007.00961.x
10.1016/0378-1119(95)00037-7
10.1385/ABAB:106:1-3:277
10.2147/DDDT.S71289
10.1126/science.127.3288.28
10.1016/j.enzmictec.2014.02.012
ContentType Journal Article
Copyright The Author(s) 2019
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Univ. of Illinois, Champaign, IL (United States). Center for Advanced Bioenergy and Bioproducts Innovation
CorporateAuthor_xml – name: Univ. of Illinois, Champaign, IL (United States). Center for Advanced Bioenergy and Bioproducts Innovation
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
OIOZB
OTOTI
5PM
DOA
DOI 10.1038/s41467-019-09288-6
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList



MEDLINE
CrossRef
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 8
ExternalDocumentID oai_doaj_org_article_a7eb7182bd4e490ca187e05c77980ea5
PMC6430769
1504466
30902987
10_1038_s41467_019_09288_6
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
AAADF
AAPBV
AAYJO
ADQMX
AEDAW
OIOZB
OTOTI
ZA5
5PM
PUEGO
ID FETCH-LOGICAL-c567t-444790161444135dbc3ff861fe07755cfdbe1db973a3134352335d74986f00473
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:25:52 EDT 2025
Thu Aug 21 17:57:18 EDT 2025
Mon Jul 03 03:58:34 EDT 2023
Fri Jul 11 01:59:17 EDT 2025
Wed Aug 13 09:47:34 EDT 2025
Thu Apr 03 07:06:24 EDT 2025
Tue Jul 01 02:21:26 EDT 2025
Thu Apr 24 22:50:24 EDT 2025
Fri Feb 21 02:39:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c567t-444790161444135dbc3ff861fe07755cfdbe1db973a3134352335d74986f00473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
SC0018420
USDOE Office of Science (SC), Biological and Environmental Research (BER)
ORCID 0000-0001-5965-7902
0000-0003-4081-0799
0000-0002-2302-2726
0000000340810799
0000000223022726
0000000159657902
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-019-09288-6
PMID 30902987
PQID 2195919389
PQPubID 546298
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_a7eb7182bd4e490ca187e05c77980ea5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6430769
osti_scitechconnect_1504466
proquest_miscellaneous_2196525710
proquest_journals_2195919389
pubmed_primary_30902987
crossref_citationtrail_10_1038_s41467_019_09288_6
crossref_primary_10_1038_s41467_019_09288_6
springer_journals_10_1038_s41467_019_09288_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-22
PublicationDateYYYYMMDD 2019-03-22
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-22
  day: 22
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References StaudiglPHaltrichDPeterbauerCKL-Arabinose isomerase and D-xylose isomerase from Lactobacillus reuteri: characterization, coexpression in the food grade host Lactobacillus plantarum, and application in the conversion of D-galactose and D-glucoseJ. Agric. Food Chem.201462161716241:CAS:528:DC%2BC2cXpt12rsg%3D%3D10.1021/jf404785m
LiXComparison of xylose fermentation by two high-performance engineered strains of Saccharomyces cerevisiaeBiotechnol. Rep. (Amst.)2016953561:CAS:528:DC%2BC1cXhtFensL3L10.1016/j.btre.2016.01.003
KimHJHyunEKKimYSLeeYJOhDKCharacterization of an Agrobacterium tumefaciens D-psicose 3-epimerase that converts D-fructose to D-psicoseAppl. Environ. Microbiol.2006729819851:CAS:528:DC%2BD28Xhs1Ghs78%3D10.1128/AEM.72.2.981-985.2006
KimBCCloning, expression and characterization of L-arabinose isomerase from Thermotoga neapolitana: bioconversion of D-galactose to D-tagatose using the enzymeFEMS Microbiol. Let.20022121211261:CAS:528:DC%2BD38XksF2jsrY%3D
ZhanYCoexpression of beta-D-galactosidase and L-arabinose isomerase in the production of D-tagatose: a functional sweetenerJ. Agric. Food Chem.201462241224171:CAS:528:DC%2BC2cXjt1yls7c%3D10.1021/jf4042485
KwakSEnhanced isoprenoid production from xylose by engineered Saccharomyces cerevisiaeBiotechnol. Bioeng.2017114258125911:CAS:528:DC%2BC2sXht1arsr7M10.1002/bit.26369
JinYSJeffriesTWChanging flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiaeAppl. Biochem. Biotechnol.2003105 -10827728610.1385/ABAB:106:1-3:277
SeibothBGamaufCPailMHartlLKubicekCPThe D-xylose reductase of Hypocrea jecorina is the major aldose reductase in pentose and D-galactose catabolism and necessary for beta-galactosidase and cellulase induction by lactoseMol. Microbiol.2007668909001:CAS:528:DC%2BD2sXhtl2qs7jI10.1111/j.1365-2958.2007.05953.x
ChengLMuWJiangBThermostable L-arabinose isomerase from Bacillus stearothermophilus IAM 11001 for D-tagatose production: gene cloning, purification and characterisationJ. Sci. Food Agric.201090132713331:CAS:528:DC%2BC3cXmtV2jsLY%3D10.1002/jsfa.3938
ChouayekhHCharacterization of an l-arabinose isomerase from the Lactobacillus plantarum NC8 strain showing pronounced stability at acidic pHFEMS Microbiol. Lett.20072772602671:CAS:528:DC%2BD2sXhsVersLzI10.1111/j.1574-6968.2007.00961.x
LevinGVTagatose, the new GRAS sweetener and health productJ. Med. Food2002523361:CAS:528:DC%2BD38XktlSjt7o%3D10.1089/109662002753723197
LiuJJLactose fermentation by engineered Saccharomyces cerevisiae capable of fermenting cellobioseJ. Biotechnol.2016234991041:CAS:528:DC%2BC28XhtlWjtLnJ10.1016/j.jbiotec.2016.07.018
ZhangGCConstruction of a quadruple auxotrophic mutant of an industrial polyploid saccharomyces cerevisiae strain by using RNA-guided Cas9 nucleaseAppl. Environ. Microbiol.2014807694770110.1128/AEM.02310-14
MumbergDMullerRFunkMYeast vectors for the controlled expression of heterologous proteins in different genetic backgroundsGene19951561191221:CAS:528:DyaK2MXkvVamsb4%3D10.1016/0378-1119(95)00037-7
TaxisCKnopMSystem of centromeric, episomal, and integrative vectors based on drug resistance markers for Saccharomyces cerevisiaeBiotechniques20064073781:CAS:528:DC%2BD28XntVSksw%3D%3D10.2144/000112040
LeangKA novel enzymatic approach to the massproduction of L-galactose from L-sorboseJ. Biosci. Bioeng.2004973833881:CAS:528:DC%2BD2cXmvFehsLY%3D10.1016/S1389-1723(04)70223-6
ZhangWCharacterization of a novel metal-dependent D-psicose 3-epimerase from Clostridium scindens 35704PLoS One20138e629872013PLoSO...862987Z1:CAS:528:DC%2BC3sXnsVKhur4%3D10.1371/journal.pone.0062987
JayamuthunagaiJGautamPSrisowmeyaGChakravarthyMBiocatalytic production of D-tagatose: a potential rare sugar with versatile applicationsCrit. Rev. Food Sci. Nutr.201757343034371:CAS:528:DC%2BC2sXos1ehurY%3D10.1080/10408398.2015.1126550
LeangKNovel reactions of L-rhamnose isomerase from Pseudomonas stutzeri and its relation with D-xylose isomerase via substrate specificityBiochim. Et. Biophys. Acta (BBA)—General Subj.2004167468771:CAS:528:DC%2BD2cXntlSmu74%3D10.1016/j.bbagen.2004.06.003
De Robichon-SzulmajsterHInduction of enzymes of the galactose pathway in mutants of Saccharomyces cerevisiaeScience195812728291958Sci...127...28D10.1126/science.127.3288.28
ZargaraanAKamaliroostaLYaghoubiASMirmoghtadaieLEffect of substitution of sugar by high fructose corn syrup on the physicochemical properties of bakery and dairy products: a review. NutrFood Sci. Res.201633111:CAS:528:DC%2BC1cXhtVaksLfK
HossainARare sugar D-psicose prevents progression and development of diabetes in T2DM model Otsuka Long-Evans Tokushima Fatty ratsDrug Des. Dev. Ther.201595255351:CAS:528:DC%2BC1cXlsVOhtLk%3D10.2147/DDDT.S71289
ZhangGCLiuJJKongIIKwakSJinYSCombining C6 and C5 sugar metabolism for enhancing microbial bioconversionCurr. Opin. Chem. Biol.201529495710.1016/j.cbpa.2015.09.008
ParkCSD-allulose production from D-fructose by permeabilized recombinant cells of Corynebacterium glutamicum cells expressing D-allulose 3-epimerase Flavonifractor plautiiPLoS One201611e016004410.1371/journal.pone.0160044
Robinson, P. K., Enzymes: principles and biotechnological applications. Essays Biochem. 59, 1–41 (2015).
MitsuhashiSLampenJOConversion of D-xylose to D-xylulose in extracts of Lactobacillus pentosusJ. Biol. Chem.1953204101110181:CAS:528:DyaG2cXktFyh13117877
KimPCurrent studies on biological tagatose production using D-arabinose isomerase: a review and future perspectiveAppl. Microbiol. Biotechnol.2004652432491:CAS:528:DC%2BD2cXmsVCgurg%3D15248040
ShinKCSimDHSeoMJOhDKIncreased production of food-grade D-tagatose from D-galactose by permeabilized and immobilized cells of Corynebacterium glutamicum, a GRAS host, expressing d-galactose isomerase from Geobacillus thermodenitrificansJ. Agric. Food Chem.201664814681531:CAS:528:DC%2BC28Xhs1Kmt7fP10.1021/acs.jafc.6b03588
WeiNXuHKimSRJinYSDeletion of FPS1, encoding aquaglyceroporin Fps1p, improves xylose fermentation by engineered Saccharomyces cerevisiaeAppl. Environ. Microbiol.201379319332011:CAS:528:DC%2BC3sXnt1ajtr8%3D10.1128/AEM.00490-13
LuYLevinGVDonnerTWTagatose, a new antidiabetic and obesity control drugDiabetes Obes. Metab.2008101091341:CAS:528:DC%2BD1cXivVOrtrg%3D10.1111/j.1463-1326.2008.00866.x
OhEJGene amplification on demand accelerates cellobiose utilization in engineered Saccharomyces cerevisiaeAppl. Environ. Microbiol.201682363136391:CAS:528:DC%2BC28XhvFyqsbvK10.1128/AEM.00410-16
NguyenTKHongMGChangPSLeeBHYooSHBiochemical properties of L-arabinose isomerase from Clostridium hylemonae to produce D-tagatose as a functional sweetenerPLoS One201813e019609910.1371/journal.pone.0196099
LeeCYBagdasarianMMengMHZeikusJGCatalytic mechanism of xylose (glucose) isomerase from Clostridium thermosulfurogenes. Characterization of the structural gene and function of active site histidineJ. Biol. Chem.199026519082190901:CAS:528:DyaK3MXpslentg%3D%3D2229064
LimBCKimHJOhDKHigh production of D-tagatose by the addition of boric acidBiotechnol. Prog.2007238248281:CAS:528:DC%2BD2sXms1eqtbo%3D10.1002/bp070056y
WanarskaMKurJA method for the production of D-tagatose using a recombinant Pichia pastoris strain secreting beta-D-galactosidase from Arthrobacter chlorophenolicus and a recombinant L-arabinose isomerase from Arthrobacter sp. 22cMicrob. Cell. Fact.2012111131:CAS:528:DC%2BC3sXhsFyitrk%3D10.1186/1475-2859-11-113
DiCarloJEGenome engineering in Saccharomyces cerevisiae using CRISPR-Cas systemsNucleic Acids Res.201341433643431:CAS:528:DC%2BC3sXlvVKis7o%3D10.1093/nar/gkt135
HaSJEngineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentationProc. Natl. Acad. Sci. USA20111085045092011PNAS..108..504H1:CAS:528:DC%2BC3MXptFKntg%3D%3D10.1073/pnas.1010456108
LiuJJMetabolic engineering of probiotic Saccharomyces boulardiiAppl. Environ. Microbiol.201682228022871:CAS:528:DC%2BC28Xht1Cqs7jJ10.1128/AEM.00057-16
JagtapSSSinghRKangYCZhaoHLeeJKCloning and characterization of a galactitol 2-dehydrogenase from Rhizobium legumenosarum and its application in D-tagatose productionEnzym. Microb. Technol.201458-5944511:CAS:528:DC%2BC2cXmtFags74%3D10.1016/j.enzmictec.2014.02.012
ZhangWYuSZhangTJiangBMuWRecent advances in D-allulose: physiological functionalities, applications, and biological productionTrends Food Sci. Tech.20165412713710.1016/j.tifs.2016.06.004
HJ Kim (9288_CR11) 2006; 72
JE DiCarlo (9288_CR24) 2013; 41
D Mumberg (9288_CR38) 1995; 156
C Taxis (9288_CR39) 2006; 40
M Wanarska (9288_CR18) 2012; 11
GC Zhang (9288_CR35) 2015; 29
W Zhang (9288_CR10) 2013; 8
EJ Oh (9288_CR22) 2016; 82
H De Robichon-Szulmajster (9288_CR23) 1958; 127
X Li (9288_CR29) 2016; 9
H Chouayekh (9288_CR9) 2007; 277
A Hossain (9288_CR12) 2015; 9
JJ Liu (9288_CR36) 2016; 82
YS Jin (9288_CR37) 2003; 105 -108
Y Zhan (9288_CR33) 2014; 62
BC Kim (9288_CR27) 2002; 212
Y Lu (9288_CR14) 2008; 10
P Staudigl (9288_CR8) 2014; 62
9288_CR1
GC Zhang (9288_CR25) 2014; 80
N Wei (9288_CR32) 2013; 79
K Leang (9288_CR17) 2004; 97
SJ Ha (9288_CR34) 2011; 108
B Seiboth (9288_CR20) 2007; 66
L Cheng (9288_CR26) 2010; 90
K Leang (9288_CR16) 2004; 1674
SS Jagtap (9288_CR21) 2014; 58-59
CY Lee (9288_CR31) 1990; 265
KC Shin (9288_CR3) 2016; 64
TK Nguyen (9288_CR28) 2018; 13
CS Park (9288_CR6) 2016; 11
BC Lim (9288_CR5) 2007; 23
A Zargaraan (9288_CR2) 2016; 3
S Kwak (9288_CR40) 2017; 114
S Mitsuhashi (9288_CR30) 1953; 204
P Kim (9288_CR15) 2004; 65
GV Levin (9288_CR13) 2002; 5
J Jayamuthunagai (9288_CR4) 2017; 57
JJ Liu (9288_CR19) 2016; 234
W Zhang (9288_CR7) 2016; 54
References_xml – reference: ZhangWYuSZhangTJiangBMuWRecent advances in D-allulose: physiological functionalities, applications, and biological productionTrends Food Sci. Tech.20165412713710.1016/j.tifs.2016.06.004
– reference: ZhangWCharacterization of a novel metal-dependent D-psicose 3-epimerase from Clostridium scindens 35704PLoS One20138e629872013PLoSO...862987Z1:CAS:528:DC%2BC3sXnsVKhur4%3D10.1371/journal.pone.0062987
– reference: SeibothBGamaufCPailMHartlLKubicekCPThe D-xylose reductase of Hypocrea jecorina is the major aldose reductase in pentose and D-galactose catabolism and necessary for beta-galactosidase and cellulase induction by lactoseMol. Microbiol.2007668909001:CAS:528:DC%2BD2sXhtl2qs7jI10.1111/j.1365-2958.2007.05953.x
– reference: DiCarloJEGenome engineering in Saccharomyces cerevisiae using CRISPR-Cas systemsNucleic Acids Res.201341433643431:CAS:528:DC%2BC3sXlvVKis7o%3D10.1093/nar/gkt135
– reference: KwakSEnhanced isoprenoid production from xylose by engineered Saccharomyces cerevisiaeBiotechnol. Bioeng.2017114258125911:CAS:528:DC%2BC2sXht1arsr7M10.1002/bit.26369
– reference: Robinson, P. K., Enzymes: principles and biotechnological applications. Essays Biochem. 59, 1–41 (2015).
– reference: ChouayekhHCharacterization of an l-arabinose isomerase from the Lactobacillus plantarum NC8 strain showing pronounced stability at acidic pHFEMS Microbiol. Lett.20072772602671:CAS:528:DC%2BD2sXhsVersLzI10.1111/j.1574-6968.2007.00961.x
– reference: JinYSJeffriesTWChanging flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiaeAppl. Biochem. Biotechnol.2003105 -10827728610.1385/ABAB:106:1-3:277
– reference: LimBCKimHJOhDKHigh production of D-tagatose by the addition of boric acidBiotechnol. Prog.2007238248281:CAS:528:DC%2BD2sXms1eqtbo%3D10.1002/bp070056y
– reference: WanarskaMKurJA method for the production of D-tagatose using a recombinant Pichia pastoris strain secreting beta-D-galactosidase from Arthrobacter chlorophenolicus and a recombinant L-arabinose isomerase from Arthrobacter sp. 22cMicrob. Cell. Fact.2012111131:CAS:528:DC%2BC3sXhsFyitrk%3D10.1186/1475-2859-11-113
– reference: ZhangGCConstruction of a quadruple auxotrophic mutant of an industrial polyploid saccharomyces cerevisiae strain by using RNA-guided Cas9 nucleaseAppl. Environ. Microbiol.2014807694770110.1128/AEM.02310-14
– reference: KimBCCloning, expression and characterization of L-arabinose isomerase from Thermotoga neapolitana: bioconversion of D-galactose to D-tagatose using the enzymeFEMS Microbiol. Let.20022121211261:CAS:528:DC%2BD38XksF2jsrY%3D
– reference: JagtapSSSinghRKangYCZhaoHLeeJKCloning and characterization of a galactitol 2-dehydrogenase from Rhizobium legumenosarum and its application in D-tagatose productionEnzym. Microb. Technol.201458-5944511:CAS:528:DC%2BC2cXmtFags74%3D10.1016/j.enzmictec.2014.02.012
– reference: LeeCYBagdasarianMMengMHZeikusJGCatalytic mechanism of xylose (glucose) isomerase from Clostridium thermosulfurogenes. Characterization of the structural gene and function of active site histidineJ. Biol. Chem.199026519082190901:CAS:528:DyaK3MXpslentg%3D%3D2229064
– reference: ParkCSD-allulose production from D-fructose by permeabilized recombinant cells of Corynebacterium glutamicum cells expressing D-allulose 3-epimerase Flavonifractor plautiiPLoS One201611e016004410.1371/journal.pone.0160044
– reference: NguyenTKHongMGChangPSLeeBHYooSHBiochemical properties of L-arabinose isomerase from Clostridium hylemonae to produce D-tagatose as a functional sweetenerPLoS One201813e019609910.1371/journal.pone.0196099
– reference: LiuJJLactose fermentation by engineered Saccharomyces cerevisiae capable of fermenting cellobioseJ. Biotechnol.2016234991041:CAS:528:DC%2BC28XhtlWjtLnJ10.1016/j.jbiotec.2016.07.018
– reference: ChengLMuWJiangBThermostable L-arabinose isomerase from Bacillus stearothermophilus IAM 11001 for D-tagatose production: gene cloning, purification and characterisationJ. Sci. Food Agric.201090132713331:CAS:528:DC%2BC3cXmtV2jsLY%3D10.1002/jsfa.3938
– reference: ZhanYCoexpression of beta-D-galactosidase and L-arabinose isomerase in the production of D-tagatose: a functional sweetenerJ. Agric. Food Chem.201462241224171:CAS:528:DC%2BC2cXjt1yls7c%3D10.1021/jf4042485
– reference: OhEJGene amplification on demand accelerates cellobiose utilization in engineered Saccharomyces cerevisiaeAppl. Environ. Microbiol.201682363136391:CAS:528:DC%2BC28XhvFyqsbvK10.1128/AEM.00410-16
– reference: LiXComparison of xylose fermentation by two high-performance engineered strains of Saccharomyces cerevisiaeBiotechnol. Rep. (Amst.)2016953561:CAS:528:DC%2BC1cXhtFensL3L10.1016/j.btre.2016.01.003
– reference: LeangKNovel reactions of L-rhamnose isomerase from Pseudomonas stutzeri and its relation with D-xylose isomerase via substrate specificityBiochim. Et. Biophys. Acta (BBA)—General Subj.2004167468771:CAS:528:DC%2BD2cXntlSmu74%3D10.1016/j.bbagen.2004.06.003
– reference: HaSJEngineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentationProc. Natl. Acad. Sci. USA20111085045092011PNAS..108..504H1:CAS:528:DC%2BC3MXptFKntg%3D%3D10.1073/pnas.1010456108
– reference: LuYLevinGVDonnerTWTagatose, a new antidiabetic and obesity control drugDiabetes Obes. Metab.2008101091341:CAS:528:DC%2BD1cXivVOrtrg%3D10.1111/j.1463-1326.2008.00866.x
– reference: MumbergDMullerRFunkMYeast vectors for the controlled expression of heterologous proteins in different genetic backgroundsGene19951561191221:CAS:528:DyaK2MXkvVamsb4%3D10.1016/0378-1119(95)00037-7
– reference: HossainARare sugar D-psicose prevents progression and development of diabetes in T2DM model Otsuka Long-Evans Tokushima Fatty ratsDrug Des. Dev. Ther.201595255351:CAS:528:DC%2BC1cXlsVOhtLk%3D10.2147/DDDT.S71289
– reference: TaxisCKnopMSystem of centromeric, episomal, and integrative vectors based on drug resistance markers for Saccharomyces cerevisiaeBiotechniques20064073781:CAS:528:DC%2BD28XntVSksw%3D%3D10.2144/000112040
– reference: ShinKCSimDHSeoMJOhDKIncreased production of food-grade D-tagatose from D-galactose by permeabilized and immobilized cells of Corynebacterium glutamicum, a GRAS host, expressing d-galactose isomerase from Geobacillus thermodenitrificansJ. Agric. Food Chem.201664814681531:CAS:528:DC%2BC28Xhs1Kmt7fP10.1021/acs.jafc.6b03588
– reference: KimPCurrent studies on biological tagatose production using D-arabinose isomerase: a review and future perspectiveAppl. Microbiol. Biotechnol.2004652432491:CAS:528:DC%2BD2cXmsVCgurg%3D15248040
– reference: StaudiglPHaltrichDPeterbauerCKL-Arabinose isomerase and D-xylose isomerase from Lactobacillus reuteri: characterization, coexpression in the food grade host Lactobacillus plantarum, and application in the conversion of D-galactose and D-glucoseJ. Agric. Food Chem.201462161716241:CAS:528:DC%2BC2cXpt12rsg%3D%3D10.1021/jf404785m
– reference: KimHJHyunEKKimYSLeeYJOhDKCharacterization of an Agrobacterium tumefaciens D-psicose 3-epimerase that converts D-fructose to D-psicoseAppl. Environ. Microbiol.2006729819851:CAS:528:DC%2BD28Xhs1Ghs78%3D10.1128/AEM.72.2.981-985.2006
– reference: WeiNXuHKimSRJinYSDeletion of FPS1, encoding aquaglyceroporin Fps1p, improves xylose fermentation by engineered Saccharomyces cerevisiaeAppl. Environ. Microbiol.201379319332011:CAS:528:DC%2BC3sXnt1ajtr8%3D10.1128/AEM.00490-13
– reference: ZhangGCLiuJJKongIIKwakSJinYSCombining C6 and C5 sugar metabolism for enhancing microbial bioconversionCurr. Opin. Chem. Biol.201529495710.1016/j.cbpa.2015.09.008
– reference: LiuJJMetabolic engineering of probiotic Saccharomyces boulardiiAppl. Environ. Microbiol.201682228022871:CAS:528:DC%2BC28Xht1Cqs7jJ10.1128/AEM.00057-16
– reference: LevinGVTagatose, the new GRAS sweetener and health productJ. Med. Food2002523361:CAS:528:DC%2BD38XktlSjt7o%3D10.1089/109662002753723197
– reference: De Robichon-SzulmajsterHInduction of enzymes of the galactose pathway in mutants of Saccharomyces cerevisiaeScience195812728291958Sci...127...28D10.1126/science.127.3288.28
– reference: LeangKA novel enzymatic approach to the massproduction of L-galactose from L-sorboseJ. Biosci. Bioeng.2004973833881:CAS:528:DC%2BD2cXmvFehsLY%3D10.1016/S1389-1723(04)70223-6
– reference: ZargaraanAKamaliroostaLYaghoubiASMirmoghtadaieLEffect of substitution of sugar by high fructose corn syrup on the physicochemical properties of bakery and dairy products: a review. NutrFood Sci. Res.201633111:CAS:528:DC%2BC1cXhtVaksLfK
– reference: JayamuthunagaiJGautamPSrisowmeyaGChakravarthyMBiocatalytic production of D-tagatose: a potential rare sugar with versatile applicationsCrit. Rev. Food Sci. Nutr.201757343034371:CAS:528:DC%2BC2sXos1ehurY%3D10.1080/10408398.2015.1126550
– reference: MitsuhashiSLampenJOConversion of D-xylose to D-xylulose in extracts of Lactobacillus pentosusJ. Biol. Chem.1953204101110181:CAS:528:DyaG2cXktFyh13117877
– volume: 90
  start-page: 1327
  year: 2010
  ident: 9288_CR26
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.3938
– volume: 82
  start-page: 2280
  year: 2016
  ident: 9288_CR36
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00057-16
– volume: 5
  start-page: 23
  year: 2002
  ident: 9288_CR13
  publication-title: J. Med. Food
  doi: 10.1089/109662002753723197
– volume: 82
  start-page: 3631
  year: 2016
  ident: 9288_CR22
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00410-16
– volume: 57
  start-page: 3430
  year: 2017
  ident: 9288_CR4
  publication-title: Crit. Rev. Food Sci. Nutr.
  doi: 10.1080/10408398.2015.1126550
– volume: 10
  start-page: 109
  year: 2008
  ident: 9288_CR14
  publication-title: Diabetes Obes. Metab.
  doi: 10.1111/j.1463-1326.2008.00866.x
– volume: 234
  start-page: 99
  year: 2016
  ident: 9288_CR19
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2016.07.018
– volume: 41
  start-page: 4336
  year: 2013
  ident: 9288_CR24
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt135
– volume: 13
  start-page: e0196099
  year: 2018
  ident: 9288_CR28
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0196099
– volume: 79
  start-page: 3193
  year: 2013
  ident: 9288_CR32
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00490-13
– volume: 114
  start-page: 2581
  year: 2017
  ident: 9288_CR40
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.26369
– volume: 54
  start-page: 127
  year: 2016
  ident: 9288_CR7
  publication-title: Trends Food Sci. Tech.
  doi: 10.1016/j.tifs.2016.06.004
– volume: 97
  start-page: 383
  year: 2004
  ident: 9288_CR17
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/S1389-1723(04)70223-6
– volume: 108
  start-page: 504
  year: 2011
  ident: 9288_CR34
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1010456108
– volume: 72
  start-page: 981
  year: 2006
  ident: 9288_CR11
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.72.2.981-985.2006
– volume: 80
  start-page: 7694
  year: 2014
  ident: 9288_CR25
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02310-14
– ident: 9288_CR1
  doi: 10.1042/bse0590001
– volume: 29
  start-page: 49
  year: 2015
  ident: 9288_CR35
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2015.09.008
– volume: 11
  start-page: e0160044
  year: 2016
  ident: 9288_CR6
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0160044
– volume: 9
  start-page: 53
  year: 2016
  ident: 9288_CR29
  publication-title: Biotechnol. Rep. (Amst.)
  doi: 10.1016/j.btre.2016.01.003
– volume: 62
  start-page: 1617
  year: 2014
  ident: 9288_CR8
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf404785m
– volume: 8
  start-page: e62987
  year: 2013
  ident: 9288_CR10
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0062987
– volume: 40
  start-page: 73
  year: 2006
  ident: 9288_CR39
  publication-title: Biotechniques
  doi: 10.2144/000112040
– volume: 64
  start-page: 8146
  year: 2016
  ident: 9288_CR3
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.6b03588
– volume: 11
  start-page: 113
  year: 2012
  ident: 9288_CR18
  publication-title: Microb. Cell. Fact.
  doi: 10.1186/1475-2859-11-113
– volume: 265
  start-page: 19082
  year: 1990
  ident: 9288_CR31
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)30628-2
– volume: 212
  start-page: 121
  year: 2002
  ident: 9288_CR27
  publication-title: FEMS Microbiol. Let.
– volume: 62
  start-page: 2412
  year: 2014
  ident: 9288_CR33
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf4042485
– volume: 1674
  start-page: 68
  year: 2004
  ident: 9288_CR16
  publication-title: Biochim. Et. Biophys. Acta (BBA)—General Subj.
  doi: 10.1016/j.bbagen.2004.06.003
– volume: 66
  start-page: 890
  year: 2007
  ident: 9288_CR20
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2007.05953.x
– volume: 204
  start-page: 1011
  year: 1953
  ident: 9288_CR30
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)66103-4
– volume: 23
  start-page: 824
  year: 2007
  ident: 9288_CR5
  publication-title: Biotechnol. Prog.
  doi: 10.1002/bp070056y
– volume: 277
  start-page: 260
  year: 2007
  ident: 9288_CR9
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.2007.00961.x
– volume: 156
  start-page: 119
  year: 1995
  ident: 9288_CR38
  publication-title: Gene
  doi: 10.1016/0378-1119(95)00037-7
– volume: 65
  start-page: 243
  year: 2004
  ident: 9288_CR15
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 3
  start-page: 3
  year: 2016
  ident: 9288_CR2
  publication-title: Food Sci. Res.
– volume: 105 -108
  start-page: 277
  year: 2003
  ident: 9288_CR37
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1385/ABAB:106:1-3:277
– volume: 9
  start-page: 525
  year: 2015
  ident: 9288_CR12
  publication-title: Drug Des. Dev. Ther.
  doi: 10.2147/DDDT.S71289
– volume: 127
  start-page: 28
  year: 1958
  ident: 9288_CR23
  publication-title: Science
  doi: 10.1126/science.127.3288.28
– volume: 58-59
  start-page: 44
  year: 2014
  ident: 9288_CR21
  publication-title: Enzym. Microb. Technol.
  doi: 10.1016/j.enzmictec.2014.02.012
SSID ssj0000391844
Score 2.500422
Snippet Isomerases perform biotransformations without cofactors but often cause an undesirable mixture of substrate and product due to unfavorable thermodynamic...
A desired product cannot be obtained at higher concentration than its equilibrium concentration when isomerases are used for biotransformation. Here, the...
SourceID doaj
pubmedcentral
osti
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1356
SubjectTerms 38/22
38/44
38/77
45/41
631/1647/1511
631/326/2522
631/61/318
82/80
Aldehyde Reductase - metabolism
BASIC BIOLOGICAL SCIENCES
Bioreactors - microbiology
Biotransformation
Cofactors
Galactose
Galactose - metabolism
Gene Dosage
Hexoses - metabolism
Humanities and Social Sciences
Intracellular Space - metabolism
Isomerism
Isomerization
Lactose
Lactose - metabolism
Models, Biological
multidisciplinary
Oxidation-Reduction
Oxidoreductase
Oxidoreductases - metabolism
Saccharomyces cerevisiae - metabolism
Science
Science (multidisciplinary)
Substrates
Sugar Alcohol Dehydrogenases - metabolism
Thermodynamic equilibrium
Thermodynamics
Xylose
Xylose - metabolism
Xylose reductase
Yeast
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9QwFA6ysOBF_G3ddYngTcs2TZo0R112WQT14sLeQpImWHBb3emAgn-87yWdOuPPi4ehQ5POpC9fkq99L98j5BmsGIzFTpZtA90AlLoqLSCnDE53QOYcUGh83_HmrTy_EK8vm8utVF8YE5blgbPhjq0KDubP2nUiCF15-CUVqsYrpdsq2KReCmve1sNUmoO5hkcXMe-SqXh7vBJpTqhwz46uoV1yZyVKgv1wGGFg_Y5s_hoz-ZPjNK1HZ7fJrZlI0pf5Bu6QG2G4S_Zzasmv98i3d4BRQBNcS4Hj4ef6auxy_nkaPq_7FOy_vqJjpHag_WpE303elEmBSab9DnRO40PHLz2mJEFxWJgel_IVBc5LXT9OW_x3HO6Ti7PT9yfn5ZxpofSNVFMphFAayR98YbzpnOcxtpLFgAp5jY-dC6xzWnHLGQeGVXOopYRuZUS9Sf6A7A3jEB4RGgKcRNF8GbnQ3NrOWe8ja5TTrXK2IGxjdeNnGXLMhvHRJHc4b03uKQM9ZVJPGVmQ58s1n7IIx19rv8LOXGqigHY6AbAyM6zMv2BVkAOEggEegmK6HqOO_GSAPqMDvCCHG4SYecyvTI06PcCHW12Qp0sxjFZ0wdghjOtUR6L-LKsK8jADamknxxBZsFFB1A7Udm5kt2ToPyRFcKCVlZLwvy82oPzRrD8b6vH_MNQBuVmnQcXLuj4ke9P1OjwBnja5ozQkvwNyAjm0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96IvgiflvvlAi-abmmSZvkSVRcD0F98eDeQpOmWvCau20XFPzjnUmzPdePe1h2aVI2ycxkfmQmvyHkGXgMxrq2zlUFYgBIXeQNaE7urW4BzFmA0Hje8eFjfXQs3p9UJ-nAbUxplds9MW7UbXB4Rn5YIgsKoA2lX56d51g1CqOrqYTGVXKNgafBlC61erecsSD7uRIi3ZUpuDocRdwZCry5o0sYXb3jjyJtP3wFMK9_Qc6_Myf_CJ9Gr7S6RW4mOElfzfK_Ta744Q65PheY_HGX_PwEmgrzg3cpID38rE9DO1ehp_5808eU_80pDR1tBtqPASM489VMCngy3nqgqZgPDd97LEyCFLGwSS7tIwXkS20fpt9QcBjukePV289vjvJUbyF3VS2nXAghNUJA-MF41VrHu07VrPPIk1e5rrWetVZL3nDGAWeVHHpJoVXdIeskv0_2hjD4h4R6Dw-ROr_uuNC8aVrbONexSlqtpG0ywrarblwiI8eaGN9MDIpzZWZJGZCUiZIydUaeL--czVQcl_Z-jcJceiKNdnwQ1l9MskrTSG_BOZe2FV7owoGaSl9UTkqtCt9UGdlHVTCARpBS12HukZsMgGgMg2fkYKshJln-aC70NCNPl2awWQzENIMPm9inRhZaVmTkwaxQyzg5JsrCGmVE7qjazkR2W4b-a-QFB3BZyBr-98VWKS-G9f-FenT5LPbJjTKaC8_L8oDsTeuNfww4bLJPorH9AqmGMSw
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OOwRfDr-td0oE37TYNmnSPq7icSyoD3pwbyFJU13wGt3twgn-8c6kH7p6Cj6ULc2kmyYzzY_OzG8AnuKOkedtI9OqxGVASJ2lBjUn9bZuEMxZhND0vePNW3l6Jpbn5fkeFFMuTAzaj5SW8TU9RYe92Iho0hml3NQF3lZegwOiakfdPlgslu-X85cV4jyvhBgzZDJeXdF5ZxeKZP34E9CorgKaf8ZL_uY0jXvRyU04HEEkWwzDvgV7vrsN14eykt_uwPd3qJ_4XNiXIb6jY30RmqH2PPNft6sY6L-9YKFlpmOrTSC_zZCQyRBFxlwHNpbwYeFyReVIiBgWX41z-4Yh3mV2FfpfsG_o7sLZyesPr07TscpC6kqp-lQIoWoCfniS87KxjrdtJfPWEzte6drG-ryxteKG5xzRVcFRSom6ki1xTfJ7sN-Fzj8A5j1eJMJ82XJRc2Maa5xr81LZulLWJJBPs67dSEFOlTA-6-gK55UeVkrjSum4Ulom8Gzu82Ug4Pin9EtazFmSyLPjhbD-qEdl0kZ5i1tyYRvhRZ05VE7ls9IpVVeZN2UCR6QKGjEIEek6ijhyvUboTM7vBI4nDdGjvW90QRw9iIWrOoEnczNaKrlfTOfDNspI4p7NswTuDwo1j5NTeCzOUQJqR9V2HmS3pVt9imzgCCkzJfF_n09K-XNYf5-oh_8nfgQ3img-PC2KY9jv11v_CNFYbx-P5vcDvoMwUQ
  priority: 102
  providerName: Springer Nature
Title Overcoming the thermodynamic equilibrium of an isomerization reaction through oxidoreductive reactions for biotransformation
URI https://link.springer.com/article/10.1038/s41467-019-09288-6
https://www.ncbi.nlm.nih.gov/pubmed/30902987
https://www.proquest.com/docview/2195919389
https://www.proquest.com/docview/2196525710
https://www.osti.gov/servlets/purl/1504466
https://pubmed.ncbi.nlm.nih.gov/PMC6430769
https://doaj.org/article/a7eb7182bd4e490ca187e05c77980ea5
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD7aRUi8IO6EjcpIvEEgiRM7fkCoq1amShsIqNQ3K06cUWlLWJtKm8SP5xwnDRQKTzy0qXxRUvs7OV9in-8AvECPEYZlIfw0wWlASh34GSLHt0YVSOYMUmh633F6Jk6m8WSWzHZgne6oG8Dl1kc7yic1XVy8vr66eYcG_7YNGU_fLGNn7gGF46gITyl2YR89k6SMBqcd3Xd3Zq7wgSbuYme2d93wT07GHw81mts2CvrnTsrfllOdlxrfhTsdvWTDFg_3YMdW9-FWm3Dy5gF8_4DIRYxhX4bMjz6Ly7pos9Ize7WauxCA1SWrS5ZVbL6saUWnDdVkyC9dFATrkvuw-npOiUpIMhZvmn39kiETZmZeN7-w4rp6CNPx8ZfRid_lX_DzRMjGj-NYKqKE-CPkSWFyXpapCEtLunlJXhbGhoVRkmc85Mi7Io6tZKxSUZIKJX8Ee1Vd2SfArMVCktIXJY8Vz7LCZHlehok0KpUm8yBcj7rOO3FyypFxod0iOU91O1MaZ0q7mdLCg5d9n2-tNMc_Wx_RZPYtSVbbFdSLc91Zqc6kNeisI1PENlZBjrCVNkhyKVUa2Czx4ICgoJGdkMRuTnuR8kYjqaZlcQ8O1wjRayDriNR7kCWnyoPnfTXaMC3MZJWtV66NIFXaMPDgcQuo_jo5bZzFMfJAbkBt449s1lTzr04nHMlmIAWe99UalD8v6-8D9fR_DNQB3I6cUXE_ig5hr1ms7DNkb40ZwK6cSfxOx-8HsD8cTj5P8Hh0fPbxE5aOxGjg3osMnOn-AMEPSCQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRQguiJ3QAkaCE0RNYidODgixDVO6cGml3tzYcWAkGrezCCrxm_iNvOcsZVh66yGaKHZmEr_F3_j5fQ_gKc4YcVxXWZinKAaE1FFYouaEVhcVgjmNEJrWO3Z2s_G--HiQHqzAzz4XhrZV9j7RO-rKGVoj30iIBQXRRl68Oj4JqWoURVf7EhqtWmzZ02_4l232cvMdyvdZkoze770dh11VgdCkmZyHQghZENDBk5inlTa8rvMsri2xwaWmrrSNK11IXvKYI5pIOPaSosizmrgVOX7vJbgsOM7klJk--jCs6RDbei5El5sT8XxjJrwniihTqEhwNLKl-c-XCcAPh-b8L4j7907NP8K1fhYc3YDrHXxlr1t9uwkrtrkFV9qClqe34ccntAwcT7yXIbKkY3rkqrbqPbMni4lPMVgcMVezsmGTmaOIUZsKyhC_-iwL1hUPYu77hAqhECUtOuWhfcYQaTM9cfPfULdr7sD-hUjiLqw2rrH3gVmLF4mqP6u5KHhZVro0po5TqYtc6jKAuB91ZTryc6rB8VX5IDzPVSsphZJSXlIqC-D5cM9xS_1xbu83JMyhJ9F2-wtu-ll1XkCV0moEA4muhBVFZNAspI1SI2WRR7ZMA1gjVVCIfojC19BeJzNXCNop7B7Aeq8hqvM0M3VmFwE8GZrRR1Dgp2ysW_g-GbHexlEA91qFGp6T08ZcHKMA5JKqLb3Icksz-eJ5yBHMRjLD333RK-XZY_1_oB6c_xaP4ep4b2dbbW_ubq3BtcSbDg-TZB1W59OFfYgYcK4fecNjcHjRlv4LdJprTA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG9CCxgJThBtEidxckCI0q5aCkuFqNSbiR2njcQm7T4EK_HL-HXMOI-yPHrrYbWr2Mkmnoe_eDzfADzDGcP3izx2kwjFgJDaczPUHNeoNEcwpxBC03rHh3G8exi-O4qO1uBnlwtD2yo7n2gddV5rWiMfBsSCgmgjSYdFuy3iYHv0-vTMpQpSFGntymk0KrJvlt_w9W32am8bZf08CEY7n9_uum2FAVdHsZi7YRiKlEAP_vB5lCvNiyKJ_cIQM1yki1wZP1ep4Bn3OSKLgGMvEaZJXBDPIsfrXoF1QW9FA1jf2hkffOpXeIh7PQnDNlPH48lwFlq_5FHeUBrg2MQrs6EtGoBfNRr3vwDv3_s2_wje2jlxdBNutGCWvWm07xasmeo2XG3KWy7vwI-PaCc4unguQ5xJn-mkzpdVNik1M2eL0iYcLCasLlhWsXJWU_yoSQxliGZtzgVrSwmx-ntJZVGIoBZddN8-Y4i7mSrr-W8YvK7uwuGlyOIeDKq6Mg-AGYMHibg_LniY8izLVaZ14UdCpYlQmQN-N-pSt1ToVJHjq7QheZ7IRlISJSWtpGTswIv-nNOGCOTC3lskzL4nkXjbA_X0WLY-QWbCKIQGgcpDE6aeRiMRxou0EGnimSxyYINUQSIWIkJfTTuf9FwihKcgvAObnYbI1u_M5LmVOPC0b0aPQWGgrDL1wvaJiQPX9xy43yhUf5-ctuniGDkgVlRt5UFWW6ryxLKSI7T1RIz_-7JTyvPb-v9APbz4KZ7ANbRy-X5vvL8B1wNrOdwNgk0YzKcL8wgB4Vw9bi2PwZfLNvZfnlRw3g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overcoming+the+thermodynamic+equilibrium+of+an+isomerization+reaction+through+oxidoreductive+reactions+for+biotransformation&rft.jtitle=Nature+communications&rft.au=Jing-Jing+Liu&rft.au=Guo-Chang+Zhang&rft.au=Suryang+Kwak&rft.au=Eun+Joong+Oh&rft.date=2019-03-22&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=10&rft.issue=1&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1038%2Fs41467-019-09288-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a7eb7182bd4e490ca187e05c77980ea5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon