Neurogenic potential of dental pulp stem cells isolated from murine incisors

Interest in the use of dental pulp stem cells (DPSC) to enhance neurological recovery following stroke and traumatic injury is increasing following successful pre-clinical studies. A murine model of autologous neural stem cell transplantation would be useful for further pre-clinical investigation of...

Full description

Saved in:
Bibliographic Details
Published inStem cell research & therapy Vol. 5; no. 1; p. 30
Main Authors Ellis, Kylie M, O'Carroll, David C, Lewis, Martin D, Rychkov, Grigori Y, Koblar, Simon A
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 27.02.2014
BioMed Central
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Interest in the use of dental pulp stem cells (DPSC) to enhance neurological recovery following stroke and traumatic injury is increasing following successful pre-clinical studies. A murine model of autologous neural stem cell transplantation would be useful for further pre-clinical investigation of the underlying mechanisms. However, while human-derived DPSC have been well characterised, the neurogenic potential of murine DPSC (mDPSC) has been largely neglected. In this study we demonstrate neuronal differentiation of DPSC from murine incisors in vitro. mDPSC were cultured under neuroinductive conditions and assessed for neuronal and glial markers and electrophysiological functional maturation. mDPSC developed a neuronal morphology and high expression of neural markers nestin, ßIII-tubulin and GFAP. Neurofilament M and S100 were found in lower abundance. Differentiated cells also expressed protein markers for cholinergic, GABAergic and glutaminergic neurons, indicating a mixture of central and peripheral nervous system cell types. Intracellular electrophysiological analysis revealed the presence of voltage-gated L-type Ca2+ channels in a majority of cells with neuronal morphology. No voltage-gated Na+ or K+ currents were found and the cultures did not support spontaneous action potentials. Neuronal-like networks expressed the gap junction protein, connexin 43 but this was not associated with dye coupling between adjacent cells after injection of the low-molecular weight tracers Lucifer yellow or Neurobiotin. This indicated that the connexin proteins were not forming traditional gap junction channels. The data presented support the differentiation of mDPSC into immature neuronal-like networks.
AbstractList Introduction Interest in the use of dental pulp stem cells (DPSC) to enhance neurological recovery following stroke and traumatic injury is increasing following successful pre-clinical studies. A murine model of autologous neural stem cell transplantation would be useful for further pre-clinical investigation of the underlying mechanisms. However, while human-derived DPSC have been well characterised, the neurogenic potential of murine DPSC (mDPSC) has been largely neglected. In this study we demonstrate neuronal differentiation of DPSC from murine incisors in vitro. Methods mDPSC were cultured under neuroinductive conditions and assessed for neuronal and glial markers and electrophysiological functional maturation. Results mDPSC developed a neuronal morphology and high expression of neural markers nestin, ssIII-tubulin and GFAP. Neurofilament M and S100 were found in lower abundance. Differentiated cells also expressed protein markers for cholinergic, GABAergic and glutaminergic neurons, indicating a mixture of central and peripheral nervous system cell types. Intracellular electrophysiological analysis revealed the presence of voltage-gated L-type Ca.sup.2+ channels in a majority of cells with neuronal morphology. No voltage-gated Na.sup.+ or K.sup.+ currents were found and the cultures did not support spontaneous action potentials. Neuronal-like networks expressed the gap junction protein, connexin 43 but this was not associated with dye coupling between adjacent cells after injection of the low-molecular weight tracers Lucifer yellow or Neurobiotin. This indicated that the connexin proteins were not forming traditional gap junction channels. Conclusions The data presented support the differentiation of mDPSC into immature neuronal-like networks.
Interest in the use of dental pulp stem cells (DPSC) to enhance neurological recovery following stroke and traumatic injury is increasing following successful pre-clinical studies. A murine model of autologous neural stem cell transplantation would be useful for further pre-clinical investigation of the underlying mechanisms. However, while human-derived DPSC have been well characterised, the neurogenic potential of murine DPSC (mDPSC) has been largely neglected. In this study we demonstrate neuronal differentiation of DPSC from murine incisors in vitro. mDPSC were cultured under neuroinductive conditions and assessed for neuronal and glial markers and electrophysiological functional maturation. mDPSC developed a neuronal morphology and high expression of neural markers nestin, ssIII-tubulin and GFAP. Neurofilament M and S100 were found in lower abundance. Differentiated cells also expressed protein markers for cholinergic, GABAergic and glutaminergic neurons, indicating a mixture of central and peripheral nervous system cell types. Intracellular electrophysiological analysis revealed the presence of voltage-gated L-type Ca.sup.2+ channels in a majority of cells with neuronal morphology. No voltage-gated Na.sup.+ or K.sup.+ currents were found and the cultures did not support spontaneous action potentials. Neuronal-like networks expressed the gap junction protein, connexin 43 but this was not associated with dye coupling between adjacent cells after injection of the low-molecular weight tracers Lucifer yellow or Neurobiotin. This indicated that the connexin proteins were not forming traditional gap junction channels. The data presented support the differentiation of mDPSC into immature neuronal-like networks.
Interest in the use of dental pulp stem cells (DPSC) to enhance neurological recovery following stroke and traumatic injury is increasing following successful pre-clinical studies. A murine model of autologous neural stem cell transplantation would be useful for further pre-clinical investigation of the underlying mechanisms. However, while human-derived DPSC have been well characterised, the neurogenic potential of murine DPSC (mDPSC) has been largely neglected. In this study we demonstrate neuronal differentiation of DPSC from murine incisors in vitro. mDPSC were cultured under neuroinductive conditions and assessed for neuronal and glial markers and electrophysiological functional maturation. mDPSC developed a neuronal morphology and high expression of neural markers nestin, ßIII-tubulin and GFAP. Neurofilament M and S100 were found in lower abundance. Differentiated cells also expressed protein markers for cholinergic, GABAergic and glutaminergic neurons, indicating a mixture of central and peripheral nervous system cell types. Intracellular electrophysiological analysis revealed the presence of voltage-gated L-type Ca2+ channels in a majority of cells with neuronal morphology. No voltage-gated Na+ or K+ currents were found and the cultures did not support spontaneous action potentials. Neuronal-like networks expressed the gap junction protein, connexin 43 but this was not associated with dye coupling between adjacent cells after injection of the low-molecular weight tracers Lucifer yellow or Neurobiotin. This indicated that the connexin proteins were not forming traditional gap junction channels. The data presented support the differentiation of mDPSC into immature neuronal-like networks.
INTRODUCTIONInterest in the use of dental pulp stem cells (DPSC) to enhance neurological recovery following stroke and traumatic injury is increasing following successful pre-clinical studies. A murine model of autologous neural stem cell transplantation would be useful for further pre-clinical investigation of the underlying mechanisms. However, while human-derived DPSC have been well characterised, the neurogenic potential of murine DPSC (mDPSC) has been largely neglected. In this study we demonstrate neuronal differentiation of DPSC from murine incisors in vitro. METHODSmDPSC were cultured under neuroinductive conditions and assessed for neuronal and glial markers and electrophysiological functional maturation. RESULTSmDPSC developed a neuronal morphology and high expression of neural markers nestin, ßIII-tubulin and GFAP. Neurofilament M and S100 were found in lower abundance. Differentiated cells also expressed protein markers for cholinergic, GABAergic and glutaminergic neurons, indicating a mixture of central and peripheral nervous system cell types. Intracellular electrophysiological analysis revealed the presence of voltage-gated L-type Ca2+ channels in a majority of cells with neuronal morphology. No voltage-gated Na+ or K+ currents were found and the cultures did not support spontaneous action potentials. Neuronal-like networks expressed the gap junction protein, connexin 43 but this was not associated with dye coupling between adjacent cells after injection of the low-molecular weight tracers Lucifer yellow or Neurobiotin. This indicated that the connexin proteins were not forming traditional gap junction channels. CONCLUSIONSThe data presented support the differentiation of mDPSC into immature neuronal-like networks.
Abstract Introduction Interest in the use of dental pulp stem cells (DPSC) to enhance neurological recovery following stroke and traumatic injury is increasing following successful pre-clinical studies. A murine model of autologous neural stem cell transplantation would be useful for further pre-clinical investigation of the underlying mechanisms. However, while human-derived DPSC have been well characterised, the neurogenic potential of murine DPSC (mDPSC) has been largely neglected. In this study we demonstrate neuronal differentiation of DPSC from murine incisors in vitro . Methods mDPSC were cultured under neuroinductive conditions and assessed for neuronal and glial markers and electrophysiological functional maturation. Results mDPSC developed a neuronal morphology and high expression of neural markers nestin, ßIII-tubulin and GFAP. Neurofilament M and S100 were found in lower abundance. Differentiated cells also expressed protein markers for cholinergic, GABAergic and glutaminergic neurons, indicating a mixture of central and peripheral nervous system cell types. Intracellular electrophysiological analysis revealed the presence of voltage-gated L-type Ca 2+ channels in a majority of cells with neuronal morphology. No voltage-gated Na + or K + currents were found and the cultures did not support spontaneous action potentials. Neuronal-like networks expressed the gap junction protein, connexin 43 but this was not associated with dye coupling between adjacent cells after injection of the low-molecular weight tracers Lucifer yellow or Neurobiotin. This indicated that the connexin proteins were not forming traditional gap junction channels. Conclusions The data presented support the differentiation of mDPSC into immature neuronal-like networks.
ArticleNumber 30
Audience Academic
Author Ellis, Kylie M
Rychkov, Grigori Y
Koblar, Simon A
O'Carroll, David C
Lewis, Martin D
AuthorAffiliation 1 Adelaide Centre for Neuroscience Research, University of Adelaide, Adelaide, South Australia, Australia
4 School of Medicine, University of Adelaide, Adelaide, South Australia, 5005, Australia
2 School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
3 School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
5 Stroke Research Programme, University of Adelaide, Adelaide, South Australia, Australia
AuthorAffiliation_xml – name: 5 Stroke Research Programme, University of Adelaide, Adelaide, South Australia, Australia
– name: 4 School of Medicine, University of Adelaide, Adelaide, South Australia, 5005, Australia
– name: 3 School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
– name: 1 Adelaide Centre for Neuroscience Research, University of Adelaide, Adelaide, South Australia, Australia
– name: 2 School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
Author_xml – sequence: 1
  givenname: Kylie M
  surname: Ellis
  fullname: Ellis, Kylie M
– sequence: 2
  givenname: David C
  surname: O'Carroll
  fullname: O'Carroll, David C
– sequence: 3
  givenname: Martin D
  surname: Lewis
  fullname: Lewis, Martin D
– sequence: 4
  givenname: Grigori Y
  surname: Rychkov
  fullname: Rychkov, Grigori Y
– sequence: 5
  givenname: Simon A
  surname: Koblar
  fullname: Koblar, Simon A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24572146$$D View this record in MEDLINE/PubMed
BookMark eNptkltrFDEUx4NUbK3FbyADgpeHrblOpi9CKV4Ki4KX55BJTnYjM8mYZKT99mbZteyAyUMOJ7_z59yeopMQAyD0nOBLQrr2XTapcHL1CJ0RKeSqFYSeHNmn6CLnX7gexjBu-RN0SrmQlPD2DK2_wJziBoI3zRQLhOL10ETX2GpWa5qHqckFxsbAMOTG5zjoArZxKY7NOCcfoPHBVH_Kz9Bjp4cMF4f3HP38-OHHzefV-uun25vr9cqIVpYVlVYz1wLRDEMre6C2Bd471msjeMeJtJZZSnrKhNGdEE4TTrC7stRgyjt2jt7vdae5H8GammrSg5qSH3W6V1F7tfwJfqs28Y_iWAjCaBV4cxBI8fcMuajR512BOkCcsyJCSNwRyWVFX-7RjR5A-eBiVTQ7XF0LTuguX1apy_9Q9VoYvanjcr76FwFvFwGVKXBXNnrOWd1-_7ZkXx2xW9BD2dYxzMXHkJfg6z1oUsw5gXtoCcFqtyrqsCqVfHHcwQfu32KwvzHSuaU
CitedBy_id crossref_primary_10_5966_sctm_2014_0196
crossref_primary_10_1016_j_pneurobio_2017_07_004
crossref_primary_10_1002_term_2490
crossref_primary_10_1039_D0TB00697A
crossref_primary_10_1016_j_bioactmat_2024_04_031
crossref_primary_10_7717_peerj_3180
crossref_primary_10_1002_cbin_10767
crossref_primary_10_1186_scrt450
crossref_primary_10_5051_jpis_2103760188
crossref_primary_10_3892_ijmm_2018_3517
crossref_primary_10_2174_1871527320666210311122921
crossref_primary_10_3390_cells13050375
crossref_primary_10_1002_cbf_3057
crossref_primary_10_1016_j_joen_2016_04_004
crossref_primary_10_1089_ten_tea_2020_0265
crossref_primary_10_1080_24701556_2019_1586723
crossref_primary_10_1111_cpr_12353
crossref_primary_10_1016_j_diff_2016_03_003
crossref_primary_10_1186_s13287_022_03151_0
crossref_primary_10_1002_adhm_201600429
crossref_primary_10_1038_s41598_017_11028_z
crossref_primary_10_1038_s41419_018_0951_9
crossref_primary_10_1155_2016_9305986
crossref_primary_10_1016_j_jphotobiol_2019_111742
crossref_primary_10_1111_iej_14038
crossref_primary_10_3389_fvets_2024_1325559
crossref_primary_10_1007_s13770_017_0036_3
crossref_primary_10_3390_ijms20030624
crossref_primary_10_1007_s12035_018_1127_4
crossref_primary_10_1007_s11626_015_9935_6
crossref_primary_10_1155_2016_1290561
crossref_primary_10_3390_molecules26247423
crossref_primary_10_1038_sj_bdj_2014_469
crossref_primary_10_3390_ijms21176172
crossref_primary_10_1155_2016_6940283
crossref_primary_10_3892_mmr_2015_4106
crossref_primary_10_1177_0022034518807920
crossref_primary_10_1007_s11033_018_04582_w
crossref_primary_10_1016_j_archoralbio_2019_104572
crossref_primary_10_2334_josnusd_17_0462
Cites_doi 10.1634/stemcells.2007-0979
10.1016/j.neuint.2009.03.017
10.1073/pnas.240309797
10.1634/stemcells.2008-0285
10.1016/j.archoralbio.2011.05.008
10.1159/000321160
10.1038/nature06063
10.1177/0022034510375828
10.1111/j.1460-9568.2008.06026.x
10.1089/scd.2009.0258
10.1523/JNEUROSCI.18-14-05374.1998
10.1016/j.tins.2006.05.007
10.1002/jcb.20913
10.1097/NEN.0b013e31816a686d
10.1002/stem.138
10.1006/exnr.1998.6950
10.1111/j.0953-816X.2004.03314.x
10.1016/j.neuint.2011.01.006
10.1007/978-1-60761-999-4_9
10.1126/science.1063395
10.1016/j.cub.2004.03.063
10.1007/s00418-009-0646-5
10.1038/nature04264
10.1152/jn.2001.85.2.620
10.1089/scd.2006.0068
10.1089/ten.tea.2007.0157
10.1016/j.bone.2010.02.019
10.1002/(SICI)1520-6408(1999)24:1/2<69::AID-DVG8>3.0.CO;2-M
10.1016/j.neuron.2005.04.022
10.1523/JNEUROSCI.23-03-00927.2003
10.5966/sctm.2011-0039
10.1038/16927
10.1074/jbc.M600026200
10.1254/jphs.10163FP
10.1523/JNEUROSCI.07-11-03489.1987
10.1371/journal.pone.0027526
10.1006/exnr.1999.7319
10.1002/jcp.21203
10.1038/nrm1149
ContentType Journal Article
Copyright COPYRIGHT 2014 BioMed Central Ltd.
Copyright © 2014 Ellis et al.; licensee BioMed Central Ltd. 2014 Ellis et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: COPYRIGHT 2014 BioMed Central Ltd.
– notice: Copyright © 2014 Ellis et al.; licensee BioMed Central Ltd. 2014 Ellis et al.; licensee BioMed Central Ltd.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
ISR
7X8
5PM
DOI 10.1186/scrt419
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic


CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1757-6512
EndPage 30
ExternalDocumentID A541248413
10_1186_scrt419
24572146
Genre Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID ---
-56
-5G
-BR
0R~
4.4
53G
5VS
AAFWJ
AAJSJ
ABDBF
ACGFS
ACIHN
ACJQM
ACPRK
ACRMQ
ADBBV
ADINQ
ADUKV
AEAQA
AENEX
AFPKN
AHBYD
AHMBA
AHSBF
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIAM
AOIJS
BAPOH
BAWUL
BCNDV
BFQNJ
BMC
C24
C6C
CGR
CUY
CVF
DIK
E3Z
EBD
EBLON
EBS
ECM
EIF
EJD
EMOBN
ESX
F5P
GROUPED_DOAJ
GX1
H13
HYE
IAO
IEA
IHR
IHW
INH
INR
ISR
ITC
KQ8
M~E
NPM
O5R
O5S
OK1
P2P
PGMZT
RBZ
ROL
RPM
RSV
SBL
SOJ
SV3
TUS
AAYXX
CITATION
AFGXO
7X8
5PM
ID FETCH-LOGICAL-c567t-27da3f6e1a30e67be2d6e4bf3bac548417dd3d21b235ca855fa1410f9d2c02483
IEDL.DBID RPM
ISSN 1757-6512
IngestDate Tue Sep 17 21:21:34 EDT 2024
Fri Aug 16 12:17:09 EDT 2024
Wed Aug 14 18:52:51 EDT 2024
Tue Aug 13 05:22:38 EDT 2024
Sat Sep 28 21:31:14 EDT 2024
Tue Aug 20 22:14:12 EDT 2024
Wed Oct 09 16:36:46 EDT 2024
Sat Sep 28 08:02:44 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c567t-27da3f6e1a30e67be2d6e4bf3bac548417dd3d21b235ca855fa1410f9d2c02483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4055132/
PMID 24572146
PQID 1557081747
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4055132
proquest_miscellaneous_1557081747
gale_infotracmisc_A541248413
gale_infotracacademiconefile_A541248413
gale_incontextgauss_ISR_A541248413
gale_healthsolutions_A541248413
crossref_primary_10_1186_scrt419
pubmed_primary_24572146
PublicationCentury 2000
PublicationDate 2014-Feb-27
2014-02-27
20140227
PublicationDateYYYYMMDD 2014-02-27
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-Feb-27
  day: 27
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Stem cell research & therapy
PublicationTitleAlternate Stem Cell Res Ther
PublicationYear 2014
Publisher BioMed Central Ltd
BioMed Central
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
References 18379434 - J Neuropathol Exp Neurol. 2008 Apr;67(4):341-54
16713634 - Trends Neurosci. 2006 Jul;29(7):414-8
19816704 - Histochem Cell Biol. 2010 Jan;133(1):95-112
11087820 - Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13625-30
11160498 - J Neurophysiol. 2001 Feb;85(2):620-9
11598293 - Science. 2001 Oct 12;294(5541):333-9
12574421 - J Neurosci. 2003 Feb 1;23(3):927-36
21071916 - Cells Tissues Organs. 2011;193(6):344-65
16731531 - J Biol Chem. 2006 Jul 28;281(30):20920-31
17610375 - Stem Cells Dev. 2007 Jun;16(3):447-60
16327778 - Nature. 2006 Jan 5;439(7072):79-83
22950495 - Curr Pharm Des. 2013;19(1):133-41
15084279 - Curr Biol. 2004 Apr 20;14(8):650-8
17713529 - Nature. 2007 Aug 23;448(7156):901-7
18687995 - Stem Cells. 2008 Oct;26(10):2654-63
10192774 - Exp Neurol. 1999 Mar;156(1):16-32
18279307 - Eur J Neurosci. 2008 Feb;27(3):538-48
15128393 - Eur J Neurosci. 2004 May;19(9):2388-98
22133879 - J Clin Invest. 2012 Jan;122(1):80-90
10079512 - Dev Genet. 1999;24(1-2):69-81
20131979 - Stem Cells Dev. 2010 Sep;19(9):1375-83
19544412 - Stem Cells. 2009 Sep;27(9):2229-37
21350315 - J Pharmacol Sci. 2011;115(3):354-63
9651220 - J Neurosci. 1998 Jul 15;18(14):5374-88
9950427 - Nature. 1999 Jan 28;397(6717):350-5
18593355 - Tissue Eng Part A. 2008 Jul;14(7):1141-7
21683341 - Arch Oral Biol. 2011 Nov;56(11):1247-55
25157555 - Stem Cell Res Ther. 2014;5(2):61
12838337 - Nat Rev Mol Cell Biol. 2003 Jul;4(7):539-51
18499892 - Stem Cells. 2008 Jul;26(7):1787-95
21219952 - Neurochem Int. 2011 Sep;59(3):371-81
23197777 - Stem Cells Transl Med. 2012 Mar;1(3):177-87
3119790 - J Neurosci. 1987 Nov;7(11):3489-504
17654515 - J Cell Physiol. 2008 Feb;214(2):354-62
10686078 - Exp Neurol. 2000 Feb;161(2):585-96
19576521 - Neurochem Int. 2009 Sep;55(5):323-32
21431514 - Methods Mol Biol. 2011;698:107-21
22087335 - PLoS One. 2011;6(11):e27526
20193787 - Bone. 2010 Jun;46(6):1639-51
15882639 - Neuron. 2005 May 5;46(3):401-5
16637058 - J Cell Biochem. 2006 Aug 15;98(6):1667-80
20739699 - J Dent Res. 2010 Nov;89(11):1287-92
ET Guimarães (458_CR14) 2011; 56
G Varga (458_CR17) 2013; 19
DJ Belliveau (458_CR29) 2006; 281
IV Nosrat (458_CR10) 2004; 19
WK Leong (458_CR8) 2012; 1
MG Todorova (458_CR26) 2008; 214
S Gronthos (458_CR19) 2011; 698
E Karaöz (458_CR4) 2010; 133
M Bani-Yaghoub (458_CR28) 1999; 24
J Wang (458_CR24) 2010; 19
GZ Racz (458_CR40) 2006; 98
R Sasaki (458_CR16) 2008; 27
A Balic (458_CR12) 2010; 89
RE Dolmetsch (458_CR35) 2001; 294
A Arthur (458_CR2) 2008; 26
F Tang (458_CR34) 2003; 23
M Bani-Yaghoub (458_CR27) 1999; 156
LA Elias (458_CR31) 2007; 448
MJ Carden (458_CR20) 1987; 7
E Dupont (458_CR25) 2006; 439
S Konur (458_CR32) 2005; 46
R Sasaki (458_CR18) 2008; 14
SE Webb (458_CR33) 2003; 4
M Kiraly (458_CR7) 2011; 59
CA Messam (458_CR22) 2000; 161
T Nozaki (458_CR15) 2011; 115
AH Huang (458_CR9) 2008; 26
DF Owens (458_CR36) 1998; 18
E Butkevich (458_CR30) 2004; 14
A Balic (458_CR11) 2010; 46
E Draberova (458_CR23) 2008; 67
S Gronthos (458_CR1) 2000; 97
TM Gomez (458_CR37) 1999; 397
M Kiraly (458_CR5) 2009; 55
J Karbanová (458_CR3) 2011; 193
K Janebodin (458_CR13) 2011; 6
R Khazipov (458_CR38) 2006; 29
K Sakai (458_CR21) 2012; 122
A Arthur (458_CR6) 2009; 27
A Peinado (458_CR39) 2001; 85
D Widera (458_CR41) 2007; 16
References_xml – volume: 26
  start-page: 1787
  year: 2008
  ident: 458_CR2
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2007-0979
  contributor:
    fullname: A Arthur
– volume: 55
  start-page: 323
  year: 2009
  ident: 458_CR5
  publication-title: Neurochem Int
  doi: 10.1016/j.neuint.2009.03.017
  contributor:
    fullname: M Kiraly
– volume: 97
  start-page: 13625
  year: 2000
  ident: 458_CR1
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.240309797
  contributor:
    fullname: S Gronthos
– volume: 26
  start-page: 2654
  year: 2008
  ident: 458_CR9
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2008-0285
  contributor:
    fullname: AH Huang
– volume: 56
  start-page: 1247
  year: 2011
  ident: 458_CR14
  publication-title: Arch Oral Biol
  doi: 10.1016/j.archoralbio.2011.05.008
  contributor:
    fullname: ET Guimarães
– volume: 193
  start-page: 344
  year: 2011
  ident: 458_CR3
  publication-title: Cells Tissues Organs
  doi: 10.1159/000321160
  contributor:
    fullname: J Karbanová
– volume: 448
  start-page: 901
  year: 2007
  ident: 458_CR31
  publication-title: Nature
  doi: 10.1038/nature06063
  contributor:
    fullname: LA Elias
– volume: 89
  start-page: 1287
  year: 2010
  ident: 458_CR12
  publication-title: J Dental Res
  doi: 10.1177/0022034510375828
  contributor:
    fullname: A Balic
– volume: 19
  start-page: 133
  year: 2013
  ident: 458_CR17
  publication-title: Curr Pharm Des
  contributor:
    fullname: G Varga
– volume: 122
  start-page: 80
  year: 2012
  ident: 458_CR21
  publication-title: J Clin Invest
  contributor:
    fullname: K Sakai
– volume: 27
  start-page: 538
  year: 2008
  ident: 458_CR16
  publication-title: Eur J Neurosci
  doi: 10.1111/j.1460-9568.2008.06026.x
  contributor:
    fullname: R Sasaki
– volume: 19
  start-page: 1375
  year: 2010
  ident: 458_CR24
  publication-title: Stem Cells Dev
  doi: 10.1089/scd.2009.0258
  contributor:
    fullname: J Wang
– volume: 18
  start-page: 5374
  year: 1998
  ident: 458_CR36
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.18-14-05374.1998
  contributor:
    fullname: DF Owens
– volume: 29
  start-page: 414
  year: 2006
  ident: 458_CR38
  publication-title: Trends Neurosci
  doi: 10.1016/j.tins.2006.05.007
  contributor:
    fullname: R Khazipov
– volume: 98
  start-page: 1667
  year: 2006
  ident: 458_CR40
  publication-title: J Cell Biochem
  doi: 10.1002/jcb.20913
  contributor:
    fullname: GZ Racz
– volume: 67
  start-page: 341
  year: 2008
  ident: 458_CR23
  publication-title: J Neuropathol Exp Neurol
  doi: 10.1097/NEN.0b013e31816a686d
  contributor:
    fullname: E Draberova
– volume: 27
  start-page: 2229
  year: 2009
  ident: 458_CR6
  publication-title: Stem Cells
  doi: 10.1002/stem.138
  contributor:
    fullname: A Arthur
– volume: 156
  start-page: 16
  year: 1999
  ident: 458_CR27
  publication-title: Exp Neurol
  doi: 10.1006/exnr.1998.6950
  contributor:
    fullname: M Bani-Yaghoub
– volume: 19
  start-page: 2388
  year: 2004
  ident: 458_CR10
  publication-title: Euro J Neurosci
  doi: 10.1111/j.0953-816X.2004.03314.x
  contributor:
    fullname: IV Nosrat
– volume: 59
  start-page: 371
  year: 2011
  ident: 458_CR7
  publication-title: Neurochem Int
  doi: 10.1016/j.neuint.2011.01.006
  contributor:
    fullname: M Kiraly
– volume: 698
  start-page: 107
  year: 2011
  ident: 458_CR19
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-60761-999-4_9
  contributor:
    fullname: S Gronthos
– volume: 294
  start-page: 333
  year: 2001
  ident: 458_CR35
  publication-title: Science
  doi: 10.1126/science.1063395
  contributor:
    fullname: RE Dolmetsch
– volume: 14
  start-page: 650
  year: 2004
  ident: 458_CR30
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2004.03.063
  contributor:
    fullname: E Butkevich
– volume: 133
  start-page: 95
  year: 2010
  ident: 458_CR4
  publication-title: Histochem Cell Biol
  doi: 10.1007/s00418-009-0646-5
  contributor:
    fullname: E Karaöz
– volume: 439
  start-page: 79
  year: 2006
  ident: 458_CR25
  publication-title: Nature
  doi: 10.1038/nature04264
  contributor:
    fullname: E Dupont
– volume: 85
  start-page: 620
  year: 2001
  ident: 458_CR39
  publication-title: J Neurophysiol
  doi: 10.1152/jn.2001.85.2.620
  contributor:
    fullname: A Peinado
– volume: 16
  start-page: 447
  year: 2007
  ident: 458_CR41
  publication-title: Stem Cells Dev
  doi: 10.1089/scd.2006.0068
  contributor:
    fullname: D Widera
– volume: 14
  start-page: 1141
  year: 2008
  ident: 458_CR18
  publication-title: Tissue Eng Part A
  doi: 10.1089/ten.tea.2007.0157
  contributor:
    fullname: R Sasaki
– volume: 46
  start-page: 1639
  year: 2010
  ident: 458_CR11
  publication-title: Bone
  doi: 10.1016/j.bone.2010.02.019
  contributor:
    fullname: A Balic
– volume: 24
  start-page: 69
  year: 1999
  ident: 458_CR28
  publication-title: Dev Gen
  doi: 10.1002/(SICI)1520-6408(1999)24:1/2<69::AID-DVG8>3.0.CO;2-M
  contributor:
    fullname: M Bani-Yaghoub
– volume: 46
  start-page: 401
  year: 2005
  ident: 458_CR32
  publication-title: Neuron
  doi: 10.1016/j.neuron.2005.04.022
  contributor:
    fullname: S Konur
– volume: 23
  start-page: 927
  year: 2003
  ident: 458_CR34
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-03-00927.2003
  contributor:
    fullname: F Tang
– volume: 1
  start-page: 177
  year: 2012
  ident: 458_CR8
  publication-title: Stem Cells Trans Med
  doi: 10.5966/sctm.2011-0039
  contributor:
    fullname: WK Leong
– volume: 397
  start-page: 350
  year: 1999
  ident: 458_CR37
  publication-title: Nature
  doi: 10.1038/16927
  contributor:
    fullname: TM Gomez
– volume: 281
  start-page: 20920
  year: 2006
  ident: 458_CR29
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M600026200
  contributor:
    fullname: DJ Belliveau
– volume: 115
  start-page: 354
  year: 2011
  ident: 458_CR15
  publication-title: J Pharmacol Sci
  doi: 10.1254/jphs.10163FP
  contributor:
    fullname: T Nozaki
– volume: 7
  start-page: 3489
  year: 1987
  ident: 458_CR20
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.07-11-03489.1987
  contributor:
    fullname: MJ Carden
– volume: 6
  start-page: e27526
  year: 2011
  ident: 458_CR13
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0027526
  contributor:
    fullname: K Janebodin
– volume: 161
  start-page: 585
  year: 2000
  ident: 458_CR22
  publication-title: Exp Neurol
  doi: 10.1006/exnr.1999.7319
  contributor:
    fullname: CA Messam
– volume: 214
  start-page: 354
  year: 2008
  ident: 458_CR26
  publication-title: J Cell Physiol
  doi: 10.1002/jcp.21203
  contributor:
    fullname: MG Todorova
– volume: 4
  start-page: 539
  year: 2003
  ident: 458_CR33
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm1149
  contributor:
    fullname: SE Webb
SSID ssj0000330064
Score 2.3002133
Snippet Interest in the use of dental pulp stem cells (DPSC) to enhance neurological recovery following stroke and traumatic injury is increasing following successful...
Abstract Introduction Interest in the use of dental pulp stem cells (DPSC) to enhance neurological recovery following stroke and traumatic injury is increasing...
Introduction Interest in the use of dental pulp stem cells (DPSC) to enhance neurological recovery following stroke and traumatic injury is increasing...
INTRODUCTIONInterest in the use of dental pulp stem cells (DPSC) to enhance neurological recovery following stroke and traumatic injury is increasing following...
SourceID pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 30
SubjectTerms Action Potentials
Adult Stem Cells - cytology
Adult Stem Cells - metabolism
Adult Stem Cells - physiology
Analysis
Animals
Calcium Channels, L-Type - metabolism
Connexin 43 - genetics
Connexin 43 - metabolism
Dental Pulp - cytology
Genetic aspects
Glial Fibrillary Acidic Protein - genetics
Glial Fibrillary Acidic Protein - metabolism
Health aspects
Incisor - cytology
Medical research
Medicine, Experimental
Mice
Mice, Inbred BALB C
Nestin - genetics
Nestin - metabolism
Neurogenesis
Neuroglia - metabolism
Neuroglia - physiology
Neurons
Neurons - metabolism
Neurons - physiology
Neurophysiology
Potassium Channels - metabolism
Proteins
Sodium Channels - metabolism
Stem cells
Transplantation
Tubulin - genetics
Tubulin - metabolism
Title Neurogenic potential of dental pulp stem cells isolated from murine incisors
URI https://www.ncbi.nlm.nih.gov/pubmed/24572146
https://search.proquest.com/docview/1557081747
https://pubmed.ncbi.nlm.nih.gov/PMC4055132
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS91AEF9UKPRSaj_Tqt2WQk_xmf2MRyuKLbUUW0F6Cdkv-8CXhJe8g_-9M5vk8dKjl1x2ApuZ2cwHv_ktIZ-d0soo51NnVJ6CU8i0hMCeSuGcMM4cCYt9yMuf6uJafL-RN1tEjrMwEbRvzfywulscVvN_EVvZLOxsxInNfl2eQpIhoYqabZNtzflGiR5_v1ChQ5ztB2QhfcYBmWUnMuQHZUJqFpPdjSD0_694IxZNcZIbgef8OXk2ZIz0pN_ZLtny1QvypL9D8v4l-RHpNcAN5pY2dYfgH5CuA3Vx0JE2q7uGIlszxR59S-fgbJBfOoqDJXSBzXZPseHe1sv2Fbk-P_tzepEOVySkVirdpUy7kgfls5IfeaWNZ055YQI3pYVaRGTaOe5YZhiXFowgQ4nAznDsmEU2M_6a7FR15d8SGlhgpcmV9CEXuQ05Fz4XUG5YeQyBLksIHXVWND0TRhEriFwVg4YT8gF1WfQjnOuzU5xIvOMadsMT8ilKIPNEhdCW23LVtsW331cToS-DUKhB77YcJgVgn0hWNZHcm0jC0bCT5Y-jUQtcQjxZ5etVW2TIPJZDNaYT8qY38vqjRidJiJ6Yfy2AjNzTFXDUyMw9OOa7R7_5njyFjEzEmXm9R3a65crvQ9bTmYPYLYDn1de_B9HjHwCrTQYp
link.rule.ids 230,315,733,786,790,870,891,27955,27956,53825,53827
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEaIX3o9AoQYhccpu49hOeqwqqi3sVgha1FsUv2DVbhJtkgP8emacZLXpDc6eSI7mG8-M9c1nQj4YmUgljQ2NkmkIoBBhDok9FNwYrow65BrvIRfncnbJP1-Jqx0ihlkYT9rXajkpblaTYvnLcyurlZ4OPLHp18UJFBkCuqjpHXIX4pWJrSbdH8DQo0Om7UZkoYDGEZl1wyNUCGVcJMyXu1tp6PZhvJWNxkzJrdRz-pD8GDbdMU6uJ22jJvrPLT3Hf_6rR-RBX4zS4275MdmxxRNyr3ue8vdTMvfKHYCwpaZV2SCvCKxLR42foaRVe1NRFIKmeP1f0yXgGEpXQ3Fmha7wHt9SvMuvy3X9jFyefro4mYX96wuhFjJpQpaYPHbSRnl8aGWiLDPScuVilWtoc3iUGBMbFikWCw3-FS5Hzqg7MkyjUFr8nOwWZWFfEuqYY7lKpbAu5al2acxtyqGT0eIIcmgUEDo4I6s6kY3MNyepzHrXBeQAnZR106GbsMyOBT6fDbuJA_LeW6CoRYGsmZ95W9fZ2fdvI6OPvZErwaE674cQYJ-ogzWy3B9ZQtTp0fK7AS0ZLiFVrbBlW2cRipql0OglAXnRoWfzUwP6ApKMcLUxQLHv8QqgxYt-9-h49d9fHpD7s4vFPJufnX95Tfag8ON-ND_ZJ7vNurVvoLhq1FsfSn8BQWUmDw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagCNQL70egUIOQOGW3SfxIj1Vh1UJbVUCliksUv2DVbhJtkgP8emacZJX02LMnkq357JlxvvlMyEcjpFDC2NAokYYACh7mENhDzoxhyqg9pvEe8vRMHF2wr5f8cvTUlyfta7WcFderWbH847mV1UrPB57Y_Pz0EJIMDlXUvDJufpfcgz0by1Gh7g9hqNMh2nZtspBEY5vMumERqoTGjMvYp7yjUHTzQB5FpClbchR-Fo_Ir2HiHevkatY2aqb_3dB0vNXKHpOHfVJKDzqTJ-SOLZ6S-90zlX-fkROv4AFIW2palQ3yi8C6dNT4XkpatdcVRUFoir8BaroEPEMKayj2rtAV3udbinf6dbmun5OLxZefh0dh_wpDqLmQTRhLkydO2ChP9qyQysZGWKZconIN5Q6LpDGJiSMVJ1yDn7nLkTvq9k2sUTAteUG2irKwrwh1sYtzlQpuXcpS7dKE2ZRBRaP5PsTSKCB0cEhWdWIbmS9SUpH17gvILjoq67pEN9szO-D4jDbMJgnIB2-B4hYFsmd-521dZ8c_vk-MPvVGrgSn6rxvRoB5oh7WxHJnYgm7T0-G3w-IyXAIKWuFLds6i1DcLIWCTwbkZYegzaIGBAZETrC1MUDR7-kIIMaLf_cIeX3rL3fJg_PPi-zk-OzbG7IN-R_zHfpyh2w169a-hRyrUe_8bvoPaAAojw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neurogenic+potential+of+dental+pulp+stem+cells+isolated+from+murine+incisors&rft.jtitle=Stem+cell+research+%26+therapy&rft.au=Ellis%2C+Kylie+M&rft.au=O%27Carroll%2C+David+C&rft.au=Lewis%2C+Ma&rft.au=Rychkov%2C+Grigori+Y&rft.date=2014-02-27&rft.pub=BioMed+Central+Ltd&rft.issn=1757-6512&rft.eissn=1757-6512&rft.volume=5&rft_id=info:doi/10.1186%2Fscrt419&rft.externalDocID=A541248413
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-6512&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-6512&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-6512&client=summon