Strong and fragile topological Dirac semimetals with higher-order Fermi arcs

Dirac and Weyl semimetals both exhibit arc-like surface states. However, whereas the surface Fermi arcs in Weyl semimetals are topological consequences of the Weyl points themselves, the surface Fermi arcs in Dirac semimetals are not directly related to the bulk Dirac points, raising the question of...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 11; no. 1; pp. 627 - 13
Main Authors Wieder, Benjamin J., Wang, Zhijun, Cano, Jennifer, Dai, Xi, Schoop, Leslie M., Bradlyn, Barry, Bernevig, B. Andrei
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 31.01.2020
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dirac and Weyl semimetals both exhibit arc-like surface states. However, whereas the surface Fermi arcs in Weyl semimetals are topological consequences of the Weyl points themselves, the surface Fermi arcs in Dirac semimetals are not directly related to the bulk Dirac points, raising the question of whether there exists a topological bulk-boundary correspondence for Dirac semimetals. In this work, we discover that strong and fragile topological Dirac semimetals exhibit one-dimensional (1D) higher-order hinge Fermi arcs (HOFAs) as universal, direct consequences of their bulk 3D Dirac points. To predict HOFAs coexisting with topological surface states in solid-state Dirac semimetals, we introduce and layer a spinful model of an s – d -hybridized quadrupole insulator (QI). We develop a rigorous nested Jackiw–Rebbi formulation of QIs and HOFA states. Employing ab initio calculations, we demonstrate HOFAs in both the room- ( α ) and intermediate-temperature ( α ″ ) phases of Cd 3 As 2 , KMgBi, and rutile-structure ( β ′ -) PtO 2 . The existence of a topological bulk-boundary correspondence for Dirac semimetals has remained an open question. Here, Wieder et al. predict one-dimensional hinge states originating from bulk three-dimensional Dirac points in solid-state Dirac semimetals, revealing condensed matter Dirac fermions to be higher-order topological.
AbstractList Dirac and Weyl semimetals both exhibit arc-like surface states. However, whereas the surface Fermi arcs in Weyl semimetals are topological consequences of the Weyl points themselves, the surface Fermi arcs in Dirac semimetals are not directly related to the bulk Dirac points, raising the question of whether there exists a topological bulk-boundary correspondence for Dirac semimetals. In this work, we discover that strong and fragile topological Dirac semimetals exhibit one-dimensional (1D) higher-order hinge Fermi arcs (HOFAs) as universal, direct consequences of their bulk 3D Dirac points. To predict HOFAs coexisting with topological surface states in solid-state Dirac semimetals, we introduce and layer a spinful model of an s-d-hybridized quadrupole insulator (QI). We develop a rigorous nested Jackiw-Rebbi formulation of QIs and HOFA states. Employing ab initio calculations, we demonstrate HOFAs in both the room- (α) and intermediate-temperature (α″) phases of Cd3As2, KMgBi, and rutile-structure ([Formula: see text]-) PtO2.Dirac and Weyl semimetals both exhibit arc-like surface states. However, whereas the surface Fermi arcs in Weyl semimetals are topological consequences of the Weyl points themselves, the surface Fermi arcs in Dirac semimetals are not directly related to the bulk Dirac points, raising the question of whether there exists a topological bulk-boundary correspondence for Dirac semimetals. In this work, we discover that strong and fragile topological Dirac semimetals exhibit one-dimensional (1D) higher-order hinge Fermi arcs (HOFAs) as universal, direct consequences of their bulk 3D Dirac points. To predict HOFAs coexisting with topological surface states in solid-state Dirac semimetals, we introduce and layer a spinful model of an s-d-hybridized quadrupole insulator (QI). We develop a rigorous nested Jackiw-Rebbi formulation of QIs and HOFA states. Employing ab initio calculations, we demonstrate HOFAs in both the room- (α) and intermediate-temperature (α″) phases of Cd3As2, KMgBi, and rutile-structure ([Formula: see text]-) PtO2.
Dirac and Weyl semimetals both exhibit arc-like surface states. However, whereas the surface Fermi arcs in Weyl semimetals are topological consequences of the Weyl points themselves, the surface Fermi arcs in Dirac semimetals are not directly related to the bulk Dirac points, raising the question of whether there exists a topological bulk-boundary correspondence for Dirac semimetals. In this work, we discover that strong and fragile topological Dirac semimetals exhibit one-dimensional (1D) higher-order hinge Fermi arcs (HOFAs) as universal, direct consequences of their bulk 3D Dirac points. To predict HOFAs coexisting with topological surface states in solid-state Dirac semimetals, we introduce and layer a spinful model of an s – d -hybridized quadrupole insulator (QI). We develop a rigorous nested Jackiw–Rebbi formulation of QIs and HOFA states. Employing ab initio calculations, we demonstrate HOFAs in both the room- ( α ) and intermediate-temperature ( α ″ ) phases of Cd 3 As 2 , KMgBi, and rutile-structure ( $$ \beta ^{\prime} $$ β ′ -) PtO 2 .
Dirac and Weyl semimetals both exhibit arc-like surface states. However, whereas the surface Fermi arcs in Weyl semimetals are topological consequences of the Weyl points themselves, the surface Fermi arcs in Dirac semimetals are not directly related to the bulk Dirac points, raising the question of whether there exists a topological bulk-boundary correspondence for Dirac semimetals. In this work, we discover that strong and fragile topological Dirac semimetals exhibit one-dimensional (1D) higher-order hinge Fermi arcs (HOFAs) as universal, direct consequences of their bulk 3D Dirac points. To predict HOFAs coexisting with topological surface states in solid-state Dirac semimetals, we introduce and layer a spinful model of an s-d-hybridized quadrupole insulator (QI). We develop a rigorous nested Jackiw-Rebbi formulation of QIs and HOFA states. Employing ab initio calculations, we demonstrate HOFAs in both the room- (α) and intermediate-temperature (α″) phases of Cd As , KMgBi, and rutile-structure ([Formula: see text]-) PtO .
Dirac and Weyl semimetals both exhibit arc-like surface states. However, whereas the surface Fermi arcs in Weyl semimetals are topological consequences of the Weyl points themselves, the surface Fermi arcs in Dirac semimetals are not directly related to the bulk Dirac points, raising the question of whether there exists a topological bulk-boundary correspondence for Dirac semimetals. In this work, we discover that strong and fragile topological Dirac semimetals exhibit one-dimensional (1D) higher-order hinge Fermi arcs (HOFAs) as universal, direct consequences of their bulk 3D Dirac points. To predict HOFAs coexisting with topological surface states in solid-state Dirac semimetals, we introduce and layer a spinful model of an s – d -hybridized quadrupole insulator (QI). We develop a rigorous nested Jackiw–Rebbi formulation of QIs and HOFA states. Employing ab initio calculations, we demonstrate HOFAs in both the room- ( α ) and intermediate-temperature ( α ″ ) phases of Cd 3 As 2 , KMgBi, and rutile-structure ( β ′ -) PtO 2 . The existence of a topological bulk-boundary correspondence for Dirac semimetals has remained an open question. Here, Wieder et al. predict one-dimensional hinge states originating from bulk three-dimensional Dirac points in solid-state Dirac semimetals, revealing condensed matter Dirac fermions to be higher-order topological.
Abstract Dirac and Weyl semimetals both exhibit arc-like surface states. However, whereas the surface Fermi arcs in Weyl semimetals are topological consequences of the Weyl points themselves, the surface Fermi arcs in Dirac semimetals are not directly related to the bulk Dirac points, raising the question of whether there exists a topological bulk-boundary correspondence for Dirac semimetals. In this work, we discover that strong and fragile topological Dirac semimetals exhibit one-dimensional (1D) higher-order hinge Fermi arcs (HOFAs) as universal, direct consequences of their bulk 3D Dirac points. To predict HOFAs coexisting with topological surface states in solid-state Dirac semimetals, we introduce and layer a spinful model of an s – d -hybridized quadrupole insulator (QI). We develop a rigorous nested Jackiw–Rebbi formulation of QIs and HOFA states. Employing ab initio calculations, we demonstrate HOFAs in both the room- ( α ) and intermediate-temperature ( α ″ ) phases of Cd 3 As 2 , KMgBi, and rutile-structure ( $$ \beta ^{\prime} $$ β ′ -) PtO 2 .
Dirac and Weyl semimetals both exhibit arc-like surface states. However, whereas the surface Fermi arcs in Weyl semimetals are topological consequences of the Weyl points themselves, the surface Fermi arcs in Dirac semimetals are not directly related to the bulk Dirac points, raising the question of whether there exists a topological bulk-boundary correspondence for Dirac semimetals. In this work, we discover that strong and fragile topological Dirac semimetals exhibit one-dimensional (1D) higher-order hinge Fermi arcs (HOFAs) as universal, direct consequences of their bulk 3D Dirac points. To predict HOFAs coexisting with topological surface states in solid-state Dirac semimetals, we introduce and layer a spinful model of an s–d-hybridized quadrupole insulator (QI). We develop a rigorous nested Jackiw–Rebbi formulation of QIs and HOFA states. Employing ab initio calculations, we demonstrate HOFAs in both the room- (α) and intermediate-temperature (α″) phases of Cd3As2, KMgBi, and rutile-structure (β′-) PtO2.The existence of a topological bulk-boundary correspondence for Dirac semimetals has remained an open question. Here, Wieder et al. predict one-dimensional hinge states originating from bulk three-dimensional Dirac points in solid-state Dirac semimetals, revealing condensed matter Dirac fermions to be higher-order topological.
The existence of a topological bulk-boundary correspondence for Dirac semimetals has remained an open question. Here, Wieder et al. predict one-dimensional hinge states originating from bulk three-dimensional Dirac points in solid-state Dirac semimetals, revealing condensed matter Dirac fermions to be higher-order topological.
Dirac and Weyl semimetals both exhibit arc-like surface states. However, whereas the surface Fermi arcs in Weyl semimetals are topological consequences of the Weyl points themselves, the surface Fermi arcs in Dirac semimetals are not directly related to the bulk Dirac points, raising the question of whether there exists a topological bulk-boundary correspondence for Dirac semimetals. In this work, we discover that strong and fragile topological Dirac semimetals exhibit one-dimensional (1D) higher-order hinge Fermi arcs (HOFAs) as universal, direct consequences of their bulk 3D Dirac points. To predict HOFAs coexisting with topological surface states in solid-state Dirac semimetals, we introduce and layer a spinful model of an s – d -hybridized quadrupole insulator (QI). We develop a rigorous nested Jackiw–Rebbi formulation of QIs and HOFA states. Employing ab initio calculations, we demonstrate HOFAs in both the room- ( α ) and intermediate-temperature ( α ″ ) phases of Cd 3 As 2 , KMgBi, and rutile-structure ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \beta ^{\prime} $$\end{document} β ′ -) PtO 2 . The existence of a topological bulk-boundary correspondence for Dirac semimetals has remained an open question. Here, Wieder et al. predict one-dimensional hinge states originating from bulk three-dimensional Dirac points in solid-state Dirac semimetals, revealing condensed matter Dirac fermions to be higher-order topological.
ArticleNumber 627
Author Schoop, Leslie M.
Cano, Jennifer
Bradlyn, Barry
Bernevig, B. Andrei
Wieder, Benjamin J.
Wang, Zhijun
Dai, Xi
Author_xml – sequence: 1
  givenname: Benjamin J.
  orcidid: 0000-0003-2540-6202
  surname: Wieder
  fullname: Wieder, Benjamin J.
  email: bwieder@princeton.edu
  organization: Department of Physics, Princeton University
– sequence: 2
  givenname: Zhijun
  orcidid: 0000-0003-2169-8068
  surname: Wang
  fullname: Wang, Zhijun
  organization: Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 3
  givenname: Jennifer
  orcidid: 0000-0003-1528-4344
  surname: Cano
  fullname: Cano, Jennifer
  organization: Department of Physics and Astronomy, Stony Brook University, Center for Computational Quantum Physics, The Flatiron Institute
– sequence: 4
  givenname: Xi
  surname: Dai
  fullname: Dai, Xi
  organization: Physics Department, Hong Kong University of Science and Technology
– sequence: 5
  givenname: Leslie M.
  orcidid: 0000-0003-3459-4241
  surname: Schoop
  fullname: Schoop, Leslie M.
  organization: Department of Chemistry, Princeton University
– sequence: 6
  givenname: Barry
  orcidid: 0000-0001-6327-1076
  surname: Bradlyn
  fullname: Bradlyn, Barry
  email: bbradlyn@illinois.edu
  organization: Department of Physics and Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign, Donostia International Physics Center
– sequence: 7
  givenname: B. Andrei
  surname: Bernevig
  fullname: Bernevig, B. Andrei
  email: bernevig@princeton.edu
  organization: Department of Physics, Princeton University, Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, Max Planck Institute of Microstructure Physics
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32005893$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1619476$$D View this record in Osti.gov
BookMark eNp9kk1vFSEUhompsbX2D7gwE924GeV7ho1JU602uYkLdU0YYGa4YeAKXI3_Xm6n1raLsoEcnvc958B5Do5CDBaAlwi-Q5D07zNFlHctxLBFlFLSsifgBEOKWtRhcnTnfAzOct7CuohAPaXPwDHBELJekBOw-VZSDFOjgmnGpCbnbVPiLvo4Oa1889ElpZtsF7fYonxufrsyN7ObZpvamIxNzaVNi2tU0vkFeDpWxp7d7Kfgx-Wn7xdf2s3Xz1cX55tWM96VlmJqBjZiojslWI9VrzkfEBVm5CMbYQ0YpMnIlEGGDhAPFBLOYEUoGbUhp-Bq9TVRbeUuuUWlPzIqJ68DMU1SpeK0t7L2qQdMqOKwqvkgoOGaaKM4xoZ0tnp9WL12-2GxRttQkvL3TO_fBDfLKf6SXAhKBaoGr1eDmIuTWbti9axjCFYXiTgStOMVenuTJcWfe5uLXFzW1nsVbNxniQmDUBAIcUXfPEC3cZ9Cfc9K1YQdFfhg-Opu2bf1_vvZCuAV0CnmnOx4iyAoDxMk1wmSdYLk9QRJVkX9A1FtRxUXD607_7iUrNJc84TJpv9lP6L6C3h72HA
CitedBy_id crossref_primary_10_1016_j_xinn_2022_100343
crossref_primary_10_1038_s41578_021_00380_2
crossref_primary_10_1360_SSPMA_2022_0413
crossref_primary_10_1103_PhysRevB_103_115308
crossref_primary_10_1002_adma_202403881
crossref_primary_10_1038_s41467_024_44762_w
crossref_primary_10_1088_1361_648X_acddc4
crossref_primary_10_1103_PhysRevB_105_125110
crossref_primary_10_1016_j_scib_2022_02_003
crossref_primary_10_1063_5_0045466
crossref_primary_10_1103_PhysRevLett_128_115701
crossref_primary_10_1103_PhysRevB_103_245127
crossref_primary_10_1088_1367_2630_ad59ff
crossref_primary_10_1103_PhysRevB_105_205117
crossref_primary_10_1103_PhysRevB_104_205117
crossref_primary_10_1103_PhysRevLett_127_146601
crossref_primary_10_1016_j_scib_2021_06_024
crossref_primary_10_1002_andp_202200267
crossref_primary_10_1016_j_commatsci_2022_111613
crossref_primary_10_1088_1572_9494_ac7cda
crossref_primary_10_1103_PhysRevA_107_053511
crossref_primary_10_1103_PhysRevResearch_5_L042003
crossref_primary_10_1002_apxr_202200119
crossref_primary_10_1016_j_aop_2021_168563
crossref_primary_10_1038_s41598_021_01888_x
crossref_primary_10_1103_PhysRevB_105_125115
crossref_primary_10_21468_SciPostPhys_12_2_053
crossref_primary_10_1016_j_carbon_2020_12_037
crossref_primary_10_1038_s41467_020_16916_z
crossref_primary_10_1103_PhysRevB_106_214510
crossref_primary_10_1103_PhysRevB_101_115134
crossref_primary_10_1073_pnas_2116575119
crossref_primary_10_1103_PhysRevB_110_155110
crossref_primary_10_1103_PhysRevApplied_20_064034
crossref_primary_10_1103_PhysRevMaterials_5_124202
crossref_primary_10_1038_s41467_021_26241_8
crossref_primary_10_1002_adma_202201058
crossref_primary_10_1103_PhysRevLett_128_246601
crossref_primary_10_1103_PhysRevB_101_245138
crossref_primary_10_1103_PhysRevB_104_014203
crossref_primary_10_1103_PhysRevB_107_165423
crossref_primary_10_1103_PhysRevB_109_075169
crossref_primary_10_1103_PhysRevA_105_053521
crossref_primary_10_3390_mi11121096
crossref_primary_10_1103_PhysRevB_109_035148
crossref_primary_10_1103_PhysRevB_105_L081102
crossref_primary_10_1103_PhysRevB_105_014509
crossref_primary_10_1103_PhysRevResearch_3_013239
crossref_primary_10_1103_PhysRevB_107_L121407
crossref_primary_10_1103_PhysRevB_109_L241101
crossref_primary_10_1088_1361_6633_ad9ed8
crossref_primary_10_1103_PhysRevB_103_245107
crossref_primary_10_1103_PhysRevB_108_094301
crossref_primary_10_1364_PRJ_433188
crossref_primary_10_3389_fphy_2022_866347
crossref_primary_10_1103_PhysRevB_105_184105
crossref_primary_10_1038_s41467_023_40252_7
crossref_primary_10_1103_PhysRevB_101_241104
crossref_primary_10_1103_PhysRevB_106_245105
crossref_primary_10_1103_PhysRevB_107_245108
crossref_primary_10_1103_PhysRevB_104_245302
crossref_primary_10_1103_PhysRevB_108_115405
crossref_primary_10_1103_PhysRevB_108_205135
crossref_primary_10_1103_PhysRevB_109_134205
crossref_primary_10_1103_PhysRevB_110_174513
crossref_primary_10_1103_PhysRevB_106_L241115
crossref_primary_10_1039_D1CP00963J
crossref_primary_10_21468_SciPostPhysLectNotes_67
crossref_primary_10_1016_j_scib_2021_10_023
crossref_primary_10_1103_PhysRevResearch_5_L012019
crossref_primary_10_1103_PhysRevLett_128_026405
crossref_primary_10_1007_s11467_023_1259_5
crossref_primary_10_1103_PhysRevB_102_165115
crossref_primary_10_1142_S0217979222501971
crossref_primary_10_1016_j_mtphys_2024_101343
crossref_primary_10_1088_1361_648X_ad3abd
crossref_primary_10_1103_PhysRevX_14_041060
crossref_primary_10_1103_PhysRevB_107_035128
crossref_primary_10_1103_PhysRevB_102_094503
crossref_primary_10_1103_PhysRevB_106_035105
crossref_primary_10_1103_PhysRevLett_125_126403
crossref_primary_10_1063_5_0230231
crossref_primary_10_1103_PhysRevB_106_085129
crossref_primary_10_1103_PhysRevB_103_L201114
crossref_primary_10_1103_PhysRevB_104_165424
crossref_primary_10_1103_PhysRevMaterials_8_124203
crossref_primary_10_1103_PhysRevB_109_085102
crossref_primary_10_1038_s41467_021_23963_7
crossref_primary_10_1038_s41467_024_47103_z
crossref_primary_10_1103_PhysRevB_107_195153
crossref_primary_10_1103_PhysRevB_108_165427
crossref_primary_10_1038_s41535_021_00325_6
crossref_primary_10_1038_s41467_022_33471_x
crossref_primary_10_1103_PhysRevB_105_L060101
crossref_primary_10_1103_PhysRevB_106_125310
crossref_primary_10_1103_PhysRevB_102_035105
crossref_primary_10_1103_PhysRevB_109_195149
crossref_primary_10_1038_s41467_020_16058_2
crossref_primary_10_1103_PhysRevB_102_241404
crossref_primary_10_1103_PhysRevB_108_195306
crossref_primary_10_1103_PhysRevB_105_L201301
crossref_primary_10_1103_PhysRevResearch_2_042038
crossref_primary_10_1103_PhysRevB_109_155404
crossref_primary_10_1103_PhysRevB_103_L121101
crossref_primary_10_1103_PhysRevLett_127_066801
crossref_primary_10_1103_PhysRevB_103_195145
crossref_primary_10_1103_PhysRevB_104_195145
crossref_primary_10_1103_PhysRevLett_124_156601
crossref_primary_10_1103_PhysRevLett_125_146401
crossref_primary_10_1103_PhysRevLett_130_156101
crossref_primary_10_1103_PhysRevB_110_214203
crossref_primary_10_1007_s44214_024_00067_z
crossref_primary_10_1103_PhysRevLett_128_127601
crossref_primary_10_1038_s41563_021_00933_4
crossref_primary_10_1088_1367_2630_ac8306
crossref_primary_10_1103_PhysRevLett_132_186601
crossref_primary_10_1002_andp_202100293
crossref_primary_10_1103_PhysRevLett_126_246801
crossref_primary_10_1103_PhysRevResearch_2_043197
crossref_primary_10_1103_PhysRevResearch_7_013280
crossref_primary_10_1038_s41535_022_00498_8
crossref_primary_10_1103_PhysRevB_107_075413
crossref_primary_10_1038_s41586_021_04105_x
crossref_primary_10_1103_PhysRevB_103_L121115
crossref_primary_10_1103_PhysRevB_110_L060102
crossref_primary_10_1088_1674_1056_ad4634
crossref_primary_10_1103_PhysRevLett_130_116103
crossref_primary_10_1103_PhysRevB_106_085105
crossref_primary_10_1103_PhysRevB_108_L241406
crossref_primary_10_3390_nano11051170
crossref_primary_10_1038_s41535_020_00300_7
crossref_primary_10_1103_PhysRevB_108_L241402
crossref_primary_10_1088_1361_648X_ac3b28
crossref_primary_10_1021_acsaem_2c01685
crossref_primary_10_1007_s11467_022_1221_y
crossref_primary_10_1021_acsnano_9b07990
crossref_primary_10_1038_s41586_020_2837_0
crossref_primary_10_1103_PhysRevB_103_165109
crossref_primary_10_1103_PhysRevB_103_L100302
crossref_primary_10_1103_PhysRevResearch_3_043067
crossref_primary_10_1103_PhysRevB_110_115427
crossref_primary_10_1103_PhysRevResearch_2_042010
crossref_primary_10_1103_PhysRevB_109_L081101
crossref_primary_10_1103_PhysRevB_104_245101
crossref_primary_10_1103_PhysRevLett_125_266804
crossref_primary_10_1103_PhysRevLett_132_066601
crossref_primary_10_3390_j5020017
crossref_primary_10_1039_D4TC04581E
crossref_primary_10_1103_PhysRevB_106_L060307
crossref_primary_10_31857_S0044451024110117
crossref_primary_10_1103_PhysRevB_104_L161116
crossref_primary_10_1103_PhysRevB_110_035151
crossref_primary_10_1007_s11433_024_2483_8
crossref_primary_10_1016_j_scib_2022_09_003
crossref_primary_10_1103_PhysRevLett_127_196801
crossref_primary_10_1103_PhysRevLett_129_196602
crossref_primary_10_1103_PhysRevB_104_L161117
crossref_primary_10_1039_D2CP00424K
crossref_primary_10_1103_PhysRevB_111_035115
crossref_primary_10_1038_s41467_024_46618_9
crossref_primary_10_1088_1361_6668_ac4c84
crossref_primary_10_1126_science_adr5234
crossref_primary_10_1103_PhysRevB_109_085430
crossref_primary_10_3389_fphy_2021_771481
crossref_primary_10_1016_j_mtcomm_2024_110076
crossref_primary_10_1103_PhysRevB_101_195309
crossref_primary_10_1103_PhysRevB_111_L041402
crossref_primary_10_1103_PhysRevB_107_045129
crossref_primary_10_1103_PhysRevB_110_L121122
crossref_primary_10_1103_PhysRevResearch_3_023121
crossref_primary_10_1038_s41567_021_01190_7
crossref_primary_10_1103_PhysRevB_104_L180303
crossref_primary_10_1103_PhysRevResearch_3_L012028
crossref_primary_10_1126_science_abg9094
crossref_primary_10_1103_PhysRevB_105_224312
crossref_primary_10_1103_PhysRevB_105_115119
crossref_primary_10_1103_PhysRevB_109_205123
crossref_primary_10_1088_1367_2630_acdab3
crossref_primary_10_1103_PhysRevB_102_094305
crossref_primary_10_1021_acs_nanolett_1c02661
crossref_primary_10_1016_j_cpc_2021_108226
crossref_primary_10_1103_PhysRevB_103_085106
crossref_primary_10_1103_PhysRevResearch_2_033029
Cites_doi 10.1103/PhysRevB.96.035119
10.1103/RevModPhys.81.109
10.1103/PhysRevB.95.155112
10.1103/PhysRevLett.42.1698
10.1016/0927-0256(96)00008-0
10.1126/science.aah6442
10.1103/PhysRevD.13.3398
10.1103/PhysRevLett.119.246401
10.1021/ic403163d
10.1103/PhysRevLett.115.036806
10.1103/PhysRevLett.121.126402
10.1103/PhysRevB.83.205101
10.1038/nature18276
10.1126/science.aaa9297
10.1126/science.1256742
10.1126/sciadv.aar2317
10.1103/PhysRevLett.119.206401
10.1103/PhysRevLett.122.076402
10.1103/PhysRevLett.123.186401
10.1021/acs.nanolett.5b00308
10.1016/0146-3535(80)90020-9
10.1126/science.aan2802
10.1103/PhysRevB.95.035209
10.1103/PhysRevB.59.1758
10.1103/PhysRevB.99.041301
10.1126/science.aaf5037
10.1038/ncomms5898
10.1038/s41567-019-0511-y
10.1103/PhysRevB.100.020509
10.1103/PhysRevB.76.045302
10.1038/s41563-018-0169-3
10.1103/PhysRevB.96.245115
10.1103/PhysRevMaterials.3.031201
10.1103/PhysRevLett.116.186402
10.1103/PhysRevLett.107.036601
10.1103/PhysRevLett.120.266401
10.1103/PhysRevB.99.045130
10.1073/pnas.1524787113
10.1107/S1600576716012863
10.1103/PhysRevB.47.1651
10.1038/s41535-017-0074-z
10.1103/PhysRevB.96.115121
10.1103/PhysRevLett.119.206402
10.1103/PhysRevB.89.155114
10.1103/PhysRevB.85.115415
10.1103/PhysRevLett.119.246402
10.1038/nature25156
10.1038/s41586-019-1037-2
10.1126/science.1133734
10.1088/0022-3719/17/12/003
10.1103/PhysRevLett.95.226801
10.1038/s41586-019-1031-8
10.1038/s41567-018-0224-7
10.1103/PhysRevB.98.241103
10.1038/s41467-018-06010-w
10.1103/PhysRevB.78.045426
10.1103/PhysRevLett.39.1098
10.1103/PhysRevB.99.045140
10.1038/nature23268
10.1126/sciadv.aat0346
10.1016/0022-0248(82)90096-3
10.1103/PhysRevLett.106.106802
10.1103/PhysRevLett.119.026404
10.1038/s41467-017-00133-2
10.1038/srep06106
10.1103/PhysRevLett.49.1455
10.1063/1.3149495
10.1103/PhysRevB.88.125427
10.1038/nature17151
10.1103/PhysRevB.54.11169
10.1107/9780955360220001
10.1126/sciadv.aat2374
ContentType Journal Article
Copyright The Author(s) 2020
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Princeton Univ., NJ (United States)
CorporateAuthor_xml – name: Princeton Univ., NJ (United States)
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
OTOTI
5PM
DOA
DOI 10.1038/s41467-020-14443-5
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Biological Science Collection
ProQuest Central (New) (NC LIVE)
Technology Collection
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
ProQuest Biological Science Database (NC LIVE)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed


Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Physics
EISSN 2041-1723
EndPage 13
ExternalDocumentID oai_doaj_org_article_005cb234a601446b90d6c3cda622d37e
PMC6994491
1619476
32005893
10_1038_s41467_020_14443_5
Genre Journal Article
GrantInformation_xml – fundername: National Science Foundation (NSF)
  grantid: DMR 1643312
  funderid: https://doi.org/10.13039/100000001
– fundername: Schmidt Fund for Innovative Research, CAS Pioneer Hundred Talents Program
– fundername: David and Lucile Packard Foundation (David & Lucile Packard Foundation)
  funderid: https://doi.org/10.13039/100000008
– fundername: United States Department of Defense | United States Navy | Office of Naval Research (ONR)
  grantid: N00014-14- 1-0330
  funderid: https://doi.org/10.13039/100000006
– fundername: John Simon Guggenheim Memorial Foundation
  funderid: https://doi.org/10.13039/100005851
– fundername: U.S. Department of Energy (DOE)
  grantid: DE-SC0016239
  funderid: https://doi.org/10.13039/100000015
– fundername: United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office (ARO)
  grantid: ARO W911NF-12-1-0461
  funderid: https://doi.org/10.13039/100000183
– fundername: NSF | Directorate for Mathematical & Physical Sciences | Division of Materials Research (DMR)
  grantid: DMR-1420541
  funderid: https://doi.org/10.13039/100000078
– fundername: Simons Foundation
  grantid: 404513
  funderid: https://doi.org/10.13039/100000893
– fundername: National Science Foundation (NSF)
  grantid: DMR 1643312
– fundername: U.S. Department of Energy (DOE)
  grantid: DE-SC0016239
– fundername: United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office (ARO)
  grantid: ARO W911NF-12-1-0461
– fundername: NSF | Directorate for Mathematical & Physical Sciences | Division of Materials Research (DMR)
  grantid: DMR-1420541
– fundername: United States Department of Defense | United States Navy | Office of Naval Research (ONR)
  grantid: N00014-14- 1-0330
– fundername: Simons Foundation
  grantid: 404513
– fundername: ;
– fundername: ;
  grantid: DMR 1643312
– fundername: ;
  grantid: N00014-14- 1-0330
– fundername: ;
  grantid: DE-SC0016239
– fundername: ;
  grantid: DMR-1420541
– fundername: ;
  grantid: 404513
– fundername: ;
  grantid: ARO W911NF-12-1-0461
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
AAPBV
AAYJO
ADQMX
AEDAW
OTOTI
ZA5
5PM
PUEGO
ID FETCH-LOGICAL-c567t-424db5f23c7a9582a8c66b149df6f5f02a8d1c3f5ad1d4b02b403650b1443fcd3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:27:48 EDT 2025
Thu Aug 21 14:35:14 EDT 2025
Fri May 19 00:39:27 EDT 2023
Fri Jul 11 09:47:32 EDT 2025
Wed Aug 13 04:43:50 EDT 2025
Mon Jul 21 06:05:25 EDT 2025
Thu Apr 24 23:02:29 EDT 2025
Tue Jul 01 04:08:50 EDT 2025
Fri Feb 21 02:40:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c567t-424db5f23c7a9582a8c66b149df6f5f02a8d1c3f5ad1d4b02b403650b1443fcd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
SC0016239
USDOE Office of Science (SC)
ORCID 0000-0003-1528-4344
0000-0003-3459-4241
0000-0001-6327-1076
0000-0003-2540-6202
0000-0003-2169-8068
0000000334594241
0000000321698068
0000000325406202
0000000163271076
0000000315284344
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-020-14443-5
PMID 32005893
PQID 2349174926
PQPubID 546298
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_005cb234a601446b90d6c3cda622d37e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6994491
osti_scitechconnect_1619476
proquest_miscellaneous_2350093002
proquest_journals_2349174926
pubmed_primary_32005893
crossref_primary_10_1038_s41467_020_14443_5
crossref_citationtrail_10_1038_s41467_020_14443_5
springer_journals_10_1038_s41467_020_14443_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-31
PublicationDateYYYYMMDD 2020-01-31
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-31
  day: 31
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United Kingdom
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Xu (CR4) 2015; 349
Chang (CR70) 2017; 119
Kruthoff, de Boer, van Wezel, Kane, Slager (CR50) 2017; 7
Arushanov (CR57) 1980; 3
Schwartz, Gillson, Shannon (CR60) 1982; 60
Chang (CR9) 2018; 17
Kresse, Joubert (CR75) 1999; 59
Schindler (CR25) 2018; 4
CR37
Kim, Wieder, Kane, Rappe (CR11) 2015; 115
Song, Fang, Fang (CR26) 2017; 119
Serra-Garcia (CR51) 2018; 555
CR78
Langbehn, Peng, Trifunovic, vonOppen, Brouwer (CR27) 2017; 119
Liu, Qian, Fu (CR66) 2015; 15
Po, Watanabe, Vishwanath (CR33) 2018; 121
CR74
Takane (CR46) 2018; 3
Sanchez (CR14) 2019; 567
Ruffieux (CR44) 2016; 531
Wang, Wieder, Li, Yan, Bernevig (CR32) 2019; 123
Chang (CR7) 2017; 119
Bradlyn (CR22) 2017; 547
Yang, Nagaosa (CR10) 2014; 5
Ghorashi, Hu, Hughes, Rossi (CR79) 2019; 100
King-Smith, Vanderbilt (CR42) 1993; 47
Po, Vishwanath, Watanabe (CR48) 2017; 8
Kealhofer (CR69) 2019; 3
Kim, Yang, Kim (CR61) 2019; 99
Rao (CR15) 2019; 567
Călugăru, Juričić, Roy (CR54) 2019; 99
Cano (CR35) 2018; 120
Wang, Weng, Wu, Dai, Fang (CR18) 2013; 88
Zhang, Sun, Lei (CR59) 2017; 95
Khalaf, Po, Vishwanath, Watanabe (CR30) 2018; 8
Fidkowski, Jackson, Klich (CR63) 2011; 107
Moll (CR72) 2016; 535
Bradlyn (CR6) 2016; 353
Benalcazar, Bernevig, Hughes (CR24) 2017; 96
Weng, Fang, Fang, Bernevig, Dai (CR3) 2015; 5
Song, Zhang, Fang, Fang (CR49) 2018; 9
Fu (CR64) 2011; 106
Topp (CR45) 2017; 7
Wieder (CR28) 2018; 361
Yi (CR20) 2014; 4
Kresse, Furthmüller (CR76) 1996; 6
Bernevig, Hughes, Zhang (CR38) 2006; 314
Lin, Hughes (CR53) 2018; 98
Wieder, Kim, Rappe, Kane (CR5) 2016; 116
Rice, Mele (CR17) 1982; 49
Gallego (CR67) 2016; 49
Bradlyn, Wang, Cano, Bernevig (CR36) 2019; 99
Schoop (CR68) 2018; 4
CastroNeto, Guinea, Peres, Novoselov, Geim (CR1) 2009; 81
Kargarian, Randeria, Lu (CR21) 2016; 113
Jackiw, Rebbi (CR52) 1976; 13
Ali (CR56) 2014; 53
Chiang (CR43) 1977; 39
Su, Schrieffer, Heeger (CR16) 1979; 42
CR29
Kane, Mele (CR39) 2005; 95
Kitaev (CR55) 2009; 1134
Takane (CR13) 2019; 122
Pretko (CR73) 2017; 96
Fu, Kane (CR47) 2007; 76
Alexandradinata, Dai, Bernevig (CR34) 2014; 89
Xu (CR19) 2015; 347
Le (CR58) 2017; 96
Schröter (CR12) 2019; 15
Schindler (CR31) 2018; 14
Thouless (CR40) 1984; 17
CR62
Wan, Turner, Vishwanath, Savrasov (CR2) 2011; 83
Tang, Zhou, Zhang (CR8) 2017; 119
Teo, Fu, Kane (CR65) 2008; 78
Benalcazar, Bernevig, Hughes (CR23) 2017; 357
Guo, Yang, Liu, Lu (CR71) 2017; 95
Soluyanov, Vanderbilt (CR41) 2012; 85
Kresse, Furthmüller (CR77) 1996; 54
Y Kim (14443_CR11) 2015; 115
Z Song (14443_CR49) 2018; 9
Z Wang (14443_CR32) 2019; 123
R Jackiw (14443_CR52) 1976; 13
P-J Guo (14443_CR71) 2017; 95
D Thouless (14443_CR40) 1984; 17
AA Soluyanov (14443_CR41) 2012; 85
M Lin (14443_CR53) 2018; 98
BJ Wieder (14443_CR28) 2018; 361
DS Sanchez (14443_CR14) 2019; 567
J Liu (14443_CR66) 2015; 15
WA Benalcazar (14443_CR23) 2017; 357
JCY Teo (14443_CR65) 2008; 78
LM Schoop (14443_CR68) 2018; 4
F Schindler (14443_CR25) 2018; 4
D Călugăru (14443_CR54) 2019; 99
CL Kane (14443_CR39) 2005; 95
M Kargarian (14443_CR21) 2016; 113
14443_CR37
HC Po (14443_CR48) 2017; 8
X Wan (14443_CR2) 2011; 83
PJW Moll (14443_CR72) 2016; 535
S-Y Xu (14443_CR4) 2015; 349
B Bradlyn (14443_CR6) 2016; 353
SAA Ghorashi (14443_CR79) 2019; 100
P Tang (14443_CR8) 2017; 119
G Chang (14443_CR9) 2018; 17
WA Benalcazar (14443_CR24) 2017; 96
X Zhang (14443_CR59) 2017; 95
DA Kealhofer (14443_CR69) 2019; 3
T-R Chang (14443_CR70) 2017; 119
D Takane (14443_CR46) 2018; 3
MJ Rice (14443_CR17) 1982; 49
Z Song (14443_CR26) 2017; 119
J Kruthoff (14443_CR50) 2017; 7
C Le (14443_CR58) 2017; 96
K Schwartz (14443_CR60) 1982; 60
Z Rao (14443_CR15) 2019; 567
G Kresse (14443_CR75) 1999; 59
H Weng (14443_CR3) 2015; 5
AH CastroNeto (14443_CR1) 2009; 81
E Khalaf (14443_CR30) 2018; 8
P Ruffieux (14443_CR44) 2016; 531
S-Y Xu (14443_CR19) 2015; 347
B Bradlyn (14443_CR36) 2019; 99
E Arushanov (14443_CR57) 1980; 3
MN Ali (14443_CR56) 2014; 53
J Cano (14443_CR35) 2018; 120
HC Po (14443_CR33) 2018; 121
A Kitaev (14443_CR55) 2009; 1134
M Serra-Garcia (14443_CR51) 2018; 555
14443_CR62
B-J Yang (14443_CR10) 2014; 5
G Chang (14443_CR7) 2017; 119
G Kresse (14443_CR77) 1996; 54
BJ Wieder (14443_CR5) 2016; 116
R Kim (14443_CR61) 2019; 99
L Fu (14443_CR64) 2011; 106
L Fu (14443_CR47) 2007; 76
WP Su (14443_CR16) 1979; 42
M Pretko (14443_CR73) 2017; 96
CK Chiang (14443_CR43) 1977; 39
B Bradlyn (14443_CR22) 2017; 547
F Schindler (14443_CR31) 2018; 14
14443_CR78
14443_CR74
D Takane (14443_CR13) 2019; 122
Z Wang (14443_CR18) 2013; 88
14443_CR29
RD King-Smith (14443_CR42) 1993; 47
L Fidkowski (14443_CR63) 2011; 107
NBM Schröter (14443_CR12) 2019; 15
A Alexandradinata (14443_CR34) 2014; 89
SV Gallego (14443_CR67) 2016; 49
J Langbehn (14443_CR27) 2017; 119
G Kresse (14443_CR76) 1996; 6
BA Bernevig (14443_CR38) 2006; 314
H Yi (14443_CR20) 2014; 4
A Topp (14443_CR45) 2017; 7
References_xml – volume: 96
  start-page: 035119
  year: 2017
  ident: CR73
  article-title: Generalized electromagnetism of subdimensional particles: a spin liquid story
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.035119
– volume: 7
  start-page: 041069
  year: 2017
  ident: CR50
  article-title: Topological classification of crystalline insulators through band structure combinatorics
  publication-title: Phys. Rev. X
– ident: CR74
– volume: 81
  start-page: 109
  year: 2009
  end-page: 162
  ident: CR1
  article-title: The electronic properties of graphene
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.81.109
– volume: 95
  start-page: 155112
  year: 2017
  ident: CR71
  article-title: Type-ii dirac semimetals in the class
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.155112
– volume: 42
  start-page: 1698
  year: 1979
  end-page: 1701
  ident: CR16
  article-title: Solitons in polyacetylene
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.42.1698
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  ident: CR76
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 357
  start-page: 61
  year: 2017
  end-page: 66
  ident: CR23
  article-title: Quantized electric multipole insulators
  publication-title: Science
  doi: 10.1126/science.aah6442
– volume: 13
  start-page: 3398
  year: 1976
  end-page: 3409
  ident: CR52
  article-title: Solitons with fermion number 1∕2
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.13.3398
– volume: 119
  start-page: 246401
  year: 2017
  ident: CR27
  article-title: Reflection-symmetric second-order topological insulators and superconductors
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.246401
– ident: CR29
– volume: 53
  start-page: 4062
  year: 2014
  end-page: 4067
  ident: CR56
  article-title: The crystal and electronic structures of Cd As , the three-dimensional electronic analogue of graphene
  publication-title: Inorganic Chem.
  doi: 10.1021/ic403163d
– volume: 115
  start-page: 036806
  year: 2015
  ident: CR11
  article-title: Dirac line nodes in inversion-symmetric crystals
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.036806
– volume: 121
  start-page: 126402
  year: 2018
  ident: CR33
  article-title: Fragile topology and wannier obstructions
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.126402
– volume: 83
  start-page: 205101
  year: 2011
  ident: CR2
  article-title: Topological semimetal and fermi-arc surface states in the electronic structure of pyrochlore iridates
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.205101
– volume: 535
  start-page: 266 EP
  year: 2016
  ident: CR72
  article-title: Transport evidence for fermi-arc-mediated chirality transfer in the dirac semimetal Cd As
  publication-title: Nature
  doi: 10.1038/nature18276
– volume: 349
  start-page: 613
  year: 2015
  end-page: 617
  ident: CR4
  article-title: Discovery of a weyl fermion semimetal and topological fermi arcs
  publication-title: Science
  doi: 10.1126/science.aaa9297
– volume: 347
  start-page: 294
  year: 2015
  end-page: 298
  ident: CR19
  article-title: Observation of fermi arc surface states in a topological metal
  publication-title: Science
  doi: 10.1126/science.1256742
– volume: 4
  start-page: eaar2317
  year: 2018
  ident: CR68
  article-title: Tunable weyl and dirac states in the nonsymmorphic compound CeSbTe
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aar2317
– volume: 119
  start-page: 206401
  year: 2017
  ident: CR7
  article-title: Unconventional chiral fermions and large topological fermi arcs in RhSi
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.206401
– volume: 122
  start-page: 076402
  year: 2019
  ident: CR13
  article-title: Observation of chiral fermions with a large topological charge and associated fermi-arc surface states in CoSi
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.076402
– volume: 123
  start-page: 186401
  year: 2019
  ident: CR32
  article-title: Higher-order topology, monopole nodal lines, and the origin of large fermi arcs in transition metaldichalcogenides e ( = Mo,W)
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.186401
– volume: 15
  start-page: 2657
  year: 2015
  end-page: 2661
  ident: CR66
  article-title: Crystal field effect induced topological crystalline insulators in monolayer iv-vi semiconductors
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00308
– volume: 3
  start-page: 211
  year: 1980
  end-page: 255
  ident: CR57
  article-title: Crystal growth and characterization of ii v compounds
  publication-title: Prog. Cryst. Growth Charact.
  doi: 10.1016/0146-3535(80)90020-9
– volume: 361
  start-page: 246
  year: 2018
  end-page: 251
  ident: CR28
  article-title: Wallpaper fermions and the nonsymmorphic dirac insulator
  publication-title: Science
  doi: 10.1126/science.aan2802
– volume: 95
  start-page: 035209
  year: 2017
  ident: CR59
  article-title: Narrow-gap semiconducting properties of KMgBi with multiband feature
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.035209
– volume: 59
  start-page: 1758
  year: 1999
  end-page: 1775
  ident: CR75
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 99
  start-page: 041301
  year: 2019
  ident: CR54
  article-title: Higher-order topological phases: a general principle of construction
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.041301
– volume: 353
  start-page: aaf5037
  year: 2016
  ident: CR6
  article-title: Beyond dirac and weyl fermions: unconventional quasiparticles in conventional crystals
  publication-title: Science
  doi: 10.1126/science.aaf5037
– volume: 5
  start-page: 4898
  year: 2014
  ident: CR10
  article-title: Classification of stable three-dimensional dirac semimetals with nontrivial topology
  publication-title: Nat. Comm.
  doi: 10.1038/ncomms5898
– volume: 15
  start-page: 759
  year: 2019
  end-page: 765
  ident: CR12
  article-title: Chiral topological semimetal with multifold band crossings and long fermi arcs
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-019-0511-y
– volume: 100
  start-page: 020509
  year: 2019
  ident: CR79
  article-title: Second-order dirac superconductors and magnetic field induced majorana hinge modes
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.100.020509
– volume: 76
  start-page: 045302
  year: 2007
  ident: CR47
  article-title: Topological insulators with inversion symmetry
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.76.045302
– volume: 17
  start-page: 978
  year: 2018
  end-page: 985
  ident: CR9
  article-title: Topological quantum properties of chiral crystals
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0169-3
– volume: 96
  start-page: 245115
  year: 2017
  ident: CR24
  article-title: Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.245115
– volume: 3
  start-page: 031201
  year: 2019
  ident: CR69
  article-title: Basal-plane growth of cadmium arsenide by molecular beam epitaxy
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.3.031201
– ident: CR78
– volume: 116
  start-page: 186402
  year: 2016
  ident: CR5
  article-title: Double dirac semimetals in three dimensions
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.186402
– volume: 107
  start-page: 036601
  year: 2011
  ident: CR63
  article-title: Model characterization of gapless edge modes of topological insulators using intermediate brillouin-zone functions
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.036601
– volume: 120
  start-page: 266401
  year: 2018
  ident: CR35
  article-title: Topology of disconnected elementary band representations
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.266401
– volume: 99
  start-page: 045130
  year: 2019
  ident: CR61
  article-title: Crystalline topological dirac semimetal phase in rutile structure
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.045130
– volume: 113
  start-page: 8648
  year: 2016
  end-page: 8652
  ident: CR21
  article-title: Are the surface fermi arcs in dirac semimetals topologically protected?
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1524787113
– volume: 49
  start-page: 1750
  year: 2016
  end-page: 1776
  ident: CR67
  article-title: MAGNDATA: towards a database of magnetic structures. I.The commensurate case
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S1600576716012863
– volume: 47
  start-page: 1651
  year: 1993
  end-page: 1654
  ident: CR42
  article-title: Theory of polarization of crystalline solids
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.1651
– volume: 3
  year: 2018
  ident: CR46
  article-title: Observation of dirac-like energy band and ring-torus fermi surface associated with the nodal line in topological insulator CaAgAs
  publication-title: NPJ Quantum Mater.
  doi: 10.1038/s41535-017-0074-z
– volume: 96
  start-page: 115121
  year: 2017
  ident: CR58
  article-title: Three-dimensional topological critical diracsemimetal in MgBi ( =K, Rb, Cs)
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.115121
– volume: 119
  start-page: 206402
  year: 2017
  ident: CR8
  article-title: Multiple types of topological fermions in transition metal silicides
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.206402
– volume: 89
  start-page: 155114
  year: 2014
  ident: CR34
  article-title: Wilson-loop characterization of inversion-symmetric topological insulators
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.89.155114
– volume: 85
  start-page: 115415
  year: 2012
  ident: CR41
  article-title: Smooth gauge for topological insulators
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.115415
– volume: 119
  start-page: 246402
  year: 2017
  ident: CR26
  article-title: ( −2)-dimensional edge states of rotation symmetry protected topological states
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.246402
– ident: CR37
– volume: 555
  start-page: 342
  year: 2018
  end-page: 345
  ident: CR51
  article-title: Observation of a phononic quadrupole topological insulator
  publication-title: Nature
  doi: 10.1038/nature25156
– volume: 567
  start-page: 500
  year: 2019
  end-page: 505
  ident: CR14
  article-title: Topological chiral crystals with helicoid-arc quantum states
  publication-title: Nature
  doi: 10.1038/s41586-019-1037-2
– volume: 314
  start-page: 1757
  year: 2006
  end-page: 1761
  ident: CR38
  article-title: Quantum spin hall effect and topological phase transition in HgTe quantum wells
  publication-title: Science
  doi: 10.1126/science.1133734
– volume: 17
  start-page: L325
  year: 1984
  ident: CR40
  article-title: J. Wannier functions for magnetic sub-bands
  publication-title: J Phys C: Solid State Phys.
  doi: 10.1088/0022-3719/17/12/003
– volume: 95
  start-page: 226801
  year: 2005
  ident: CR39
  article-title: Quantum spin hall effect in graphene
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.226801
– volume: 567
  start-page: 496
  year: 2019
  end-page: 499
  ident: CR15
  article-title: Observation of unconventional chiral fermions with long fermi arcs in CoSi
  publication-title: Nature
  doi: 10.1038/s41586-019-1031-8
– volume: 14
  start-page: 918
  year: 2018
  end-page: 924
  ident: CR31
  article-title: Higher-order topology in bismuth
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-018-0224-7
– volume: 98
  start-page: 241103
  year: 2018
  ident: CR53
  article-title: Topological quadrupolar semimetals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.241103
– volume: 9
  year: 2018
  ident: CR49
  article-title: Quantitative mappings between symmetry and topology in solids
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06010-w
– volume: 78
  start-page: 045426
  year: 2008
  ident: CR65
  article-title: Surface states and topological invariants in three-dimensional topological insulators: Application to
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.78.045426
– volume: 39
  start-page: 1098
  year: 1977
  end-page: 1101
  ident: CR43
  article-title: Electrical conductivity in doped polyacetylene
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.39.1098
– volume: 99
  start-page: 045140
  year: 2019
  ident: CR36
  article-title: Disconnected elementary band representations, fragile topology, and wilson loops as topological indices: An example on the triangular lattice
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.045140
– volume: 547
  start-page: 298 EP
  year: 2017
  ident: CR22
  article-title: Topological quantum chemistry
  publication-title: Nature
  doi: 10.1038/nature23268
– volume: 4
  start-page: eaat0346
  year: 2018
  ident: CR25
  article-title: Higher-order topological insulators
  publication-title: Sci Adv.
  doi: 10.1126/sciadv.aat0346
– volume: 60
  start-page: 251
  year: 1982
  end-page: 254
  ident: CR60
  article-title: Crystal growth of CdPt O , MnPt O , CoPt O and ß-PtO
  publication-title: J. Cryst. Growth
  doi: 10.1016/0022-0248(82)90096-3
– volume: 106
  start-page: 106802
  year: 2011
  ident: CR64
  article-title: Topological crystalline insulators
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.106802
– volume: 5
  start-page: 011029
  year: 2015
  ident: CR3
  article-title: Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides
  publication-title: Phys. Rev. X
– volume: 119
  start-page: 026404
  year: 2017
  ident: CR70
  article-title: Type-ii symmetry-protected topological dirac semimetals
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.026404
– volume: 7
  start-page: 041073
  year: 2017
  ident: CR45
  article-title: Surface floating 2d bands in layered nonsymmorphic semimetals: ZrSiS and related compounds
  publication-title: Phys. Rev. X
– volume: 8
  year: 2017
  ident: CR48
  article-title: Symmetry-based indicators of band topology in the 230 space groups
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00133-2
– ident: CR62
– volume: 8
  start-page: 031070
  year: 2018
  ident: CR30
  article-title: Symmetry indicators and anomalous surface states of topological crystalline insulators
  publication-title: Phys. Rev. X
– volume: 4
  year: 2014
  ident: CR20
  article-title: Evidence of topological surface state in three-dimensional dirac semimetal Cd As
  publication-title: Sci. Rep.
  doi: 10.1038/srep06106
– volume: 49
  start-page: 1455
  year: 1982
  end-page: 1459
  ident: CR17
  article-title: Elementary excitations of a linearly conjugated diatomic polymer
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.49.1455
– volume: 1134
  start-page: 22
  year: 2009
  end-page: 30
  ident: CR55
  article-title: Periodic table for topological insulators and superconductors
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.3149495
– volume: 88
  start-page: 125427
  year: 2013
  ident: CR18
  article-title: Three-dimensional dirac semimetal and quantum transport in Cd As
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.125427
– volume: 531
  start-page: 489 EP
  year: 2016
  ident: CR44
  article-title: On-surface synthesis of graphene nanoribbons with zigzag edge topology
  publication-title: Nature
  doi: 10.1038/nature17151
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: CR77
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 15
  start-page: 2657
  year: 2015
  ident: 14443_CR66
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00308
– volume: 535
  start-page: 266 EP
  year: 2016
  ident: 14443_CR72
  publication-title: Nature
  doi: 10.1038/nature18276
– volume: 3
  start-page: 211
  year: 1980
  ident: 14443_CR57
  publication-title: Prog. Cryst. Growth Charact.
  doi: 10.1016/0146-3535(80)90020-9
– ident: 14443_CR62
  doi: 10.1107/9780955360220001
– volume: 567
  start-page: 500
  year: 2019
  ident: 14443_CR14
  publication-title: Nature
  doi: 10.1038/s41586-019-1037-2
– volume: 113
  start-page: 8648
  year: 2016
  ident: 14443_CR21
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1524787113
– volume: 54
  start-page: 11169
  year: 1996
  ident: 14443_CR77
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 122
  start-page: 076402
  year: 2019
  ident: 14443_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.076402
– volume: 120
  start-page: 266401
  year: 2018
  ident: 14443_CR35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.266401
– volume: 96
  start-page: 115121
  year: 2017
  ident: 14443_CR58
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.115121
– volume: 4
  start-page: eaat0346
  year: 2018
  ident: 14443_CR25
  publication-title: Sci Adv.
  doi: 10.1126/sciadv.aat0346
– volume: 4
  start-page: eaar2317
  year: 2018
  ident: 14443_CR68
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aar2317
– volume: 14
  start-page: 918
  year: 2018
  ident: 14443_CR31
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-018-0224-7
– volume: 107
  start-page: 036601
  year: 2011
  ident: 14443_CR63
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.036601
– volume: 547
  start-page: 298 EP
  year: 2017
  ident: 14443_CR22
  publication-title: Nature
  doi: 10.1038/nature23268
– volume: 78
  start-page: 045426
  year: 2008
  ident: 14443_CR65
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.78.045426
– volume: 59
  start-page: 1758
  year: 1999
  ident: 14443_CR75
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 119
  start-page: 206401
  year: 2017
  ident: 14443_CR7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.206401
– volume: 53
  start-page: 4062
  year: 2014
  ident: 14443_CR56
  publication-title: Inorganic Chem.
  doi: 10.1021/ic403163d
– volume: 121
  start-page: 126402
  year: 2018
  ident: 14443_CR33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.126402
– volume: 100
  start-page: 020509
  year: 2019
  ident: 14443_CR79
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.100.020509
– volume: 13
  start-page: 3398
  year: 1976
  ident: 14443_CR52
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.13.3398
– volume: 89
  start-page: 155114
  year: 2014
  ident: 14443_CR34
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.89.155114
– volume: 115
  start-page: 036806
  year: 2015
  ident: 14443_CR11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.036806
– ident: 14443_CR78
– volume: 99
  start-page: 045130
  year: 2019
  ident: 14443_CR61
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.045130
– volume: 123
  start-page: 186401
  year: 2019
  ident: 14443_CR32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.186401
– volume: 81
  start-page: 109
  year: 2009
  ident: 14443_CR1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.81.109
– volume: 83
  start-page: 205101
  year: 2011
  ident: 14443_CR2
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.205101
– volume: 95
  start-page: 035209
  year: 2017
  ident: 14443_CR59
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.035209
– volume: 95
  start-page: 155112
  year: 2017
  ident: 14443_CR71
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.155112
– volume: 96
  start-page: 245115
  year: 2017
  ident: 14443_CR24
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.245115
– ident: 14443_CR74
– volume: 60
  start-page: 251
  year: 1982
  ident: 14443_CR60
  publication-title: J. Cryst. Growth
  doi: 10.1016/0022-0248(82)90096-3
– volume: 47
  start-page: 1651
  year: 1993
  ident: 14443_CR42
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.1651
– volume: 555
  start-page: 342
  year: 2018
  ident: 14443_CR51
  publication-title: Nature
  doi: 10.1038/nature25156
– volume: 1134
  start-page: 22
  year: 2009
  ident: 14443_CR55
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.3149495
– volume: 99
  start-page: 045140
  year: 2019
  ident: 14443_CR36
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.045140
– volume: 357
  start-page: 61
  year: 2017
  ident: 14443_CR23
  publication-title: Science
  doi: 10.1126/science.aah6442
– volume: 5
  start-page: 4898
  year: 2014
  ident: 14443_CR10
  publication-title: Nat. Comm.
  doi: 10.1038/ncomms5898
– volume: 15
  start-page: 759
  year: 2019
  ident: 14443_CR12
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-019-0511-y
– volume: 347
  start-page: 294
  year: 2015
  ident: 14443_CR19
  publication-title: Science
  doi: 10.1126/science.1256742
– ident: 14443_CR37
– volume: 17
  start-page: 978
  year: 2018
  ident: 14443_CR9
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0169-3
– volume: 119
  start-page: 246402
  year: 2017
  ident: 14443_CR26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.246402
– volume: 531
  start-page: 489 EP
  year: 2016
  ident: 14443_CR44
  publication-title: Nature
  doi: 10.1038/nature17151
– volume: 17
  start-page: L325
  year: 1984
  ident: 14443_CR40
  publication-title: J Phys C: Solid State Phys.
  doi: 10.1088/0022-3719/17/12/003
– volume: 49
  start-page: 1750
  year: 2016
  ident: 14443_CR67
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S1600576716012863
– ident: 14443_CR29
  doi: 10.1126/sciadv.aat2374
– volume: 119
  start-page: 246401
  year: 2017
  ident: 14443_CR27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.246401
– volume: 3
  start-page: 031201
  year: 2019
  ident: 14443_CR69
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.3.031201
– volume: 49
  start-page: 1455
  year: 1982
  ident: 14443_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.49.1455
– volume: 314
  start-page: 1757
  year: 2006
  ident: 14443_CR38
  publication-title: Science
  doi: 10.1126/science.1133734
– volume: 349
  start-page: 613
  year: 2015
  ident: 14443_CR4
  publication-title: Science
  doi: 10.1126/science.aaa9297
– volume: 85
  start-page: 115415
  year: 2012
  ident: 14443_CR41
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.115415
– volume: 116
  start-page: 186402
  year: 2016
  ident: 14443_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.186402
– volume: 39
  start-page: 1098
  year: 1977
  ident: 14443_CR43
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.39.1098
– volume: 3
  year: 2018
  ident: 14443_CR46
  publication-title: NPJ Quantum Mater.
  doi: 10.1038/s41535-017-0074-z
– volume: 76
  start-page: 045302
  year: 2007
  ident: 14443_CR47
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.76.045302
– volume: 119
  start-page: 026404
  year: 2017
  ident: 14443_CR70
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.026404
– volume: 96
  start-page: 035119
  year: 2017
  ident: 14443_CR73
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.035119
– volume: 98
  start-page: 241103
  year: 2018
  ident: 14443_CR53
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.241103
– volume: 88
  start-page: 125427
  year: 2013
  ident: 14443_CR18
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.125427
– volume: 361
  start-page: 246
  year: 2018
  ident: 14443_CR28
  publication-title: Science
  doi: 10.1126/science.aan2802
– volume: 567
  start-page: 496
  year: 2019
  ident: 14443_CR15
  publication-title: Nature
  doi: 10.1038/s41586-019-1031-8
– volume: 42
  start-page: 1698
  year: 1979
  ident: 14443_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.42.1698
– volume: 7
  start-page: 041073
  year: 2017
  ident: 14443_CR45
  publication-title: Phys. Rev. X
– volume: 5
  start-page: 011029
  year: 2015
  ident: 14443_CR3
  publication-title: Phys. Rev. X
– volume: 4
  year: 2014
  ident: 14443_CR20
  publication-title: Sci. Rep.
  doi: 10.1038/srep06106
– volume: 8
  start-page: 031070
  year: 2018
  ident: 14443_CR30
  publication-title: Phys. Rev. X
– volume: 353
  start-page: aaf5037
  year: 2016
  ident: 14443_CR6
  publication-title: Science
  doi: 10.1126/science.aaf5037
– volume: 6
  start-page: 15
  year: 1996
  ident: 14443_CR76
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 7
  start-page: 041069
  year: 2017
  ident: 14443_CR50
  publication-title: Phys. Rev. X
– volume: 106
  start-page: 106802
  year: 2011
  ident: 14443_CR64
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.106802
– volume: 95
  start-page: 226801
  year: 2005
  ident: 14443_CR39
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.226801
– volume: 9
  year: 2018
  ident: 14443_CR49
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06010-w
– volume: 8
  year: 2017
  ident: 14443_CR48
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00133-2
– volume: 99
  start-page: 041301
  year: 2019
  ident: 14443_CR54
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.041301
– volume: 119
  start-page: 206402
  year: 2017
  ident: 14443_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.206402
SSID ssj0000391844
Score 2.673297
Snippet Dirac and Weyl semimetals both exhibit arc-like surface states. However, whereas the surface Fermi arcs in Weyl semimetals are topological consequences of the...
Abstract Dirac and Weyl semimetals both exhibit arc-like surface states. However, whereas the surface Fermi arcs in Weyl semimetals are topological...
The existence of a topological bulk-boundary correspondence for Dirac semimetals has remained an open question. Here, Wieder et al. predict one-dimensional...
SourceID doaj
pubmedcentral
osti
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 627
SubjectTerms 639/301/119/995
639/766/119/2792/4128
Condensed matter physics
Eigenvalues
Fermions
Humanities and Social Sciences
Metalloids
multidisciplinary
Physics
Quadrupoles
Questions
Science
Science & Technology - Other Topics
Science (multidisciplinary)
Solid state
Symmetry
Topology
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSkhcEG9CCzISN4ia-JX42CJWFQIuUKk3y8-2Es1W3fTAv2fGyS5dnhdOkWLHccYznocn3wC8iiZG43tddyHEWqYs615StMkZ73nmrYgUGvj4SR8dy_cn6uRGqS_KCZvggSfC7SOXBM-FdJpsf-1NE3UQITrNeRRdot0Xdd4NZ6rswcKg6yLnv2Qa0e-vZNkTyFvCcaSo1ZYmKoD9eFmiYP3O2Pw1Z_Kng9Oijxb34O5sSLKD6QPuw600PIDbU2nJbw_hw2eKcZ8yN0SWr9wpCj8bp4IItCwMtzoX2CpdnF8ktL9XjAKy7KxkfdQFj5MtKE-GoSCsHsHx4t2Xt0f1XDmhDkp3Yy25jF5lLkLnjOq564PWHp2hmHVWucEbsQ0iKxfbKH3DvURNphrsIkUOUTyGnWE5pKfAcjSowlRMOgcZdHTZe7Qy-z47kYQyFbRrKtoww4pTdYuvthxvi95OlLdIeVsob1UFrzfPXE6gGn_tfUiLs-lJgNjlBrKJndnE_otNKtilpbVoVxA4bqAsojDaloI4na5gb73idpbhlcXR0JclQMUKXm6aUfroSMUNaXlNfRTFhFCtVPBkYpDNPAUvNRtFBd0W62x9yHbLcH5WEL61MRJfXsGbNZP9mNafCfXsfxBqF-5wEpKmRfW8Bzvj1XV6jnbX6F8UEfsOnzgm5w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9NAFB5BERIXxI5pQYPEDazas3l8QoAIFQIuUKm30axppdYusXvov-97YydVWHpKZE8U22__5vl7hLwJbQit06psvA-liEmUWiDaZFvnWGI1DwgNfP-hDg7F1yN5NANuw9xWufaJ2VGH3iNGvs-4gMoC6e3en_8ucWoU7q7OIzRukzs1RBps6dKLLxuMBdnPtRDzuzIV1_uDyJ4BayaoJAQv5VY8yrT98NGDef0r5fy7c_KP7dMclRYPyP05naQfJvk_JLdi94jcnQZMXsK33ODph8fk20_EvJfUdoGmlV2CM6DjNCABxUTB9VlPh3h2chYhHx8oArT0OHeBlJmfky6wb4aCYQxPyOHi869PB-U8SaH0UjVjKZgITibGfWNbqZnVXikHxVFIKslUwYFQe56kDXUQrmJOQGSTFSwRPPnAn5Kdru_ic0JTaCGkyRBV8sKrYJNzkHVqnSyPXLYFqdfP0_iZZhynXZyavN3NtZlkYEAGJsvAyIK83fzmfCLZuHH1RxTTZiUSZOcD_WppZnsz4Fy8A52xCktG5doqKM99sIqxwJtYkF0UsoE8A8lyPXYV-dHUCOo0qiB7a9mb2aYHc62BBXm9OQ3WiFsstov9Ba6RiBFBmCnIs0lVNtfJWZ7hyAvSbCnR1o1sn-lOjjPjt2pbAX9ekHdrdbu-rP8_qBc338UuucfQEKoaAvEe2RlXF_ElZFije5XN6Aq01iHo
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9qi-CL-G3aKiv4psFkv5I8nuJRDvWlFvq27Ef2Wmhzcrk--N93ZpOLnFbBp0AySTazMzsfO_kNwNvQhNC4WueV9yGXbZR5LSnbZBvneOSlCJQa-PpNn5zJxbk63wO-_RcmFe0nSMu0TG-rwz70Mqk0BTsYAkiRq3twQFDtKNsHs9nidDFlVgjzvJZy_EOmEPUdN-9YoQTWj4cVKtVdjuaf9ZK_bZomWzR_BA9HJ5LNhmE_hr22ewL3h7aSP5_Cl1PKby-Z7QKLa7tExWeboRkCTQnDZc561rfXl9ct-t49o2Qsu0gVH3nC4mRzqpFhqAT9Mzibf_7-6SQfuybkXulqk0sug1ORC1_ZRtXc1l5rh4FQiDqqWOCJUHoRlQ1lkK7gTqIVUwWSSBF9EM9hv1t17UtgMTRovlRodfTS62Cjc-hh1nW0ohWqyaDcctH4EVKcOltcmbS1LWozcN4g503ivFEZvJvu-TEAavyT-iNNzkRJYNjpxGq9NKNwGFxIvONCWk3hoXZNEbQXPljNeRBVm8ERTa1Bn4KAcT1VEPmNKSmBU-kMjrczbkb97Q0-DeNYAlPM4M10GTWPtlNs165uiEZRPghNSgYvBgGZxil46tcoMqh2RGfnQ3avdJcXCd1bN43El2fwfitkv4b1d0Yd_h_5ETzgpA5FiUb4GPY365v2FXpXG_d6VKdbeM4d-g
  priority: 102
  providerName: Springer Nature
Title Strong and fragile topological Dirac semimetals with higher-order Fermi arcs
URI https://link.springer.com/article/10.1038/s41467-020-14443-5
https://www.ncbi.nlm.nih.gov/pubmed/32005893
https://www.proquest.com/docview/2349174926
https://www.proquest.com/docview/2350093002
https://www.osti.gov/biblio/1619476
https://pubmed.ncbi.nlm.nih.gov/PMC6994491
https://doaj.org/article/005cb234a601446b90d6c3cda622d37e
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1rb9Mw0NpDSHxBvAkblZH4BoHEryQfEOqqlaliE2JU6jfLj7ibtKXQdhL799w5aVGhIL7Ekn1xnPOd72H7jpBXvvK-sqVKC-d8Kuog0lKgt8lU1rLAcu7RNXB6pk7GYjSRkx2ySnfUIXCx1bTDfFLj-dXbH99vPwDDv2-vjJfvFiKyOxpCYB4Inspdsg-SqcCMBqeduh9XZl6BQYMbzSwTeQoAvLtHs72bDVkVQ_pDMQPW26aO_nmq8ret1SixhvfJvU7VpP2WNh6Qnbp5SO60ySdvH5FP5-gFn1LTeBrmZgrLA122KRNw4igshsbRRX19eV0DchYUXbb0Ip4LSWPETjrEkzQUWGXxmIyHx18HJ2mXWyF1UhXLVDDhrQyMu8JUsmSmdEpZMJd8UEGGDCp87niQxude2IxZAbJOZgAieHCePyF7zaypnxEafAVCTvpaBSec8iZYC3poWQbDay6rhOQrLGrXBR7H_BdXOm6A81K3mNeAeR0xr2VCXq_f-daG3fgn9BFOzhoSQ2bHitl8qjsO1LDcOMu4MAqNSGWrzCvHnTeKMc-LOiEHOLUaNA8Mn-vwnJFb6hzdPIVKyOFqxvWKSDX0BtYuhlxMyMt1M_AnbrqYpp7dIIxErxEInoQ8bQlkPU7OYlZHnpBig3Q2fmSzpbm8iDHAVVUJ-HhC3qyI7New_o6o5_8xzANylyEPZDnI50Oyt5zf1C9A8VraHtktJgU8y-HHHtnv90fnIyiPjs8-f4HagRr0okujF7nuJ_T3LJY
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw1CpFCC6IndACRoITRE28JTkgxDZM6XKhlXpzvcTTSjRTJlOh_hTfyHtOMtWw9NZTIi9Z_Pbn5_cIeekr7ytbqrRwzqeiDiItBXqbTGUtCyznHl0DO7tqvC--HsiDFfJrOAuDYZUDT4yM2k8d-sg3GBdgWWB6u3enP1KsGoW7q0MJjQ4tturzn2CytW83PwF8XzE2-rz3cZz2VQVSJ1UxTwUT3srAuCtMJUtmSqeUBUPBBxVkyKDB544HaXzuhc2YFcDlZQZDBA_Oc3juNXJdcJDkeDJ99GXh08Fs66UQ_dmcjJcbrYicCG00mC54KpfkXywTAJcpkPO_VNy_IzX_2K6NUnB0h9zu1Vf6vsO3u2Slbu6RG11By3O4iwGlrr1Ptr-hj31CTeNpmJkJMB867woyIFpQYLXG0bY-OT6pQf9vKTqE6VGMOkljPlA6wjgdCivePiD7V7LGD8lqM23qx4QGX4EIlb5WwQmnvAnWgpZblsHwmssqIfmwntr1ac2xusZ3HbfXeak7GGiAgY4w0DIhrxdzTrukHpeO_oBgWozEhNyxYTqb6J6-NTAzZwFHjUITVdkq88px541izPOiTsgaAlmDXoPJeR1GMbm5ztGJVKiErA-w1z0PafUFxifkxaIbqB-3dExTT89wjESfFIi1hDzqUGXxnZzFmpE8IcUSEi39yHJPc3wUM4yrqhLw8oS8GdDt4rP-v1BPLv-L5-TmeG9nW29v7m6tkVsMiSLLQQlYJ6vz2Vn9FLS7uX0WSYqSw6um4d-IhV7S
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKViAuiDehBYwEJ4g2sR0nOSBEaVctLasKqNSb60e8rUSzZbMV6l_j1zHjJFstj956SpQ4D3tmPs-MxzOEvHKlc6UpZJxb62JReREXAr1NujSGeZZyh66Bz2O5fSA-HWaHK-RXvxcGwyp7TAxA7aYWfeRDxgVYFpjebui7sIj9zdH7sx8xVpDClda-nEbLIrvVxU8w35p3O5tA69eMjba-fdyOuwoDsc1kPo8FE85knnGb6zIrmC6slAaMBuelz3wCF1xquc-0S50wCTMCED9LoIng3joO771BVnO0igZkdWNrvP9l4eHB3OuFEN1OnYQXw0YEXEKLDV4geJwtzYahaAAcpiDc_1J4_47b_GPxNsyJo7vkTqfM0g8t990jK1V9n9xsy1tewFkIL7XNA7L3FT3uE6prR_1MTwCK6Lwtz4BMQgF4taVNdXpyWoE10FB0D9PjEIMSh-ygdIRROxTGvHlIDq5llB-RQT2tqyeEelfChJq5SnorrHTaGwM6b1F4zSuelRFJ-_FUtktyjrU2vquw2M4L1dJAAQ1UoIHKIvJm8cxZm-LjytYbSKZFS0zPHS5MZxPVSbsCaLMGOFZLNFilKRMnLbdOS8Ycz6uIrCGRFWg5mKrXYkyTnasUXUq5jMh6T3vVIUqjLvk_Ii8XtwELcIFH19X0HNtk6KGCSS4ij1tWWfwnZ6GCJI9IvsRESx1ZvlOfHId847IsBXw8Im97drv8rf8P1NOre_GC3AL5VXs74901cpuhTCQpaATrZDCfnVfPQNWbm-edTFFydN1i_Bvyq2Rk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strong+and+fragile+topological+Dirac+semimetals+with+higher-order+Fermi+arcs&rft.jtitle=Nature+communications&rft.au=Wieder%2C+Benjamin+J&rft.au=Wang%2C+Zhijun&rft.au=Cano%2C+Jennifer&rft.au=Dai%2C+Xi&rft.date=2020-01-31&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft.spage=627&rft_id=info:doi/10.1038%2Fs41467-020-14443-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon