Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors
The presence of growth-induced solid stresses in tumors has been suspected for some time, but these stresses were largely estimated using mathematical models. Solid stresses can deform the surrounding tissues and compress intratumoral lymphatic and blood vessels. Compression of lymphatic vessels ele...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 109; no. 38; pp. 15101 - 15108 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
18.09.2012
National Acad Sciences |
Series | Inaugural Article |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The presence of growth-induced solid stresses in tumors has been suspected for some time, but these stresses were largely estimated using mathematical models. Solid stresses can deform the surrounding tissues and compress intratumoral lymphatic and blood vessels. Compression of lymphatic vessels elevates interstitial fluid pressure, whereas compression of blood vessels reduces blood flow. Reduced blood flow, in turn, leads to hypoxia, which promotes tumor progression, immunosuppression, inflammation, invasion, and metastasis and lowers the efficacy of chemo-, radio-, and immunotherapies. Thus, strategies designed to alleviate solid stress have the potential to improve cancer treatment. However, a lack of methods for measuring solid stress has hindered the development of solid stress-alleviating drugs. Here, we present a simple technique to estimate the growth-induced solid stress accumulated within animal and human tumors, and we show that this stress can be reduced by depleting cancer cells, fibroblasts, collagen, and/or hyaluronan, resulting in improved tumor perfusion. Furthermore, we show that therapeutic depletion of carcinoma-associated fibroblasts with an inhibitor of the sonic hedgehog pathway reduces solid stress, decompresses blood and lymphatic vessels, and increases perfusion. In addition to providing insights into the mechanopathology of tumors, our approach can serve as a rapid screen for stress-reducing and perfusion-enhancing drugs. |
---|---|
AbstractList | The presence of growth-induced solid stresses in tumors has been suspected for some time, but these stresses were largely estimated using mathematical models. Solid stresses can deform the surrounding tissues and compress intratumoral lymphatic and blood vessels. Compression of lymphatic vessels elevates interstitial fluid pressure, whereas compression of blood vessels reduces blood flow. Reduced blood flow, in turn, leads to hypoxia, which promotes tumor progression, immunosuppression, inflammation, invasion, and metastasis and lowers the efficacy of chemo-, radio-, and immunotherapies. Thus, strategies designed to alleviate solid stress have the potential to improve cancer treatment. However, a lack of methods for measuring solid stress has hindered the development of solid stress-alleviating drugs. Here, we present a simple technique to estimate the growth-induced solid stress accumulated within animal and human tumors, and we show that this stress can be reduced by depleting cancer cells, fibroblasts, collagen, and/or hyaluronan, resulting in improved tumor perfusion. Furthermore, we show that therapeutic depletion of carcinoma-associated fibroblasts with an inhibitor of the sonic hedgehog pathway reduces solid stress, decompresses blood and lymphatic vessels, and increases perfusion. In addition to providing insights into the mechanopathology of tumors, our approach can serve as a rapid screen for stress-reducing and perfusion-enhancing drugs. The presence of growth-induced solid stresses in tumors has been suspected for some time, but these stresses were largely estimated using mathematical models. Solid stresses can deform the surrounding tissues and compress intratumoral lymphatic and blood vessels. Compression of lymphatic vessels elevates interstitial fluid pressure, whereas compression of blood vessels reduces blood flow. Reduced blood flow, in turn, leads to hypoxia, which promotes tumor progression, immunosuppression, inflammation, invasion, and metastasis and lowers the efficacy of chemo-, radio-, and immunotherapies. Thus, strategies designed to alleviate solid stress have the potential to improve cancer treatment. However, a lack of methods for measuring solid stress has hindered the development of solid stress-alleviating drugs. Here, we present a simple technique to estimate the growth-induced solid stress accumulated within animal and human tumors, and we show that this stress can be reduced by depleting cancer cells, fibroblasts, collagen, and/or hyaluronan, resulting in improved tumor perfusion. Furthermore, we show that therapeutic depletion of carcinoma-associated fibroblasts with an inhibitor of the sonic hedgehog pathway reduces solid stress, decompresses blood and lymphatic vessels, and increases perfusion. In addition to providing insights into the mechanopathology of tumors, our approach can serve as a rapid screen for stress-reducing and perfusion-enhancing drugs.The presence of growth-induced solid stresses in tumors has been suspected for some time, but these stresses were largely estimated using mathematical models. Solid stresses can deform the surrounding tissues and compress intratumoral lymphatic and blood vessels. Compression of lymphatic vessels elevates interstitial fluid pressure, whereas compression of blood vessels reduces blood flow. Reduced blood flow, in turn, leads to hypoxia, which promotes tumor progression, immunosuppression, inflammation, invasion, and metastasis and lowers the efficacy of chemo-, radio-, and immunotherapies. Thus, strategies designed to alleviate solid stress have the potential to improve cancer treatment. However, a lack of methods for measuring solid stress has hindered the development of solid stress-alleviating drugs. Here, we present a simple technique to estimate the growth-induced solid stress accumulated within animal and human tumors, and we show that this stress can be reduced by depleting cancer cells, fibroblasts, collagen, and/or hyaluronan, resulting in improved tumor perfusion. Furthermore, we show that therapeutic depletion of carcinoma-associated fibroblasts with an inhibitor of the sonic hedgehog pathway reduces solid stress, decompresses blood and lymphatic vessels, and increases perfusion. In addition to providing insights into the mechanopathology of tumors, our approach can serve as a rapid screen for stress-reducing and perfusion-enhancing drugs. The presence of growth-induced solid stresses in tumors has been suspected for some time, but these stresses were largely estimated using mathematical models. Solid stresses can deform the surrounding tissues and compress intratumoral lymphatic and blood vessels. Compression of lymphatic vessels elevates interstitial fluid pressure, whereas compression of blood vessels reduces blood flow. Reduced blood flow, in turn, leads to hypoxia, which promotes tumor progression, immunosuppression, inflammation, invasion, and metastasis and lowers the efficacy of chemo-, radio-, and immunotherapies. Thus, strategies designed to alleviate solid stress have the potential to improve cancer treatment. However, a lack of methods for measuring solid stress has hindered the development of solid stress-alleviating drugs. Here, we present a simple technique to estimate the growth-induced solid stress accumulated within animal and human tumors, and we show that this stress can be reduced by depleting cancer cells, fibroblasts, collagen, and/or hyaluronan, resulting in improved tumor perfusion. Furthermore, we show that therapeutic depletion of carcinoma-associated fibroblasts with an inhibitor of the sonic hedgehog pathway reduces solid stress, decompresses blood and lymphatic vessels, and increases perfusion. In addition to providing insights into the mechanopathology of tumors, our approach can serve as a rapid screen for stress-reducing and perfusion-enhancing drugs. [PUBLICATION ABSTRACT] |
Author | Stylianopoulos, Triantafyllos Jain, Saloni R. Hornicek, Francis J. Martin, John D. Ferrone, Cristina R. Munn, Lance L. Bardeesy, Nabeel Chauhan, Vikash P. Smith, Barbara L. Boucher, Yves Jain, Rakesh K. Diop-Frimpong, Benjamin |
Author_xml | – sequence: 1 givenname: Triantafyllos surname: Stylianopoulos fullname: Stylianopoulos, Triantafyllos – sequence: 2 givenname: John D. surname: Martin fullname: Martin, John D. – sequence: 3 givenname: Vikash P. surname: Chauhan fullname: Chauhan, Vikash P. – sequence: 4 givenname: Saloni R. surname: Jain fullname: Jain, Saloni R. – sequence: 5 givenname: Benjamin surname: Diop-Frimpong fullname: Diop-Frimpong, Benjamin – sequence: 6 givenname: Nabeel surname: Bardeesy fullname: Bardeesy, Nabeel – sequence: 7 givenname: Barbara L. surname: Smith fullname: Smith, Barbara L. – sequence: 8 givenname: Cristina R. surname: Ferrone fullname: Ferrone, Cristina R. – sequence: 9 givenname: Francis J. surname: Hornicek fullname: Hornicek, Francis J. – sequence: 10 givenname: Yves surname: Boucher fullname: Boucher, Yves – sequence: 11 givenname: Lance L. surname: Munn fullname: Munn, Lance L. – sequence: 12 givenname: Rakesh K. surname: Jain fullname: Jain, Rakesh K. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22932871$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1v1DAQhi1URLcLZ06gSFw4kNbfdi5IaMWXVIkLHJHlOJOuV4m92AmIf4_TXbbQA1zGsuZ5Z16P5wKdhRgAoacEXxKs2NU-2HxJKGFMMIKbB2hVIqklb_AZWmFMVa055efoIucdxrgRGj9C55Q2jGpFVujrxs4Z8qvKxZDh2wzBLTcbuirBCJ2HXPUxVTcp_pi2tQ_d7KCrchx8iVOCnCsfqnFOPsCtbDuPNlTTPMaUH6OHvR0yPDmea_Tl3dvPmw_19af3HzdvrmsnpJpqykBLxzTtJGVt03e9BNW0nRJNS0TPVWkpHDSMgNREldA6p1pFJe0sKMzW6PWh7n5ui2kHYUp2MPvkR5t-mmi9-TsT_NbcxO-GcaGZXgq8PBZIsQwhT2b02cEw2ABxzoYUhnCthfo_ijlhlHNBCvriHrqLcwplErcUJZSXf1uj53-aP7n-_UkFuDoALsWcE_QnhGCzrIFZ1sDcrUFRiHsK5yc7-bi83g__0FVHK0virktjmDZEELyYeXZAdnmK6cRworBkkrNfFy_LZA |
CitedBy_id | crossref_primary_10_3390_targets2030015 crossref_primary_10_1007_s11095_016_1906_4 crossref_primary_10_1016_j_neo_2016_10_001 crossref_primary_10_1038_s43856_024_00634_4 crossref_primary_10_1177_1081286517747669 crossref_primary_10_2217_nnm_2017_0324 crossref_primary_10_1016_j_thromres_2020_01_019 crossref_primary_10_1038_s41598_020_59658_0 crossref_primary_10_3390_cancers12061452 crossref_primary_10_1021_acsnano_7b06301 crossref_primary_10_1146_annurev_physiol_020518_114700 crossref_primary_10_3389_fonc_2019_00992 crossref_primary_10_1016_j_celrep_2024_114043 crossref_primary_10_3389_fonc_2023_1202750 crossref_primary_10_1016_j_bbcan_2025_189261 crossref_primary_10_15406_ppij_2024_12_00446 crossref_primary_10_1016_j_devcel_2018_02_015 crossref_primary_10_1021_acs_molpharmaceut_1c00455 crossref_primary_10_1088_2057_1739_2_1_015001 crossref_primary_10_1016_j_bbagen_2018_02_009 crossref_primary_10_3390_cancers13215549 crossref_primary_10_1109_TMI_2020_2971422 crossref_primary_10_1186_s12967_017_1142_7 crossref_primary_10_1371_journal_pone_0109208 crossref_primary_10_1096_fj_15_274761 crossref_primary_10_3390_cancers13112788 crossref_primary_10_1016_j_cobme_2020_01_004 crossref_primary_10_1007_s11831_015_9156_x crossref_primary_10_1016_j_ccr_2014_06_004 crossref_primary_10_1016_j_ccr_2014_06_003 crossref_primary_10_1109_ACCESS_2021_3089454 crossref_primary_10_1186_1475_2867_14_41 crossref_primary_10_1016_j_actbio_2018_07_032 crossref_primary_10_1089_ten_teb_2023_0106 crossref_primary_10_1016_j_addr_2017_06_011 crossref_primary_10_1038_s41598_017_12363_x crossref_primary_10_1158_0008_5472_CAN_15_3435 crossref_primary_10_1186_s12967_019_1817_3 crossref_primary_10_1002_cm_21680 crossref_primary_10_1007_s10237_015_0682_0 crossref_primary_10_1038_s41598_023_33651_9 crossref_primary_10_1093_annonc_mdx646 crossref_primary_10_1016_j_ijnonlinmec_2018_10_004 crossref_primary_10_1152_physrev_00048_2019 crossref_primary_10_1155_2016_7851789 crossref_primary_10_1371_journal_pone_0182973 crossref_primary_10_1016_j_biopha_2024_117230 crossref_primary_10_1016_j_jconrel_2015_08_047 crossref_primary_10_1016_j_semcancer_2019_05_004 crossref_primary_10_1016_j_ymeth_2020_02_010 crossref_primary_10_1038_s44341_025_00013_7 crossref_primary_10_1016_j_nantod_2023_101767 crossref_primary_10_3390_jcm6010007 crossref_primary_10_1016_j_medidd_2023_100158 crossref_primary_10_1016_j_jconrel_2015_08_055 crossref_primary_10_1111_cns_70333 crossref_primary_10_1016_j_ebiom_2024_105200 crossref_primary_10_1109_TMI_2015_2470093 crossref_primary_10_1016_j_csbj_2018_07_003 crossref_primary_10_1016_j_jconrel_2022_07_015 crossref_primary_10_1103_PhysRevLett_110_158102 crossref_primary_10_1038_nm_3289 crossref_primary_10_1016_j_addr_2020_07_020 crossref_primary_10_2139_ssrn_3155706 crossref_primary_10_3390_cancers15072057 crossref_primary_10_1091_mbc_E23_11_0431 crossref_primary_10_3390_ph11020048 crossref_primary_10_1016_j_addr_2016_05_021 crossref_primary_10_1038_s41598_023_46340_4 crossref_primary_10_1016_j_jconrel_2023_09_017 crossref_primary_10_1016_j_cis_2023_102930 crossref_primary_10_1016_j_jbiomech_2016_03_029 crossref_primary_10_1002_mma_10367 crossref_primary_10_1007_s10439_014_0975_y crossref_primary_10_1063_5_0195244 crossref_primary_10_3390_ma15249082 crossref_primary_10_1039_D2TB01812H crossref_primary_10_1098_rsif_2015_0439 crossref_primary_10_1007_s10409_017_0654_y crossref_primary_10_18632_oncotarget_15534 crossref_primary_10_1021_acsami_7b09458 crossref_primary_10_1115_1_4037038 crossref_primary_10_1016_j_actbio_2023_12_036 crossref_primary_10_1098_rsta_2018_0074 crossref_primary_10_1021_acsnano_3c03305 crossref_primary_10_2147_IJN_S306831 crossref_primary_10_18632_oncotarget_27302 crossref_primary_10_1016_j_actbio_2022_10_021 crossref_primary_10_3390_fluids6080272 crossref_primary_10_1002_btm2_10033 crossref_primary_10_1158_0008_5472_CAN_22_0419 crossref_primary_10_18632_oncotarget_24156 crossref_primary_10_1016_j_phrs_2017_05_010 crossref_primary_10_3390_ijms252313157 crossref_primary_10_3892_or_2024_8835 crossref_primary_10_1038_s41598_023_43383_5 crossref_primary_10_1039_D3BM00363A crossref_primary_10_1016_j_ejphar_2020_173692 crossref_primary_10_1126_sciadv_adg9593 crossref_primary_10_1007_s10456_024_09913_z crossref_primary_10_1016_j_bpj_2016_03_040 crossref_primary_10_1098_rsta_2018_0070 crossref_primary_10_2147_IJN_S270147 crossref_primary_10_1016_j_jmps_2018_08_009 crossref_primary_10_1111_brv_12650 crossref_primary_10_1073_pnas_1518808112 crossref_primary_10_3389_fonc_2021_719836 crossref_primary_10_1158_0008_5472_CAN_18_1984 crossref_primary_10_1016_j_jtbi_2017_03_027 crossref_primary_10_1038_s42003_022_03079_4 crossref_primary_10_1016_j_bpj_2014_08_031 crossref_primary_10_1142_S0218202518500021 crossref_primary_10_1097_RUQ_0000000000000381 crossref_primary_10_1053_j_gastro_2016_03_040 crossref_primary_10_2174_0929867329666220620124138 crossref_primary_10_1016_j_jmps_2023_105342 crossref_primary_10_1097_PPO_0000000000000140 crossref_primary_10_3389_fbioe_2019_00006 crossref_primary_10_1002_adma_201404715 crossref_primary_10_1016_j_nonrwa_2020_103192 crossref_primary_10_1098_rsif_2024_0797 crossref_primary_10_1002_smtd_202200570 crossref_primary_10_1016_j_biomaterials_2016_06_048 crossref_primary_10_1021_nn405356r crossref_primary_10_1038_s41416_020_01150_7 crossref_primary_10_1098_rsif_2019_0233 crossref_primary_10_1007_s12609_014_0143_2 crossref_primary_10_1209_0295_5075_ad1d6f crossref_primary_10_1016_j_ultrasmedbio_2017_08_008 crossref_primary_10_1016_j_ebiom_2021_103303 crossref_primary_10_1016_j_tibtech_2016_07_006 crossref_primary_10_1172_JCI87734 crossref_primary_10_1016_j_nano_2019_102027 crossref_primary_10_3389_fonc_2019_00576 crossref_primary_10_1038_srep21417 crossref_primary_10_1016_j_drudis_2020_09_008 crossref_primary_10_1103_PhysRevFluids_7_L031101 crossref_primary_10_1109_ACCESS_2019_2929021 crossref_primary_10_3390_ijms241210082 crossref_primary_10_1186_s12943_023_01860_5 crossref_primary_10_1172_JCI73455 crossref_primary_10_1371_journal_pone_0183871 crossref_primary_10_3390_cancers15225415 crossref_primary_10_1038_s41551_023_01080_8 crossref_primary_10_1115_1_4036392 crossref_primary_10_1021_acsnano_4c08886 crossref_primary_10_1016_j_semcancer_2021_11_008 crossref_primary_10_1109_TMI_2024_3438564 crossref_primary_10_1371_journal_pcbi_1004626 crossref_primary_10_1038_s41388_023_02844_x crossref_primary_10_1016_j_devcel_2019_03_024 crossref_primary_10_1007_s40495_014_0008_4 crossref_primary_10_1016_j_addr_2018_07_007 crossref_primary_10_1016_j_xcrm_2024_101626 crossref_primary_10_1158_2159_8290_CD_15_1177 crossref_primary_10_1088_1361_6560_acdf39 crossref_primary_10_1158_2159_8290_CD_16_0733 crossref_primary_10_1016_j_addr_2016_04_025 crossref_primary_10_1038_s41598_022_23386_4 crossref_primary_10_3389_fimmu_2022_956984 crossref_primary_10_1115_1_4044306 crossref_primary_10_1080_10255842_2022_2082245 crossref_primary_10_1242_bio_043133 crossref_primary_10_3389_fcell_2020_00687 crossref_primary_10_3389_fonc_2022_897927 crossref_primary_10_1002_adma_201900192 crossref_primary_10_3389_fcell_2021_787485 crossref_primary_10_1007_s13277_015_3230_8 crossref_primary_10_1016_j_physleta_2014_10_018 crossref_primary_10_3389_fcell_2025_1564626 crossref_primary_10_1016_j_bbcan_2015_03_004 crossref_primary_10_1016_j_jconrel_2017_06_022 crossref_primary_10_1158_2159_8290_CD_19_0094 crossref_primary_10_3892_or_2016_5169 crossref_primary_10_3390_jpm11080771 crossref_primary_10_1093_jnci_djv017 crossref_primary_10_1016_j_addr_2022_114301 crossref_primary_10_1039_C6LC00237D crossref_primary_10_1158_1535_7163_MCT_18_0354 crossref_primary_10_1155_2014_678401 crossref_primary_10_1140_epjp_i2016_16031_9 crossref_primary_10_1016_j_jmps_2016_05_011 crossref_primary_10_1126_science_aaz0868 crossref_primary_10_1002_advs_202001917 crossref_primary_10_1016_j_biomaterials_2018_01_023 crossref_primary_10_1073_pnas_1315336110 crossref_primary_10_1039_D4TB01474J crossref_primary_10_1007_s11012_019_01057_5 crossref_primary_10_1016_j_jmps_2018_05_014 crossref_primary_10_1007_s13346_021_00923_8 crossref_primary_10_1155_2019_8452851 crossref_primary_10_1073_pnas_1916115116 crossref_primary_10_3389_fimmu_2024_1467602 crossref_primary_10_5802_crbiol_62 crossref_primary_10_1073_pnas_1819889116 crossref_primary_10_1089_ars_2022_0118 crossref_primary_10_1038_s41596_020_0328_2 crossref_primary_10_1038_s41392_021_00544_0 crossref_primary_10_1039_C9SM01563A crossref_primary_10_1002_gamm_201900015 crossref_primary_10_1137_24M1670226 crossref_primary_10_1021_acsbiomaterials_4c01130 crossref_primary_10_1007_s00535_013_0915_x crossref_primary_10_1080_03007995_2024_2322057 crossref_primary_10_1371_journal_pone_0184511 crossref_primary_10_1002_med_21855 crossref_primary_10_1002_jso_28046 crossref_primary_10_1038_s41551_018_0334_7 crossref_primary_10_1038_s41592_024_02564_4 crossref_primary_10_1098_rsif_2014_1290 crossref_primary_10_1088_1367_2630_17_7_073035 crossref_primary_10_3390_bioengineering8020017 crossref_primary_10_3389_fimmu_2020_00223 crossref_primary_10_3390_bioengineering11040328 crossref_primary_10_1016_j_jmps_2017_12_015 crossref_primary_10_1016_j_biomaterials_2021_121058 crossref_primary_10_1103_PhysRevX_13_011036 crossref_primary_10_1002_advs_202201931 crossref_primary_10_1073_pnas_2220062120 crossref_primary_10_3390_cells11233840 crossref_primary_10_1038_s41467_019_08759_0 crossref_primary_10_1016_j_jmps_2024_105627 crossref_primary_10_1186_s12967_025_06306_8 crossref_primary_10_1016_j_semcdb_2018_08_002 crossref_primary_10_3390_cancers15010196 crossref_primary_10_1098_rspa_2019_0364 crossref_primary_10_1039_C6CS00592F crossref_primary_10_1103_PhysRevApplied_23_010501 crossref_primary_10_1088_1361_665X_acf79a crossref_primary_10_3389_fonc_2024_1388700 crossref_primary_10_1016_j_jtbi_2017_08_021 crossref_primary_10_1007_s00285_018_1243_9 crossref_primary_10_1371_journal_pone_0161267 crossref_primary_10_1002_bies_201500090 crossref_primary_10_1200_JCO_2012_46_3653 crossref_primary_10_1111_cas_15853 crossref_primary_10_1002_adbi_201900128 crossref_primary_10_1016_j_nano_2015_10_020 crossref_primary_10_3892_ijo_2015_2816 crossref_primary_10_1146_annurev_fluid_120710_101102 crossref_primary_10_1038_s41551_018_0201_6 crossref_primary_10_1007_s12668_015_0187_4 crossref_primary_10_1007_s11033_023_08931_2 crossref_primary_10_1016_j_jmps_2020_104097 crossref_primary_10_1073_pnas_1818357116 crossref_primary_10_3390_math9182213 crossref_primary_10_1016_j_mbm_2023_100025 crossref_primary_10_3389_fonc_2015_00214 crossref_primary_10_1002_sstr_202100164 crossref_primary_10_1021_acs_bioconjchem_6b00437 crossref_primary_10_1021_acsami_2c08951 crossref_primary_10_1080_19475411_2018_1529002 crossref_primary_10_1083_jcb_201505056 crossref_primary_10_1038_s42003_024_07268_1 crossref_primary_10_1146_annurev_cancerbio_050216_034431 crossref_primary_10_1091_mbc_E20_10_0676 crossref_primary_10_1186_s12885_019_5449_z crossref_primary_10_1038_s41571_019_0308_z crossref_primary_10_1002_adtp_202000206 crossref_primary_10_1016_j_yexcr_2022_113317 crossref_primary_10_1016_j_jmps_2017_04_002 crossref_primary_10_1016_j_biomaterials_2019_119745 crossref_primary_10_1016_j_cllc_2016_07_008 crossref_primary_10_1158_1078_0432_CCR_19_3717 crossref_primary_10_1007_s00249_016_1176_4 crossref_primary_10_1371_journal_pcbi_1007053 crossref_primary_10_1038_s41551_023_01121_2 crossref_primary_10_1038_s41598_023_38862_8 crossref_primary_10_1002_num_23159 crossref_primary_10_1016_j_jmps_2020_103936 crossref_primary_10_1007_s00466_024_02471_7 crossref_primary_10_1016_j_bbcan_2020_188418 crossref_primary_10_1073_pnas_2106061118 crossref_primary_10_1016_j_tibs_2021_05_005 crossref_primary_10_3390_cancers14163994 crossref_primary_10_1038_s41598_018_37425_6 crossref_primary_10_3389_fimmu_2018_02740 crossref_primary_10_1158_1078_0432_CCR_17_0256 crossref_primary_10_1007_s10544_016_0128_1 crossref_primary_10_1002_cbin_12004 crossref_primary_10_1007_s10439_018_1997_7 crossref_primary_10_1016_j_hpb_2022_12_002 crossref_primary_10_3390_cancers15184425 crossref_primary_10_1007_s10659_016_9619_9 crossref_primary_10_1016_j_mtbio_2025_101602 crossref_primary_10_1088_1478_3975_ad3ac5 crossref_primary_10_1038_ncomms14056 crossref_primary_10_3390_cancers11050716 crossref_primary_10_1038_s43856_021_00020_4 crossref_primary_10_1002_cnm_3675 crossref_primary_10_1038_nrc_2017_93 crossref_primary_10_1002_smll_202007494 crossref_primary_10_34087_cbusbed_840635 crossref_primary_10_3390_cancers13174444 crossref_primary_10_1021_jacs_2c07287 crossref_primary_10_1038_s41598_019_43090_0 crossref_primary_10_3390_cancers13174442 crossref_primary_10_1002_adma_201904337 crossref_primary_10_1063_1_4979474 crossref_primary_10_1158_1078_0432_CCR_22_1630 crossref_primary_10_1039_c3lc50487e crossref_primary_10_3390_ijms23137091 crossref_primary_10_1016_j_xcrp_2024_102022 crossref_primary_10_1016_j_ijmecsci_2024_109061 crossref_primary_10_1101_cshperspect_a027094 crossref_primary_10_3390_cancers11050729 crossref_primary_10_1038_s41467_024_55658_0 crossref_primary_10_1016_j_phrs_2019_104401 crossref_primary_10_1038_nrc_2017_83 crossref_primary_10_3390_cancers15184562 crossref_primary_10_3390_bioengineering4030064 crossref_primary_10_1002_cac2_12294 crossref_primary_10_1038_cddis_2017_73 crossref_primary_10_1016_j_addr_2022_114319 crossref_primary_10_1158_1541_7786_MCR_21_0711 crossref_primary_10_1016_j_jconrel_2023_08_011 crossref_primary_10_1186_s12943_020_01169_7 crossref_primary_10_1038_s42003_019_0553_9 crossref_primary_10_3390_cancers11121855 crossref_primary_10_1177_1081286520975086 crossref_primary_10_1103_PhysRevLett_125_128103 crossref_primary_10_1016_j_lfs_2023_122084 crossref_primary_10_1109_TBME_2019_2963562 crossref_primary_10_1364_BOE_7_003610 crossref_primary_10_1021_acs_molpharmaceut_8b00842 crossref_primary_10_1039_C8LC00970H crossref_primary_10_3390_cancers13040601 crossref_primary_10_1016_j_nano_2015_07_015 crossref_primary_10_1016_j_actbio_2023_06_007 crossref_primary_10_3390_ijms25073740 crossref_primary_10_1016_j_bpj_2024_01_017 crossref_primary_10_1016_j_canlet_2015_12_019 crossref_primary_10_1038_s41598_025_88537_9 crossref_primary_10_1158_0008_5472_CAN_16_1646 crossref_primary_10_1038_ncomms3516 crossref_primary_10_1101_cshperspect_a041540 crossref_primary_10_1371_journal_pone_0217227 crossref_primary_10_2140_memocs_2023_11_57 crossref_primary_10_1002_adhm_202300089 crossref_primary_10_1158_1535_7163_MCT_23_0772 crossref_primary_10_1016_j_trecan_2018_02_010 crossref_primary_10_1080_21691401_2023_2270023 crossref_primary_10_1007_s10439_024_03569_y crossref_primary_10_1155_2019_9645481 crossref_primary_10_1016_j_trecan_2017_07_006 crossref_primary_10_1016_j_bpj_2013_02_048 crossref_primary_10_1007_s13346_019_00679_2 crossref_primary_10_1088_2057_1976_ac3056 crossref_primary_10_1098_rsfs_2022_0038 crossref_primary_10_1186_s12943_018_0815_z crossref_primary_10_1038_s41467_023_42382_4 crossref_primary_10_1002_mp_13434 crossref_primary_10_1002_jgm_3491 crossref_primary_10_1016_j_trecan_2018_02_005 crossref_primary_10_1021_acsomega_3c06451 crossref_primary_10_1073_pnas_2025236118 crossref_primary_10_1080_1061186X_2021_1927056 crossref_primary_10_3390_pharmaceutics15061742 crossref_primary_10_3389_fphys_2014_00141 crossref_primary_10_1080_1061186X_2018_1452243 crossref_primary_10_7554_eLife_01967 crossref_primary_10_1021_acsami_1c02338 crossref_primary_10_1002_adma_202313953 crossref_primary_10_1039_D3QI00376K crossref_primary_10_1146_annurev_bioeng_110220_115419 crossref_primary_10_1021_acs_molpharmaceut_0c00014 crossref_primary_10_1038_s41467_023_36739_y crossref_primary_10_1111_his_14163 crossref_primary_10_3390_cancers13092053 crossref_primary_10_1038_s41598_017_08838_6 crossref_primary_10_1111_micc_12584 crossref_primary_10_1021_acsabm_4c01301 crossref_primary_10_1016_j_jconrel_2022_03_008 crossref_primary_10_1073_pnas_1919764117 crossref_primary_10_3390_bioengineering11090900 crossref_primary_10_1016_j_neo_2024_100990 crossref_primary_10_1088_1478_3975_10_6_065003 crossref_primary_10_1158_1535_7163_MCT_15_0314 crossref_primary_10_1101_cshperspect_a028662 crossref_primary_10_1186_s12976_020_00126_7 crossref_primary_10_4251_wjgo_v10_i8_202 crossref_primary_10_1016_j_addr_2023_115051 crossref_primary_10_1039_C8NR06146G crossref_primary_10_1002_advs_202100233 crossref_primary_10_18632_oncotarget_16062 crossref_primary_10_1038_s41418_023_01166_5 crossref_primary_10_1016_j_addr_2021_04_015 crossref_primary_10_3390_cancers13174354 crossref_primary_10_3389_fphar_2018_01230 crossref_primary_10_3390_biom14020184 crossref_primary_10_1073_pnas_1117610109 crossref_primary_10_3389_fcell_2023_1239749 crossref_primary_10_1039_C9BM01843C crossref_primary_10_2174_1381612826666200728141601 crossref_primary_10_1016_j_ceb_2023_102305 crossref_primary_10_1073_pnas_1318415110 crossref_primary_10_3389_fonc_2023_1273154 crossref_primary_10_3389_fphar_2017_00952 crossref_primary_10_1016_j_ccell_2014_10_006 crossref_primary_10_1002_ange_201506262 crossref_primary_10_1016_j_jmbbm_2018_06_011 crossref_primary_10_1007_s00707_023_03582_7 crossref_primary_10_1016_j_ejca_2023_112938 crossref_primary_10_1021_acs_biomac_0c01287 crossref_primary_10_1038_s12276_021_00688_7 crossref_primary_10_1111_cas_15929 crossref_primary_10_3389_fphar_2020_586599 crossref_primary_10_3390_biom12121862 crossref_primary_10_1016_j_celrep_2018_02_035 crossref_primary_10_1126_scitranslmed_abd4816 crossref_primary_10_1002_adma_202303831 crossref_primary_10_1093_carcin_bgu108 crossref_primary_10_1007_s10555_024_10169_8 crossref_primary_10_3389_fphys_2020_00365 crossref_primary_10_1080_10717544_2019_1588423 crossref_primary_10_1007_s10237_019_01231_4 crossref_primary_10_2147_DDDT_S314361 crossref_primary_10_1115_1_4046520 crossref_primary_10_1038_s41598_021_89288_z crossref_primary_10_1002_bies_202100285 crossref_primary_10_1002_anie_201506262 crossref_primary_10_1016_j_ejphar_2023_175991 crossref_primary_10_3390_cancers11071008 crossref_primary_10_1177_10812865241230269 crossref_primary_10_1109_JTEHM_2019_2932059 crossref_primary_10_1186_s12951_022_01311_1 crossref_primary_10_1158_2159_8290_CD_15_0671 crossref_primary_10_1038_s41598_019_44694_2 crossref_primary_10_1038_s42003_024_05883_6 crossref_primary_10_1016_j_biomaterials_2016_04_015 crossref_primary_10_1080_1061186X_2020_1808000 crossref_primary_10_1093_pnasnexus_pgae141 crossref_primary_10_1016_j_biomaterials_2016_04_016 crossref_primary_10_1109_TBME_2019_2929134 crossref_primary_10_1002_adtp_202000289 crossref_primary_10_1021_acsnano_2c12463 crossref_primary_10_1088_1361_6560_aae572 crossref_primary_10_1016_j_pan_2020_02_006 crossref_primary_10_1371_journal_pcbi_1005259 crossref_primary_10_1016_j_jbiomech_2018_01_007 crossref_primary_10_1016_j_jncc_2021_11_007 crossref_primary_10_1016_j_biopha_2023_116117 crossref_primary_10_1016_j_tranon_2024_101944 crossref_primary_10_1007_s10483_025_3230_9 crossref_primary_10_1038_s41467_023_35935_0 crossref_primary_10_1016_j_jvir_2024_11_014 crossref_primary_10_1021_acsnano_8b07865 crossref_primary_10_3389_fonc_2022_1039378 crossref_primary_10_1016_j_compbiomed_2023_107651 crossref_primary_10_1007_s11538_023_01141_8 crossref_primary_10_3389_fcell_2022_1038107 crossref_primary_10_1137_20M1372093 crossref_primary_10_1158_1078_0432_CCR_18_2684 crossref_primary_10_1038_nprot_2018_020 crossref_primary_10_1038_s41421_024_00737_1 crossref_primary_10_1042_ETLS20180049 crossref_primary_10_26508_lsa_202201862 crossref_primary_10_1080_11101849_2022_2112014 crossref_primary_10_1016_j_devcel_2020_10_011 crossref_primary_10_1016_j_ijpharm_2023_123512 crossref_primary_10_1111_php_13209 crossref_primary_10_3390_ijms19103028 crossref_primary_10_1038_s41467_018_04245_1 crossref_primary_10_1002_adhm_202202514 crossref_primary_10_3389_fcell_2022_798165 crossref_primary_10_1007_s00033_022_01692_1 crossref_primary_10_1016_j_jtbi_2019_110099 crossref_primary_10_1038_s41551_016_0004 crossref_primary_10_1158_2326_6066_CIR_14_0076 crossref_primary_10_1073_pnas_1711204114 crossref_primary_10_1038_s41467_022_34744_1 crossref_primary_10_17816_gc631097 crossref_primary_10_1016_j_bbcan_2020_188356 crossref_primary_10_1115_1_4034991 crossref_primary_10_1371_journal_pone_0221753 crossref_primary_10_1136_gutjnl_2013_306271 crossref_primary_10_1002_smtd_202401860 crossref_primary_10_1038_s41563_024_01961_6 crossref_primary_10_1007_s00466_018_1589_2 crossref_primary_10_1016_j_jmps_2024_105660 crossref_primary_10_1038_s41568_024_00745_z crossref_primary_10_1016_j_msec_2020_111229 crossref_primary_10_1016_j_procbio_2016_10_017 crossref_primary_10_1016_j_semcancer_2022_02_006 crossref_primary_10_1111_php_13339 crossref_primary_10_1038_s41467_018_07967_4 crossref_primary_10_1016_j_yexcr_2017_02_019 crossref_primary_10_1158_1535_7163_MCT_15_0764 crossref_primary_10_1038_s41551_016_0012 crossref_primary_10_1016_j_bpj_2024_02_017 crossref_primary_10_1038_s44222_023_00138_1 crossref_primary_10_1038_srep46140 crossref_primary_10_3389_fonc_2021_805628 crossref_primary_10_1016_j_jneuroim_2013_04_010 crossref_primary_10_1016_j_ijrobp_2013_04_052 crossref_primary_10_1039_D1NR01552D crossref_primary_10_1038_s42003_021_02662_5 crossref_primary_10_1039_C9SM01628G crossref_primary_10_1111_apha_14164 crossref_primary_10_1002_aic_17747 crossref_primary_10_1038_s41598_019_47593_8 crossref_primary_10_1039_D0TB00098A crossref_primary_10_3389_fonc_2018_00145 crossref_primary_10_1002_adtp_202100147 crossref_primary_10_3390_jcm9051314 crossref_primary_10_1038_nrclinonc_2014_126 crossref_primary_10_3934_math_20231176 crossref_primary_10_1038_s41467_023_39085_1 crossref_primary_10_18632_oncotarget_10471 crossref_primary_10_3390_mi13050739 crossref_primary_10_3389_fcell_2022_908389 crossref_primary_10_1063_1_5052455 crossref_primary_10_1016_j_jconrel_2025_01_078 crossref_primary_10_1016_j_canlet_2017_02_020 crossref_primary_10_1371_journal_pcbi_1009701 crossref_primary_10_1007_s12195_014_0338_7 crossref_primary_10_1109_TMI_2016_2597313 crossref_primary_10_1016_j_jmps_2022_105087 crossref_primary_10_1142_S021820251650055X crossref_primary_10_1140_epjp_i2015_15224_0 crossref_primary_10_3390_cancers14040884 crossref_primary_10_1039_C9LC00550A crossref_primary_10_1186_s40364_025_00727_9 crossref_primary_10_3390_antiox10111801 crossref_primary_10_1142_S0219519418500069 crossref_primary_10_1038_s41568_019_0221_x crossref_primary_10_1364_BOE_388360 crossref_primary_10_1016_j_ymeth_2015_07_009 crossref_primary_10_1002_wsbm_1370 crossref_primary_10_1016_j_envres_2024_120214 crossref_primary_10_1016_j_ijpharm_2016_05_047 crossref_primary_10_1016_j_ifacol_2016_12_141 crossref_primary_10_1016_j_cmpb_2021_106476 crossref_primary_10_1126_sciadv_ade8672 crossref_primary_10_1007_s10237_017_0989_0 crossref_primary_10_1007_s00253_024_13211_5 crossref_primary_10_1016_j_biomaterials_2023_122073 crossref_primary_10_1515_nanoph_2021_0119 crossref_primary_10_1126_scitranslmed_aaf5219 crossref_primary_10_1371_journal_pone_0104717 crossref_primary_10_1158_1078_0432_CCR_24_0246 crossref_primary_10_1155_2022_3113857 crossref_primary_10_1002_pbc_28983 crossref_primary_10_3390_cells13010096 crossref_primary_10_1016_j_tranon_2016_07_004 crossref_primary_10_1021_acsbiomaterials_2c00998 crossref_primary_10_1007_s13346_018_00610_1 crossref_primary_10_3390_cells9112464 crossref_primary_10_1007_s10409_021_01061_7 crossref_primary_10_1016_j_jbiomech_2016_12_035 crossref_primary_10_1002_zamm_201700270 crossref_primary_10_3109_03008207_2015_1047929 crossref_primary_10_1007_s13139_019_00598_7 crossref_primary_10_1002_wnan_1730 crossref_primary_10_1126_sciadv_abb9200 crossref_primary_10_1146_annurev_bioeng_071813_105259 crossref_primary_10_1016_j_jconrel_2014_12_018 crossref_primary_10_1016_j_jconrel_2024_10_011 crossref_primary_10_1007_s10237_015_0745_2 crossref_primary_10_1002_anbr_202100056 crossref_primary_10_1007_s00285_018_1292_0 crossref_primary_10_1016_j_neo_2022_100793 crossref_primary_10_1016_j_pan_2016_04_004 crossref_primary_10_1038_s41467_020_18469_7 crossref_primary_10_1073_pnas_1709079114 crossref_primary_10_1002_ijc_28608 crossref_primary_10_1007_s10237_024_01890_y crossref_primary_10_1002_smll_201300600 crossref_primary_10_1038_srep24390 crossref_primary_10_3389_fonc_2024_1459313 crossref_primary_10_1016_j_cis_2024_103124 crossref_primary_10_1021_acs_chemrev_3c00062 crossref_primary_10_1016_j_yexcr_2018_07_022 crossref_primary_10_1098_rsif_2015_0343 crossref_primary_10_1016_j_biomaterials_2017_10_014 crossref_primary_10_1158_1541_7786_MCR_21_0266 crossref_primary_10_1371_journal_pone_0193801 crossref_primary_10_3390_biomedicines10112763 crossref_primary_10_1007_s10555_024_10166_x crossref_primary_10_1038_bjc_2012_592 crossref_primary_10_3389_fcell_2022_954099 crossref_primary_10_1002_jso_27890 crossref_primary_10_2174_1567201818666210729110127 crossref_primary_10_1158_0008_5472_CAN_17_1058 crossref_primary_10_1371_journal_pone_0228443 crossref_primary_10_1016_j_bbcan_2014_12_001 crossref_primary_10_1242_jcs_240861 crossref_primary_10_1007_s10620_014_3064_z crossref_primary_10_1140_epje_i2016_16092_7 crossref_primary_10_1002_1878_0261_12599 crossref_primary_10_1038_s41556_018_0131_2 crossref_primary_10_1038_nature14329 crossref_primary_10_1016_j_plrev_2023_01_017 crossref_primary_10_3390_cancers13102427 crossref_primary_10_1016_j_ijmecsci_2024_109720 crossref_primary_10_1021_acsbiomaterials_5b00172 crossref_primary_10_1016_j_biomaterials_2017_10_024 crossref_primary_10_1016_j_jbiomech_2014_09_019 crossref_primary_10_1177_0300891619871103 crossref_primary_10_1158_1078_0432_CCR_14_1051 crossref_primary_10_3389_fcell_2021_655152 crossref_primary_10_3389_fbioe_2019_00412 crossref_primary_10_1371_journal_pone_0253804 crossref_primary_10_1073_pnas_1815515116 crossref_primary_10_1007_s12195_024_00824_z crossref_primary_10_1016_j_ijengsci_2022_103730 crossref_primary_10_1007_s00424_018_2146_8 crossref_primary_10_1016_j_biomaterials_2015_02_082 crossref_primary_10_1038_oncsis_2017_74 crossref_primary_10_1038_s41571_024_00886_y crossref_primary_10_1158_0008_5472_CAN_12_4521 crossref_primary_10_1016_j_jconrel_2020_08_024 crossref_primary_10_3390_cancers12102785 crossref_primary_10_3390_fluids9090215 crossref_primary_10_1016_j_scib_2019_04_017 crossref_primary_10_1158_1078_0432_CCR_17_3284 crossref_primary_10_3390_biomedicines10092292 crossref_primary_10_1016_j_mbplus_2022_100109 crossref_primary_10_1115_1_4044048 crossref_primary_10_3389_fphy_2022_910036 crossref_primary_10_1039_D1SM01618K crossref_primary_10_1016_j_biomaterials_2020_120166 crossref_primary_10_1039_D2BM01691E crossref_primary_10_1158_1078_0432_CCR_14_2018 crossref_primary_10_1109_TBME_2021_3085523 crossref_primary_10_1038_bjc_2012_569 crossref_primary_10_1016_j_bbcan_2022_188792 crossref_primary_10_3390_cancers11040491 crossref_primary_10_1038_s41568_025_00796_w crossref_primary_10_1016_j_tranon_2021_101105 crossref_primary_10_1016_j_addr_2021_113847 crossref_primary_10_1016_j_biopha_2022_114015 crossref_primary_10_1016_j_media_2015_04_002 crossref_primary_10_1038_nmat3792 crossref_primary_10_1016_j_jconrel_2019_06_014 crossref_primary_10_1016_j_tranon_2021_101107 crossref_primary_10_1039_D0BM00516A crossref_primary_10_1016_j_jmps_2020_104205 crossref_primary_10_1016_j_matbio_2023_01_002 crossref_primary_10_3389_fonc_2018_00055 crossref_primary_10_1016_j_jconrel_2024_12_048 crossref_primary_10_1038_s41567_018_0194_9 crossref_primary_10_1038_s41598_017_09520_7 crossref_primary_10_1021_acsbiomaterials_7b00130 crossref_primary_10_1038_s41598_019_57364_0 |
Cites_doi | 10.1038/nrc1877 10.1002/path.1700620303 10.1114/1.1554923 10.1006/mvre.1996.2005 10.1016/j.cell.2006.06.044 10.1152/physrev.00038.2010 10.1073/pnas.1016234107 10.1158/0008-5472.CAN-06-4102 10.1371/journal.pone.0004632 10.1038/nm0901-987 10.1126/science.1183057 10.1016/S0002-9440(10)64309-X 10.1158/0008-5472.CAN-11-2464 10.1158/0008-5472.CAN-05-2242 10.1038/nrd3455 10.1073/pnas.95.8.4607 10.1016/j.ccr.2012.01.007 10.1126/science.1171362 10.1006/mvre.1996.0041 10.1158/0008-5472.CAN-09-0814 10.1016/S0026-2862(03)00057-8 10.1158/1078-0432.CCR-08-0291 10.1053/j.seminoncol.2011.09.004 10.1115/1.3138600 10.1038/nrclinonc.2010.139 10.1007/s10439-011-0310-9 10.1038/nm879 10.1073/pnas.1118910109 10.1038/nmeth.1295 10.1038/nature10144 10.1038/nbt0897-778 10.1016/0026-2862(89)90074-5 10.1126/science.1071420 10.1126/science.1104819 10.1038/nature10169 10.1038/427695a 10.1007/BF01834825 10.1073/pnas.1018154108 10.1016/j.ccr.2004.10.011 10.1109/MEMB.2009.932486 10.1158/0008-5472.CAN-04-0074 10.1073/pnas.1018892108 10.1007/s10439-010-0097-0 10.1038/sj.bjc.6600158 10.1006/mvre.1995.1051 10.1016/j.ccr.2005.04.023 10.1016/j.cell.2009.10.027 10.1016/j.ccr.2006.11.021 10.1007/s10237-008-0131-4 10.1200/JCO.2008.21.1771 10.1038/nrc3064 10.1016/j.cell.2011.05.040 10.1038/nnano.2012.45 10.1115/1.2834884 |
ContentType | Journal Article |
Copyright | copyright © 1993-2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Sep 18, 2012 |
Copyright_xml | – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Sep 18, 2012 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1213353109 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic Virology and AIDS Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Growth-induced solid stress in tumors |
EISSN | 1091-6490 |
EndPage | 15108 |
ExternalDocumentID | PMC3458380 2766198391 22932871 10_1073_pnas_1213353109 109_38_15101 41706364 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: P01CA080124 – fundername: NCI NIH HHS grantid: R01 CA126642 – fundername: NCI NIH HHS grantid: P01 CA117969 – fundername: NCI NIH HHS grantid: R01CA126642 – fundername: NCI NIH HHS grantid: P01 CA080124 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c567t-23e86c382d623b9fdf6e79bd759b15f47ced5ce931e6817e68bcc7b7262dae703 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 13:53:46 EDT 2025 Thu Jul 10 20:38:05 EDT 2025 Fri Jul 11 07:23:34 EDT 2025 Mon Jun 30 08:40:24 EDT 2025 Mon Jul 21 06:05:24 EDT 2025 Thu Apr 24 22:59:41 EDT 2025 Tue Jul 01 03:39:27 EDT 2025 Wed Nov 11 00:30:20 EST 2020 Thu May 29 08:40:49 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c567t-23e86c382d623b9fdf6e79bd759b15f47ced5ce931e6817e68bcc7b7262dae703 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: T.S., J.D.M., V.P.C., and R.K.J. designed research; T.S., J.D.M., V.P.C., S.R.J., and B.D.-F. performed research; N.B., B.L.S., C.R.F., and F.J.H. contributed new reagents/analytic tools; T.S., J.D.M., V.P.C., Y.B., L.L.M., and R.K.J. analyzed data; and T.S., J.D.M., L.L.M., and R.K.J. wrote the paper. Contributed by Rakesh K. Jain, August 2, 2012 (sent for review December 5, 2011) This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2009. 1T.S. and J.D.M. contributed equally to this work. |
OpenAccessLink | https://www.pnas.org/content/pnas/109/38/15101.full.pdf |
PMID | 22932871 |
PQID | 1041212435 |
PQPubID | 42026 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3458380 proquest_journals_1041212435 pnas_primary_109_38_15101 proquest_miscellaneous_1803148857 jstor_primary_41706364 crossref_primary_10_1073_pnas_1213353109 proquest_miscellaneous_1041324451 pubmed_primary_22932871 crossref_citationtrail_10_1073_pnas_1213353109 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-09-18 |
PublicationDateYYYYMMDD | 2012-09-18 |
PublicationDate_xml | – month: 09 year: 2012 text: 2012-09-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | Inaugural Article |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2012 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_50_2 Jain RK (e_1_3_3_56_2) 1988; 48 Netti PA (e_1_3_3_49_2) 2000; 60 Boucher Y (e_1_3_3_5_2) 1990; 50 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_37_2 e_1_3_3_58_2 Jain RK (e_1_3_3_3_2) 1988; 48 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_31_2 e_1_3_3_52_2 Boucher Y (e_1_3_3_6_2) 1991; 51 e_1_3_3_40_2 e_1_3_3_61_2 Less JR (e_1_3_3_8_2) 1992; 52 Boucher Y (e_1_3_3_9_2) 1992; 52 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_65_2 e_1_3_3_21_2 e_1_3_3_63_2 e_1_3_3_51_2 Boucher Y (e_1_3_3_12_2) 1996; 56 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 Gutmann R (e_1_3_3_10_2) 1992; 52 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 Nagy JA (e_1_3_3_42_2) 1989; 948 e_1_3_3_62_2 Roh HD (e_1_3_3_7_2) 1991; 51 e_1_3_3_60_2 e_1_3_3_28_2 e_1_3_3_24_2 e_1_3_3_47_2 Griffon-Etienne G (e_1_3_3_17_2) 1999; 59 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 3191477 - Cancer Res. 1988 Dec 15;48(24 Pt 1):7022-32 14609526 - Microvasc Res. 2003 Nov;66(3):204-12 3282647 - Cancer Res. 1988 May 15;48(10):2641-58 8538498 - Microvasc Res. 1995 Sep;50(2):175-82 12680730 - Ann Biomed Eng. 2003 Mar;31(3):327-35 9255794 - Nat Biotechnol. 1997 Aug;15(8):778-83 19470921 - J Clin Oncol. 2009 Jun 20;27(18):3020-6 1742744 - Cancer Res. 1991 Dec 15;51(24):6695-8 22127927 - Cancer Res. 2012 Jan 15;72(2):402-7 22484912 - Nat Nanotechnol. 2012 Jun;7(6):383-8 8812751 - Microvasc Res. 1996 Jul;52(1):27-46 2465781 - Biochim Biophys Acta. 1989 Feb;948(3):305-26 21729786 - Cell. 2011 Jul 8;146(1):148-63 15637262 - Science. 2005 Jan 7;307(5706):58-62 1742743 - Cancer Res. 1991 Dec 15;51(24):6691-4 10412454 - J Biomech Eng. 1998 Dec;120(6):715-9 19247489 - PLoS One. 2009;4(2):e4632 21753853 - Nature. 2011 Jul 14;475(7355):226-30 19549889 - Cancer Res. 2009 Jul 1;69(13):5296-300 22439937 - Cancer Cell. 2012 Mar 20;21(3):418-29 21098274 - Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21677-82 19457729 - IEEE Eng Med Biol Mag. 2009 May-Jun;28(3):10-8 1551128 - Cancer Res. 1992 Apr 1;52(7):1993-5 15607960 - Cancer Cell. 2004 Dec;6(6):553-63 11533692 - Nat Med. 2001 Sep;7(9):987-9 9143544 - Microvasc Res. 1997 Mar;53(2):128-41 11953828 - Br J Cancer. 2002 Mar 18;86(6):947-53 19931152 - Cell. 2009 Nov 25;139(5):891-906 22203958 - Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):911-6 17363594 - Cancer Res. 2007 Mar 15;67(6):2729-35 12754503 - Nat Med. 2003 Jun;9(6):796-800 20559731 - Ann Biomed Eng. 2010 Nov;38(11):3509-20 16572188 - Nat Rev Cancer. 2006 May;6(5):392-401 14973470 - Nature. 2004 Feb 19;427(6976):695 21282607 - Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):2909-14 21629292 - Nat Rev Drug Discov. 2011 Jun;10(6):417-27 19151720 - Nat Methods. 2009 Feb;6(2):143-5 21742796 - Physiol Rev. 2011 Jul;91(3):1071-121 17222792 - Cancer Cell. 2007 Jan;11(1):83-95 21606941 - Nat Rev Cancer. 2011 Jun;11(6):393-410 1423283 - Cancer Res. 1992 Nov 15;52(22):6371-4 18651186 - Biomech Model Mechanobiol. 2009 Aug;8(4):253-62 20838415 - Nat Rev Clin Oncol. 2010 Nov;7(11):653-64 20378772 - Science. 2010 May 21;328(5981):1031-5 8858855 - J Math Biol. 1996;34(8):889-914 15894267 - Cancer Cell. 2005 May;7(5):469-83 14784896 - J Pathol Bacteriol. 1950 Jul;62(3):313-33 21491153 - Ann Biomed Eng. 2011 Jul;39(7):1849-56 8797602 - Cancer Res. 1996 Sep 15;56(18):4264-6 9539785 - Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4607-12 2646512 - Microvasc Res. 1989 Jan;37(1):77-104 21224417 - Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):1799-803 12759232 - Am J Pathol. 2003 Jun;162(6):1747-57 10811131 - Cancer Res. 2000 May 1;60(9):2497-503 1516068 - Cancer Res. 1992 Sep 15;52(18):5110-4 10446995 - Cancer Res. 1999 Aug 1;59(15):3776-82 18829478 - Clin Cancer Res. 2008 Oct 1;14(19):5995-6004 19460966 - Science. 2009 Jun 12;324(5933):1457-61 3079517 - J Biomech Eng. 1986 May;108(2):189-92 22055968 - Semin Oncol. 2011 Oct;38 Suppl 3:S19-29 21593862 - Nature. 2011 May 19;473(7347):298-307 16510565 - Cancer Res. 2006 Mar 1;66(5):2509-13 15172975 - Cancer Res. 2004 Jun 1;64(11):3731-6 16923388 - Cell. 2006 Aug 25;126(4):677-89 11976409 - Science. 2002 Jun 7;296(5574):1883-6 2369726 - Cancer Res. 1990 Aug 1;50(15):4478-84 |
References_xml | – ident: e_1_3_3_44_2 doi: 10.1038/nrc1877 – ident: e_1_3_3_2_2 doi: 10.1002/path.1700620303 – volume: 59 start-page: 3776 year: 1999 ident: e_1_3_3_17_2 article-title: Taxane-induced apoptosis decompresses blood vessels and lowers interstitial fluid pressure in solid tumors: Clinical implications publication-title: Cancer Res – ident: e_1_3_3_38_2 doi: 10.1114/1.1554923 – ident: e_1_3_3_20_2 doi: 10.1006/mvre.1996.2005 – ident: e_1_3_3_62_2 doi: 10.1016/j.cell.2006.06.044 – ident: e_1_3_3_22_2 doi: 10.1152/physrev.00038.2010 – ident: e_1_3_3_41_2 doi: 10.1073/pnas.1016234107 – ident: e_1_3_3_15_2 doi: 10.1158/0008-5472.CAN-06-4102 – volume: 60 start-page: 2497 year: 2000 ident: e_1_3_3_49_2 article-title: Role of extracellular matrix assembly in interstitial transport in solid tumors publication-title: Cancer Res – ident: e_1_3_3_32_2 doi: 10.1371/journal.pone.0004632 – ident: e_1_3_3_21_2 doi: 10.1038/nm0901-987 – ident: e_1_3_3_65_2 doi: 10.1126/science.1183057 – ident: e_1_3_3_43_2 doi: 10.1016/S0002-9440(10)64309-X – ident: e_1_3_3_29_2 doi: 10.1158/0008-5472.CAN-11-2464 – ident: e_1_3_3_51_2 doi: 10.1158/0008-5472.CAN-05-2242 – volume: 51 start-page: 6695 year: 1991 ident: e_1_3_3_7_2 article-title: Interstitial hypertension in carcinoma of uterine cervix in patients: Possible correlation with tumor oxygenation and radiation response publication-title: Cancer Res – volume: 56 start-page: 4264 year: 1996 ident: e_1_3_3_12_2 article-title: Tumor angiogenesis and interstitial hypertension publication-title: Cancer Res – volume: 52 start-page: 1993 year: 1992 ident: e_1_3_3_10_2 article-title: Interstitial hypertension in head and neck tumors in patients: Correlation with tumor size publication-title: Cancer Res – ident: e_1_3_3_26_2 doi: 10.1038/nrd3455 – ident: e_1_3_3_16_2 doi: 10.1073/pnas.95.8.4607 – ident: e_1_3_3_39_2 doi: 10.1016/j.ccr.2012.01.007 – volume: 52 start-page: 6371 year: 1992 ident: e_1_3_3_8_2 article-title: Interstitial hypertension in human breast and colorectal tumors publication-title: Cancer Res – ident: e_1_3_3_47_2 doi: 10.1126/science.1171362 – volume: 50 start-page: 4478 year: 1990 ident: e_1_3_3_5_2 article-title: Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: Implications for therapy publication-title: Cancer Res – ident: e_1_3_3_19_2 doi: 10.1006/mvre.1996.0041 – ident: e_1_3_3_28_2 doi: 10.1158/0008-5472.CAN-09-0814 – ident: e_1_3_3_34_2 doi: 10.1016/S0026-2862(03)00057-8 – volume: 48 start-page: 2641 year: 1988 ident: e_1_3_3_56_2 article-title: Determinants of tumor blood flow: A review publication-title: Cancer Res – ident: e_1_3_3_46_2 doi: 10.1158/1078-0432.CCR-08-0291 – volume: 51 start-page: 6691 year: 1991 ident: e_1_3_3_6_2 article-title: Interstitial hypertension in superficial metastatic melanomas in humans publication-title: Cancer Res – ident: e_1_3_3_57_2 doi: 10.1053/j.seminoncol.2011.09.004 – ident: e_1_3_3_35_2 doi: 10.1115/1.3138600 – ident: e_1_3_3_58_2 doi: 10.1038/nrclinonc.2010.139 – ident: e_1_3_3_64_2 doi: 10.1007/s10439-011-0310-9 – volume: 48 start-page: 7022 year: 1988 ident: e_1_3_3_3_2 article-title: Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: Significance of elevated interstitial pressure publication-title: Cancer Res – ident: e_1_3_3_50_2 doi: 10.1038/nm879 – ident: e_1_3_3_33_2 doi: 10.1073/pnas.1118910109 – ident: e_1_3_3_40_2 doi: 10.1038/nmeth.1295 – ident: e_1_3_3_55_2 doi: 10.1038/nature10144 – ident: e_1_3_3_31_2 doi: 10.1038/nbt0897-778 – ident: e_1_3_3_4_2 doi: 10.1016/0026-2862(89)90074-5 – ident: e_1_3_3_13_2 doi: 10.1126/science.1071420 – ident: e_1_3_3_1_2 doi: 10.1126/science.1104819 – ident: e_1_3_3_53_2 doi: 10.1038/nature10169 – ident: e_1_3_3_18_2 doi: 10.1038/427695a – volume: 948 start-page: 305 year: 1989 ident: e_1_3_3_42_2 article-title: Pathogenesis of tumor stroma generation: A critical role for leaky blood vessels and fibrin deposition publication-title: Biochim Biophys Acta – ident: e_1_3_3_30_2 doi: 10.1007/BF01834825 – volume: 52 start-page: 5110 year: 1992 ident: e_1_3_3_9_2 article-title: Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: Implications for vascular collapse publication-title: Cancer Res – ident: e_1_3_3_48_2 doi: 10.1073/pnas.1018154108 – ident: e_1_3_3_23_2 doi: 10.1016/j.ccr.2004.10.011 – ident: e_1_3_3_45_2 doi: 10.1109/MEMB.2009.932486 – ident: e_1_3_3_14_2 doi: 10.1158/0008-5472.CAN-04-0074 – ident: e_1_3_3_52_2 doi: 10.1073/pnas.1018892108 – ident: e_1_3_3_63_2 doi: 10.1007/s10439-010-0097-0 – ident: e_1_3_3_61_2 doi: 10.1038/sj.bjc.6600158 – ident: e_1_3_3_11_2 doi: 10.1006/mvre.1995.1051 – ident: e_1_3_3_66_2 doi: 10.1016/j.ccr.2005.04.023 – ident: e_1_3_3_59_2 doi: 10.1016/j.cell.2009.10.027 – ident: e_1_3_3_24_2 doi: 10.1016/j.ccr.2006.11.021 – ident: e_1_3_3_37_2 doi: 10.1007/s10237-008-0131-4 – ident: e_1_3_3_25_2 doi: 10.1200/JCO.2008.21.1771 – ident: e_1_3_3_54_2 doi: 10.1038/nrc3064 – ident: e_1_3_3_60_2 doi: 10.1016/j.cell.2011.05.040 – ident: e_1_3_3_27_2 doi: 10.1038/nnano.2012.45 – ident: e_1_3_3_36_2 doi: 10.1115/1.2834884 – reference: 15172975 - Cancer Res. 2004 Jun 1;64(11):3731-6 – reference: 21593862 - Nature. 2011 May 19;473(7347):298-307 – reference: 21491153 - Ann Biomed Eng. 2011 Jul;39(7):1849-56 – reference: 20559731 - Ann Biomed Eng. 2010 Nov;38(11):3509-20 – reference: 21729786 - Cell. 2011 Jul 8;146(1):148-63 – reference: 21753853 - Nature. 2011 Jul 14;475(7355):226-30 – reference: 18651186 - Biomech Model Mechanobiol. 2009 Aug;8(4):253-62 – reference: 22127927 - Cancer Res. 2012 Jan 15;72(2):402-7 – reference: 2646512 - Microvasc Res. 1989 Jan;37(1):77-104 – reference: 20838415 - Nat Rev Clin Oncol. 2010 Nov;7(11):653-64 – reference: 3079517 - J Biomech Eng. 1986 May;108(2):189-92 – reference: 1516068 - Cancer Res. 1992 Sep 15;52(18):5110-4 – reference: 10446995 - Cancer Res. 1999 Aug 1;59(15):3776-82 – reference: 8812751 - Microvasc Res. 1996 Jul;52(1):27-46 – reference: 9143544 - Microvasc Res. 1997 Mar;53(2):128-41 – reference: 21282607 - Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):2909-14 – reference: 9255794 - Nat Biotechnol. 1997 Aug;15(8):778-83 – reference: 22439937 - Cancer Cell. 2012 Mar 20;21(3):418-29 – reference: 22484912 - Nat Nanotechnol. 2012 Jun;7(6):383-8 – reference: 17363594 - Cancer Res. 2007 Mar 15;67(6):2729-35 – reference: 8538498 - Microvasc Res. 1995 Sep;50(2):175-82 – reference: 14973470 - Nature. 2004 Feb 19;427(6976):695 – reference: 21098274 - Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21677-82 – reference: 1742744 - Cancer Res. 1991 Dec 15;51(24):6695-8 – reference: 19470921 - J Clin Oncol. 2009 Jun 20;27(18):3020-6 – reference: 14609526 - Microvasc Res. 2003 Nov;66(3):204-12 – reference: 21224417 - Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):1799-803 – reference: 19151720 - Nat Methods. 2009 Feb;6(2):143-5 – reference: 21629292 - Nat Rev Drug Discov. 2011 Jun;10(6):417-27 – reference: 20378772 - Science. 2010 May 21;328(5981):1031-5 – reference: 2369726 - Cancer Res. 1990 Aug 1;50(15):4478-84 – reference: 1551128 - Cancer Res. 1992 Apr 1;52(7):1993-5 – reference: 2465781 - Biochim Biophys Acta. 1989 Feb;948(3):305-26 – reference: 18829478 - Clin Cancer Res. 2008 Oct 1;14(19):5995-6004 – reference: 19457729 - IEEE Eng Med Biol Mag. 2009 May-Jun;28(3):10-8 – reference: 3282647 - Cancer Res. 1988 May 15;48(10):2641-58 – reference: 11953828 - Br J Cancer. 2002 Mar 18;86(6):947-53 – reference: 14784896 - J Pathol Bacteriol. 1950 Jul;62(3):313-33 – reference: 21742796 - Physiol Rev. 2011 Jul;91(3):1071-121 – reference: 1742743 - Cancer Res. 1991 Dec 15;51(24):6691-4 – reference: 15894267 - Cancer Cell. 2005 May;7(5):469-83 – reference: 10811131 - Cancer Res. 2000 May 1;60(9):2497-503 – reference: 19460966 - Science. 2009 Jun 12;324(5933):1457-61 – reference: 12759232 - Am J Pathol. 2003 Jun;162(6):1747-57 – reference: 12754503 - Nat Med. 2003 Jun;9(6):796-800 – reference: 19549889 - Cancer Res. 2009 Jul 1;69(13):5296-300 – reference: 16572188 - Nat Rev Cancer. 2006 May;6(5):392-401 – reference: 8797602 - Cancer Res. 1996 Sep 15;56(18):4264-6 – reference: 9539785 - Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4607-12 – reference: 3191477 - Cancer Res. 1988 Dec 15;48(24 Pt 1):7022-32 – reference: 17222792 - Cancer Cell. 2007 Jan;11(1):83-95 – reference: 1423283 - Cancer Res. 1992 Nov 15;52(22):6371-4 – reference: 22055968 - Semin Oncol. 2011 Oct;38 Suppl 3:S19-29 – reference: 15607960 - Cancer Cell. 2004 Dec;6(6):553-63 – reference: 10412454 - J Biomech Eng. 1998 Dec;120(6):715-9 – reference: 11976409 - Science. 2002 Jun 7;296(5574):1883-6 – reference: 21606941 - Nat Rev Cancer. 2011 Jun;11(6):393-410 – reference: 19931152 - Cell. 2009 Nov 25;139(5):891-906 – reference: 12680730 - Ann Biomed Eng. 2003 Mar;31(3):327-35 – reference: 15637262 - Science. 2005 Jan 7;307(5706):58-62 – reference: 8858855 - J Math Biol. 1996;34(8):889-914 – reference: 16510565 - Cancer Res. 2006 Mar 1;66(5):2509-13 – reference: 19247489 - PLoS One. 2009;4(2):e4632 – reference: 11533692 - Nat Med. 2001 Sep;7(9):987-9 – reference: 16923388 - Cell. 2006 Aug 25;126(4):677-89 – reference: 22203958 - Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):911-6 |
SSID | ssj0009580 |
Score | 2.5968933 |
Snippet | The presence of growth-induced solid stresses in tumors has been suspected for some time, but these stresses were largely estimated using mathematical models.... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 15101 |
SubjectTerms | Adenocarcinoma - pathology Animals Biological Sciences blood blood flow Blood vessels Blood Vessels - pathology Cancer Cell growth Cells Collagen Collagen - chemistry Collagens Compressive stress drugs Female fibroblasts Fibroblasts - pathology Human subjects Humans hyaluronic acid Hyaluronic Acid - chemistry Hypoxia immunotherapy Immunotherapy - methods inflammation Mathematical models Mechanical stress metastasis Mice Mice, SCID Models, Theoretical neoplasm cells Neoplasm Transplantation neoplasms Neoplasms - pathology Pancreatic Ducts - pathology Pancreatic Neoplasms - pathology Perfusion Physical Sciences Solids Stress Stress, Mechanical Stromal Cells - cytology Tensile stress Tumors |
Title | Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors |
URI | https://www.jstor.org/stable/41706364 http://www.pnas.org/content/109/38/15101.abstract https://www.ncbi.nlm.nih.gov/pubmed/22932871 https://www.proquest.com/docview/1041212435 https://www.proquest.com/docview/1041324451 https://www.proquest.com/docview/1803148857 https://pubmed.ncbi.nlm.nih.gov/PMC3458380 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLWq8cILYsAgMJCReBjqUtY4iePHqdpUTVOZtBb1BUW2k5CKLp1o8jD-J_-H6498TWUCXqIqsR3X9-T62j4-RuhD4meCSJG5USQ81xcZcwXccZkQSShTKpkhyM7C6cK_WAbLweBXh7VUlWIkf-7cV_I_VoV7YFe1S_YfLNsUCjfgN9gXrmBhuP6VjSe82prPXHZI0TUhU838KY6gZhJ-g-F2mbswAq_Uij_Ua5XUG0VWxfBGTbqblQRzal9Z3WzsQo8NXa-arm5bEwtm9UziabsvxTqL7dAdXs3aU46vyzs1obK53VRrw-ybQwMVJc_u1nCjnRivVQ00paehI09yXuVmrvbL6jvf5u2-tAtuMlzzNfgnS4C08xiKEMJc63o7MuA7a9x14B50qr7Zdj1Kjc-GkMcNfXPqaOPUT1gHvUZAxvrosXJDO3sPcHfqyOOCb5XoBiEBqYvp6XTPPsfni8vLeH62nPef6rjAoxDzMAg8YVD-yIPRi-abTrta0JHZGWX_S604Rcmne-_uBUuGL6tEeCHRrgHRfV5vJ1CaP0VP7AgHnxq47qNBWjxD-3Uj4yMrdP7xOfpq8HuMu-g9xgBCXGMXA3ZxH7tYYxcb7OJVgQ12dTaNXWyw-wItzs_mk6lrj_twZRDS0vVIGoWSRF4CIblgWZKFKWUioQET4yDzKbwikCkj4zSMxhQuQkoqqBd6CU-h5zpAe8WmSF8hHAqW-DIQUBD3E0Y4tElGlQRzFHARBg4a1e0aS6uFr45kWceak0FJrNo4bg3hoKMmw62Rgflz0gNtqCadrxSqSOg7yNFJ2_wsJlGs4eigw9qcsXUwUKbSwoP4m0B93zePwf2rNT1epJvKpIExkR-MH0gTqTMqoiigDnppENJUwoNwX02aOIj2sNMkUPLz_SfFKtcy9ERTLk5eP1z1N-hx-7Ufor3yR5W-hTi-FO_0V_EbIAf2lA |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Causes%2C+consequences%2C+and+remedies+for+growth-induced+solid+stress+in+murine+and+human+tumors&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Stylianopoulos%2C+Triantafyllos&rft.au=Martin%2C+John+D&rft.au=Chauhan%2C+Vikash+P&rft.au=Jain%2C+Saloni+R&rft.date=2012-09-18&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=109&rft.issue=38&rft.spage=15101&rft_id=info:doi/10.1073%2Fpnas.1213353109&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2766198391 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F38.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F38.cover.gif |