Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors

The presence of growth-induced solid stresses in tumors has been suspected for some time, but these stresses were largely estimated using mathematical models. Solid stresses can deform the surrounding tissues and compress intratumoral lymphatic and blood vessels. Compression of lymphatic vessels ele...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 109; no. 38; pp. 15101 - 15108
Main Authors Stylianopoulos, Triantafyllos, Martin, John D., Chauhan, Vikash P., Jain, Saloni R., Diop-Frimpong, Benjamin, Bardeesy, Nabeel, Smith, Barbara L., Ferrone, Cristina R., Hornicek, Francis J., Boucher, Yves, Munn, Lance L., Jain, Rakesh K.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 18.09.2012
National Acad Sciences
SeriesInaugural Article
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The presence of growth-induced solid stresses in tumors has been suspected for some time, but these stresses were largely estimated using mathematical models. Solid stresses can deform the surrounding tissues and compress intratumoral lymphatic and blood vessels. Compression of lymphatic vessels elevates interstitial fluid pressure, whereas compression of blood vessels reduces blood flow. Reduced blood flow, in turn, leads to hypoxia, which promotes tumor progression, immunosuppression, inflammation, invasion, and metastasis and lowers the efficacy of chemo-, radio-, and immunotherapies. Thus, strategies designed to alleviate solid stress have the potential to improve cancer treatment. However, a lack of methods for measuring solid stress has hindered the development of solid stress-alleviating drugs. Here, we present a simple technique to estimate the growth-induced solid stress accumulated within animal and human tumors, and we show that this stress can be reduced by depleting cancer cells, fibroblasts, collagen, and/or hyaluronan, resulting in improved tumor perfusion. Furthermore, we show that therapeutic depletion of carcinoma-associated fibroblasts with an inhibitor of the sonic hedgehog pathway reduces solid stress, decompresses blood and lymphatic vessels, and increases perfusion. In addition to providing insights into the mechanopathology of tumors, our approach can serve as a rapid screen for stress-reducing and perfusion-enhancing drugs.
AbstractList The presence of growth-induced solid stresses in tumors has been suspected for some time, but these stresses were largely estimated using mathematical models. Solid stresses can deform the surrounding tissues and compress intratumoral lymphatic and blood vessels. Compression of lymphatic vessels elevates interstitial fluid pressure, whereas compression of blood vessels reduces blood flow. Reduced blood flow, in turn, leads to hypoxia, which promotes tumor progression, immunosuppression, inflammation, invasion, and metastasis and lowers the efficacy of chemo-, radio-, and immunotherapies. Thus, strategies designed to alleviate solid stress have the potential to improve cancer treatment. However, a lack of methods for measuring solid stress has hindered the development of solid stress-alleviating drugs. Here, we present a simple technique to estimate the growth-induced solid stress accumulated within animal and human tumors, and we show that this stress can be reduced by depleting cancer cells, fibroblasts, collagen, and/or hyaluronan, resulting in improved tumor perfusion. Furthermore, we show that therapeutic depletion of carcinoma-associated fibroblasts with an inhibitor of the sonic hedgehog pathway reduces solid stress, decompresses blood and lymphatic vessels, and increases perfusion. In addition to providing insights into the mechanopathology of tumors, our approach can serve as a rapid screen for stress-reducing and perfusion-enhancing drugs.
The presence of growth-induced solid stresses in tumors has been suspected for some time, but these stresses were largely estimated using mathematical models. Solid stresses can deform the surrounding tissues and compress intratumoral lymphatic and blood vessels. Compression of lymphatic vessels elevates interstitial fluid pressure, whereas compression of blood vessels reduces blood flow. Reduced blood flow, in turn, leads to hypoxia, which promotes tumor progression, immunosuppression, inflammation, invasion, and metastasis and lowers the efficacy of chemo-, radio-, and immunotherapies. Thus, strategies designed to alleviate solid stress have the potential to improve cancer treatment. However, a lack of methods for measuring solid stress has hindered the development of solid stress-alleviating drugs. Here, we present a simple technique to estimate the growth-induced solid stress accumulated within animal and human tumors, and we show that this stress can be reduced by depleting cancer cells, fibroblasts, collagen, and/or hyaluronan, resulting in improved tumor perfusion. Furthermore, we show that therapeutic depletion of carcinoma-associated fibroblasts with an inhibitor of the sonic hedgehog pathway reduces solid stress, decompresses blood and lymphatic vessels, and increases perfusion. In addition to providing insights into the mechanopathology of tumors, our approach can serve as a rapid screen for stress-reducing and perfusion-enhancing drugs.The presence of growth-induced solid stresses in tumors has been suspected for some time, but these stresses were largely estimated using mathematical models. Solid stresses can deform the surrounding tissues and compress intratumoral lymphatic and blood vessels. Compression of lymphatic vessels elevates interstitial fluid pressure, whereas compression of blood vessels reduces blood flow. Reduced blood flow, in turn, leads to hypoxia, which promotes tumor progression, immunosuppression, inflammation, invasion, and metastasis and lowers the efficacy of chemo-, radio-, and immunotherapies. Thus, strategies designed to alleviate solid stress have the potential to improve cancer treatment. However, a lack of methods for measuring solid stress has hindered the development of solid stress-alleviating drugs. Here, we present a simple technique to estimate the growth-induced solid stress accumulated within animal and human tumors, and we show that this stress can be reduced by depleting cancer cells, fibroblasts, collagen, and/or hyaluronan, resulting in improved tumor perfusion. Furthermore, we show that therapeutic depletion of carcinoma-associated fibroblasts with an inhibitor of the sonic hedgehog pathway reduces solid stress, decompresses blood and lymphatic vessels, and increases perfusion. In addition to providing insights into the mechanopathology of tumors, our approach can serve as a rapid screen for stress-reducing and perfusion-enhancing drugs.
The presence of growth-induced solid stresses in tumors has been suspected for some time, but these stresses were largely estimated using mathematical models. Solid stresses can deform the surrounding tissues and compress intratumoral lymphatic and blood vessels. Compression of lymphatic vessels elevates interstitial fluid pressure, whereas compression of blood vessels reduces blood flow. Reduced blood flow, in turn, leads to hypoxia, which promotes tumor progression, immunosuppression, inflammation, invasion, and metastasis and lowers the efficacy of chemo-, radio-, and immunotherapies. Thus, strategies designed to alleviate solid stress have the potential to improve cancer treatment. However, a lack of methods for measuring solid stress has hindered the development of solid stress-alleviating drugs. Here, we present a simple technique to estimate the growth-induced solid stress accumulated within animal and human tumors, and we show that this stress can be reduced by depleting cancer cells, fibroblasts, collagen, and/or hyaluronan, resulting in improved tumor perfusion. Furthermore, we show that therapeutic depletion of carcinoma-associated fibroblasts with an inhibitor of the sonic hedgehog pathway reduces solid stress, decompresses blood and lymphatic vessels, and increases perfusion. In addition to providing insights into the mechanopathology of tumors, our approach can serve as a rapid screen for stress-reducing and perfusion-enhancing drugs. [PUBLICATION ABSTRACT]
Author Stylianopoulos, Triantafyllos
Jain, Saloni R.
Hornicek, Francis J.
Martin, John D.
Ferrone, Cristina R.
Munn, Lance L.
Bardeesy, Nabeel
Chauhan, Vikash P.
Smith, Barbara L.
Boucher, Yves
Jain, Rakesh K.
Diop-Frimpong, Benjamin
Author_xml – sequence: 1
  givenname: Triantafyllos
  surname: Stylianopoulos
  fullname: Stylianopoulos, Triantafyllos
– sequence: 2
  givenname: John D.
  surname: Martin
  fullname: Martin, John D.
– sequence: 3
  givenname: Vikash P.
  surname: Chauhan
  fullname: Chauhan, Vikash P.
– sequence: 4
  givenname: Saloni R.
  surname: Jain
  fullname: Jain, Saloni R.
– sequence: 5
  givenname: Benjamin
  surname: Diop-Frimpong
  fullname: Diop-Frimpong, Benjamin
– sequence: 6
  givenname: Nabeel
  surname: Bardeesy
  fullname: Bardeesy, Nabeel
– sequence: 7
  givenname: Barbara L.
  surname: Smith
  fullname: Smith, Barbara L.
– sequence: 8
  givenname: Cristina R.
  surname: Ferrone
  fullname: Ferrone, Cristina R.
– sequence: 9
  givenname: Francis J.
  surname: Hornicek
  fullname: Hornicek, Francis J.
– sequence: 10
  givenname: Yves
  surname: Boucher
  fullname: Boucher, Yves
– sequence: 11
  givenname: Lance L.
  surname: Munn
  fullname: Munn, Lance L.
– sequence: 12
  givenname: Rakesh K.
  surname: Jain
  fullname: Jain, Rakesh K.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22932871$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhi1URLcLZ06gSFw4kNbfdi5IaMWXVIkLHJHlOJOuV4m92AmIf4_TXbbQA1zGsuZ5Z16P5wKdhRgAoacEXxKs2NU-2HxJKGFMMIKbB2hVIqklb_AZWmFMVa055efoIucdxrgRGj9C55Q2jGpFVujrxs4Z8qvKxZDh2wzBLTcbuirBCJ2HXPUxVTcp_pi2tQ_d7KCrchx8iVOCnCsfqnFOPsCtbDuPNlTTPMaUH6OHvR0yPDmea_Tl3dvPmw_19af3HzdvrmsnpJpqykBLxzTtJGVt03e9BNW0nRJNS0TPVWkpHDSMgNREldA6p1pFJe0sKMzW6PWh7n5ui2kHYUp2MPvkR5t-mmi9-TsT_NbcxO-GcaGZXgq8PBZIsQwhT2b02cEw2ABxzoYUhnCthfo_ijlhlHNBCvriHrqLcwplErcUJZSXf1uj53-aP7n-_UkFuDoALsWcE_QnhGCzrIFZ1sDcrUFRiHsK5yc7-bi83g__0FVHK0virktjmDZEELyYeXZAdnmK6cRworBkkrNfFy_LZA
CitedBy_id crossref_primary_10_3390_targets2030015
crossref_primary_10_1007_s11095_016_1906_4
crossref_primary_10_1016_j_neo_2016_10_001
crossref_primary_10_1038_s43856_024_00634_4
crossref_primary_10_1177_1081286517747669
crossref_primary_10_2217_nnm_2017_0324
crossref_primary_10_1016_j_thromres_2020_01_019
crossref_primary_10_1038_s41598_020_59658_0
crossref_primary_10_3390_cancers12061452
crossref_primary_10_1021_acsnano_7b06301
crossref_primary_10_1146_annurev_physiol_020518_114700
crossref_primary_10_3389_fonc_2019_00992
crossref_primary_10_1016_j_celrep_2024_114043
crossref_primary_10_3389_fonc_2023_1202750
crossref_primary_10_1016_j_bbcan_2025_189261
crossref_primary_10_15406_ppij_2024_12_00446
crossref_primary_10_1016_j_devcel_2018_02_015
crossref_primary_10_1021_acs_molpharmaceut_1c00455
crossref_primary_10_1088_2057_1739_2_1_015001
crossref_primary_10_1016_j_bbagen_2018_02_009
crossref_primary_10_3390_cancers13215549
crossref_primary_10_1109_TMI_2020_2971422
crossref_primary_10_1186_s12967_017_1142_7
crossref_primary_10_1371_journal_pone_0109208
crossref_primary_10_1096_fj_15_274761
crossref_primary_10_3390_cancers13112788
crossref_primary_10_1016_j_cobme_2020_01_004
crossref_primary_10_1007_s11831_015_9156_x
crossref_primary_10_1016_j_ccr_2014_06_004
crossref_primary_10_1016_j_ccr_2014_06_003
crossref_primary_10_1109_ACCESS_2021_3089454
crossref_primary_10_1186_1475_2867_14_41
crossref_primary_10_1016_j_actbio_2018_07_032
crossref_primary_10_1089_ten_teb_2023_0106
crossref_primary_10_1016_j_addr_2017_06_011
crossref_primary_10_1038_s41598_017_12363_x
crossref_primary_10_1158_0008_5472_CAN_15_3435
crossref_primary_10_1186_s12967_019_1817_3
crossref_primary_10_1002_cm_21680
crossref_primary_10_1007_s10237_015_0682_0
crossref_primary_10_1038_s41598_023_33651_9
crossref_primary_10_1093_annonc_mdx646
crossref_primary_10_1016_j_ijnonlinmec_2018_10_004
crossref_primary_10_1152_physrev_00048_2019
crossref_primary_10_1155_2016_7851789
crossref_primary_10_1371_journal_pone_0182973
crossref_primary_10_1016_j_biopha_2024_117230
crossref_primary_10_1016_j_jconrel_2015_08_047
crossref_primary_10_1016_j_semcancer_2019_05_004
crossref_primary_10_1016_j_ymeth_2020_02_010
crossref_primary_10_1038_s44341_025_00013_7
crossref_primary_10_1016_j_nantod_2023_101767
crossref_primary_10_3390_jcm6010007
crossref_primary_10_1016_j_medidd_2023_100158
crossref_primary_10_1016_j_jconrel_2015_08_055
crossref_primary_10_1111_cns_70333
crossref_primary_10_1016_j_ebiom_2024_105200
crossref_primary_10_1109_TMI_2015_2470093
crossref_primary_10_1016_j_csbj_2018_07_003
crossref_primary_10_1016_j_jconrel_2022_07_015
crossref_primary_10_1103_PhysRevLett_110_158102
crossref_primary_10_1038_nm_3289
crossref_primary_10_1016_j_addr_2020_07_020
crossref_primary_10_2139_ssrn_3155706
crossref_primary_10_3390_cancers15072057
crossref_primary_10_1091_mbc_E23_11_0431
crossref_primary_10_3390_ph11020048
crossref_primary_10_1016_j_addr_2016_05_021
crossref_primary_10_1038_s41598_023_46340_4
crossref_primary_10_1016_j_jconrel_2023_09_017
crossref_primary_10_1016_j_cis_2023_102930
crossref_primary_10_1016_j_jbiomech_2016_03_029
crossref_primary_10_1002_mma_10367
crossref_primary_10_1007_s10439_014_0975_y
crossref_primary_10_1063_5_0195244
crossref_primary_10_3390_ma15249082
crossref_primary_10_1039_D2TB01812H
crossref_primary_10_1098_rsif_2015_0439
crossref_primary_10_1007_s10409_017_0654_y
crossref_primary_10_18632_oncotarget_15534
crossref_primary_10_1021_acsami_7b09458
crossref_primary_10_1115_1_4037038
crossref_primary_10_1016_j_actbio_2023_12_036
crossref_primary_10_1098_rsta_2018_0074
crossref_primary_10_1021_acsnano_3c03305
crossref_primary_10_2147_IJN_S306831
crossref_primary_10_18632_oncotarget_27302
crossref_primary_10_1016_j_actbio_2022_10_021
crossref_primary_10_3390_fluids6080272
crossref_primary_10_1002_btm2_10033
crossref_primary_10_1158_0008_5472_CAN_22_0419
crossref_primary_10_18632_oncotarget_24156
crossref_primary_10_1016_j_phrs_2017_05_010
crossref_primary_10_3390_ijms252313157
crossref_primary_10_3892_or_2024_8835
crossref_primary_10_1038_s41598_023_43383_5
crossref_primary_10_1039_D3BM00363A
crossref_primary_10_1016_j_ejphar_2020_173692
crossref_primary_10_1126_sciadv_adg9593
crossref_primary_10_1007_s10456_024_09913_z
crossref_primary_10_1016_j_bpj_2016_03_040
crossref_primary_10_1098_rsta_2018_0070
crossref_primary_10_2147_IJN_S270147
crossref_primary_10_1016_j_jmps_2018_08_009
crossref_primary_10_1111_brv_12650
crossref_primary_10_1073_pnas_1518808112
crossref_primary_10_3389_fonc_2021_719836
crossref_primary_10_1158_0008_5472_CAN_18_1984
crossref_primary_10_1016_j_jtbi_2017_03_027
crossref_primary_10_1038_s42003_022_03079_4
crossref_primary_10_1016_j_bpj_2014_08_031
crossref_primary_10_1142_S0218202518500021
crossref_primary_10_1097_RUQ_0000000000000381
crossref_primary_10_1053_j_gastro_2016_03_040
crossref_primary_10_2174_0929867329666220620124138
crossref_primary_10_1016_j_jmps_2023_105342
crossref_primary_10_1097_PPO_0000000000000140
crossref_primary_10_3389_fbioe_2019_00006
crossref_primary_10_1002_adma_201404715
crossref_primary_10_1016_j_nonrwa_2020_103192
crossref_primary_10_1098_rsif_2024_0797
crossref_primary_10_1002_smtd_202200570
crossref_primary_10_1016_j_biomaterials_2016_06_048
crossref_primary_10_1021_nn405356r
crossref_primary_10_1038_s41416_020_01150_7
crossref_primary_10_1098_rsif_2019_0233
crossref_primary_10_1007_s12609_014_0143_2
crossref_primary_10_1209_0295_5075_ad1d6f
crossref_primary_10_1016_j_ultrasmedbio_2017_08_008
crossref_primary_10_1016_j_ebiom_2021_103303
crossref_primary_10_1016_j_tibtech_2016_07_006
crossref_primary_10_1172_JCI87734
crossref_primary_10_1016_j_nano_2019_102027
crossref_primary_10_3389_fonc_2019_00576
crossref_primary_10_1038_srep21417
crossref_primary_10_1016_j_drudis_2020_09_008
crossref_primary_10_1103_PhysRevFluids_7_L031101
crossref_primary_10_1109_ACCESS_2019_2929021
crossref_primary_10_3390_ijms241210082
crossref_primary_10_1186_s12943_023_01860_5
crossref_primary_10_1172_JCI73455
crossref_primary_10_1371_journal_pone_0183871
crossref_primary_10_3390_cancers15225415
crossref_primary_10_1038_s41551_023_01080_8
crossref_primary_10_1115_1_4036392
crossref_primary_10_1021_acsnano_4c08886
crossref_primary_10_1016_j_semcancer_2021_11_008
crossref_primary_10_1109_TMI_2024_3438564
crossref_primary_10_1371_journal_pcbi_1004626
crossref_primary_10_1038_s41388_023_02844_x
crossref_primary_10_1016_j_devcel_2019_03_024
crossref_primary_10_1007_s40495_014_0008_4
crossref_primary_10_1016_j_addr_2018_07_007
crossref_primary_10_1016_j_xcrm_2024_101626
crossref_primary_10_1158_2159_8290_CD_15_1177
crossref_primary_10_1088_1361_6560_acdf39
crossref_primary_10_1158_2159_8290_CD_16_0733
crossref_primary_10_1016_j_addr_2016_04_025
crossref_primary_10_1038_s41598_022_23386_4
crossref_primary_10_3389_fimmu_2022_956984
crossref_primary_10_1115_1_4044306
crossref_primary_10_1080_10255842_2022_2082245
crossref_primary_10_1242_bio_043133
crossref_primary_10_3389_fcell_2020_00687
crossref_primary_10_3389_fonc_2022_897927
crossref_primary_10_1002_adma_201900192
crossref_primary_10_3389_fcell_2021_787485
crossref_primary_10_1007_s13277_015_3230_8
crossref_primary_10_1016_j_physleta_2014_10_018
crossref_primary_10_3389_fcell_2025_1564626
crossref_primary_10_1016_j_bbcan_2015_03_004
crossref_primary_10_1016_j_jconrel_2017_06_022
crossref_primary_10_1158_2159_8290_CD_19_0094
crossref_primary_10_3892_or_2016_5169
crossref_primary_10_3390_jpm11080771
crossref_primary_10_1093_jnci_djv017
crossref_primary_10_1016_j_addr_2022_114301
crossref_primary_10_1039_C6LC00237D
crossref_primary_10_1158_1535_7163_MCT_18_0354
crossref_primary_10_1155_2014_678401
crossref_primary_10_1140_epjp_i2016_16031_9
crossref_primary_10_1016_j_jmps_2016_05_011
crossref_primary_10_1126_science_aaz0868
crossref_primary_10_1002_advs_202001917
crossref_primary_10_1016_j_biomaterials_2018_01_023
crossref_primary_10_1073_pnas_1315336110
crossref_primary_10_1039_D4TB01474J
crossref_primary_10_1007_s11012_019_01057_5
crossref_primary_10_1016_j_jmps_2018_05_014
crossref_primary_10_1007_s13346_021_00923_8
crossref_primary_10_1155_2019_8452851
crossref_primary_10_1073_pnas_1916115116
crossref_primary_10_3389_fimmu_2024_1467602
crossref_primary_10_5802_crbiol_62
crossref_primary_10_1073_pnas_1819889116
crossref_primary_10_1089_ars_2022_0118
crossref_primary_10_1038_s41596_020_0328_2
crossref_primary_10_1038_s41392_021_00544_0
crossref_primary_10_1039_C9SM01563A
crossref_primary_10_1002_gamm_201900015
crossref_primary_10_1137_24M1670226
crossref_primary_10_1021_acsbiomaterials_4c01130
crossref_primary_10_1007_s00535_013_0915_x
crossref_primary_10_1080_03007995_2024_2322057
crossref_primary_10_1371_journal_pone_0184511
crossref_primary_10_1002_med_21855
crossref_primary_10_1002_jso_28046
crossref_primary_10_1038_s41551_018_0334_7
crossref_primary_10_1038_s41592_024_02564_4
crossref_primary_10_1098_rsif_2014_1290
crossref_primary_10_1088_1367_2630_17_7_073035
crossref_primary_10_3390_bioengineering8020017
crossref_primary_10_3389_fimmu_2020_00223
crossref_primary_10_3390_bioengineering11040328
crossref_primary_10_1016_j_jmps_2017_12_015
crossref_primary_10_1016_j_biomaterials_2021_121058
crossref_primary_10_1103_PhysRevX_13_011036
crossref_primary_10_1002_advs_202201931
crossref_primary_10_1073_pnas_2220062120
crossref_primary_10_3390_cells11233840
crossref_primary_10_1038_s41467_019_08759_0
crossref_primary_10_1016_j_jmps_2024_105627
crossref_primary_10_1186_s12967_025_06306_8
crossref_primary_10_1016_j_semcdb_2018_08_002
crossref_primary_10_3390_cancers15010196
crossref_primary_10_1098_rspa_2019_0364
crossref_primary_10_1039_C6CS00592F
crossref_primary_10_1103_PhysRevApplied_23_010501
crossref_primary_10_1088_1361_665X_acf79a
crossref_primary_10_3389_fonc_2024_1388700
crossref_primary_10_1016_j_jtbi_2017_08_021
crossref_primary_10_1007_s00285_018_1243_9
crossref_primary_10_1371_journal_pone_0161267
crossref_primary_10_1002_bies_201500090
crossref_primary_10_1200_JCO_2012_46_3653
crossref_primary_10_1111_cas_15853
crossref_primary_10_1002_adbi_201900128
crossref_primary_10_1016_j_nano_2015_10_020
crossref_primary_10_3892_ijo_2015_2816
crossref_primary_10_1146_annurev_fluid_120710_101102
crossref_primary_10_1038_s41551_018_0201_6
crossref_primary_10_1007_s12668_015_0187_4
crossref_primary_10_1007_s11033_023_08931_2
crossref_primary_10_1016_j_jmps_2020_104097
crossref_primary_10_1073_pnas_1818357116
crossref_primary_10_3390_math9182213
crossref_primary_10_1016_j_mbm_2023_100025
crossref_primary_10_3389_fonc_2015_00214
crossref_primary_10_1002_sstr_202100164
crossref_primary_10_1021_acs_bioconjchem_6b00437
crossref_primary_10_1021_acsami_2c08951
crossref_primary_10_1080_19475411_2018_1529002
crossref_primary_10_1083_jcb_201505056
crossref_primary_10_1038_s42003_024_07268_1
crossref_primary_10_1146_annurev_cancerbio_050216_034431
crossref_primary_10_1091_mbc_E20_10_0676
crossref_primary_10_1186_s12885_019_5449_z
crossref_primary_10_1038_s41571_019_0308_z
crossref_primary_10_1002_adtp_202000206
crossref_primary_10_1016_j_yexcr_2022_113317
crossref_primary_10_1016_j_jmps_2017_04_002
crossref_primary_10_1016_j_biomaterials_2019_119745
crossref_primary_10_1016_j_cllc_2016_07_008
crossref_primary_10_1158_1078_0432_CCR_19_3717
crossref_primary_10_1007_s00249_016_1176_4
crossref_primary_10_1371_journal_pcbi_1007053
crossref_primary_10_1038_s41551_023_01121_2
crossref_primary_10_1038_s41598_023_38862_8
crossref_primary_10_1002_num_23159
crossref_primary_10_1016_j_jmps_2020_103936
crossref_primary_10_1007_s00466_024_02471_7
crossref_primary_10_1016_j_bbcan_2020_188418
crossref_primary_10_1073_pnas_2106061118
crossref_primary_10_1016_j_tibs_2021_05_005
crossref_primary_10_3390_cancers14163994
crossref_primary_10_1038_s41598_018_37425_6
crossref_primary_10_3389_fimmu_2018_02740
crossref_primary_10_1158_1078_0432_CCR_17_0256
crossref_primary_10_1007_s10544_016_0128_1
crossref_primary_10_1002_cbin_12004
crossref_primary_10_1007_s10439_018_1997_7
crossref_primary_10_1016_j_hpb_2022_12_002
crossref_primary_10_3390_cancers15184425
crossref_primary_10_1007_s10659_016_9619_9
crossref_primary_10_1016_j_mtbio_2025_101602
crossref_primary_10_1088_1478_3975_ad3ac5
crossref_primary_10_1038_ncomms14056
crossref_primary_10_3390_cancers11050716
crossref_primary_10_1038_s43856_021_00020_4
crossref_primary_10_1002_cnm_3675
crossref_primary_10_1038_nrc_2017_93
crossref_primary_10_1002_smll_202007494
crossref_primary_10_34087_cbusbed_840635
crossref_primary_10_3390_cancers13174444
crossref_primary_10_1021_jacs_2c07287
crossref_primary_10_1038_s41598_019_43090_0
crossref_primary_10_3390_cancers13174442
crossref_primary_10_1002_adma_201904337
crossref_primary_10_1063_1_4979474
crossref_primary_10_1158_1078_0432_CCR_22_1630
crossref_primary_10_1039_c3lc50487e
crossref_primary_10_3390_ijms23137091
crossref_primary_10_1016_j_xcrp_2024_102022
crossref_primary_10_1016_j_ijmecsci_2024_109061
crossref_primary_10_1101_cshperspect_a027094
crossref_primary_10_3390_cancers11050729
crossref_primary_10_1038_s41467_024_55658_0
crossref_primary_10_1016_j_phrs_2019_104401
crossref_primary_10_1038_nrc_2017_83
crossref_primary_10_3390_cancers15184562
crossref_primary_10_3390_bioengineering4030064
crossref_primary_10_1002_cac2_12294
crossref_primary_10_1038_cddis_2017_73
crossref_primary_10_1016_j_addr_2022_114319
crossref_primary_10_1158_1541_7786_MCR_21_0711
crossref_primary_10_1016_j_jconrel_2023_08_011
crossref_primary_10_1186_s12943_020_01169_7
crossref_primary_10_1038_s42003_019_0553_9
crossref_primary_10_3390_cancers11121855
crossref_primary_10_1177_1081286520975086
crossref_primary_10_1103_PhysRevLett_125_128103
crossref_primary_10_1016_j_lfs_2023_122084
crossref_primary_10_1109_TBME_2019_2963562
crossref_primary_10_1364_BOE_7_003610
crossref_primary_10_1021_acs_molpharmaceut_8b00842
crossref_primary_10_1039_C8LC00970H
crossref_primary_10_3390_cancers13040601
crossref_primary_10_1016_j_nano_2015_07_015
crossref_primary_10_1016_j_actbio_2023_06_007
crossref_primary_10_3390_ijms25073740
crossref_primary_10_1016_j_bpj_2024_01_017
crossref_primary_10_1016_j_canlet_2015_12_019
crossref_primary_10_1038_s41598_025_88537_9
crossref_primary_10_1158_0008_5472_CAN_16_1646
crossref_primary_10_1038_ncomms3516
crossref_primary_10_1101_cshperspect_a041540
crossref_primary_10_1371_journal_pone_0217227
crossref_primary_10_2140_memocs_2023_11_57
crossref_primary_10_1002_adhm_202300089
crossref_primary_10_1158_1535_7163_MCT_23_0772
crossref_primary_10_1016_j_trecan_2018_02_010
crossref_primary_10_1080_21691401_2023_2270023
crossref_primary_10_1007_s10439_024_03569_y
crossref_primary_10_1155_2019_9645481
crossref_primary_10_1016_j_trecan_2017_07_006
crossref_primary_10_1016_j_bpj_2013_02_048
crossref_primary_10_1007_s13346_019_00679_2
crossref_primary_10_1088_2057_1976_ac3056
crossref_primary_10_1098_rsfs_2022_0038
crossref_primary_10_1186_s12943_018_0815_z
crossref_primary_10_1038_s41467_023_42382_4
crossref_primary_10_1002_mp_13434
crossref_primary_10_1002_jgm_3491
crossref_primary_10_1016_j_trecan_2018_02_005
crossref_primary_10_1021_acsomega_3c06451
crossref_primary_10_1073_pnas_2025236118
crossref_primary_10_1080_1061186X_2021_1927056
crossref_primary_10_3390_pharmaceutics15061742
crossref_primary_10_3389_fphys_2014_00141
crossref_primary_10_1080_1061186X_2018_1452243
crossref_primary_10_7554_eLife_01967
crossref_primary_10_1021_acsami_1c02338
crossref_primary_10_1002_adma_202313953
crossref_primary_10_1039_D3QI00376K
crossref_primary_10_1146_annurev_bioeng_110220_115419
crossref_primary_10_1021_acs_molpharmaceut_0c00014
crossref_primary_10_1038_s41467_023_36739_y
crossref_primary_10_1111_his_14163
crossref_primary_10_3390_cancers13092053
crossref_primary_10_1038_s41598_017_08838_6
crossref_primary_10_1111_micc_12584
crossref_primary_10_1021_acsabm_4c01301
crossref_primary_10_1016_j_jconrel_2022_03_008
crossref_primary_10_1073_pnas_1919764117
crossref_primary_10_3390_bioengineering11090900
crossref_primary_10_1016_j_neo_2024_100990
crossref_primary_10_1088_1478_3975_10_6_065003
crossref_primary_10_1158_1535_7163_MCT_15_0314
crossref_primary_10_1101_cshperspect_a028662
crossref_primary_10_1186_s12976_020_00126_7
crossref_primary_10_4251_wjgo_v10_i8_202
crossref_primary_10_1016_j_addr_2023_115051
crossref_primary_10_1039_C8NR06146G
crossref_primary_10_1002_advs_202100233
crossref_primary_10_18632_oncotarget_16062
crossref_primary_10_1038_s41418_023_01166_5
crossref_primary_10_1016_j_addr_2021_04_015
crossref_primary_10_3390_cancers13174354
crossref_primary_10_3389_fphar_2018_01230
crossref_primary_10_3390_biom14020184
crossref_primary_10_1073_pnas_1117610109
crossref_primary_10_3389_fcell_2023_1239749
crossref_primary_10_1039_C9BM01843C
crossref_primary_10_2174_1381612826666200728141601
crossref_primary_10_1016_j_ceb_2023_102305
crossref_primary_10_1073_pnas_1318415110
crossref_primary_10_3389_fonc_2023_1273154
crossref_primary_10_3389_fphar_2017_00952
crossref_primary_10_1016_j_ccell_2014_10_006
crossref_primary_10_1002_ange_201506262
crossref_primary_10_1016_j_jmbbm_2018_06_011
crossref_primary_10_1007_s00707_023_03582_7
crossref_primary_10_1016_j_ejca_2023_112938
crossref_primary_10_1021_acs_biomac_0c01287
crossref_primary_10_1038_s12276_021_00688_7
crossref_primary_10_1111_cas_15929
crossref_primary_10_3389_fphar_2020_586599
crossref_primary_10_3390_biom12121862
crossref_primary_10_1016_j_celrep_2018_02_035
crossref_primary_10_1126_scitranslmed_abd4816
crossref_primary_10_1002_adma_202303831
crossref_primary_10_1093_carcin_bgu108
crossref_primary_10_1007_s10555_024_10169_8
crossref_primary_10_3389_fphys_2020_00365
crossref_primary_10_1080_10717544_2019_1588423
crossref_primary_10_1007_s10237_019_01231_4
crossref_primary_10_2147_DDDT_S314361
crossref_primary_10_1115_1_4046520
crossref_primary_10_1038_s41598_021_89288_z
crossref_primary_10_1002_bies_202100285
crossref_primary_10_1002_anie_201506262
crossref_primary_10_1016_j_ejphar_2023_175991
crossref_primary_10_3390_cancers11071008
crossref_primary_10_1177_10812865241230269
crossref_primary_10_1109_JTEHM_2019_2932059
crossref_primary_10_1186_s12951_022_01311_1
crossref_primary_10_1158_2159_8290_CD_15_0671
crossref_primary_10_1038_s41598_019_44694_2
crossref_primary_10_1038_s42003_024_05883_6
crossref_primary_10_1016_j_biomaterials_2016_04_015
crossref_primary_10_1080_1061186X_2020_1808000
crossref_primary_10_1093_pnasnexus_pgae141
crossref_primary_10_1016_j_biomaterials_2016_04_016
crossref_primary_10_1109_TBME_2019_2929134
crossref_primary_10_1002_adtp_202000289
crossref_primary_10_1021_acsnano_2c12463
crossref_primary_10_1088_1361_6560_aae572
crossref_primary_10_1016_j_pan_2020_02_006
crossref_primary_10_1371_journal_pcbi_1005259
crossref_primary_10_1016_j_jbiomech_2018_01_007
crossref_primary_10_1016_j_jncc_2021_11_007
crossref_primary_10_1016_j_biopha_2023_116117
crossref_primary_10_1016_j_tranon_2024_101944
crossref_primary_10_1007_s10483_025_3230_9
crossref_primary_10_1038_s41467_023_35935_0
crossref_primary_10_1016_j_jvir_2024_11_014
crossref_primary_10_1021_acsnano_8b07865
crossref_primary_10_3389_fonc_2022_1039378
crossref_primary_10_1016_j_compbiomed_2023_107651
crossref_primary_10_1007_s11538_023_01141_8
crossref_primary_10_3389_fcell_2022_1038107
crossref_primary_10_1137_20M1372093
crossref_primary_10_1158_1078_0432_CCR_18_2684
crossref_primary_10_1038_nprot_2018_020
crossref_primary_10_1038_s41421_024_00737_1
crossref_primary_10_1042_ETLS20180049
crossref_primary_10_26508_lsa_202201862
crossref_primary_10_1080_11101849_2022_2112014
crossref_primary_10_1016_j_devcel_2020_10_011
crossref_primary_10_1016_j_ijpharm_2023_123512
crossref_primary_10_1111_php_13209
crossref_primary_10_3390_ijms19103028
crossref_primary_10_1038_s41467_018_04245_1
crossref_primary_10_1002_adhm_202202514
crossref_primary_10_3389_fcell_2022_798165
crossref_primary_10_1007_s00033_022_01692_1
crossref_primary_10_1016_j_jtbi_2019_110099
crossref_primary_10_1038_s41551_016_0004
crossref_primary_10_1158_2326_6066_CIR_14_0076
crossref_primary_10_1073_pnas_1711204114
crossref_primary_10_1038_s41467_022_34744_1
crossref_primary_10_17816_gc631097
crossref_primary_10_1016_j_bbcan_2020_188356
crossref_primary_10_1115_1_4034991
crossref_primary_10_1371_journal_pone_0221753
crossref_primary_10_1136_gutjnl_2013_306271
crossref_primary_10_1002_smtd_202401860
crossref_primary_10_1038_s41563_024_01961_6
crossref_primary_10_1007_s00466_018_1589_2
crossref_primary_10_1016_j_jmps_2024_105660
crossref_primary_10_1038_s41568_024_00745_z
crossref_primary_10_1016_j_msec_2020_111229
crossref_primary_10_1016_j_procbio_2016_10_017
crossref_primary_10_1016_j_semcancer_2022_02_006
crossref_primary_10_1111_php_13339
crossref_primary_10_1038_s41467_018_07967_4
crossref_primary_10_1016_j_yexcr_2017_02_019
crossref_primary_10_1158_1535_7163_MCT_15_0764
crossref_primary_10_1038_s41551_016_0012
crossref_primary_10_1016_j_bpj_2024_02_017
crossref_primary_10_1038_s44222_023_00138_1
crossref_primary_10_1038_srep46140
crossref_primary_10_3389_fonc_2021_805628
crossref_primary_10_1016_j_jneuroim_2013_04_010
crossref_primary_10_1016_j_ijrobp_2013_04_052
crossref_primary_10_1039_D1NR01552D
crossref_primary_10_1038_s42003_021_02662_5
crossref_primary_10_1039_C9SM01628G
crossref_primary_10_1111_apha_14164
crossref_primary_10_1002_aic_17747
crossref_primary_10_1038_s41598_019_47593_8
crossref_primary_10_1039_D0TB00098A
crossref_primary_10_3389_fonc_2018_00145
crossref_primary_10_1002_adtp_202100147
crossref_primary_10_3390_jcm9051314
crossref_primary_10_1038_nrclinonc_2014_126
crossref_primary_10_3934_math_20231176
crossref_primary_10_1038_s41467_023_39085_1
crossref_primary_10_18632_oncotarget_10471
crossref_primary_10_3390_mi13050739
crossref_primary_10_3389_fcell_2022_908389
crossref_primary_10_1063_1_5052455
crossref_primary_10_1016_j_jconrel_2025_01_078
crossref_primary_10_1016_j_canlet_2017_02_020
crossref_primary_10_1371_journal_pcbi_1009701
crossref_primary_10_1007_s12195_014_0338_7
crossref_primary_10_1109_TMI_2016_2597313
crossref_primary_10_1016_j_jmps_2022_105087
crossref_primary_10_1142_S021820251650055X
crossref_primary_10_1140_epjp_i2015_15224_0
crossref_primary_10_3390_cancers14040884
crossref_primary_10_1039_C9LC00550A
crossref_primary_10_1186_s40364_025_00727_9
crossref_primary_10_3390_antiox10111801
crossref_primary_10_1142_S0219519418500069
crossref_primary_10_1038_s41568_019_0221_x
crossref_primary_10_1364_BOE_388360
crossref_primary_10_1016_j_ymeth_2015_07_009
crossref_primary_10_1002_wsbm_1370
crossref_primary_10_1016_j_envres_2024_120214
crossref_primary_10_1016_j_ijpharm_2016_05_047
crossref_primary_10_1016_j_ifacol_2016_12_141
crossref_primary_10_1016_j_cmpb_2021_106476
crossref_primary_10_1126_sciadv_ade8672
crossref_primary_10_1007_s10237_017_0989_0
crossref_primary_10_1007_s00253_024_13211_5
crossref_primary_10_1016_j_biomaterials_2023_122073
crossref_primary_10_1515_nanoph_2021_0119
crossref_primary_10_1126_scitranslmed_aaf5219
crossref_primary_10_1371_journal_pone_0104717
crossref_primary_10_1158_1078_0432_CCR_24_0246
crossref_primary_10_1155_2022_3113857
crossref_primary_10_1002_pbc_28983
crossref_primary_10_3390_cells13010096
crossref_primary_10_1016_j_tranon_2016_07_004
crossref_primary_10_1021_acsbiomaterials_2c00998
crossref_primary_10_1007_s13346_018_00610_1
crossref_primary_10_3390_cells9112464
crossref_primary_10_1007_s10409_021_01061_7
crossref_primary_10_1016_j_jbiomech_2016_12_035
crossref_primary_10_1002_zamm_201700270
crossref_primary_10_3109_03008207_2015_1047929
crossref_primary_10_1007_s13139_019_00598_7
crossref_primary_10_1002_wnan_1730
crossref_primary_10_1126_sciadv_abb9200
crossref_primary_10_1146_annurev_bioeng_071813_105259
crossref_primary_10_1016_j_jconrel_2014_12_018
crossref_primary_10_1016_j_jconrel_2024_10_011
crossref_primary_10_1007_s10237_015_0745_2
crossref_primary_10_1002_anbr_202100056
crossref_primary_10_1007_s00285_018_1292_0
crossref_primary_10_1016_j_neo_2022_100793
crossref_primary_10_1016_j_pan_2016_04_004
crossref_primary_10_1038_s41467_020_18469_7
crossref_primary_10_1073_pnas_1709079114
crossref_primary_10_1002_ijc_28608
crossref_primary_10_1007_s10237_024_01890_y
crossref_primary_10_1002_smll_201300600
crossref_primary_10_1038_srep24390
crossref_primary_10_3389_fonc_2024_1459313
crossref_primary_10_1016_j_cis_2024_103124
crossref_primary_10_1021_acs_chemrev_3c00062
crossref_primary_10_1016_j_yexcr_2018_07_022
crossref_primary_10_1098_rsif_2015_0343
crossref_primary_10_1016_j_biomaterials_2017_10_014
crossref_primary_10_1158_1541_7786_MCR_21_0266
crossref_primary_10_1371_journal_pone_0193801
crossref_primary_10_3390_biomedicines10112763
crossref_primary_10_1007_s10555_024_10166_x
crossref_primary_10_1038_bjc_2012_592
crossref_primary_10_3389_fcell_2022_954099
crossref_primary_10_1002_jso_27890
crossref_primary_10_2174_1567201818666210729110127
crossref_primary_10_1158_0008_5472_CAN_17_1058
crossref_primary_10_1371_journal_pone_0228443
crossref_primary_10_1016_j_bbcan_2014_12_001
crossref_primary_10_1242_jcs_240861
crossref_primary_10_1007_s10620_014_3064_z
crossref_primary_10_1140_epje_i2016_16092_7
crossref_primary_10_1002_1878_0261_12599
crossref_primary_10_1038_s41556_018_0131_2
crossref_primary_10_1038_nature14329
crossref_primary_10_1016_j_plrev_2023_01_017
crossref_primary_10_3390_cancers13102427
crossref_primary_10_1016_j_ijmecsci_2024_109720
crossref_primary_10_1021_acsbiomaterials_5b00172
crossref_primary_10_1016_j_biomaterials_2017_10_024
crossref_primary_10_1016_j_jbiomech_2014_09_019
crossref_primary_10_1177_0300891619871103
crossref_primary_10_1158_1078_0432_CCR_14_1051
crossref_primary_10_3389_fcell_2021_655152
crossref_primary_10_3389_fbioe_2019_00412
crossref_primary_10_1371_journal_pone_0253804
crossref_primary_10_1073_pnas_1815515116
crossref_primary_10_1007_s12195_024_00824_z
crossref_primary_10_1016_j_ijengsci_2022_103730
crossref_primary_10_1007_s00424_018_2146_8
crossref_primary_10_1016_j_biomaterials_2015_02_082
crossref_primary_10_1038_oncsis_2017_74
crossref_primary_10_1038_s41571_024_00886_y
crossref_primary_10_1158_0008_5472_CAN_12_4521
crossref_primary_10_1016_j_jconrel_2020_08_024
crossref_primary_10_3390_cancers12102785
crossref_primary_10_3390_fluids9090215
crossref_primary_10_1016_j_scib_2019_04_017
crossref_primary_10_1158_1078_0432_CCR_17_3284
crossref_primary_10_3390_biomedicines10092292
crossref_primary_10_1016_j_mbplus_2022_100109
crossref_primary_10_1115_1_4044048
crossref_primary_10_3389_fphy_2022_910036
crossref_primary_10_1039_D1SM01618K
crossref_primary_10_1016_j_biomaterials_2020_120166
crossref_primary_10_1039_D2BM01691E
crossref_primary_10_1158_1078_0432_CCR_14_2018
crossref_primary_10_1109_TBME_2021_3085523
crossref_primary_10_1038_bjc_2012_569
crossref_primary_10_1016_j_bbcan_2022_188792
crossref_primary_10_3390_cancers11040491
crossref_primary_10_1038_s41568_025_00796_w
crossref_primary_10_1016_j_tranon_2021_101105
crossref_primary_10_1016_j_addr_2021_113847
crossref_primary_10_1016_j_biopha_2022_114015
crossref_primary_10_1016_j_media_2015_04_002
crossref_primary_10_1038_nmat3792
crossref_primary_10_1016_j_jconrel_2019_06_014
crossref_primary_10_1016_j_tranon_2021_101107
crossref_primary_10_1039_D0BM00516A
crossref_primary_10_1016_j_jmps_2020_104205
crossref_primary_10_1016_j_matbio_2023_01_002
crossref_primary_10_3389_fonc_2018_00055
crossref_primary_10_1016_j_jconrel_2024_12_048
crossref_primary_10_1038_s41567_018_0194_9
crossref_primary_10_1038_s41598_017_09520_7
crossref_primary_10_1021_acsbiomaterials_7b00130
crossref_primary_10_1038_s41598_019_57364_0
Cites_doi 10.1038/nrc1877
10.1002/path.1700620303
10.1114/1.1554923
10.1006/mvre.1996.2005
10.1016/j.cell.2006.06.044
10.1152/physrev.00038.2010
10.1073/pnas.1016234107
10.1158/0008-5472.CAN-06-4102
10.1371/journal.pone.0004632
10.1038/nm0901-987
10.1126/science.1183057
10.1016/S0002-9440(10)64309-X
10.1158/0008-5472.CAN-11-2464
10.1158/0008-5472.CAN-05-2242
10.1038/nrd3455
10.1073/pnas.95.8.4607
10.1016/j.ccr.2012.01.007
10.1126/science.1171362
10.1006/mvre.1996.0041
10.1158/0008-5472.CAN-09-0814
10.1016/S0026-2862(03)00057-8
10.1158/1078-0432.CCR-08-0291
10.1053/j.seminoncol.2011.09.004
10.1115/1.3138600
10.1038/nrclinonc.2010.139
10.1007/s10439-011-0310-9
10.1038/nm879
10.1073/pnas.1118910109
10.1038/nmeth.1295
10.1038/nature10144
10.1038/nbt0897-778
10.1016/0026-2862(89)90074-5
10.1126/science.1071420
10.1126/science.1104819
10.1038/nature10169
10.1038/427695a
10.1007/BF01834825
10.1073/pnas.1018154108
10.1016/j.ccr.2004.10.011
10.1109/MEMB.2009.932486
10.1158/0008-5472.CAN-04-0074
10.1073/pnas.1018892108
10.1007/s10439-010-0097-0
10.1038/sj.bjc.6600158
10.1006/mvre.1995.1051
10.1016/j.ccr.2005.04.023
10.1016/j.cell.2009.10.027
10.1016/j.ccr.2006.11.021
10.1007/s10237-008-0131-4
10.1200/JCO.2008.21.1771
10.1038/nrc3064
10.1016/j.cell.2011.05.040
10.1038/nnano.2012.45
10.1115/1.2834884
ContentType Journal Article
Copyright copyright © 1993-2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Sep 18, 2012
Copyright_xml – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Sep 18, 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1213353109
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE
MEDLINE - Academic

Virology and AIDS Abstracts
CrossRef


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Growth-induced solid stress in tumors
EISSN 1091-6490
EndPage 15108
ExternalDocumentID PMC3458380
2766198391
22932871
10_1073_pnas_1213353109
109_38_15101
41706364
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P01CA080124
– fundername: NCI NIH HHS
  grantid: R01 CA126642
– fundername: NCI NIH HHS
  grantid: P01 CA117969
– fundername: NCI NIH HHS
  grantid: R01CA126642
– fundername: NCI NIH HHS
  grantid: P01 CA080124
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c567t-23e86c382d623b9fdf6e79bd759b15f47ced5ce931e6817e68bcc7b7262dae703
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 13:53:46 EDT 2025
Thu Jul 10 20:38:05 EDT 2025
Fri Jul 11 07:23:34 EDT 2025
Mon Jun 30 08:40:24 EDT 2025
Mon Jul 21 06:05:24 EDT 2025
Thu Apr 24 22:59:41 EDT 2025
Tue Jul 01 03:39:27 EDT 2025
Wed Nov 11 00:30:20 EST 2020
Thu May 29 08:40:49 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 38
Language English
License Freely available online through the PNAS open access option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c567t-23e86c382d623b9fdf6e79bd759b15f47ced5ce931e6817e68bcc7b7262dae703
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: T.S., J.D.M., V.P.C., and R.K.J. designed research; T.S., J.D.M., V.P.C., S.R.J., and B.D.-F. performed research; N.B., B.L.S., C.R.F., and F.J.H. contributed new reagents/analytic tools; T.S., J.D.M., V.P.C., Y.B., L.L.M., and R.K.J. analyzed data; and T.S., J.D.M., L.L.M., and R.K.J. wrote the paper.
Contributed by Rakesh K. Jain, August 2, 2012 (sent for review December 5, 2011)
This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2009.
1T.S. and J.D.M. contributed equally to this work.
OpenAccessLink https://www.pnas.org/content/pnas/109/38/15101.full.pdf
PMID 22932871
PQID 1041212435
PQPubID 42026
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3458380
proquest_journals_1041212435
pnas_primary_109_38_15101
proquest_miscellaneous_1803148857
jstor_primary_41706364
crossref_primary_10_1073_pnas_1213353109
proquest_miscellaneous_1041324451
pubmed_primary_22932871
crossref_citationtrail_10_1073_pnas_1213353109
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-09-18
PublicationDateYYYYMMDD 2012-09-18
PublicationDate_xml – month: 09
  year: 2012
  text: 2012-09-18
  day: 18
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle Inaugural Article
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2012
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_50_2
Jain RK (e_1_3_3_56_2) 1988; 48
Netti PA (e_1_3_3_49_2) 2000; 60
Boucher Y (e_1_3_3_5_2) 1990; 50
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_37_2
e_1_3_3_58_2
Jain RK (e_1_3_3_3_2) 1988; 48
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_31_2
e_1_3_3_52_2
Boucher Y (e_1_3_3_6_2) 1991; 51
e_1_3_3_40_2
e_1_3_3_61_2
Less JR (e_1_3_3_8_2) 1992; 52
Boucher Y (e_1_3_3_9_2) 1992; 52
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_65_2
e_1_3_3_21_2
e_1_3_3_63_2
e_1_3_3_51_2
Boucher Y (e_1_3_3_12_2) 1996; 56
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
Gutmann R (e_1_3_3_10_2) 1992; 52
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
Nagy JA (e_1_3_3_42_2) 1989; 948
e_1_3_3_62_2
Roh HD (e_1_3_3_7_2) 1991; 51
e_1_3_3_60_2
e_1_3_3_28_2
e_1_3_3_24_2
e_1_3_3_47_2
Griffon-Etienne G (e_1_3_3_17_2) 1999; 59
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
3191477 - Cancer Res. 1988 Dec 15;48(24 Pt 1):7022-32
14609526 - Microvasc Res. 2003 Nov;66(3):204-12
3282647 - Cancer Res. 1988 May 15;48(10):2641-58
8538498 - Microvasc Res. 1995 Sep;50(2):175-82
12680730 - Ann Biomed Eng. 2003 Mar;31(3):327-35
9255794 - Nat Biotechnol. 1997 Aug;15(8):778-83
19470921 - J Clin Oncol. 2009 Jun 20;27(18):3020-6
1742744 - Cancer Res. 1991 Dec 15;51(24):6695-8
22127927 - Cancer Res. 2012 Jan 15;72(2):402-7
22484912 - Nat Nanotechnol. 2012 Jun;7(6):383-8
8812751 - Microvasc Res. 1996 Jul;52(1):27-46
2465781 - Biochim Biophys Acta. 1989 Feb;948(3):305-26
21729786 - Cell. 2011 Jul 8;146(1):148-63
15637262 - Science. 2005 Jan 7;307(5706):58-62
1742743 - Cancer Res. 1991 Dec 15;51(24):6691-4
10412454 - J Biomech Eng. 1998 Dec;120(6):715-9
19247489 - PLoS One. 2009;4(2):e4632
21753853 - Nature. 2011 Jul 14;475(7355):226-30
19549889 - Cancer Res. 2009 Jul 1;69(13):5296-300
22439937 - Cancer Cell. 2012 Mar 20;21(3):418-29
21098274 - Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21677-82
19457729 - IEEE Eng Med Biol Mag. 2009 May-Jun;28(3):10-8
1551128 - Cancer Res. 1992 Apr 1;52(7):1993-5
15607960 - Cancer Cell. 2004 Dec;6(6):553-63
11533692 - Nat Med. 2001 Sep;7(9):987-9
9143544 - Microvasc Res. 1997 Mar;53(2):128-41
11953828 - Br J Cancer. 2002 Mar 18;86(6):947-53
19931152 - Cell. 2009 Nov 25;139(5):891-906
22203958 - Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):911-6
17363594 - Cancer Res. 2007 Mar 15;67(6):2729-35
12754503 - Nat Med. 2003 Jun;9(6):796-800
20559731 - Ann Biomed Eng. 2010 Nov;38(11):3509-20
16572188 - Nat Rev Cancer. 2006 May;6(5):392-401
14973470 - Nature. 2004 Feb 19;427(6976):695
21282607 - Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):2909-14
21629292 - Nat Rev Drug Discov. 2011 Jun;10(6):417-27
19151720 - Nat Methods. 2009 Feb;6(2):143-5
21742796 - Physiol Rev. 2011 Jul;91(3):1071-121
17222792 - Cancer Cell. 2007 Jan;11(1):83-95
21606941 - Nat Rev Cancer. 2011 Jun;11(6):393-410
1423283 - Cancer Res. 1992 Nov 15;52(22):6371-4
18651186 - Biomech Model Mechanobiol. 2009 Aug;8(4):253-62
20838415 - Nat Rev Clin Oncol. 2010 Nov;7(11):653-64
20378772 - Science. 2010 May 21;328(5981):1031-5
8858855 - J Math Biol. 1996;34(8):889-914
15894267 - Cancer Cell. 2005 May;7(5):469-83
14784896 - J Pathol Bacteriol. 1950 Jul;62(3):313-33
21491153 - Ann Biomed Eng. 2011 Jul;39(7):1849-56
8797602 - Cancer Res. 1996 Sep 15;56(18):4264-6
9539785 - Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4607-12
2646512 - Microvasc Res. 1989 Jan;37(1):77-104
21224417 - Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):1799-803
12759232 - Am J Pathol. 2003 Jun;162(6):1747-57
10811131 - Cancer Res. 2000 May 1;60(9):2497-503
1516068 - Cancer Res. 1992 Sep 15;52(18):5110-4
10446995 - Cancer Res. 1999 Aug 1;59(15):3776-82
18829478 - Clin Cancer Res. 2008 Oct 1;14(19):5995-6004
19460966 - Science. 2009 Jun 12;324(5933):1457-61
3079517 - J Biomech Eng. 1986 May;108(2):189-92
22055968 - Semin Oncol. 2011 Oct;38 Suppl 3:S19-29
21593862 - Nature. 2011 May 19;473(7347):298-307
16510565 - Cancer Res. 2006 Mar 1;66(5):2509-13
15172975 - Cancer Res. 2004 Jun 1;64(11):3731-6
16923388 - Cell. 2006 Aug 25;126(4):677-89
11976409 - Science. 2002 Jun 7;296(5574):1883-6
2369726 - Cancer Res. 1990 Aug 1;50(15):4478-84
References_xml – ident: e_1_3_3_44_2
  doi: 10.1038/nrc1877
– ident: e_1_3_3_2_2
  doi: 10.1002/path.1700620303
– volume: 59
  start-page: 3776
  year: 1999
  ident: e_1_3_3_17_2
  article-title: Taxane-induced apoptosis decompresses blood vessels and lowers interstitial fluid pressure in solid tumors: Clinical implications
  publication-title: Cancer Res
– ident: e_1_3_3_38_2
  doi: 10.1114/1.1554923
– ident: e_1_3_3_20_2
  doi: 10.1006/mvre.1996.2005
– ident: e_1_3_3_62_2
  doi: 10.1016/j.cell.2006.06.044
– ident: e_1_3_3_22_2
  doi: 10.1152/physrev.00038.2010
– ident: e_1_3_3_41_2
  doi: 10.1073/pnas.1016234107
– ident: e_1_3_3_15_2
  doi: 10.1158/0008-5472.CAN-06-4102
– volume: 60
  start-page: 2497
  year: 2000
  ident: e_1_3_3_49_2
  article-title: Role of extracellular matrix assembly in interstitial transport in solid tumors
  publication-title: Cancer Res
– ident: e_1_3_3_32_2
  doi: 10.1371/journal.pone.0004632
– ident: e_1_3_3_21_2
  doi: 10.1038/nm0901-987
– ident: e_1_3_3_65_2
  doi: 10.1126/science.1183057
– ident: e_1_3_3_43_2
  doi: 10.1016/S0002-9440(10)64309-X
– ident: e_1_3_3_29_2
  doi: 10.1158/0008-5472.CAN-11-2464
– ident: e_1_3_3_51_2
  doi: 10.1158/0008-5472.CAN-05-2242
– volume: 51
  start-page: 6695
  year: 1991
  ident: e_1_3_3_7_2
  article-title: Interstitial hypertension in carcinoma of uterine cervix in patients: Possible correlation with tumor oxygenation and radiation response
  publication-title: Cancer Res
– volume: 56
  start-page: 4264
  year: 1996
  ident: e_1_3_3_12_2
  article-title: Tumor angiogenesis and interstitial hypertension
  publication-title: Cancer Res
– volume: 52
  start-page: 1993
  year: 1992
  ident: e_1_3_3_10_2
  article-title: Interstitial hypertension in head and neck tumors in patients: Correlation with tumor size
  publication-title: Cancer Res
– ident: e_1_3_3_26_2
  doi: 10.1038/nrd3455
– ident: e_1_3_3_16_2
  doi: 10.1073/pnas.95.8.4607
– ident: e_1_3_3_39_2
  doi: 10.1016/j.ccr.2012.01.007
– volume: 52
  start-page: 6371
  year: 1992
  ident: e_1_3_3_8_2
  article-title: Interstitial hypertension in human breast and colorectal tumors
  publication-title: Cancer Res
– ident: e_1_3_3_47_2
  doi: 10.1126/science.1171362
– volume: 50
  start-page: 4478
  year: 1990
  ident: e_1_3_3_5_2
  article-title: Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: Implications for therapy
  publication-title: Cancer Res
– ident: e_1_3_3_19_2
  doi: 10.1006/mvre.1996.0041
– ident: e_1_3_3_28_2
  doi: 10.1158/0008-5472.CAN-09-0814
– ident: e_1_3_3_34_2
  doi: 10.1016/S0026-2862(03)00057-8
– volume: 48
  start-page: 2641
  year: 1988
  ident: e_1_3_3_56_2
  article-title: Determinants of tumor blood flow: A review
  publication-title: Cancer Res
– ident: e_1_3_3_46_2
  doi: 10.1158/1078-0432.CCR-08-0291
– volume: 51
  start-page: 6691
  year: 1991
  ident: e_1_3_3_6_2
  article-title: Interstitial hypertension in superficial metastatic melanomas in humans
  publication-title: Cancer Res
– ident: e_1_3_3_57_2
  doi: 10.1053/j.seminoncol.2011.09.004
– ident: e_1_3_3_35_2
  doi: 10.1115/1.3138600
– ident: e_1_3_3_58_2
  doi: 10.1038/nrclinonc.2010.139
– ident: e_1_3_3_64_2
  doi: 10.1007/s10439-011-0310-9
– volume: 48
  start-page: 7022
  year: 1988
  ident: e_1_3_3_3_2
  article-title: Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: Significance of elevated interstitial pressure
  publication-title: Cancer Res
– ident: e_1_3_3_50_2
  doi: 10.1038/nm879
– ident: e_1_3_3_33_2
  doi: 10.1073/pnas.1118910109
– ident: e_1_3_3_40_2
  doi: 10.1038/nmeth.1295
– ident: e_1_3_3_55_2
  doi: 10.1038/nature10144
– ident: e_1_3_3_31_2
  doi: 10.1038/nbt0897-778
– ident: e_1_3_3_4_2
  doi: 10.1016/0026-2862(89)90074-5
– ident: e_1_3_3_13_2
  doi: 10.1126/science.1071420
– ident: e_1_3_3_1_2
  doi: 10.1126/science.1104819
– ident: e_1_3_3_53_2
  doi: 10.1038/nature10169
– ident: e_1_3_3_18_2
  doi: 10.1038/427695a
– volume: 948
  start-page: 305
  year: 1989
  ident: e_1_3_3_42_2
  article-title: Pathogenesis of tumor stroma generation: A critical role for leaky blood vessels and fibrin deposition
  publication-title: Biochim Biophys Acta
– ident: e_1_3_3_30_2
  doi: 10.1007/BF01834825
– volume: 52
  start-page: 5110
  year: 1992
  ident: e_1_3_3_9_2
  article-title: Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: Implications for vascular collapse
  publication-title: Cancer Res
– ident: e_1_3_3_48_2
  doi: 10.1073/pnas.1018154108
– ident: e_1_3_3_23_2
  doi: 10.1016/j.ccr.2004.10.011
– ident: e_1_3_3_45_2
  doi: 10.1109/MEMB.2009.932486
– ident: e_1_3_3_14_2
  doi: 10.1158/0008-5472.CAN-04-0074
– ident: e_1_3_3_52_2
  doi: 10.1073/pnas.1018892108
– ident: e_1_3_3_63_2
  doi: 10.1007/s10439-010-0097-0
– ident: e_1_3_3_61_2
  doi: 10.1038/sj.bjc.6600158
– ident: e_1_3_3_11_2
  doi: 10.1006/mvre.1995.1051
– ident: e_1_3_3_66_2
  doi: 10.1016/j.ccr.2005.04.023
– ident: e_1_3_3_59_2
  doi: 10.1016/j.cell.2009.10.027
– ident: e_1_3_3_24_2
  doi: 10.1016/j.ccr.2006.11.021
– ident: e_1_3_3_37_2
  doi: 10.1007/s10237-008-0131-4
– ident: e_1_3_3_25_2
  doi: 10.1200/JCO.2008.21.1771
– ident: e_1_3_3_54_2
  doi: 10.1038/nrc3064
– ident: e_1_3_3_60_2
  doi: 10.1016/j.cell.2011.05.040
– ident: e_1_3_3_27_2
  doi: 10.1038/nnano.2012.45
– ident: e_1_3_3_36_2
  doi: 10.1115/1.2834884
– reference: 15172975 - Cancer Res. 2004 Jun 1;64(11):3731-6
– reference: 21593862 - Nature. 2011 May 19;473(7347):298-307
– reference: 21491153 - Ann Biomed Eng. 2011 Jul;39(7):1849-56
– reference: 20559731 - Ann Biomed Eng. 2010 Nov;38(11):3509-20
– reference: 21729786 - Cell. 2011 Jul 8;146(1):148-63
– reference: 21753853 - Nature. 2011 Jul 14;475(7355):226-30
– reference: 18651186 - Biomech Model Mechanobiol. 2009 Aug;8(4):253-62
– reference: 22127927 - Cancer Res. 2012 Jan 15;72(2):402-7
– reference: 2646512 - Microvasc Res. 1989 Jan;37(1):77-104
– reference: 20838415 - Nat Rev Clin Oncol. 2010 Nov;7(11):653-64
– reference: 3079517 - J Biomech Eng. 1986 May;108(2):189-92
– reference: 1516068 - Cancer Res. 1992 Sep 15;52(18):5110-4
– reference: 10446995 - Cancer Res. 1999 Aug 1;59(15):3776-82
– reference: 8812751 - Microvasc Res. 1996 Jul;52(1):27-46
– reference: 9143544 - Microvasc Res. 1997 Mar;53(2):128-41
– reference: 21282607 - Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):2909-14
– reference: 9255794 - Nat Biotechnol. 1997 Aug;15(8):778-83
– reference: 22439937 - Cancer Cell. 2012 Mar 20;21(3):418-29
– reference: 22484912 - Nat Nanotechnol. 2012 Jun;7(6):383-8
– reference: 17363594 - Cancer Res. 2007 Mar 15;67(6):2729-35
– reference: 8538498 - Microvasc Res. 1995 Sep;50(2):175-82
– reference: 14973470 - Nature. 2004 Feb 19;427(6976):695
– reference: 21098274 - Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21677-82
– reference: 1742744 - Cancer Res. 1991 Dec 15;51(24):6695-8
– reference: 19470921 - J Clin Oncol. 2009 Jun 20;27(18):3020-6
– reference: 14609526 - Microvasc Res. 2003 Nov;66(3):204-12
– reference: 21224417 - Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):1799-803
– reference: 19151720 - Nat Methods. 2009 Feb;6(2):143-5
– reference: 21629292 - Nat Rev Drug Discov. 2011 Jun;10(6):417-27
– reference: 20378772 - Science. 2010 May 21;328(5981):1031-5
– reference: 2369726 - Cancer Res. 1990 Aug 1;50(15):4478-84
– reference: 1551128 - Cancer Res. 1992 Apr 1;52(7):1993-5
– reference: 2465781 - Biochim Biophys Acta. 1989 Feb;948(3):305-26
– reference: 18829478 - Clin Cancer Res. 2008 Oct 1;14(19):5995-6004
– reference: 19457729 - IEEE Eng Med Biol Mag. 2009 May-Jun;28(3):10-8
– reference: 3282647 - Cancer Res. 1988 May 15;48(10):2641-58
– reference: 11953828 - Br J Cancer. 2002 Mar 18;86(6):947-53
– reference: 14784896 - J Pathol Bacteriol. 1950 Jul;62(3):313-33
– reference: 21742796 - Physiol Rev. 2011 Jul;91(3):1071-121
– reference: 1742743 - Cancer Res. 1991 Dec 15;51(24):6691-4
– reference: 15894267 - Cancer Cell. 2005 May;7(5):469-83
– reference: 10811131 - Cancer Res. 2000 May 1;60(9):2497-503
– reference: 19460966 - Science. 2009 Jun 12;324(5933):1457-61
– reference: 12759232 - Am J Pathol. 2003 Jun;162(6):1747-57
– reference: 12754503 - Nat Med. 2003 Jun;9(6):796-800
– reference: 19549889 - Cancer Res. 2009 Jul 1;69(13):5296-300
– reference: 16572188 - Nat Rev Cancer. 2006 May;6(5):392-401
– reference: 8797602 - Cancer Res. 1996 Sep 15;56(18):4264-6
– reference: 9539785 - Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4607-12
– reference: 3191477 - Cancer Res. 1988 Dec 15;48(24 Pt 1):7022-32
– reference: 17222792 - Cancer Cell. 2007 Jan;11(1):83-95
– reference: 1423283 - Cancer Res. 1992 Nov 15;52(22):6371-4
– reference: 22055968 - Semin Oncol. 2011 Oct;38 Suppl 3:S19-29
– reference: 15607960 - Cancer Cell. 2004 Dec;6(6):553-63
– reference: 10412454 - J Biomech Eng. 1998 Dec;120(6):715-9
– reference: 11976409 - Science. 2002 Jun 7;296(5574):1883-6
– reference: 21606941 - Nat Rev Cancer. 2011 Jun;11(6):393-410
– reference: 19931152 - Cell. 2009 Nov 25;139(5):891-906
– reference: 12680730 - Ann Biomed Eng. 2003 Mar;31(3):327-35
– reference: 15637262 - Science. 2005 Jan 7;307(5706):58-62
– reference: 8858855 - J Math Biol. 1996;34(8):889-914
– reference: 16510565 - Cancer Res. 2006 Mar 1;66(5):2509-13
– reference: 19247489 - PLoS One. 2009;4(2):e4632
– reference: 11533692 - Nat Med. 2001 Sep;7(9):987-9
– reference: 16923388 - Cell. 2006 Aug 25;126(4):677-89
– reference: 22203958 - Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):911-6
SSID ssj0009580
Score 2.5968933
Snippet The presence of growth-induced solid stresses in tumors has been suspected for some time, but these stresses were largely estimated using mathematical models....
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15101
SubjectTerms Adenocarcinoma - pathology
Animals
Biological Sciences
blood
blood flow
Blood vessels
Blood Vessels - pathology
Cancer
Cell growth
Cells
Collagen
Collagen - chemistry
Collagens
Compressive stress
drugs
Female
fibroblasts
Fibroblasts - pathology
Human subjects
Humans
hyaluronic acid
Hyaluronic Acid - chemistry
Hypoxia
immunotherapy
Immunotherapy - methods
inflammation
Mathematical models
Mechanical stress
metastasis
Mice
Mice, SCID
Models, Theoretical
neoplasm cells
Neoplasm Transplantation
neoplasms
Neoplasms - pathology
Pancreatic Ducts - pathology
Pancreatic Neoplasms - pathology
Perfusion
Physical Sciences
Solids
Stress
Stress, Mechanical
Stromal Cells - cytology
Tensile stress
Tumors
Title Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors
URI https://www.jstor.org/stable/41706364
http://www.pnas.org/content/109/38/15101.abstract
https://www.ncbi.nlm.nih.gov/pubmed/22932871
https://www.proquest.com/docview/1041212435
https://www.proquest.com/docview/1041324451
https://www.proquest.com/docview/1803148857
https://pubmed.ncbi.nlm.nih.gov/PMC3458380
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLWq8cILYsAgMJCReBjqUtY4iePHqdpUTVOZtBb1BUW2k5CKLp1o8jD-J_-H6498TWUCXqIqsR3X9-T62j4-RuhD4meCSJG5USQ81xcZcwXccZkQSShTKpkhyM7C6cK_WAbLweBXh7VUlWIkf-7cV_I_VoV7YFe1S_YfLNsUCjfgN9gXrmBhuP6VjSe82prPXHZI0TUhU838KY6gZhJ-g-F2mbswAq_Uij_Ua5XUG0VWxfBGTbqblQRzal9Z3WzsQo8NXa-arm5bEwtm9UziabsvxTqL7dAdXs3aU46vyzs1obK53VRrw-ybQwMVJc_u1nCjnRivVQ00paehI09yXuVmrvbL6jvf5u2-tAtuMlzzNfgnS4C08xiKEMJc63o7MuA7a9x14B50qr7Zdj1Kjc-GkMcNfXPqaOPUT1gHvUZAxvrosXJDO3sPcHfqyOOCb5XoBiEBqYvp6XTPPsfni8vLeH62nPef6rjAoxDzMAg8YVD-yIPRi-abTrta0JHZGWX_S604Rcmne-_uBUuGL6tEeCHRrgHRfV5vJ1CaP0VP7AgHnxq47qNBWjxD-3Uj4yMrdP7xOfpq8HuMu-g9xgBCXGMXA3ZxH7tYYxcb7OJVgQ12dTaNXWyw-wItzs_mk6lrj_twZRDS0vVIGoWSRF4CIblgWZKFKWUioQET4yDzKbwikCkj4zSMxhQuQkoqqBd6CU-h5zpAe8WmSF8hHAqW-DIQUBD3E0Y4tElGlQRzFHARBg4a1e0aS6uFr45kWceak0FJrNo4bg3hoKMmw62Rgflz0gNtqCadrxSqSOg7yNFJ2_wsJlGs4eigw9qcsXUwUKbSwoP4m0B93zePwf2rNT1epJvKpIExkR-MH0gTqTMqoiigDnppENJUwoNwX02aOIj2sNMkUPLz_SfFKtcy9ERTLk5eP1z1N-hx-7Ufor3yR5W-hTi-FO_0V_EbIAf2lA
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Causes%2C+consequences%2C+and+remedies+for+growth-induced+solid+stress+in+murine+and+human+tumors&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Stylianopoulos%2C+Triantafyllos&rft.au=Martin%2C+John+D&rft.au=Chauhan%2C+Vikash+P&rft.au=Jain%2C+Saloni+R&rft.date=2012-09-18&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=109&rft.issue=38&rft.spage=15101&rft_id=info:doi/10.1073%2Fpnas.1213353109&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2766198391
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F38.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F38.cover.gif