Strong and fragile topological Dirac semimetals with higher-order Fermi arcs
Dirac and Weyl semimetals both exhibit arc-like surface states. However, whereas the surface Fermi arcs in Weyl semimetals are topological consequences of the Weyl points themselves, the surface Fermi arcs in Dirac semimetals are not directly related to the bulk Dirac points, raising the question of...
Saved in:
Published in | Nature communications Vol. 11; no. 1; pp. 627 - 13 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
31.01.2020
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dirac and Weyl semimetals both exhibit arc-like surface states. However, whereas the surface Fermi arcs in Weyl semimetals are topological consequences of the Weyl points themselves, the surface Fermi arcs in Dirac semimetals are not directly related to the bulk Dirac points, raising the question of whether there exists a topological bulk-boundary correspondence for Dirac semimetals. In this work, we discover that strong and fragile topological Dirac semimetals exhibit one-dimensional (1D) higher-order hinge Fermi arcs (HOFAs) as universal, direct consequences of their bulk 3D Dirac points. To predict HOFAs coexisting with topological surface states in solid-state Dirac semimetals, we introduce and layer a spinful model of an
s
–
d
-hybridized quadrupole insulator (QI). We develop a rigorous nested Jackiw–Rebbi formulation of QIs and HOFA states. Employing ab initio calculations, we demonstrate HOFAs in both the room- (
α
) and intermediate-temperature (
α
″
) phases of Cd
3
As
2
, KMgBi, and rutile-structure (
β
′
-) PtO
2
.
The existence of a topological bulk-boundary correspondence for Dirac semimetals has remained an open question. Here, Wieder et al. predict one-dimensional hinge states originating from bulk three-dimensional Dirac points in solid-state Dirac semimetals, revealing condensed matter Dirac fermions to be higher-order topological. |
---|---|
AbstractList | Dirac and Weyl semimetals both exhibit arc-like surface states. However, whereas the surface Fermi arcs in Weyl semimetals are topological consequences of the Weyl points themselves, the surface Fermi arcs in Dirac semimetals are not directly related to the bulk Dirac points, raising the question of whether there exists a topological bulk-boundary correspondence for Dirac semimetals. In this work, we discover that strong and fragile topological Dirac semimetals exhibit one-dimensional (1D) higher-order hinge Fermi arcs (HOFAs) as universal, direct consequences of their bulk 3D Dirac points. To predict HOFAs coexisting with topological surface states in solid-state Dirac semimetals, we introduce and layer a spinful model of an s-d-hybridized quadrupole insulator (QI). We develop a rigorous nested Jackiw-Rebbi formulation of QIs and HOFA states. Employing ab initio calculations, we demonstrate HOFAs in both the room- (α) and intermediate-temperature (α″) phases of Cd3As2, KMgBi, and rutile-structure ([Formula: see text]-) PtO2.Dirac and Weyl semimetals both exhibit arc-like surface states. However, whereas the surface Fermi arcs in Weyl semimetals are topological consequences of the Weyl points themselves, the surface Fermi arcs in Dirac semimetals are not directly related to the bulk Dirac points, raising the question of whether there exists a topological bulk-boundary correspondence for Dirac semimetals. In this work, we discover that strong and fragile topological Dirac semimetals exhibit one-dimensional (1D) higher-order hinge Fermi arcs (HOFAs) as universal, direct consequences of their bulk 3D Dirac points. To predict HOFAs coexisting with topological surface states in solid-state Dirac semimetals, we introduce and layer a spinful model of an s-d-hybridized quadrupole insulator (QI). We develop a rigorous nested Jackiw-Rebbi formulation of QIs and HOFA states. Employing ab initio calculations, we demonstrate HOFAs in both the room- (α) and intermediate-temperature (α″) phases of Cd3As2, KMgBi, and rutile-structure ([Formula: see text]-) PtO2. Dirac and Weyl semimetals both exhibit arc-like surface states. However, whereas the surface Fermi arcs in Weyl semimetals are topological consequences of the Weyl points themselves, the surface Fermi arcs in Dirac semimetals are not directly related to the bulk Dirac points, raising the question of whether there exists a topological bulk-boundary correspondence for Dirac semimetals. In this work, we discover that strong and fragile topological Dirac semimetals exhibit one-dimensional (1D) higher-order hinge Fermi arcs (HOFAs) as universal, direct consequences of their bulk 3D Dirac points. To predict HOFAs coexisting with topological surface states in solid-state Dirac semimetals, we introduce and layer a spinful model of an s – d -hybridized quadrupole insulator (QI). We develop a rigorous nested Jackiw–Rebbi formulation of QIs and HOFA states. Employing ab initio calculations, we demonstrate HOFAs in both the room- ( α ) and intermediate-temperature ( α ″ ) phases of Cd 3 As 2 , KMgBi, and rutile-structure ( $$ \beta ^{\prime} $$ β ′ -) PtO 2 . Dirac and Weyl semimetals both exhibit arc-like surface states. However, whereas the surface Fermi arcs in Weyl semimetals are topological consequences of the Weyl points themselves, the surface Fermi arcs in Dirac semimetals are not directly related to the bulk Dirac points, raising the question of whether there exists a topological bulk-boundary correspondence for Dirac semimetals. In this work, we discover that strong and fragile topological Dirac semimetals exhibit one-dimensional (1D) higher-order hinge Fermi arcs (HOFAs) as universal, direct consequences of their bulk 3D Dirac points. To predict HOFAs coexisting with topological surface states in solid-state Dirac semimetals, we introduce and layer a spinful model of an s-d-hybridized quadrupole insulator (QI). We develop a rigorous nested Jackiw-Rebbi formulation of QIs and HOFA states. Employing ab initio calculations, we demonstrate HOFAs in both the room- (α) and intermediate-temperature (α″) phases of Cd As , KMgBi, and rutile-structure ([Formula: see text]-) PtO . Dirac and Weyl semimetals both exhibit arc-like surface states. However, whereas the surface Fermi arcs in Weyl semimetals are topological consequences of the Weyl points themselves, the surface Fermi arcs in Dirac semimetals are not directly related to the bulk Dirac points, raising the question of whether there exists a topological bulk-boundary correspondence for Dirac semimetals. In this work, we discover that strong and fragile topological Dirac semimetals exhibit one-dimensional (1D) higher-order hinge Fermi arcs (HOFAs) as universal, direct consequences of their bulk 3D Dirac points. To predict HOFAs coexisting with topological surface states in solid-state Dirac semimetals, we introduce and layer a spinful model of an s – d -hybridized quadrupole insulator (QI). We develop a rigorous nested Jackiw–Rebbi formulation of QIs and HOFA states. Employing ab initio calculations, we demonstrate HOFAs in both the room- ( α ) and intermediate-temperature ( α ″ ) phases of Cd 3 As 2 , KMgBi, and rutile-structure ( β ′ -) PtO 2 . The existence of a topological bulk-boundary correspondence for Dirac semimetals has remained an open question. Here, Wieder et al. predict one-dimensional hinge states originating from bulk three-dimensional Dirac points in solid-state Dirac semimetals, revealing condensed matter Dirac fermions to be higher-order topological. Abstract Dirac and Weyl semimetals both exhibit arc-like surface states. However, whereas the surface Fermi arcs in Weyl semimetals are topological consequences of the Weyl points themselves, the surface Fermi arcs in Dirac semimetals are not directly related to the bulk Dirac points, raising the question of whether there exists a topological bulk-boundary correspondence for Dirac semimetals. In this work, we discover that strong and fragile topological Dirac semimetals exhibit one-dimensional (1D) higher-order hinge Fermi arcs (HOFAs) as universal, direct consequences of their bulk 3D Dirac points. To predict HOFAs coexisting with topological surface states in solid-state Dirac semimetals, we introduce and layer a spinful model of an s – d -hybridized quadrupole insulator (QI). We develop a rigorous nested Jackiw–Rebbi formulation of QIs and HOFA states. Employing ab initio calculations, we demonstrate HOFAs in both the room- ( α ) and intermediate-temperature ( α ″ ) phases of Cd 3 As 2 , KMgBi, and rutile-structure ( $$ \beta ^{\prime} $$ β ′ -) PtO 2 . Dirac and Weyl semimetals both exhibit arc-like surface states. However, whereas the surface Fermi arcs in Weyl semimetals are topological consequences of the Weyl points themselves, the surface Fermi arcs in Dirac semimetals are not directly related to the bulk Dirac points, raising the question of whether there exists a topological bulk-boundary correspondence for Dirac semimetals. In this work, we discover that strong and fragile topological Dirac semimetals exhibit one-dimensional (1D) higher-order hinge Fermi arcs (HOFAs) as universal, direct consequences of their bulk 3D Dirac points. To predict HOFAs coexisting with topological surface states in solid-state Dirac semimetals, we introduce and layer a spinful model of an s–d-hybridized quadrupole insulator (QI). We develop a rigorous nested Jackiw–Rebbi formulation of QIs and HOFA states. Employing ab initio calculations, we demonstrate HOFAs in both the room- (α) and intermediate-temperature (α″) phases of Cd3As2, KMgBi, and rutile-structure (β′-) PtO2.The existence of a topological bulk-boundary correspondence for Dirac semimetals has remained an open question. Here, Wieder et al. predict one-dimensional hinge states originating from bulk three-dimensional Dirac points in solid-state Dirac semimetals, revealing condensed matter Dirac fermions to be higher-order topological. The existence of a topological bulk-boundary correspondence for Dirac semimetals has remained an open question. Here, Wieder et al. predict one-dimensional hinge states originating from bulk three-dimensional Dirac points in solid-state Dirac semimetals, revealing condensed matter Dirac fermions to be higher-order topological. Dirac and Weyl semimetals both exhibit arc-like surface states. However, whereas the surface Fermi arcs in Weyl semimetals are topological consequences of the Weyl points themselves, the surface Fermi arcs in Dirac semimetals are not directly related to the bulk Dirac points, raising the question of whether there exists a topological bulk-boundary correspondence for Dirac semimetals. In this work, we discover that strong and fragile topological Dirac semimetals exhibit one-dimensional (1D) higher-order hinge Fermi arcs (HOFAs) as universal, direct consequences of their bulk 3D Dirac points. To predict HOFAs coexisting with topological surface states in solid-state Dirac semimetals, we introduce and layer a spinful model of an s – d -hybridized quadrupole insulator (QI). We develop a rigorous nested Jackiw–Rebbi formulation of QIs and HOFA states. Employing ab initio calculations, we demonstrate HOFAs in both the room- ( α ) and intermediate-temperature ( α ″ ) phases of Cd 3 As 2 , KMgBi, and rutile-structure ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \beta ^{\prime} $$\end{document} β ′ -) PtO 2 . The existence of a topological bulk-boundary correspondence for Dirac semimetals has remained an open question. Here, Wieder et al. predict one-dimensional hinge states originating from bulk three-dimensional Dirac points in solid-state Dirac semimetals, revealing condensed matter Dirac fermions to be higher-order topological. |
ArticleNumber | 627 |
Author | Schoop, Leslie M. Cano, Jennifer Bradlyn, Barry Bernevig, B. Andrei Wieder, Benjamin J. Wang, Zhijun Dai, Xi |
Author_xml | – sequence: 1 givenname: Benjamin J. orcidid: 0000-0003-2540-6202 surname: Wieder fullname: Wieder, Benjamin J. email: bwieder@princeton.edu organization: Department of Physics, Princeton University – sequence: 2 givenname: Zhijun orcidid: 0000-0003-2169-8068 surname: Wang fullname: Wang, Zhijun organization: Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 3 givenname: Jennifer orcidid: 0000-0003-1528-4344 surname: Cano fullname: Cano, Jennifer organization: Department of Physics and Astronomy, Stony Brook University, Center for Computational Quantum Physics, The Flatiron Institute – sequence: 4 givenname: Xi surname: Dai fullname: Dai, Xi organization: Physics Department, Hong Kong University of Science and Technology – sequence: 5 givenname: Leslie M. orcidid: 0000-0003-3459-4241 surname: Schoop fullname: Schoop, Leslie M. organization: Department of Chemistry, Princeton University – sequence: 6 givenname: Barry orcidid: 0000-0001-6327-1076 surname: Bradlyn fullname: Bradlyn, Barry email: bbradlyn@illinois.edu organization: Department of Physics and Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign, Donostia International Physics Center – sequence: 7 givenname: B. Andrei surname: Bernevig fullname: Bernevig, B. Andrei email: bernevig@princeton.edu organization: Department of Physics, Princeton University, Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, Max Planck Institute of Microstructure Physics |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32005893$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1619476$$D View this record in Osti.gov |
BookMark | eNp9kk1vFSEUhompsbX2D7gwE924GeV7ho1JU602uYkLdU0YYGa4YeAKXI3_Xm6n1raLsoEcnvc958B5Do5CDBaAlwi-Q5D07zNFlHctxLBFlFLSsifgBEOKWtRhcnTnfAzOct7CuohAPaXPwDHBELJekBOw-VZSDFOjgmnGpCbnbVPiLvo4Oa1889ElpZtsF7fYonxufrsyN7ObZpvamIxNzaVNi2tU0vkFeDpWxp7d7Kfgx-Wn7xdf2s3Xz1cX55tWM96VlmJqBjZiojslWI9VrzkfEBVm5CMbYQ0YpMnIlEGGDhAPFBLOYEUoGbUhp-Bq9TVRbeUuuUWlPzIqJ68DMU1SpeK0t7L2qQdMqOKwqvkgoOGaaKM4xoZ0tnp9WL12-2GxRttQkvL3TO_fBDfLKf6SXAhKBaoGr1eDmIuTWbti9axjCFYXiTgStOMVenuTJcWfe5uLXFzW1nsVbNxniQmDUBAIcUXfPEC3cZ9Cfc9K1YQdFfhg-Opu2bf1_vvZCuAV0CnmnOx4iyAoDxMk1wmSdYLk9QRJVkX9A1FtRxUXD607_7iUrNJc84TJpv9lP6L6C3h72HA |
CitedBy_id | crossref_primary_10_1016_j_xinn_2022_100343 crossref_primary_10_1038_s41578_021_00380_2 crossref_primary_10_1360_SSPMA_2022_0413 crossref_primary_10_1103_PhysRevB_103_115308 crossref_primary_10_1002_adma_202403881 crossref_primary_10_1038_s41467_024_44762_w crossref_primary_10_1088_1361_648X_acddc4 crossref_primary_10_1103_PhysRevB_105_125110 crossref_primary_10_1016_j_scib_2022_02_003 crossref_primary_10_1063_5_0045466 crossref_primary_10_1103_PhysRevLett_128_115701 crossref_primary_10_1103_PhysRevB_103_245127 crossref_primary_10_1088_1367_2630_ad59ff crossref_primary_10_1103_PhysRevB_105_205117 crossref_primary_10_1103_PhysRevB_104_205117 crossref_primary_10_1103_PhysRevLett_127_146601 crossref_primary_10_1016_j_scib_2021_06_024 crossref_primary_10_1002_andp_202200267 crossref_primary_10_1016_j_commatsci_2022_111613 crossref_primary_10_1088_1572_9494_ac7cda crossref_primary_10_1103_PhysRevA_107_053511 crossref_primary_10_1103_PhysRevResearch_5_L042003 crossref_primary_10_1002_apxr_202200119 crossref_primary_10_1016_j_aop_2021_168563 crossref_primary_10_1038_s41598_021_01888_x crossref_primary_10_1103_PhysRevB_105_125115 crossref_primary_10_21468_SciPostPhys_12_2_053 crossref_primary_10_1016_j_carbon_2020_12_037 crossref_primary_10_1038_s41467_020_16916_z crossref_primary_10_1103_PhysRevB_106_214510 crossref_primary_10_1103_PhysRevB_101_115134 crossref_primary_10_1073_pnas_2116575119 crossref_primary_10_1103_PhysRevB_110_155110 crossref_primary_10_1103_PhysRevApplied_20_064034 crossref_primary_10_1103_PhysRevMaterials_5_124202 crossref_primary_10_1038_s41467_021_26241_8 crossref_primary_10_1002_adma_202201058 crossref_primary_10_1103_PhysRevLett_128_246601 crossref_primary_10_1103_PhysRevB_101_245138 crossref_primary_10_1103_PhysRevB_104_014203 crossref_primary_10_1103_PhysRevB_107_165423 crossref_primary_10_1103_PhysRevB_109_075169 crossref_primary_10_1103_PhysRevA_105_053521 crossref_primary_10_3390_mi11121096 crossref_primary_10_1103_PhysRevB_109_035148 crossref_primary_10_1103_PhysRevB_105_L081102 crossref_primary_10_1103_PhysRevB_105_014509 crossref_primary_10_1103_PhysRevResearch_3_013239 crossref_primary_10_1103_PhysRevB_107_L121407 crossref_primary_10_1103_PhysRevB_109_L241101 crossref_primary_10_1088_1361_6633_ad9ed8 crossref_primary_10_1103_PhysRevB_103_245107 crossref_primary_10_1103_PhysRevB_108_094301 crossref_primary_10_1364_PRJ_433188 crossref_primary_10_3389_fphy_2022_866347 crossref_primary_10_1103_PhysRevB_105_184105 crossref_primary_10_1038_s41467_023_40252_7 crossref_primary_10_1103_PhysRevB_101_241104 crossref_primary_10_1103_PhysRevB_106_245105 crossref_primary_10_1103_PhysRevB_107_245108 crossref_primary_10_1103_PhysRevB_104_245302 crossref_primary_10_1103_PhysRevB_108_115405 crossref_primary_10_1103_PhysRevB_108_205135 crossref_primary_10_1103_PhysRevB_109_134205 crossref_primary_10_1103_PhysRevB_110_174513 crossref_primary_10_1103_PhysRevB_106_L241115 crossref_primary_10_1039_D1CP00963J crossref_primary_10_21468_SciPostPhysLectNotes_67 crossref_primary_10_1016_j_scib_2021_10_023 crossref_primary_10_1103_PhysRevResearch_5_L012019 crossref_primary_10_1103_PhysRevLett_128_026405 crossref_primary_10_1007_s11467_023_1259_5 crossref_primary_10_1103_PhysRevB_102_165115 crossref_primary_10_1142_S0217979222501971 crossref_primary_10_1016_j_mtphys_2024_101343 crossref_primary_10_1088_1361_648X_ad3abd crossref_primary_10_1103_PhysRevX_14_041060 crossref_primary_10_1103_PhysRevB_107_035128 crossref_primary_10_1103_PhysRevB_102_094503 crossref_primary_10_1103_PhysRevB_106_035105 crossref_primary_10_1103_PhysRevLett_125_126403 crossref_primary_10_1063_5_0230231 crossref_primary_10_1103_PhysRevB_106_085129 crossref_primary_10_1103_PhysRevB_103_L201114 crossref_primary_10_1103_PhysRevB_104_165424 crossref_primary_10_1103_PhysRevMaterials_8_124203 crossref_primary_10_1103_PhysRevB_109_085102 crossref_primary_10_1038_s41467_021_23963_7 crossref_primary_10_1038_s41467_024_47103_z crossref_primary_10_1103_PhysRevB_107_195153 crossref_primary_10_1103_PhysRevB_108_165427 crossref_primary_10_1038_s41535_021_00325_6 crossref_primary_10_1038_s41467_022_33471_x crossref_primary_10_1103_PhysRevB_105_L060101 crossref_primary_10_1103_PhysRevB_106_125310 crossref_primary_10_1103_PhysRevB_102_035105 crossref_primary_10_1103_PhysRevB_109_195149 crossref_primary_10_1038_s41467_020_16058_2 crossref_primary_10_1103_PhysRevB_102_241404 crossref_primary_10_1103_PhysRevB_108_195306 crossref_primary_10_1103_PhysRevB_105_L201301 crossref_primary_10_1103_PhysRevResearch_2_042038 crossref_primary_10_1103_PhysRevB_109_155404 crossref_primary_10_1103_PhysRevB_103_L121101 crossref_primary_10_1103_PhysRevLett_127_066801 crossref_primary_10_1103_PhysRevB_103_195145 crossref_primary_10_1103_PhysRevB_104_195145 crossref_primary_10_1103_PhysRevLett_124_156601 crossref_primary_10_1103_PhysRevLett_125_146401 crossref_primary_10_1103_PhysRevLett_130_156101 crossref_primary_10_1103_PhysRevB_110_214203 crossref_primary_10_1007_s44214_024_00067_z crossref_primary_10_1103_PhysRevLett_128_127601 crossref_primary_10_1038_s41563_021_00933_4 crossref_primary_10_1088_1367_2630_ac8306 crossref_primary_10_1103_PhysRevLett_132_186601 crossref_primary_10_1002_andp_202100293 crossref_primary_10_1103_PhysRevLett_126_246801 crossref_primary_10_1103_PhysRevResearch_2_043197 crossref_primary_10_1103_PhysRevResearch_7_013280 crossref_primary_10_1038_s41535_022_00498_8 crossref_primary_10_1103_PhysRevB_107_075413 crossref_primary_10_1038_s41586_021_04105_x crossref_primary_10_1103_PhysRevB_103_L121115 crossref_primary_10_1103_PhysRevB_110_L060102 crossref_primary_10_1088_1674_1056_ad4634 crossref_primary_10_1103_PhysRevLett_130_116103 crossref_primary_10_1103_PhysRevB_106_085105 crossref_primary_10_1103_PhysRevB_108_L241406 crossref_primary_10_3390_nano11051170 crossref_primary_10_1038_s41535_020_00300_7 crossref_primary_10_1103_PhysRevB_108_L241402 crossref_primary_10_1088_1361_648X_ac3b28 crossref_primary_10_1021_acsaem_2c01685 crossref_primary_10_1007_s11467_022_1221_y crossref_primary_10_1021_acsnano_9b07990 crossref_primary_10_1038_s41586_020_2837_0 crossref_primary_10_1103_PhysRevB_103_165109 crossref_primary_10_1103_PhysRevB_103_L100302 crossref_primary_10_1103_PhysRevResearch_3_043067 crossref_primary_10_1103_PhysRevB_110_115427 crossref_primary_10_1103_PhysRevResearch_2_042010 crossref_primary_10_1103_PhysRevB_109_L081101 crossref_primary_10_1103_PhysRevB_104_245101 crossref_primary_10_1103_PhysRevLett_125_266804 crossref_primary_10_1103_PhysRevLett_132_066601 crossref_primary_10_3390_j5020017 crossref_primary_10_1039_D4TC04581E crossref_primary_10_1103_PhysRevB_106_L060307 crossref_primary_10_31857_S0044451024110117 crossref_primary_10_1103_PhysRevB_104_L161116 crossref_primary_10_1103_PhysRevB_110_035151 crossref_primary_10_1007_s11433_024_2483_8 crossref_primary_10_1016_j_scib_2022_09_003 crossref_primary_10_1103_PhysRevLett_127_196801 crossref_primary_10_1103_PhysRevLett_129_196602 crossref_primary_10_1103_PhysRevB_104_L161117 crossref_primary_10_1039_D2CP00424K crossref_primary_10_1103_PhysRevB_111_035115 crossref_primary_10_1038_s41467_024_46618_9 crossref_primary_10_1088_1361_6668_ac4c84 crossref_primary_10_1126_science_adr5234 crossref_primary_10_1103_PhysRevB_109_085430 crossref_primary_10_3389_fphy_2021_771481 crossref_primary_10_1016_j_mtcomm_2024_110076 crossref_primary_10_1103_PhysRevB_101_195309 crossref_primary_10_1103_PhysRevB_111_L041402 crossref_primary_10_1103_PhysRevB_107_045129 crossref_primary_10_1103_PhysRevB_110_L121122 crossref_primary_10_1103_PhysRevResearch_3_023121 crossref_primary_10_1038_s41567_021_01190_7 crossref_primary_10_1103_PhysRevB_104_L180303 crossref_primary_10_1103_PhysRevResearch_3_L012028 crossref_primary_10_1126_science_abg9094 crossref_primary_10_1103_PhysRevB_105_224312 crossref_primary_10_1103_PhysRevB_105_115119 crossref_primary_10_1103_PhysRevB_109_205123 crossref_primary_10_1088_1367_2630_acdab3 crossref_primary_10_1103_PhysRevB_102_094305 crossref_primary_10_1021_acs_nanolett_1c02661 crossref_primary_10_1016_j_cpc_2021_108226 crossref_primary_10_1103_PhysRevB_103_085106 crossref_primary_10_1103_PhysRevResearch_2_033029 |
Cites_doi | 10.1103/PhysRevB.96.035119 10.1103/RevModPhys.81.109 10.1103/PhysRevB.95.155112 10.1103/PhysRevLett.42.1698 10.1016/0927-0256(96)00008-0 10.1126/science.aah6442 10.1103/PhysRevD.13.3398 10.1103/PhysRevLett.119.246401 10.1021/ic403163d 10.1103/PhysRevLett.115.036806 10.1103/PhysRevLett.121.126402 10.1103/PhysRevB.83.205101 10.1038/nature18276 10.1126/science.aaa9297 10.1126/science.1256742 10.1126/sciadv.aar2317 10.1103/PhysRevLett.119.206401 10.1103/PhysRevLett.122.076402 10.1103/PhysRevLett.123.186401 10.1021/acs.nanolett.5b00308 10.1016/0146-3535(80)90020-9 10.1126/science.aan2802 10.1103/PhysRevB.95.035209 10.1103/PhysRevB.59.1758 10.1103/PhysRevB.99.041301 10.1126/science.aaf5037 10.1038/ncomms5898 10.1038/s41567-019-0511-y 10.1103/PhysRevB.100.020509 10.1103/PhysRevB.76.045302 10.1038/s41563-018-0169-3 10.1103/PhysRevB.96.245115 10.1103/PhysRevMaterials.3.031201 10.1103/PhysRevLett.116.186402 10.1103/PhysRevLett.107.036601 10.1103/PhysRevLett.120.266401 10.1103/PhysRevB.99.045130 10.1073/pnas.1524787113 10.1107/S1600576716012863 10.1103/PhysRevB.47.1651 10.1038/s41535-017-0074-z 10.1103/PhysRevB.96.115121 10.1103/PhysRevLett.119.206402 10.1103/PhysRevB.89.155114 10.1103/PhysRevB.85.115415 10.1103/PhysRevLett.119.246402 10.1038/nature25156 10.1038/s41586-019-1037-2 10.1126/science.1133734 10.1088/0022-3719/17/12/003 10.1103/PhysRevLett.95.226801 10.1038/s41586-019-1031-8 10.1038/s41567-018-0224-7 10.1103/PhysRevB.98.241103 10.1038/s41467-018-06010-w 10.1103/PhysRevB.78.045426 10.1103/PhysRevLett.39.1098 10.1103/PhysRevB.99.045140 10.1038/nature23268 10.1126/sciadv.aat0346 10.1016/0022-0248(82)90096-3 10.1103/PhysRevLett.106.106802 10.1103/PhysRevLett.119.026404 10.1038/s41467-017-00133-2 10.1038/srep06106 10.1103/PhysRevLett.49.1455 10.1063/1.3149495 10.1103/PhysRevB.88.125427 10.1038/nature17151 10.1103/PhysRevB.54.11169 10.1107/9780955360220001 10.1126/sciadv.aat2374 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Princeton Univ., NJ (United States) |
CorporateAuthor_xml | – name: Princeton Univ., NJ (United States) |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 OTOTI 5PM DOA |
DOI | 10.1038/s41467-020-14443-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Biological Science Collection ProQuest Central (New) (NC LIVE) Technology Collection ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database ProQuest Biological Science Database (NC LIVE) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Physics |
EISSN | 2041-1723 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_005cb234a601446b90d6c3cda622d37e PMC6994491 1619476 32005893 10_1038_s41467_020_14443_5 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Science Foundation (NSF) grantid: DMR 1643312 funderid: https://doi.org/10.13039/100000001 – fundername: Schmidt Fund for Innovative Research, CAS Pioneer Hundred Talents Program – fundername: David and Lucile Packard Foundation (David & Lucile Packard Foundation) funderid: https://doi.org/10.13039/100000008 – fundername: United States Department of Defense | United States Navy | Office of Naval Research (ONR) grantid: N00014-14- 1-0330 funderid: https://doi.org/10.13039/100000006 – fundername: John Simon Guggenheim Memorial Foundation funderid: https://doi.org/10.13039/100005851 – fundername: U.S. Department of Energy (DOE) grantid: DE-SC0016239 funderid: https://doi.org/10.13039/100000015 – fundername: United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office (ARO) grantid: ARO W911NF-12-1-0461 funderid: https://doi.org/10.13039/100000183 – fundername: NSF | Directorate for Mathematical & Physical Sciences | Division of Materials Research (DMR) grantid: DMR-1420541 funderid: https://doi.org/10.13039/100000078 – fundername: Simons Foundation grantid: 404513 funderid: https://doi.org/10.13039/100000893 – fundername: National Science Foundation (NSF) grantid: DMR 1643312 – fundername: U.S. Department of Energy (DOE) grantid: DE-SC0016239 – fundername: United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office (ARO) grantid: ARO W911NF-12-1-0461 – fundername: NSF | Directorate for Mathematical & Physical Sciences | Division of Materials Research (DMR) grantid: DMR-1420541 – fundername: United States Department of Defense | United States Navy | Office of Naval Research (ONR) grantid: N00014-14- 1-0330 – fundername: Simons Foundation grantid: 404513 – fundername: ; – fundername: ; grantid: DMR 1643312 – fundername: ; grantid: N00014-14- 1-0330 – fundername: ; grantid: DE-SC0016239 – fundername: ; grantid: DMR-1420541 – fundername: ; grantid: 404513 – fundername: ; grantid: ARO W911NF-12-1-0461 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 AAPBV AAYJO ADQMX AEDAW OTOTI ZA5 5PM PUEGO |
ID | FETCH-LOGICAL-c567t-424db5f23c7a9582a8c66b149df6f5f02a8d1c3f5ad1d4b02b403650b1443fcd3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:27:48 EDT 2025 Thu Aug 21 14:35:14 EDT 2025 Fri May 19 00:39:27 EDT 2023 Fri Jul 11 09:47:32 EDT 2025 Wed Aug 13 04:43:50 EDT 2025 Mon Jul 21 06:05:25 EDT 2025 Thu Apr 24 23:02:29 EDT 2025 Tue Jul 01 04:08:50 EDT 2025 Fri Feb 21 02:40:09 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c567t-424db5f23c7a9582a8c66b149df6f5f02a8d1c3f5ad1d4b02b403650b1443fcd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 SC0016239 USDOE Office of Science (SC) |
ORCID | 0000-0003-1528-4344 0000-0003-3459-4241 0000-0001-6327-1076 0000-0003-2540-6202 0000-0003-2169-8068 0000000334594241 0000000321698068 0000000325406202 0000000163271076 0000000315284344 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-020-14443-5 |
PMID | 32005893 |
PQID | 2349174926 |
PQPubID | 546298 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_005cb234a601446b90d6c3cda622d37e pubmedcentral_primary_oai_pubmedcentral_nih_gov_6994491 osti_scitechconnect_1619476 proquest_miscellaneous_2350093002 proquest_journals_2349174926 pubmed_primary_32005893 crossref_primary_10_1038_s41467_020_14443_5 crossref_citationtrail_10_1038_s41467_020_14443_5 springer_journals_10_1038_s41467_020_14443_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-31 |
PublicationDateYYYYMMDD | 2020-01-31 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United Kingdom |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Xu (CR4) 2015; 349 Chang (CR70) 2017; 119 Kruthoff, de Boer, van Wezel, Kane, Slager (CR50) 2017; 7 Arushanov (CR57) 1980; 3 Schwartz, Gillson, Shannon (CR60) 1982; 60 Chang (CR9) 2018; 17 Kresse, Joubert (CR75) 1999; 59 Schindler (CR25) 2018; 4 CR37 Kim, Wieder, Kane, Rappe (CR11) 2015; 115 Song, Fang, Fang (CR26) 2017; 119 Serra-Garcia (CR51) 2018; 555 CR78 Langbehn, Peng, Trifunovic, vonOppen, Brouwer (CR27) 2017; 119 Liu, Qian, Fu (CR66) 2015; 15 Po, Watanabe, Vishwanath (CR33) 2018; 121 CR74 Takane (CR46) 2018; 3 Sanchez (CR14) 2019; 567 Ruffieux (CR44) 2016; 531 Wang, Wieder, Li, Yan, Bernevig (CR32) 2019; 123 Chang (CR7) 2017; 119 Bradlyn (CR22) 2017; 547 Yang, Nagaosa (CR10) 2014; 5 Ghorashi, Hu, Hughes, Rossi (CR79) 2019; 100 King-Smith, Vanderbilt (CR42) 1993; 47 Po, Vishwanath, Watanabe (CR48) 2017; 8 Kealhofer (CR69) 2019; 3 Kim, Yang, Kim (CR61) 2019; 99 Rao (CR15) 2019; 567 Călugăru, Juričić, Roy (CR54) 2019; 99 Cano (CR35) 2018; 120 Wang, Weng, Wu, Dai, Fang (CR18) 2013; 88 Zhang, Sun, Lei (CR59) 2017; 95 Khalaf, Po, Vishwanath, Watanabe (CR30) 2018; 8 Fidkowski, Jackson, Klich (CR63) 2011; 107 Moll (CR72) 2016; 535 Bradlyn (CR6) 2016; 353 Benalcazar, Bernevig, Hughes (CR24) 2017; 96 Weng, Fang, Fang, Bernevig, Dai (CR3) 2015; 5 Song, Zhang, Fang, Fang (CR49) 2018; 9 Fu (CR64) 2011; 106 Topp (CR45) 2017; 7 Wieder (CR28) 2018; 361 Yi (CR20) 2014; 4 Kresse, Furthmüller (CR76) 1996; 6 Bernevig, Hughes, Zhang (CR38) 2006; 314 Lin, Hughes (CR53) 2018; 98 Wieder, Kim, Rappe, Kane (CR5) 2016; 116 Rice, Mele (CR17) 1982; 49 Gallego (CR67) 2016; 49 Bradlyn, Wang, Cano, Bernevig (CR36) 2019; 99 Schoop (CR68) 2018; 4 CastroNeto, Guinea, Peres, Novoselov, Geim (CR1) 2009; 81 Kargarian, Randeria, Lu (CR21) 2016; 113 Jackiw, Rebbi (CR52) 1976; 13 Ali (CR56) 2014; 53 Chiang (CR43) 1977; 39 Su, Schrieffer, Heeger (CR16) 1979; 42 CR29 Kane, Mele (CR39) 2005; 95 Kitaev (CR55) 2009; 1134 Takane (CR13) 2019; 122 Pretko (CR73) 2017; 96 Fu, Kane (CR47) 2007; 76 Alexandradinata, Dai, Bernevig (CR34) 2014; 89 Xu (CR19) 2015; 347 Le (CR58) 2017; 96 Schröter (CR12) 2019; 15 Schindler (CR31) 2018; 14 Thouless (CR40) 1984; 17 CR62 Wan, Turner, Vishwanath, Savrasov (CR2) 2011; 83 Tang, Zhou, Zhang (CR8) 2017; 119 Teo, Fu, Kane (CR65) 2008; 78 Benalcazar, Bernevig, Hughes (CR23) 2017; 357 Guo, Yang, Liu, Lu (CR71) 2017; 95 Soluyanov, Vanderbilt (CR41) 2012; 85 Kresse, Furthmüller (CR77) 1996; 54 Y Kim (14443_CR11) 2015; 115 Z Song (14443_CR49) 2018; 9 Z Wang (14443_CR32) 2019; 123 R Jackiw (14443_CR52) 1976; 13 P-J Guo (14443_CR71) 2017; 95 D Thouless (14443_CR40) 1984; 17 AA Soluyanov (14443_CR41) 2012; 85 M Lin (14443_CR53) 2018; 98 BJ Wieder (14443_CR28) 2018; 361 DS Sanchez (14443_CR14) 2019; 567 J Liu (14443_CR66) 2015; 15 WA Benalcazar (14443_CR23) 2017; 357 JCY Teo (14443_CR65) 2008; 78 LM Schoop (14443_CR68) 2018; 4 F Schindler (14443_CR25) 2018; 4 D Călugăru (14443_CR54) 2019; 99 CL Kane (14443_CR39) 2005; 95 M Kargarian (14443_CR21) 2016; 113 14443_CR37 HC Po (14443_CR48) 2017; 8 X Wan (14443_CR2) 2011; 83 PJW Moll (14443_CR72) 2016; 535 S-Y Xu (14443_CR4) 2015; 349 B Bradlyn (14443_CR6) 2016; 353 SAA Ghorashi (14443_CR79) 2019; 100 P Tang (14443_CR8) 2017; 119 G Chang (14443_CR9) 2018; 17 WA Benalcazar (14443_CR24) 2017; 96 X Zhang (14443_CR59) 2017; 95 DA Kealhofer (14443_CR69) 2019; 3 T-R Chang (14443_CR70) 2017; 119 D Takane (14443_CR46) 2018; 3 MJ Rice (14443_CR17) 1982; 49 Z Song (14443_CR26) 2017; 119 J Kruthoff (14443_CR50) 2017; 7 C Le (14443_CR58) 2017; 96 K Schwartz (14443_CR60) 1982; 60 Z Rao (14443_CR15) 2019; 567 G Kresse (14443_CR75) 1999; 59 H Weng (14443_CR3) 2015; 5 AH CastroNeto (14443_CR1) 2009; 81 E Khalaf (14443_CR30) 2018; 8 P Ruffieux (14443_CR44) 2016; 531 S-Y Xu (14443_CR19) 2015; 347 B Bradlyn (14443_CR36) 2019; 99 E Arushanov (14443_CR57) 1980; 3 MN Ali (14443_CR56) 2014; 53 J Cano (14443_CR35) 2018; 120 HC Po (14443_CR33) 2018; 121 A Kitaev (14443_CR55) 2009; 1134 M Serra-Garcia (14443_CR51) 2018; 555 14443_CR62 B-J Yang (14443_CR10) 2014; 5 G Chang (14443_CR7) 2017; 119 G Kresse (14443_CR77) 1996; 54 BJ Wieder (14443_CR5) 2016; 116 R Kim (14443_CR61) 2019; 99 L Fu (14443_CR64) 2011; 106 L Fu (14443_CR47) 2007; 76 WP Su (14443_CR16) 1979; 42 M Pretko (14443_CR73) 2017; 96 CK Chiang (14443_CR43) 1977; 39 B Bradlyn (14443_CR22) 2017; 547 F Schindler (14443_CR31) 2018; 14 14443_CR78 14443_CR74 D Takane (14443_CR13) 2019; 122 Z Wang (14443_CR18) 2013; 88 14443_CR29 RD King-Smith (14443_CR42) 1993; 47 L Fidkowski (14443_CR63) 2011; 107 NBM Schröter (14443_CR12) 2019; 15 A Alexandradinata (14443_CR34) 2014; 89 SV Gallego (14443_CR67) 2016; 49 J Langbehn (14443_CR27) 2017; 119 G Kresse (14443_CR76) 1996; 6 BA Bernevig (14443_CR38) 2006; 314 H Yi (14443_CR20) 2014; 4 A Topp (14443_CR45) 2017; 7 |
References_xml | – volume: 96 start-page: 035119 year: 2017 ident: CR73 article-title: Generalized electromagnetism of subdimensional particles: a spin liquid story publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.035119 – volume: 7 start-page: 041069 year: 2017 ident: CR50 article-title: Topological classification of crystalline insulators through band structure combinatorics publication-title: Phys. Rev. X – ident: CR74 – volume: 81 start-page: 109 year: 2009 end-page: 162 ident: CR1 article-title: The electronic properties of graphene publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.81.109 – volume: 95 start-page: 155112 year: 2017 ident: CR71 article-title: Type-ii dirac semimetals in the class publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.155112 – volume: 42 start-page: 1698 year: 1979 end-page: 1701 ident: CR16 article-title: Solitons in polyacetylene publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.42.1698 – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: CR76 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 357 start-page: 61 year: 2017 end-page: 66 ident: CR23 article-title: Quantized electric multipole insulators publication-title: Science doi: 10.1126/science.aah6442 – volume: 13 start-page: 3398 year: 1976 end-page: 3409 ident: CR52 article-title: Solitons with fermion number 1∕2 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.13.3398 – volume: 119 start-page: 246401 year: 2017 ident: CR27 article-title: Reflection-symmetric second-order topological insulators and superconductors publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.246401 – ident: CR29 – volume: 53 start-page: 4062 year: 2014 end-page: 4067 ident: CR56 article-title: The crystal and electronic structures of Cd As , the three-dimensional electronic analogue of graphene publication-title: Inorganic Chem. doi: 10.1021/ic403163d – volume: 115 start-page: 036806 year: 2015 ident: CR11 article-title: Dirac line nodes in inversion-symmetric crystals publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.036806 – volume: 121 start-page: 126402 year: 2018 ident: CR33 article-title: Fragile topology and wannier obstructions publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.126402 – volume: 83 start-page: 205101 year: 2011 ident: CR2 article-title: Topological semimetal and fermi-arc surface states in the electronic structure of pyrochlore iridates publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.205101 – volume: 535 start-page: 266 EP year: 2016 ident: CR72 article-title: Transport evidence for fermi-arc-mediated chirality transfer in the dirac semimetal Cd As publication-title: Nature doi: 10.1038/nature18276 – volume: 349 start-page: 613 year: 2015 end-page: 617 ident: CR4 article-title: Discovery of a weyl fermion semimetal and topological fermi arcs publication-title: Science doi: 10.1126/science.aaa9297 – volume: 347 start-page: 294 year: 2015 end-page: 298 ident: CR19 article-title: Observation of fermi arc surface states in a topological metal publication-title: Science doi: 10.1126/science.1256742 – volume: 4 start-page: eaar2317 year: 2018 ident: CR68 article-title: Tunable weyl and dirac states in the nonsymmorphic compound CeSbTe publication-title: Sci. Adv. doi: 10.1126/sciadv.aar2317 – volume: 119 start-page: 206401 year: 2017 ident: CR7 article-title: Unconventional chiral fermions and large topological fermi arcs in RhSi publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.206401 – volume: 122 start-page: 076402 year: 2019 ident: CR13 article-title: Observation of chiral fermions with a large topological charge and associated fermi-arc surface states in CoSi publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.076402 – volume: 123 start-page: 186401 year: 2019 ident: CR32 article-title: Higher-order topology, monopole nodal lines, and the origin of large fermi arcs in transition metaldichalcogenides e ( = Mo,W) publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.186401 – volume: 15 start-page: 2657 year: 2015 end-page: 2661 ident: CR66 article-title: Crystal field effect induced topological crystalline insulators in monolayer iv-vi semiconductors publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00308 – volume: 3 start-page: 211 year: 1980 end-page: 255 ident: CR57 article-title: Crystal growth and characterization of ii v compounds publication-title: Prog. Cryst. Growth Charact. doi: 10.1016/0146-3535(80)90020-9 – volume: 361 start-page: 246 year: 2018 end-page: 251 ident: CR28 article-title: Wallpaper fermions and the nonsymmorphic dirac insulator publication-title: Science doi: 10.1126/science.aan2802 – volume: 95 start-page: 035209 year: 2017 ident: CR59 article-title: Narrow-gap semiconducting properties of KMgBi with multiband feature publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.035209 – volume: 59 start-page: 1758 year: 1999 end-page: 1775 ident: CR75 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 99 start-page: 041301 year: 2019 ident: CR54 article-title: Higher-order topological phases: a general principle of construction publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.041301 – volume: 353 start-page: aaf5037 year: 2016 ident: CR6 article-title: Beyond dirac and weyl fermions: unconventional quasiparticles in conventional crystals publication-title: Science doi: 10.1126/science.aaf5037 – volume: 5 start-page: 4898 year: 2014 ident: CR10 article-title: Classification of stable three-dimensional dirac semimetals with nontrivial topology publication-title: Nat. Comm. doi: 10.1038/ncomms5898 – volume: 15 start-page: 759 year: 2019 end-page: 765 ident: CR12 article-title: Chiral topological semimetal with multifold band crossings and long fermi arcs publication-title: Nat. Phys. doi: 10.1038/s41567-019-0511-y – volume: 100 start-page: 020509 year: 2019 ident: CR79 article-title: Second-order dirac superconductors and magnetic field induced majorana hinge modes publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.100.020509 – volume: 76 start-page: 045302 year: 2007 ident: CR47 article-title: Topological insulators with inversion symmetry publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.76.045302 – volume: 17 start-page: 978 year: 2018 end-page: 985 ident: CR9 article-title: Topological quantum properties of chiral crystals publication-title: Nat. Mater. doi: 10.1038/s41563-018-0169-3 – volume: 96 start-page: 245115 year: 2017 ident: CR24 article-title: Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.245115 – volume: 3 start-page: 031201 year: 2019 ident: CR69 article-title: Basal-plane growth of cadmium arsenide by molecular beam epitaxy publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.3.031201 – ident: CR78 – volume: 116 start-page: 186402 year: 2016 ident: CR5 article-title: Double dirac semimetals in three dimensions publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.186402 – volume: 107 start-page: 036601 year: 2011 ident: CR63 article-title: Model characterization of gapless edge modes of topological insulators using intermediate brillouin-zone functions publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.036601 – volume: 120 start-page: 266401 year: 2018 ident: CR35 article-title: Topology of disconnected elementary band representations publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.266401 – volume: 99 start-page: 045130 year: 2019 ident: CR61 article-title: Crystalline topological dirac semimetal phase in rutile structure publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.045130 – volume: 113 start-page: 8648 year: 2016 end-page: 8652 ident: CR21 article-title: Are the surface fermi arcs in dirac semimetals topologically protected? publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1524787113 – volume: 49 start-page: 1750 year: 2016 end-page: 1776 ident: CR67 article-title: MAGNDATA: towards a database of magnetic structures. I.The commensurate case publication-title: J. Appl. Cryst. doi: 10.1107/S1600576716012863 – volume: 47 start-page: 1651 year: 1993 end-page: 1654 ident: CR42 article-title: Theory of polarization of crystalline solids publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.1651 – volume: 3 year: 2018 ident: CR46 article-title: Observation of dirac-like energy band and ring-torus fermi surface associated with the nodal line in topological insulator CaAgAs publication-title: NPJ Quantum Mater. doi: 10.1038/s41535-017-0074-z – volume: 96 start-page: 115121 year: 2017 ident: CR58 article-title: Three-dimensional topological critical diracsemimetal in MgBi ( =K, Rb, Cs) publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.115121 – volume: 119 start-page: 206402 year: 2017 ident: CR8 article-title: Multiple types of topological fermions in transition metal silicides publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.206402 – volume: 89 start-page: 155114 year: 2014 ident: CR34 article-title: Wilson-loop characterization of inversion-symmetric topological insulators publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.89.155114 – volume: 85 start-page: 115415 year: 2012 ident: CR41 article-title: Smooth gauge for topological insulators publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.115415 – volume: 119 start-page: 246402 year: 2017 ident: CR26 article-title: ( −2)-dimensional edge states of rotation symmetry protected topological states publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.246402 – ident: CR37 – volume: 555 start-page: 342 year: 2018 end-page: 345 ident: CR51 article-title: Observation of a phononic quadrupole topological insulator publication-title: Nature doi: 10.1038/nature25156 – volume: 567 start-page: 500 year: 2019 end-page: 505 ident: CR14 article-title: Topological chiral crystals with helicoid-arc quantum states publication-title: Nature doi: 10.1038/s41586-019-1037-2 – volume: 314 start-page: 1757 year: 2006 end-page: 1761 ident: CR38 article-title: Quantum spin hall effect and topological phase transition in HgTe quantum wells publication-title: Science doi: 10.1126/science.1133734 – volume: 17 start-page: L325 year: 1984 ident: CR40 article-title: J. Wannier functions for magnetic sub-bands publication-title: J Phys C: Solid State Phys. doi: 10.1088/0022-3719/17/12/003 – volume: 95 start-page: 226801 year: 2005 ident: CR39 article-title: Quantum spin hall effect in graphene publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.226801 – volume: 567 start-page: 496 year: 2019 end-page: 499 ident: CR15 article-title: Observation of unconventional chiral fermions with long fermi arcs in CoSi publication-title: Nature doi: 10.1038/s41586-019-1031-8 – volume: 14 start-page: 918 year: 2018 end-page: 924 ident: CR31 article-title: Higher-order topology in bismuth publication-title: Nat. Phys. doi: 10.1038/s41567-018-0224-7 – volume: 98 start-page: 241103 year: 2018 ident: CR53 article-title: Topological quadrupolar semimetals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.241103 – volume: 9 year: 2018 ident: CR49 article-title: Quantitative mappings between symmetry and topology in solids publication-title: Nat. Commun. doi: 10.1038/s41467-018-06010-w – volume: 78 start-page: 045426 year: 2008 ident: CR65 article-title: Surface states and topological invariants in three-dimensional topological insulators: Application to publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.045426 – volume: 39 start-page: 1098 year: 1977 end-page: 1101 ident: CR43 article-title: Electrical conductivity in doped polyacetylene publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.39.1098 – volume: 99 start-page: 045140 year: 2019 ident: CR36 article-title: Disconnected elementary band representations, fragile topology, and wilson loops as topological indices: An example on the triangular lattice publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.045140 – volume: 547 start-page: 298 EP year: 2017 ident: CR22 article-title: Topological quantum chemistry publication-title: Nature doi: 10.1038/nature23268 – volume: 4 start-page: eaat0346 year: 2018 ident: CR25 article-title: Higher-order topological insulators publication-title: Sci Adv. doi: 10.1126/sciadv.aat0346 – volume: 60 start-page: 251 year: 1982 end-page: 254 ident: CR60 article-title: Crystal growth of CdPt O , MnPt O , CoPt O and ß-PtO publication-title: J. Cryst. Growth doi: 10.1016/0022-0248(82)90096-3 – volume: 106 start-page: 106802 year: 2011 ident: CR64 article-title: Topological crystalline insulators publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.106802 – volume: 5 start-page: 011029 year: 2015 ident: CR3 article-title: Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides publication-title: Phys. Rev. X – volume: 119 start-page: 026404 year: 2017 ident: CR70 article-title: Type-ii symmetry-protected topological dirac semimetals publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.026404 – volume: 7 start-page: 041073 year: 2017 ident: CR45 article-title: Surface floating 2d bands in layered nonsymmorphic semimetals: ZrSiS and related compounds publication-title: Phys. Rev. X – volume: 8 year: 2017 ident: CR48 article-title: Symmetry-based indicators of band topology in the 230 space groups publication-title: Nat. Commun. doi: 10.1038/s41467-017-00133-2 – ident: CR62 – volume: 8 start-page: 031070 year: 2018 ident: CR30 article-title: Symmetry indicators and anomalous surface states of topological crystalline insulators publication-title: Phys. Rev. X – volume: 4 year: 2014 ident: CR20 article-title: Evidence of topological surface state in three-dimensional dirac semimetal Cd As publication-title: Sci. Rep. doi: 10.1038/srep06106 – volume: 49 start-page: 1455 year: 1982 end-page: 1459 ident: CR17 article-title: Elementary excitations of a linearly conjugated diatomic polymer publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.49.1455 – volume: 1134 start-page: 22 year: 2009 end-page: 30 ident: CR55 article-title: Periodic table for topological insulators and superconductors publication-title: AIP Conf. Proc. doi: 10.1063/1.3149495 – volume: 88 start-page: 125427 year: 2013 ident: CR18 article-title: Three-dimensional dirac semimetal and quantum transport in Cd As publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.125427 – volume: 531 start-page: 489 EP year: 2016 ident: CR44 article-title: On-surface synthesis of graphene nanoribbons with zigzag edge topology publication-title: Nature doi: 10.1038/nature17151 – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: CR77 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 15 start-page: 2657 year: 2015 ident: 14443_CR66 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00308 – volume: 535 start-page: 266 EP year: 2016 ident: 14443_CR72 publication-title: Nature doi: 10.1038/nature18276 – volume: 3 start-page: 211 year: 1980 ident: 14443_CR57 publication-title: Prog. Cryst. Growth Charact. doi: 10.1016/0146-3535(80)90020-9 – ident: 14443_CR62 doi: 10.1107/9780955360220001 – volume: 567 start-page: 500 year: 2019 ident: 14443_CR14 publication-title: Nature doi: 10.1038/s41586-019-1037-2 – volume: 113 start-page: 8648 year: 2016 ident: 14443_CR21 publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1524787113 – volume: 54 start-page: 11169 year: 1996 ident: 14443_CR77 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 122 start-page: 076402 year: 2019 ident: 14443_CR13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.076402 – volume: 120 start-page: 266401 year: 2018 ident: 14443_CR35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.266401 – volume: 96 start-page: 115121 year: 2017 ident: 14443_CR58 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.115121 – volume: 4 start-page: eaat0346 year: 2018 ident: 14443_CR25 publication-title: Sci Adv. doi: 10.1126/sciadv.aat0346 – volume: 4 start-page: eaar2317 year: 2018 ident: 14443_CR68 publication-title: Sci. Adv. doi: 10.1126/sciadv.aar2317 – volume: 14 start-page: 918 year: 2018 ident: 14443_CR31 publication-title: Nat. Phys. doi: 10.1038/s41567-018-0224-7 – volume: 107 start-page: 036601 year: 2011 ident: 14443_CR63 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.036601 – volume: 547 start-page: 298 EP year: 2017 ident: 14443_CR22 publication-title: Nature doi: 10.1038/nature23268 – volume: 78 start-page: 045426 year: 2008 ident: 14443_CR65 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.045426 – volume: 59 start-page: 1758 year: 1999 ident: 14443_CR75 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 119 start-page: 206401 year: 2017 ident: 14443_CR7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.206401 – volume: 53 start-page: 4062 year: 2014 ident: 14443_CR56 publication-title: Inorganic Chem. doi: 10.1021/ic403163d – volume: 121 start-page: 126402 year: 2018 ident: 14443_CR33 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.126402 – volume: 100 start-page: 020509 year: 2019 ident: 14443_CR79 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.100.020509 – volume: 13 start-page: 3398 year: 1976 ident: 14443_CR52 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.13.3398 – volume: 89 start-page: 155114 year: 2014 ident: 14443_CR34 publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.89.155114 – volume: 115 start-page: 036806 year: 2015 ident: 14443_CR11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.036806 – ident: 14443_CR78 – volume: 99 start-page: 045130 year: 2019 ident: 14443_CR61 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.045130 – volume: 123 start-page: 186401 year: 2019 ident: 14443_CR32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.186401 – volume: 81 start-page: 109 year: 2009 ident: 14443_CR1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.81.109 – volume: 83 start-page: 205101 year: 2011 ident: 14443_CR2 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.205101 – volume: 95 start-page: 035209 year: 2017 ident: 14443_CR59 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.035209 – volume: 95 start-page: 155112 year: 2017 ident: 14443_CR71 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.155112 – volume: 96 start-page: 245115 year: 2017 ident: 14443_CR24 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.245115 – ident: 14443_CR74 – volume: 60 start-page: 251 year: 1982 ident: 14443_CR60 publication-title: J. Cryst. Growth doi: 10.1016/0022-0248(82)90096-3 – volume: 47 start-page: 1651 year: 1993 ident: 14443_CR42 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.1651 – volume: 555 start-page: 342 year: 2018 ident: 14443_CR51 publication-title: Nature doi: 10.1038/nature25156 – volume: 1134 start-page: 22 year: 2009 ident: 14443_CR55 publication-title: AIP Conf. Proc. doi: 10.1063/1.3149495 – volume: 99 start-page: 045140 year: 2019 ident: 14443_CR36 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.045140 – volume: 357 start-page: 61 year: 2017 ident: 14443_CR23 publication-title: Science doi: 10.1126/science.aah6442 – volume: 5 start-page: 4898 year: 2014 ident: 14443_CR10 publication-title: Nat. Comm. doi: 10.1038/ncomms5898 – volume: 15 start-page: 759 year: 2019 ident: 14443_CR12 publication-title: Nat. Phys. doi: 10.1038/s41567-019-0511-y – volume: 347 start-page: 294 year: 2015 ident: 14443_CR19 publication-title: Science doi: 10.1126/science.1256742 – ident: 14443_CR37 – volume: 17 start-page: 978 year: 2018 ident: 14443_CR9 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0169-3 – volume: 119 start-page: 246402 year: 2017 ident: 14443_CR26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.246402 – volume: 531 start-page: 489 EP year: 2016 ident: 14443_CR44 publication-title: Nature doi: 10.1038/nature17151 – volume: 17 start-page: L325 year: 1984 ident: 14443_CR40 publication-title: J Phys C: Solid State Phys. doi: 10.1088/0022-3719/17/12/003 – volume: 49 start-page: 1750 year: 2016 ident: 14443_CR67 publication-title: J. Appl. Cryst. doi: 10.1107/S1600576716012863 – ident: 14443_CR29 doi: 10.1126/sciadv.aat2374 – volume: 119 start-page: 246401 year: 2017 ident: 14443_CR27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.246401 – volume: 3 start-page: 031201 year: 2019 ident: 14443_CR69 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.3.031201 – volume: 49 start-page: 1455 year: 1982 ident: 14443_CR17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.49.1455 – volume: 314 start-page: 1757 year: 2006 ident: 14443_CR38 publication-title: Science doi: 10.1126/science.1133734 – volume: 349 start-page: 613 year: 2015 ident: 14443_CR4 publication-title: Science doi: 10.1126/science.aaa9297 – volume: 85 start-page: 115415 year: 2012 ident: 14443_CR41 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.115415 – volume: 116 start-page: 186402 year: 2016 ident: 14443_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.186402 – volume: 39 start-page: 1098 year: 1977 ident: 14443_CR43 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.39.1098 – volume: 3 year: 2018 ident: 14443_CR46 publication-title: NPJ Quantum Mater. doi: 10.1038/s41535-017-0074-z – volume: 76 start-page: 045302 year: 2007 ident: 14443_CR47 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.76.045302 – volume: 119 start-page: 026404 year: 2017 ident: 14443_CR70 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.026404 – volume: 96 start-page: 035119 year: 2017 ident: 14443_CR73 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.035119 – volume: 98 start-page: 241103 year: 2018 ident: 14443_CR53 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.241103 – volume: 88 start-page: 125427 year: 2013 ident: 14443_CR18 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.125427 – volume: 361 start-page: 246 year: 2018 ident: 14443_CR28 publication-title: Science doi: 10.1126/science.aan2802 – volume: 567 start-page: 496 year: 2019 ident: 14443_CR15 publication-title: Nature doi: 10.1038/s41586-019-1031-8 – volume: 42 start-page: 1698 year: 1979 ident: 14443_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.42.1698 – volume: 7 start-page: 041073 year: 2017 ident: 14443_CR45 publication-title: Phys. Rev. X – volume: 5 start-page: 011029 year: 2015 ident: 14443_CR3 publication-title: Phys. Rev. X – volume: 4 year: 2014 ident: 14443_CR20 publication-title: Sci. Rep. doi: 10.1038/srep06106 – volume: 8 start-page: 031070 year: 2018 ident: 14443_CR30 publication-title: Phys. Rev. X – volume: 353 start-page: aaf5037 year: 2016 ident: 14443_CR6 publication-title: Science doi: 10.1126/science.aaf5037 – volume: 6 start-page: 15 year: 1996 ident: 14443_CR76 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 7 start-page: 041069 year: 2017 ident: 14443_CR50 publication-title: Phys. Rev. X – volume: 106 start-page: 106802 year: 2011 ident: 14443_CR64 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.106802 – volume: 95 start-page: 226801 year: 2005 ident: 14443_CR39 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.226801 – volume: 9 year: 2018 ident: 14443_CR49 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06010-w – volume: 8 year: 2017 ident: 14443_CR48 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00133-2 – volume: 99 start-page: 041301 year: 2019 ident: 14443_CR54 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.041301 – volume: 119 start-page: 206402 year: 2017 ident: 14443_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.206402 |
SSID | ssj0000391844 |
Score | 2.673297 |
Snippet | Dirac and Weyl semimetals both exhibit arc-like surface states. However, whereas the surface Fermi arcs in Weyl semimetals are topological consequences of the... Abstract Dirac and Weyl semimetals both exhibit arc-like surface states. However, whereas the surface Fermi arcs in Weyl semimetals are topological... The existence of a topological bulk-boundary correspondence for Dirac semimetals has remained an open question. Here, Wieder et al. predict one-dimensional... |
SourceID | doaj pubmedcentral osti proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 627 |
SubjectTerms | 639/301/119/995 639/766/119/2792/4128 Condensed matter physics Eigenvalues Fermions Humanities and Social Sciences Metalloids multidisciplinary Physics Quadrupoles Questions Science Science & Technology - Other Topics Science (multidisciplinary) Solid state Symmetry Topology |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSkhcEG9CCzISN4ia-JX42CJWFQIuUKk3y8-2Es1W3fTAv2fGyS5dnhdOkWLHccYznocn3wC8iiZG43tddyHEWqYs615StMkZ73nmrYgUGvj4SR8dy_cn6uRGqS_KCZvggSfC7SOXBM-FdJpsf-1NE3UQITrNeRRdot0Xdd4NZ6rswcKg6yLnv2Qa0e-vZNkTyFvCcaSo1ZYmKoD9eFmiYP3O2Pw1Z_Kng9Oijxb34O5sSLKD6QPuw600PIDbU2nJbw_hw2eKcZ8yN0SWr9wpCj8bp4IItCwMtzoX2CpdnF8ktL9XjAKy7KxkfdQFj5MtKE-GoSCsHsHx4t2Xt0f1XDmhDkp3Yy25jF5lLkLnjOq564PWHp2hmHVWucEbsQ0iKxfbKH3DvURNphrsIkUOUTyGnWE5pKfAcjSowlRMOgcZdHTZe7Qy-z47kYQyFbRrKtoww4pTdYuvthxvi95OlLdIeVsob1UFrzfPXE6gGn_tfUiLs-lJgNjlBrKJndnE_otNKtilpbVoVxA4bqAsojDaloI4na5gb73idpbhlcXR0JclQMUKXm6aUfroSMUNaXlNfRTFhFCtVPBkYpDNPAUvNRtFBd0W62x9yHbLcH5WEL61MRJfXsGbNZP9mNafCfXsfxBqF-5wEpKmRfW8Bzvj1XV6jnbX6F8UEfsOnzgm5w priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9NAFB5BERIXxI5pQYPEDazas3l8QoAIFQIuUKm30axppdYusXvov-97YydVWHpKZE8U22__5vl7hLwJbQit06psvA-liEmUWiDaZFvnWGI1DwgNfP-hDg7F1yN5NANuw9xWufaJ2VGH3iNGvs-4gMoC6e3en_8ucWoU7q7OIzRukzs1RBps6dKLLxuMBdnPtRDzuzIV1_uDyJ4BayaoJAQv5VY8yrT98NGDef0r5fy7c_KP7dMclRYPyP05naQfJvk_JLdi94jcnQZMXsK33ODph8fk20_EvJfUdoGmlV2CM6DjNCABxUTB9VlPh3h2chYhHx8oArT0OHeBlJmfky6wb4aCYQxPyOHi869PB-U8SaH0UjVjKZgITibGfWNbqZnVXikHxVFIKslUwYFQe56kDXUQrmJOQGSTFSwRPPnAn5Kdru_ic0JTaCGkyRBV8sKrYJNzkHVqnSyPXLYFqdfP0_iZZhynXZyavN3NtZlkYEAGJsvAyIK83fzmfCLZuHH1RxTTZiUSZOcD_WppZnsz4Fy8A52xCktG5doqKM99sIqxwJtYkF0UsoE8A8lyPXYV-dHUCOo0qiB7a9mb2aYHc62BBXm9OQ3WiFsstov9Ba6RiBFBmCnIs0lVNtfJWZ7hyAvSbCnR1o1sn-lOjjPjt2pbAX9ekHdrdbu-rP8_qBc338UuucfQEKoaAvEe2RlXF_ElZFije5XN6Aq01iHo priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9qi-CL-G3aKiv4psFkv5I8nuJRDvWlFvq27Ef2Wmhzcrk--N93ZpOLnFbBp0AySTazMzsfO_kNwNvQhNC4WueV9yGXbZR5LSnbZBvneOSlCJQa-PpNn5zJxbk63wO-_RcmFe0nSMu0TG-rwz70Mqk0BTsYAkiRq3twQFDtKNsHs9nidDFlVgjzvJZy_EOmEPUdN-9YoQTWj4cVKtVdjuaf9ZK_bZomWzR_BA9HJ5LNhmE_hr22ewL3h7aSP5_Cl1PKby-Z7QKLa7tExWeboRkCTQnDZc561rfXl9ct-t49o2Qsu0gVH3nC4mRzqpFhqAT9Mzibf_7-6SQfuybkXulqk0sug1ORC1_ZRtXc1l5rh4FQiDqqWOCJUHoRlQ1lkK7gTqIVUwWSSBF9EM9hv1t17UtgMTRovlRodfTS62Cjc-hh1nW0ohWqyaDcctH4EVKcOltcmbS1LWozcN4g503ivFEZvJvu-TEAavyT-iNNzkRJYNjpxGq9NKNwGFxIvONCWk3hoXZNEbQXPljNeRBVm8ERTa1Bn4KAcT1VEPmNKSmBU-kMjrczbkb97Q0-DeNYAlPM4M10GTWPtlNs165uiEZRPghNSgYvBgGZxil46tcoMqh2RGfnQ3avdJcXCd1bN43El2fwfitkv4b1d0Yd_h_5ETzgpA5FiUb4GPY365v2FXpXG_d6VKdbeM4d-g priority: 102 providerName: Springer Nature |
Title | Strong and fragile topological Dirac semimetals with higher-order Fermi arcs |
URI | https://link.springer.com/article/10.1038/s41467-020-14443-5 https://www.ncbi.nlm.nih.gov/pubmed/32005893 https://www.proquest.com/docview/2349174926 https://www.proquest.com/docview/2350093002 https://www.osti.gov/biblio/1619476 https://pubmed.ncbi.nlm.nih.gov/PMC6994491 https://doaj.org/article/005cb234a601446b90d6c3cda622d37e |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1rb9Mw0NpDSHxBvAkblZH4BoHEryQfEOqqlaliE2JU6jfLj7ibtKXQdhL799w5aVGhIL7Ekn1xnPOd72H7jpBXvvK-sqVKC-d8Kuog0lKgt8lU1rLAcu7RNXB6pk7GYjSRkx2ySnfUIXCx1bTDfFLj-dXbH99vPwDDv2-vjJfvFiKyOxpCYB4Inspdsg-SqcCMBqeduh9XZl6BQYMbzSwTeQoAvLtHs72bDVkVQ_pDMQPW26aO_nmq8ret1SixhvfJvU7VpP2WNh6Qnbp5SO60ySdvH5FP5-gFn1LTeBrmZgrLA122KRNw4igshsbRRX19eV0DchYUXbb0Ip4LSWPETjrEkzQUWGXxmIyHx18HJ2mXWyF1UhXLVDDhrQyMu8JUsmSmdEpZMJd8UEGGDCp87niQxude2IxZAbJOZgAieHCePyF7zaypnxEafAVCTvpaBSec8iZYC3poWQbDay6rhOQrLGrXBR7H_BdXOm6A81K3mNeAeR0xr2VCXq_f-daG3fgn9BFOzhoSQ2bHitl8qjsO1LDcOMu4MAqNSGWrzCvHnTeKMc-LOiEHOLUaNA8Mn-vwnJFb6hzdPIVKyOFqxvWKSDX0BtYuhlxMyMt1M_AnbrqYpp7dIIxErxEInoQ8bQlkPU7OYlZHnpBig3Q2fmSzpbm8iDHAVVUJ-HhC3qyI7New_o6o5_8xzANylyEPZDnI50Oyt5zf1C9A8VraHtktJgU8y-HHHtnv90fnIyiPjs8-f4HagRr0okujF7nuJ_T3LJY |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw1CpFCC6IndACRoITRE28JTkgxDZM6XKhlXpzvcTTSjRTJlOh_hTfyHtOMtWw9NZTIi9Z_Pbn5_cIeekr7ytbqrRwzqeiDiItBXqbTGUtCyznHl0DO7tqvC--HsiDFfJrOAuDYZUDT4yM2k8d-sg3GBdgWWB6u3enP1KsGoW7q0MJjQ4tturzn2CytW83PwF8XzE2-rz3cZz2VQVSJ1UxTwUT3srAuCtMJUtmSqeUBUPBBxVkyKDB544HaXzuhc2YFcDlZQZDBA_Oc3juNXJdcJDkeDJ99GXh08Fs66UQ_dmcjJcbrYicCG00mC54KpfkXywTAJcpkPO_VNy_IzX_2K6NUnB0h9zu1Vf6vsO3u2Slbu6RG11By3O4iwGlrr1Ptr-hj31CTeNpmJkJMB867woyIFpQYLXG0bY-OT6pQf9vKTqE6VGMOkljPlA6wjgdCivePiD7V7LGD8lqM23qx4QGX4EIlb5WwQmnvAnWgpZblsHwmssqIfmwntr1ac2xusZ3HbfXeak7GGiAgY4w0DIhrxdzTrukHpeO_oBgWozEhNyxYTqb6J6-NTAzZwFHjUITVdkq88px541izPOiTsgaAlmDXoPJeR1GMbm5ztGJVKiErA-w1z0PafUFxifkxaIbqB-3dExTT89wjESfFIi1hDzqUGXxnZzFmpE8IcUSEi39yHJPc3wUM4yrqhLw8oS8GdDt4rP-v1BPLv-L5-TmeG9nW29v7m6tkVsMiSLLQQlYJ6vz2Vn9FLS7uX0WSYqSw6um4d-IhV7S |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKViAuiDehBYwEJ4g2sR0nOSBEaVctLasKqNSb60e8rUSzZbMV6l_j1zHjJFstj956SpQ4D3tmPs-MxzOEvHKlc6UpZJxb62JReREXAr1NujSGeZZyh66Bz2O5fSA-HWaHK-RXvxcGwyp7TAxA7aYWfeRDxgVYFpjebui7sIj9zdH7sx8xVpDClda-nEbLIrvVxU8w35p3O5tA69eMjba-fdyOuwoDsc1kPo8FE85knnGb6zIrmC6slAaMBuelz3wCF1xquc-0S50wCTMCED9LoIng3joO771BVnO0igZkdWNrvP9l4eHB3OuFEN1OnYQXw0YEXEKLDV4geJwtzYahaAAcpiDc_1J4_47b_GPxNsyJo7vkTqfM0g8t990jK1V9n9xsy1tewFkIL7XNA7L3FT3uE6prR_1MTwCK6Lwtz4BMQgF4taVNdXpyWoE10FB0D9PjEIMSh-ygdIRROxTGvHlIDq5llB-RQT2tqyeEelfChJq5SnorrHTaGwM6b1F4zSuelRFJ-_FUtktyjrU2vquw2M4L1dJAAQ1UoIHKIvJm8cxZm-LjytYbSKZFS0zPHS5MZxPVSbsCaLMGOFZLNFilKRMnLbdOS8Ycz6uIrCGRFWg5mKrXYkyTnasUXUq5jMh6T3vVIUqjLvk_Ii8XtwELcIFH19X0HNtk6KGCSS4ij1tWWfwnZ6GCJI9IvsRESx1ZvlOfHId847IsBXw8Im97drv8rf8P1NOre_GC3AL5VXs74901cpuhTCQpaATrZDCfnVfPQNWbm-edTFFydN1i_Bvyq2Rk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strong+and+fragile+topological+Dirac+semimetals+with+higher-order+Fermi+arcs&rft.jtitle=Nature+communications&rft.au=Wieder%2C+Benjamin+J&rft.au=Wang%2C+Zhijun&rft.au=Cano%2C+Jennifer&rft.au=Dai%2C+Xi&rft.date=2020-01-31&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft.spage=627&rft_id=info:doi/10.1038%2Fs41467-020-14443-5&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |