Deep-Learning-Based Morphological Feature Segmentation for Facial Skin Image Analysis

Facial skin analysis has attracted considerable attention in the skin health domain. The results of facial skin analysis can be used to provide skin care and cosmetic recommendations in aesthetic dermatology. Because of the existence of several skin features, grouping similar features and processing...

Full description

Saved in:
Bibliographic Details
Published inDiagnostics (Basel) Vol. 13; no. 11; p. 1894
Main Authors Yoon, Huisu, Kim, Semin, Lee, Jongha, Yoo, Sangwook
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 29.05.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Facial skin analysis has attracted considerable attention in the skin health domain. The results of facial skin analysis can be used to provide skin care and cosmetic recommendations in aesthetic dermatology. Because of the existence of several skin features, grouping similar features and processing them together can improve skin analysis. In this study, a deep-learning-based method of simultaneous segmentation of wrinkles and pores is proposed. Unlike color-based skin analysis, this method is based on the analysis of the morphological structures of the skin. Although multiclass segmentation is widely used in computer vision, this segmentation was first used in facial skin analysis. The architecture of the model is U-Net, which has an encoder–decoder structure. We added two types of attention schemes to the network to focus on important areas. Attention in deep learning refers to the process by which a neural network focuses on specific parts of its input to improve its performance. Second, a method to enhance the learning capability of positional information is added to the network based on the fact that the locations of wrinkles and pores are fixed. Finally, a novel ground truth generation scheme suitable for the resolution of each skin feature (wrinkle and pore) was proposed. The experimental results revealed that the proposed unified method achieved excellent localization of wrinkles and pores and outperformed both conventional image-processing-based approaches and one of the recent successful deep-learning-based approaches. The proposed method should be expanded to applications such as age estimation and the prediction of potential diseases.
AbstractList Facial skin analysis has attracted considerable attention in the skin health domain. The results of facial skin analysis can be used to provide skin care and cosmetic recommendations in aesthetic dermatology. Because of the existence of several skin features, grouping similar features and processing them together can improve skin analysis. In this study, a deep-learning-based method of simultaneous segmentation of wrinkles and pores is proposed. Unlike color-based skin analysis, this method is based on the analysis of the morphological structures of the skin. Although multiclass segmentation is widely used in computer vision, this segmentation was first used in facial skin analysis. The architecture of the model is U-Net, which has an encoder-decoder structure. We added two types of attention schemes to the network to focus on important areas. Attention in deep learning refers to the process by which a neural network focuses on specific parts of its input to improve its performance. Second, a method to enhance the learning capability of positional information is added to the network based on the fact that the locations of wrinkles and pores are fixed. Finally, a novel ground truth generation scheme suitable for the resolution of each skin feature (wrinkle and pore) was proposed. The experimental results revealed that the proposed unified method achieved excellent localization of wrinkles and pores and outperformed both conventional image-processing-based approaches and one of the recent successful deep-learning-based approaches. The proposed method should be expanded to applications such as age estimation and the prediction of potential diseases.
Facial skin analysis has attracted considerable attention in the skin health domain. The results of facial skin analysis can be used to provide skin care and cosmetic recommendations in aesthetic dermatology. Because of the existence of several skin features, grouping similar features and processing them together can improve skin analysis. In this study, a deep-learning-based method of simultaneous segmentation of wrinkles and pores is proposed. Unlike color-based skin analysis, this method is based on the analysis of the morphological structures of the skin. Although multiclass segmentation is widely used in computer vision, this segmentation was first used in facial skin analysis. The architecture of the model is U-Net, which has an encoder-decoder structure. We added two types of attention schemes to the network to focus on important areas. Attention in deep learning refers to the process by which a neural network focuses on specific parts of its input to improve its performance. Second, a method to enhance the learning capability of positional information is added to the network based on the fact that the locations of wrinkles and pores are fixed. Finally, a novel ground truth generation scheme suitable for the resolution of each skin feature (wrinkle and pore) was proposed. The experimental results revealed that the proposed unified method achieved excellent localization of wrinkles and pores and outperformed both conventional image-processing-based approaches and one of the recent successful deep-learning-based approaches. The proposed method should be expanded to applications such as age estimation and the prediction of potential diseases.Facial skin analysis has attracted considerable attention in the skin health domain. The results of facial skin analysis can be used to provide skin care and cosmetic recommendations in aesthetic dermatology. Because of the existence of several skin features, grouping similar features and processing them together can improve skin analysis. In this study, a deep-learning-based method of simultaneous segmentation of wrinkles and pores is proposed. Unlike color-based skin analysis, this method is based on the analysis of the morphological structures of the skin. Although multiclass segmentation is widely used in computer vision, this segmentation was first used in facial skin analysis. The architecture of the model is U-Net, which has an encoder-decoder structure. We added two types of attention schemes to the network to focus on important areas. Attention in deep learning refers to the process by which a neural network focuses on specific parts of its input to improve its performance. Second, a method to enhance the learning capability of positional information is added to the network based on the fact that the locations of wrinkles and pores are fixed. Finally, a novel ground truth generation scheme suitable for the resolution of each skin feature (wrinkle and pore) was proposed. The experimental results revealed that the proposed unified method achieved excellent localization of wrinkles and pores and outperformed both conventional image-processing-based approaches and one of the recent successful deep-learning-based approaches. The proposed method should be expanded to applications such as age estimation and the prediction of potential diseases.
Audience Academic
Author Lee, Jongha
Kim, Semin
Yoo, Sangwook
Yoon, Huisu
AuthorAffiliation AI R&D Center, Lululab Inc., 318 Dosan-daero, Gangnam-gu, Seoul 06054, Republic of Korea
AuthorAffiliation_xml – name: AI R&D Center, Lululab Inc., 318 Dosan-daero, Gangnam-gu, Seoul 06054, Republic of Korea
Author_xml – sequence: 1
  givenname: Huisu
  surname: Yoon
  fullname: Yoon, Huisu
– sequence: 2
  givenname: Semin
  orcidid: 0000-0003-3746-0863
  surname: Kim
  fullname: Kim, Semin
– sequence: 3
  givenname: Jongha
  surname: Lee
  fullname: Lee, Jongha
– sequence: 4
  givenname: Sangwook
  surname: Yoo
  fullname: Yoo, Sangwook
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37296746$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNUREvpL0BCkbhwSYm_YvuESmFhpUUcSs-WPyapl8Re7CxS_z1ut5RuVWEfbI2feT0zel9WByEGqKrXqD0lRLbvnddDiHn2NiOCEBKSPquOcMtZQykSBw_uh9VJzuu2LImIwOxFdUg4lh2n3VF1-Qlg06xAp-DD0HzUGVz9LabNVRzj4K0e6wXoeZugvoBhgjDr2cdQ9zHVC219eb_46UO9nPQA9VnQ43X2-VX1vNdjhpO787i6XHz-cf61WX3_sjw_WzWWdXxuiKFAhXaop8hwXmo1raHYMWk63WEjSStb1jneG-xkqV9jbVjfGSG4azkix9Vyp-uiXqtN8pNO1ypqr24DMQ1KpzKjERQ2QnILjFhKKYAUjllrLDXUcMtdX7Q-7LQ2WzOBs6XVpMc90f2X4K_UEH8r1GKGpSBF4d2dQoq_tpBnNflsYRx1gLjNCgtMO9Ex0Rb07SN0HbepTO-WIpJzjuk_atClAx_6WD62N6LqjDNMOWVIFur0CapsB5O3xTa9L_G9hDcPO71v8a8rCkB2gE0x5wT9PYJadWM_9YT9SpZ8lGX9zi2lHj_-N_cP9tjiFA
CitedBy_id crossref_primary_10_1007_s00238_024_02252_8
crossref_primary_10_1111_jocd_16218
crossref_primary_10_3390_diagnostics14101040
crossref_primary_10_1016_j_engappai_2024_108871
crossref_primary_10_1016_j_artmed_2023_102679
crossref_primary_10_3390_cosmetics11040135
crossref_primary_10_3390_bioengineering11040390
Cites_doi 10.1007/978-3-319-24574-4_28
10.1111/jocd.12806
10.1109/CVPR.2009.5206848
10.1109/CBMS55023.2022.00075
10.1109/CBMS55023.2022.00062
10.1007/BFb0056195
10.1007/978-3-319-16811-1_40
10.1109/CVPRW.2017.156
10.1109/CVPR42600.2020.00939
10.18653/v1/D17-1151
10.1007/s11263-021-01521-4
10.1007/978-3-031-27066-6_9
10.1016/j.patcog.2014.08.003
10.2352/EI.2022.34.8.IMAGE-300
10.1109/ICTC52510.2021.9620886
10.1109/ICISPC44900.2018.9006682
10.2352/EI.2023.35.7.IMAGE-276
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
3V.
7XB
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3390/diagnostics13111894
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest Research Library
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

CrossRef


Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2075-4418
ExternalDocumentID oai_doaj_org_article_2b897ce53c444ee98d5ccbc4b4b7c7df
PMC10252983
A752474519
37296746
10_3390_diagnostics13111894
Genre Journal Article
GroupedDBID 53G
5VS
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BCNDV
BENPR
BPHCQ
CCPQU
CITATION
DWQXO
EBD
ESX
GNUQQ
GROUPED_DOAJ
GUQSH
HYE
IAO
IHR
ITC
KQ8
M2O
M48
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
3V.
NPM
PMFND
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c567t-3b4e48ad1f41b77418b0b42d59b6a62b9309056d7fb2d9009a2ab5f6b887d0713
IEDL.DBID M48
ISSN 2075-4418
IngestDate Wed Aug 27 01:24:39 EDT 2025
Thu Aug 21 18:37:55 EDT 2025
Thu Jul 10 19:58:57 EDT 2025
Mon Jun 30 07:05:42 EDT 2025
Tue Jun 17 21:33:43 EDT 2025
Tue Jun 10 20:27:08 EDT 2025
Thu Jan 02 22:51:23 EST 2025
Thu Apr 24 23:09:29 EDT 2025
Tue Jul 01 03:44:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords facial wrinkles and pores
facial skin feature segmentation
prior information
positional encoding
attention
ground truth generation
semantic segmentation
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c567t-3b4e48ad1f41b77418b0b42d59b6a62b9309056d7fb2d9009a2ab5f6b887d0713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3746-0863
OpenAccessLink https://doaj.org/article/2b897ce53c444ee98d5ccbc4b4b7c7df
PMID 37296746
PQID 2823977724
PQPubID 2032410
ParticipantIDs doaj_primary_oai_doaj_org_article_2b897ce53c444ee98d5ccbc4b4b7c7df
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10252983
proquest_miscellaneous_2824686580
proquest_journals_2823977724
gale_infotracmisc_A752474519
gale_infotracacademiconefile_A752474519
pubmed_primary_37296746
crossref_primary_10_3390_diagnostics13111894
crossref_citationtrail_10_3390_diagnostics13111894
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-29
PublicationDateYYYYMMDD 2023-05-29
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-29
  day: 29
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Diagnostics (Basel)
PublicationTitleAlternate Diagnostics (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Campiche (ref_3) 2019; 18
ref_14
ref_13
ref_12
ref_11
ref_10
ref_19
ref_18
ref_17
ref_16
Batool (ref_2) 2015; 48
ref_15
ref_25
ref_24
ref_23
ref_21
ref_20
ref_1
ref_28
ref_27
ref_26
ref_9
Jin (ref_22) 2021; 129
ref_8
ref_5
ref_4
ref_7
ref_6
References_xml – ident: ref_10
  doi: 10.1007/978-3-319-24574-4_28
– volume: 18
  start-page: 614
  year: 2019
  ident: ref_3
  article-title: Appearance of aging signs in differently pigmented facial skin by a novel imaging system
  publication-title: J. Cosmet. Dermatol.
  doi: 10.1111/jocd.12806
– ident: ref_11
– ident: ref_14
  doi: 10.1109/CVPR.2009.5206848
– ident: ref_16
– ident: ref_15
  doi: 10.1109/CBMS55023.2022.00075
– ident: ref_18
– ident: ref_23
– ident: ref_21
– ident: ref_9
  doi: 10.1109/CBMS55023.2022.00062
– ident: ref_26
  doi: 10.1007/BFb0056195
– ident: ref_1
  doi: 10.1007/978-3-319-16811-1_40
– ident: ref_12
  doi: 10.1109/CVPRW.2017.156
– ident: ref_28
  doi: 10.1109/CVPR42600.2020.00939
– ident: ref_25
– ident: ref_24
  doi: 10.18653/v1/D17-1151
– ident: ref_27
– volume: 129
  start-page: 3174
  year: 2021
  ident: ref_22
  article-title: Pixel-in-pixel net: Towards efficient facial landmark detection in the wild
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-021-01521-4
– ident: ref_5
  doi: 10.1007/978-3-031-27066-6_9
– volume: 48
  start-page: 642
  year: 2015
  ident: ref_2
  article-title: Fast detection of facial wrinkles based on Gabor features using image morphology and geometric constraints
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.08.003
– ident: ref_4
  doi: 10.2352/EI.2022.34.8.IMAGE-300
– ident: ref_13
– ident: ref_17
– ident: ref_6
  doi: 10.1109/ICTC52510.2021.9620886
– ident: ref_19
– ident: ref_7
  doi: 10.1109/ICISPC44900.2018.9006682
– ident: ref_20
– ident: ref_8
  doi: 10.2352/EI.2023.35.7.IMAGE-276
SSID ssj0000913825
Score 2.2979429
Snippet Facial skin analysis has attracted considerable attention in the skin health domain. The results of facial skin analysis can be used to provide skin care and...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1894
SubjectTerms Accuracy
Annotations
Care and treatment
Computational linguistics
Deep learning
Equipment and supplies
facial skin feature segmentation
facial wrinkles and pores
ground truth generation
Image processing
Labeling
Language processing
Machine vision
Morphology
Natural language interfaces
Neural networks
positional encoding
prior information
semantic segmentation
Skin
Toiletries industry
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQB8QFUcojLSBXqtRLIxLHz-MusKKV4NKuxM2KH6FIkEV09_8zk3hXG4HKpbconkT2ZDzzTTL5hpCvTOuoGlnnoQwqx5Cba9HAES90o0MpQuwKZG_k1ZT_vBW3a62-sCaspwfuFXfGnDbKR1F5znmMRgfhvfPccae8Cg16X4h5a8lU54MNcuuJnmaogrz-LPSVa8h9jAwzpTZ8EIo6xv7XfnktMA2LJtei0GSX7CT4SEf9tD-Qjdjuka3r9IH8I5lexPiUJ9LUu3wMMSrQ6xkoc-nkKIK-xXOkv-LdY_rxqKUAXemkxtfnFNtx0R-P4GfokrFkn0wnl7_Pr_LUOSH3Qqp5Xjkeua5D2fDSKSSocYXjLAjjZC2ZM1VhAPkE1TgWDGirZrUTjXTgcgLmrQdks5218YjQAm5UVAp8ZlFxJQ1IKKewD6CvINDJjLClEq1PtOLY3eLBQnqBmrdvaD4j31cXPfWsGv8WH-PTWYkiJXZ3AgzFJkOx7xlKRr7hs7W4cWGCvk7_H8AykQLLjpRgXCHbTkaOB5Kw4fxweGkdNm34vxYyV4TSisFkv6yG8UosYmvjbNHJcKkB8hUZOeyNabUk_HoqFQd16oGZDdY8HGnv_3R04AARBTO6-vQ_tPSZbDOAcVgfwcwx2Zw_L-IJwK65O-122AsC8ixr
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF-0BfFF6mfTVllB8MXQZLOfT9LTHlVoEfWgbyH7kVNok_N69_93JtnEBqVvITsbsrM7X7uzvyHkHdM6qFpWqc-9StHkplrU8MQzXWufCx-6BNkLebbgXy_FZdxwu4lplYNO7BS1bx3ukR9DaIC-imL84-pPilWj8HQ1ltB4SHZBBWsIvnZnpxffvo-7LIh6CTFQDzdUQHx_7PsMNsRARqSZXBs-MUkdcv-_-vmOgZomT96xRvM98iS6kfSkn_en5EFonpFH5_Gg_DlZfA5hlUbw1GU6A1vl6XkLTB2UHUXnb7sO9EdYXscLSA0FF5bOK9xGp1iWi365Bn1DB-SSF2QxP_356SyNFRRSJ6TapIXlgevK5zXPrUKgGptZzrwwVlaSWVNkBjwgr2rLvAFuVayyopYWVI_H-PUl2WnaJuwTmsGHskKB7swKrqQBCmUV1gN0BRg8mRA2MLF0EV4cq1xclRBmIOfL_3A-IR_GTqseXeN-8hnOzkiK0Njdi3a9LKOklcxqo1wQheOch2C0F85Zxy23yilfJ-Q9zm2JAgw_6Kp4DwGGiVBY5YkSjCtE3UnI0YQSBM9Nm4fVUUbBvyn_LtOEvB2bsScmszWh3XY0XGpw_bKEvOoX0zgkPEWVigM79WSZTcY8bWl-_-pgwcFVFMzo4uD-_zokjxk4apgBwcwR2dmst-E1OFYb-yZKzy2AZCOs
  priority: 102
  providerName: ProQuest
Title Deep-Learning-Based Morphological Feature Segmentation for Facial Skin Image Analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/37296746
https://www.proquest.com/docview/2823977724
https://www.proquest.com/docview/2824686580
https://pubmed.ncbi.nlm.nih.gov/PMC10252983
https://doaj.org/article/2b897ce53c444ee98d5ccbc4b4b7c7df
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9RAFD7UFkpfxLupdRlB8MVoMpnM5UGkq12qsEXUhb6FzCWr0GbbdRf033tOLssGW99CZjLM5Vy-k5x8B-Al1zqoSpaxT72KyeXGOq_wSiS60j7NfWgSZM_k6Ux8Ps_Pd6Cvitpt4K8bQzuqJzVbXrz5ff3nPSr8O4o4MWR_69ukNKI1JvKYVBtxB_bQNSnS1GmH9xvTbIhyj9IaObpKnFCqWyai28Y5gH36riUVAeQtx9Xw-_9rxbfc2DDFcstnTe7B3Q5ssuNWOu7DTqgfwP60-5z-EGYfQ7iKO4rVeTxGj-bZdIFb35tERhBxvQzsW5hfdr8p1QyBLpuU9LKdUfEu9ukSrRLr-U0ewWxy8v3DadzVWYhdLtUqzqwIQpc-rURqFdHZ2MQK7nNjZSm5NVliECd5VVnuDW5iyUubV9KigfIU5T6G3XpRh6fAEhwoyRRa2CQTShrsoayiqoEuQ7coI-D9JhauIyGnWhgXBQYjdAjFDYcQwevNQ1ctB8f_u4_pdDZdiUC7ubFYzotOHwtutVEu5JkTQoRgtM-ds05YYZVTvorgFZ1tQYKHE3Rl97cCLpMIs4pjlXOhiJsngqNBT1RPN2zupaPopbvAOJeAt-I42RebZnqSUt7qsFg3fYTUCBCTCJ60wrRZUi-TEeiBmA3WPGypf_5oyMMRUObc6Ozw1kGfwQFHJEcpEtwcwe5quQ7PEXmt7Aj2xidnX76OmjcXo0a3_gIChCwh
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiDeGAosE4oJVZ7327h4QamijhDYRglbqzXgfDkjUCWkixJ_iNzLjR6gF6q23KDu2vLPz3J39BuAlV8rLIs1D13cyJJcbqqTAXyJShXL9xPmqQHaajk7Eh9PkdAt-t3dhqKyytYmVoXZzS3vku5gaUKwiuXi3-BFS1yg6XW1baNRiceh__cSU7fzteB_X9xXnw4Pj96Ow6SoQ2iSVqzA2wguVu34h-kYSeIuJjOAu0SbNU250HGmMCpwsDHcaQ5Cc5yYpUoPq6Cinw_deg20RYyrTg-3BwfTjp82uDqFsYs5VwxvFsY52XV0xR5jLhGzTV1p0XGDVKeBff3DBIXaLNS94v-FtuNWErWyvlrM7sOXLu3B90hzM34OTfe8XYQPWOgsH6Bsdm8xxEVvjyijYXC89--xnZ82Fp5JhyMyGOW3bM2oDxsZnaN9Yi5RyH06uhLcPoFfOS_8IWIQvimKJtjqKhUw1Ukgjqf-gjdHBpgHwlomZbeDMqavG9wzTGuJ89h_OB_Bm89CiRvO4nHxAq7MhJSju6o_5cpY1mp1xo7S0PomtEMJ7rVxirbHCCCOtdEUAr2ltMzIY-IE2b-494DQJeivbkwkXklB-AtjpUKKi2-5wKx1ZY2jOs79qEcCLzTA9ScVzpZ-vKxqRKgw1owAe1sK0mRKd2qZSIDtVR8w6c-6OlN--VjDkGJomXKv48eXf9RxujI4nR9nReHr4BG5yDBKp-oLrHeitlmv_FIO6lXnWaBKDL1etvH8AyV5fjQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTpp4QXwTGBAkEC9ESx0nth8QWumqlbFqAirtLYs_UpBYWrpWiH-Nv467xCmLQHvbW1Vfovh8n_b5dwAvmZROlFkR2b4VEbncSKYl_uKxLKXtp9bVBbKT7HDKP5ymp1vwu70LQ2WVrU2sDbWdG9oj38PUgGIVwfhe6csiToajd4sfEXWQopPWtp1GIyJH7tdPTN8u3o6HuNavGBsdfHl_GPkOA5FJM7GKEs0dl4Xtl7yvBQG56FhzZlOlsyJjWiWxwgjBilIzqzAcKVih0zLTqJqW8jt87w3YFpgVxT3YHhxMTj5tdngIcRPzrwbqKElUvGeb6jnCXyaUm75UvOMO664B__qGS86xW7h5yROObsMtH8KG-43M3YEtV92FnWN_SH8PpkPnFpEHbp1FA_STNjye44K2hjakwHO9dOFnNzv3l5-qEMPncFTQFn5ILcHC8TnaurBFTbkP02vh7QPoVfPKPYIwxhfFiUC7HSdcZAophBbUi9Ak6GyzAFjLxNx4aHPqsPE9xxSHOJ__h_MBvNk8tGiQPa4mH9DqbEgJlrv-Y76c5V7Lc6alEsalieGcO6ekTY3RhmuuhRG2DOA1rW1OxgM_0BT-DgROk2C48n2RMi4I8SeA3Q4lKr3pDrfSkXujc5H_VZEAXmyG6UkqpKvcfF3T8Exi2BkH8LARps2U6AQ3ExzZKTti1plzd6T69rWGJMcwNWVKJo-v_q7nsINKm38cT46ewE2G8SIVYjC1C73Vcu2eYny30s-8IoVwdt26-wcoPGPC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-Learning-Based+Morphological+Feature+Segmentation+for+Facial+Skin+Image+Analysis&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Yoon%2C+Huisu&rft.au=Kim%2C+Semin&rft.au=Lee%2C+Jongha&rft.au=Yoo%2C+Sangwook&rft.date=2023-05-29&rft.issn=2075-4418&rft.eissn=2075-4418&rft.volume=13&rft.issue=11&rft_id=info:doi/10.3390%2Fdiagnostics13111894&rft_id=info%3Apmid%2F37296746&rft.externalDocID=37296746
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon