Hyperthermia and central fatigue during prolonged exercise in humans

Department of Human Physiology, Institute of Exercise and Sport Sciences, University of Copenhagen, DK-2200 Copenhagen Ø, Denmark The present study investigated the effects of hyperthermia on the contributions of central and peripheral factors to the development of neuromuscular fatigue. Fourteen me...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physiology (1985) Vol. 91; no. 3; pp. 1055 - 1060
Main Authors Nybo, Lars, Nielsen, Bodil
Format Journal Article
LanguageEnglish
Published Bethesda, MD Am Physiological Soc 01.09.2001
American Physiological Society
Subjects
Online AccessGet full text
ISSN8750-7587
1522-1601
DOI10.1152/jappl.2001.91.3.1055

Cover

Abstract Department of Human Physiology, Institute of Exercise and Sport Sciences, University of Copenhagen, DK-2200 Copenhagen Ø, Denmark The present study investigated the effects of hyperthermia on the contributions of central and peripheral factors to the development of neuromuscular fatigue. Fourteen men exercised at 60% maximal oxygen consumption on a cycle ergometer in hot (40°C; hyperthermia) and thermoneutral (18°C; control) environments. In hyperthermia, the core temperature increased throughout the exercise period and reached a peak value of 40.0 ± 0.1°C (mean   ± SE) at exhaustion after 50 ± 3 min of exercise. In control, core temperature stabilized at ~38.0 ± 0.1°C, and exercise was maintained for 1 h without exhausting the subjects. Immediately after the cycle trials, subjects performed 2 min of sustained maximal voluntary contraction (MVC) either with the exercised legs (knee extension) or with a "nonexercised" muscle group (handgrip). The degree of voluntary activation during sustained maximal knee extensions was assessed by superimposing electrical stimulation (EL) to nervus femoralis. Voluntary knee extensor force was similar during the first 5 s of contraction in hyperthermia and control. Thereafter, force declined in both trials, but the reduction in maximal voluntary force was more pronounced in the hyperthermic trial, and, from 30 to 120 s, the force was significantly lower in hyperthermia compared with control. Calculation of the voluntary activation percentage (MVC/MVC + EL) revealed that the degree of central activation was significantly lower in hyperthermia (54 ± 7%) compared with control (82 ± 6%). In contrast, total force of the knee extensors (MVC + force from EL) was not different in the two trials. Force development during handgrip contraction followed the same pattern of response as was observed for the knee extensors. In conclusion, these data demonstrate that the ability to generate force during a prolonged MVC is attenuated with hyperthermia, and the impaired performance is associated with a reduction in the voluntary activation percentage. central activation; core temperature; muscle contractions
AbstractList The present study investigated the effects of hyperthermia on the contributions of central and peripheral factors to the development of neuromuscular fatigue. Fourteen men exercised at 60% maximal oxygen consumption on a cycle ergometer in hot (40°C; hyperthermia) and thermoneutral (18°C; control) environments. In hyperthermia, the core temperature increased throughout the exercise period and reached a peak value of 40.0 ± 0.1°C (mean ± SE) at exhaustion after 50 ± 3 min of exercise. In control, core temperature stabilized at ∼38.0 ± 0.1°C, and exercise was maintained for 1 h without exhausting the subjects. Immediately after the cycle trials, subjects performed 2 min of sustained maximal voluntary contraction (MVC) either with the exercised legs (knee extension) or with a “nonexercised” muscle group (handgrip). The degree of voluntary activation during sustained maximal knee extensions was assessed by superimposing electrical stimulation (EL) to nervus femoralis. Voluntary knee extensor force was similar during the first 5 s of contraction in hyperthermia and control. Thereafter, force declined in both trials, but the reduction in maximal voluntary force was more pronounced in the hyperthermic trial, and, from 30 to 120 s, the force was significantly lower in hyperthermia compared with control. Calculation of the voluntary activation percentage (MVC/MVC + EL) revealed that the degree of central activation was significantly lower in hyperthermia (54 ± 7%) compared with control (82 ± 6%). In contrast, total force of the knee extensors (MVC + force from EL) was not different in the two trials. Force development during handgrip contraction followed the same pattern of response as was observed for the knee extensors. In conclusion, these data demonstrate that the ability to generate force during a prolonged MVC is attenuated with hyperthermia, and the impaired performance is associated with a reduction in the voluntary activation percentage.
The present study investigated the effects of hyperthermia on the contributions of central and peripheral factors to the development of neuromuscular fatigue. Fourteen men exercised at 60% maximal oxygen consumption on a cycle ergometer in hot (40 degrees C; hyperthermia) and thermoneutral (18 degrees C; control) environments. In hyperthermia, the core temperature increased throughout the exercise period and reached a peak value of 40.0 +/- 0.1 degrees C (mean +/- SE) at exhaustion after 50 +/- 3 min of exercise. In control, core temperature stabilized at approximately 38.0 +/- 0.1 degrees C, and exercise was maintained for 1 h without exhausting the subjects. Immediately after the cycle trials, subjects performed 2 min of sustained maximal voluntary contraction (MVC) either with the exercised legs (knee extension) or with a "nonexercised" muscle group (handgrip). The degree of voluntary activation during sustained maximal knee extensions was assessed by superimposing electrical stimulation (EL) to nervus femoralis. Voluntary knee extensor force was similar during the first 5 s of contraction in hyperthermia and control. Thereafter, force declined in both trials, but the reduction in maximal voluntary force was more pronounced in the hyperthermic trial, and, from 30 to 120 s, the force was significantly lower in hyperthermia compared with control. Calculation of the voluntary activation percentage (MVC/MVC + EL) revealed that the degree of central activation was significantly lower in hyperthermia (54 +/- 7%) compared with control (82 +/- 6%). In contrast, total force of the knee extensors (MVC + force from EL) was not different in the two trials. Force development during handgrip contraction followed the same pattern of response as was observed for the knee extensors. In conclusion, these data demonstrate that the ability to generate force during a prolonged MVC is attenuated with hyperthermia, and the impaired performance is associated with a reduction in the voluntary activation percentage.The present study investigated the effects of hyperthermia on the contributions of central and peripheral factors to the development of neuromuscular fatigue. Fourteen men exercised at 60% maximal oxygen consumption on a cycle ergometer in hot (40 degrees C; hyperthermia) and thermoneutral (18 degrees C; control) environments. In hyperthermia, the core temperature increased throughout the exercise period and reached a peak value of 40.0 +/- 0.1 degrees C (mean +/- SE) at exhaustion after 50 +/- 3 min of exercise. In control, core temperature stabilized at approximately 38.0 +/- 0.1 degrees C, and exercise was maintained for 1 h without exhausting the subjects. Immediately after the cycle trials, subjects performed 2 min of sustained maximal voluntary contraction (MVC) either with the exercised legs (knee extension) or with a "nonexercised" muscle group (handgrip). The degree of voluntary activation during sustained maximal knee extensions was assessed by superimposing electrical stimulation (EL) to nervus femoralis. Voluntary knee extensor force was similar during the first 5 s of contraction in hyperthermia and control. Thereafter, force declined in both trials, but the reduction in maximal voluntary force was more pronounced in the hyperthermic trial, and, from 30 to 120 s, the force was significantly lower in hyperthermia compared with control. Calculation of the voluntary activation percentage (MVC/MVC + EL) revealed that the degree of central activation was significantly lower in hyperthermia (54 +/- 7%) compared with control (82 +/- 6%). In contrast, total force of the knee extensors (MVC + force from EL) was not different in the two trials. Force development during handgrip contraction followed the same pattern of response as was observed for the knee extensors. In conclusion, these data demonstrate that the ability to generate force during a prolonged MVC is attenuated with hyperthermia, and the impaired performance is associated with a reduction in the voluntary activation percentage.
The present study investigated the effects of hyperthermia on the contributions of central and peripheral factors to the development of neuromuscular fatigue. Fourteen men exercised at 60% maximal oxygen consumption on a cycle ergometer in hot (40 degrees C; hyperthermia) and thermoneutral (18 degrees C; control) environments. In hyperthermia, the core temperature increased throughout the exercise period and reached a peak value of 40.0 +/- 0.1 degrees C (mean +/- SE) at exhaustion after 50 +/- 3 min of exercise. In control, core temperature stabilized at approx. 38.0 +/- 0.1 degrees C, and exercise was maintained for 1 h without exhausting the subjects. Immediately after the cycle trials, subjects performed 2 min of sustained maximal voluntary contraction (MVC) either with the exercised legs (knee extension) or with a 'nonexercised' muscle group (handgrip). The degree of voluntary activation during sustained maximal knee extensions was assessed by superimposing electrical stimulation (EL) to nervus femoralis. Voluntary knee extensor force was similar during the first 5 s of contraction in hyperthermia and control. Thereafter, force declined in both trials, but the reduction in maximal voluntary force was more pronounced in the hyperthermic trial, and, from 30 to 120 s, the force was significantly lower in hyperthermia compared with control. Calculation of the voluntary activation percentage (MVC/MVC + EL) revealed that the degree of central activation was significantly lower in hyperthermia (54 +/- 7%) compared with control (82 +/- 6%). In contrast, total force of the knee extensors (MVC + force from EL) was not different in the two trials. Force development during handgrip contraction followed the same pattern of response as was observed for the knee extensors.
The present study investigated the effects of hyperthermia on the contributions of central and peripheral factors to the development of neuromuscular fatigue. Fourteen men exercised at 60% maximal oxygen consumption on a cycle ergometer in hot (40 degrees C; hyperthermia) and thermoneutral (18 degrees C; control) environments. In hyperthermia, the core temperature increased throughout the exercise period and reached a peak value of 40.0 +/- 0.1 degrees C (mean +/- SE) at exhaustion after 50 +/- 3 min of exercise. In control, core temperature stabilized at approximately 38.0 +/- 0.1 degrees C, and exercise was maintained for 1 h without exhausting the subjects. Immediately after the cycle trials, subjects performed 2 min of sustained maximal voluntary contraction (MVC) either with the exercised legs (knee extension) or with a "nonexercised" muscle group (handgrip). The degree of voluntary activation during sustained maximal knee extensions was assessed by superimposing electrical stimulation (EL) to nervus femoralis. Voluntary knee extensor force was similar during the first 5 s of contraction in hyperthermia and control. Thereafter, force declined in both trials, but the reduction in maximal voluntary force was more pronounced in the hyperthermic trial, and, from 30 to 120 s, the force was significantly lower in hyperthermia compared with control. Calculation of the voluntary activation percentage (MVC/MVC + EL) revealed that the degree of central activation was significantly lower in hyperthermia (54 +/- 7%) compared with control (82 +/- 6%). In contrast, total force of the knee extensors (MVC + force from EL) was not different in the two trials. Force development during handgrip contraction followed the same pattern of response as was observed for the knee extensors. In conclusion, these data demonstrate that the ability to generate force during a prolonged MVC is attenuated with hyperthermia, and the impaired performance is associated with a reduction in the voluntary activation percentage.
Department of Human Physiology, Institute of Exercise and Sport Sciences, University of Copenhagen, DK-2200 Copenhagen Ø, Denmark The present study investigated the effects of hyperthermia on the contributions of central and peripheral factors to the development of neuromuscular fatigue. Fourteen men exercised at 60% maximal oxygen consumption on a cycle ergometer in hot (40°C; hyperthermia) and thermoneutral (18°C; control) environments. In hyperthermia, the core temperature increased throughout the exercise period and reached a peak value of 40.0 ± 0.1°C (mean   ± SE) at exhaustion after 50 ± 3 min of exercise. In control, core temperature stabilized at ~38.0 ± 0.1°C, and exercise was maintained for 1 h without exhausting the subjects. Immediately after the cycle trials, subjects performed 2 min of sustained maximal voluntary contraction (MVC) either with the exercised legs (knee extension) or with a "nonexercised" muscle group (handgrip). The degree of voluntary activation during sustained maximal knee extensions was assessed by superimposing electrical stimulation (EL) to nervus femoralis. Voluntary knee extensor force was similar during the first 5 s of contraction in hyperthermia and control. Thereafter, force declined in both trials, but the reduction in maximal voluntary force was more pronounced in the hyperthermic trial, and, from 30 to 120 s, the force was significantly lower in hyperthermia compared with control. Calculation of the voluntary activation percentage (MVC/MVC + EL) revealed that the degree of central activation was significantly lower in hyperthermia (54 ± 7%) compared with control (82 ± 6%). In contrast, total force of the knee extensors (MVC + force from EL) was not different in the two trials. Force development during handgrip contraction followed the same pattern of response as was observed for the knee extensors. In conclusion, these data demonstrate that the ability to generate force during a prolonged MVC is attenuated with hyperthermia, and the impaired performance is associated with a reduction in the voluntary activation percentage. central activation; core temperature; muscle contractions
The present study investigated the effects of hyperthermia on the contributions of central and peripheral factors to the development of neuromuscular fatigue. Fourteen men exercised at 60% maximal oxygen consumption on a cycle ergometer in hot (40degreesC; hyperthermia) and thermoneutral (18degreesC; control) environments.
The present study investigated the effects of hyperthermia on the contributions of central and peripheral factors to the development of neuromuscular fatigue. Fourteen men exercised at 60% maximal oxygen consumption on a cycle ergometer in hot (40 degree C; hyperthermia) and thermoneutral (18 degree C; control) environments. In hyperthermia, the core temperature increased throughout the exercise period and reached a peak value of 40.0 plus or minus 0. 1 degree C (mean plus or minus SE) at exhaustion after 50 plus or minus 3 min of exercise. In control, core temperature stabilized at similar to 38.0 plus or minus 0. 1 degree C, and exercise was maintained for 1 h without exhausting the subjects. Immediately after the cycle trials, subjects performed 2 min of sustained maximal voluntary contraction (MVC) either with the exercised legs (knee extension) or with a "nonexercised" muscle group (handgrip). The degree of voluntary activation during sustained maximal knee extensions was assessed by superimposing electrical stimulation (EL) to nervus femoralis. Voluntary knee extensor force was similar during the first 5 s of contraction in hyperthermia and control. Thereafter, force declined in both trials, but the reduction in maximal voluntary force was more pronounced in the hyperthermic trial, and, from 30 to 120 s, the force was significantly lower in hyperthermia compared with control. Calculation of the voluntary activation percentage (MVC/MVC + EL) revealed that the degree of central activation was significantly lower in hyperthermia (54 plus or minus 7%) compared with control (82 plus or minus 6%). In contrast, total force of the knee extensors (MVC + force from EL) was not different in the two trials. Force development during handgrip contraction followed the same pattern of response as was observed for the knee extensors. In conclusion, these data demonstrate that the ability to generate force during a prolonged MVC is attenuated with hyperthermia, and the impaired performance is associated with a reduction in the voluntary activation percentage.
Author Nielsen, Bodil
Nybo, Lars
Author_xml – sequence: 1
  fullname: Nybo, Lars
– sequence: 2
  fullname: Nielsen, Bodil
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14094934$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/11509498$$D View this record in MEDLINE/PubMed
BookMark eNqFkk9v1DAQxS1URLeFb4BQhMSfS4InceKYGyqUIlXiUs6W1xknXmWdYCdq99vj7C5FqqriiyX79549b-aMnLjBISGvgWYAZf5po8axz3JKIROQFRnQsnxGVvEqT6GicEJWNS9pysuan5KzEDYRZayEF-Q0GlDBRL0iX692I_qpQ7-1KlGuSTS6yas-MWqy7YxJM3vr2mT0Qz-4FpsE79BrGzCxLunmrXLhJXluVB_w1XE_J78uv91cXKXXP7__uPhyneqy4lMK64rWBS0U6koYEGB0DoxrhlVlxFqDBi60ZnWjFOfKCMBcQzwr0JSizItz8uHgGz_ze8Ywya0NGvteORzmIDmPdVU1g0i-f5oEKsoK6H9BqPMY6N7x7QNwM8zexXJlHhcUvGARenOE5vUWGzl6u1V-J__mHYF3R0AFrXrjlYtR_uPYgu2NPh847YcQPBqp7RQbMiy9sb0Eunjmcj8EchkCKUAWchmCKGYPxPf-T8s-HmSdbbtb61GO3S7Y2PZ2tygee-Ex9HLu-xu8mxbNvUSOjSn-AH_a1gY
CODEN JAPHEV
CitedBy_id crossref_primary_10_1098_rstb_2015_0386
crossref_primary_10_1152_japplphysiol_00541_2005
crossref_primary_10_1007_s40279_013_0020_6
crossref_primary_10_1186_s40101_015_0077_z
crossref_primary_10_1249_MSS_0b013e31827ded04
crossref_primary_10_1016_j_jsams_2007_07_002
crossref_primary_10_1080_23328940_2019_1691896
crossref_primary_10_1080_02640414_2023_2178872
crossref_primary_10_3109_02656736_2013_786141
crossref_primary_10_1123_ijspp_2012_0247
crossref_primary_10_5432_jjpehss_15012
crossref_primary_10_1123_ijspp_2012_0369
crossref_primary_10_1371_journal_pone_0061157
crossref_primary_10_1111_j_1600_0838_2011_01350_x
crossref_primary_10_1007_s00421_008_0741_7
crossref_primary_10_14814_phy2_14003
crossref_primary_10_1136_bjsm_2009_057562
crossref_primary_10_1371_journal_pone_0290081
crossref_primary_10_1080_17461391_2020_1809715
crossref_primary_10_1113_expphysiol_2005_031294
crossref_primary_10_1123_ijspp_2012_0366
crossref_primary_10_1249_MSS_0000000000003506
crossref_primary_10_3168_jds_2017_12651
crossref_primary_10_1111_j_1600_0838_2010_01211_x
crossref_primary_10_1111_sms_14004
crossref_primary_10_1177_0018720816645457
crossref_primary_10_1113_jphysiol_2004_079202
crossref_primary_10_1016_j_jtherbio_2010_08_002
crossref_primary_10_1123_ijspp_2020_0414
crossref_primary_10_1097_PHM_0b013e31802ba53c
crossref_primary_10_1007_s40279_014_0230_6
crossref_primary_10_1249_MSS_0b013e31828e1e77
crossref_primary_10_1016_j_scispo_2018_10_017
crossref_primary_10_1002_mus_20752
crossref_primary_10_1152_japplphysiol_00367_2010
crossref_primary_10_3390_ijerph17082952
crossref_primary_10_1016_j_sbspro_2014_02_388
crossref_primary_10_1111_j_1469_8986_2012_01360_x
crossref_primary_10_1186_s40101_021_00262_0
crossref_primary_10_1007_s40279_013_0030_4
crossref_primary_10_2165_00007256_200737040_00032
crossref_primary_10_1152_japplphysiol_01378_2012
crossref_primary_10_1113_jphysiol_2005_101733
crossref_primary_10_1080_23328940_2022_2102375
crossref_primary_10_1080_02640414_2016_1164885
crossref_primary_10_7600_jpfsm_1_671
crossref_primary_10_3390_ijerph20054580
crossref_primary_10_1152_ajpheart_00525_2015
crossref_primary_10_1113_expphysiol_2010_054973
crossref_primary_10_1111_sms_12289
crossref_primary_10_1111_sms_13015
crossref_primary_10_1007_s00421_019_04197_4
crossref_primary_10_1016_j_jsams_2008_08_003
crossref_primary_10_1139_H07_188
crossref_primary_10_1080_02640414_2016_1192294
crossref_primary_10_1111_j_1600_0838_2010_01214_x
crossref_primary_10_1016_j_jtherbio_2022_103280
crossref_primary_10_1152_japplphysiol_00651_2019
crossref_primary_10_1249_MSS_0b013e3181854957
crossref_primary_10_1038_srep26614
crossref_primary_10_3389_fphys_2018_01064
crossref_primary_10_3390_ijerph17031031
crossref_primary_10_1139_apnm_2024_0192
crossref_primary_10_1080_02640410903207424
crossref_primary_10_1177_1088868315597841
crossref_primary_10_1016_j_jtherbio_2024_103964
crossref_primary_10_1080_23328940_2022_2115274
crossref_primary_10_1111_sms_12395
crossref_primary_10_1249_mss_0b013e31802ca597
crossref_primary_10_3389_fnrgo_2022_841911
crossref_primary_10_1016_j_jtherbio_2022_103270
crossref_primary_10_1007_s00421_013_2697_5
crossref_primary_10_1152_japplphysiol_00582_2003
crossref_primary_10_1152_ajpregu_00676_2004
crossref_primary_10_1080_02640414_2013_825732
crossref_primary_10_1152_ajpregu_90812_2008
crossref_primary_10_1371_journal_pone_0165318
crossref_primary_10_1007_s00421_011_2165_z
crossref_primary_10_1111_j_1753_4887_2005_tb00149_x
crossref_primary_10_1136_bjsm_2008_050799
crossref_primary_10_1016_j_jep_2013_08_016
crossref_primary_10_1007_s00421_014_2883_0
crossref_primary_10_1123_ijspp_5_2_140
crossref_primary_10_1590_1414_431x20143561
crossref_primary_10_3389_fneur_2019_00654
crossref_primary_10_1152_japplphysiol_00853_2007
crossref_primary_10_1080_02640414_2022_2151750
crossref_primary_10_3389_fphys_2022_860709
crossref_primary_10_1519_JSC_0b013e31825c3266
crossref_primary_10_1111_sms_12370
crossref_primary_10_1123_ijspp_8_5_527
crossref_primary_10_1113_jphysiol_2007_139477
crossref_primary_10_1080_23328940_2016_1277003
crossref_primary_10_3389_fpsyg_2016_00246
crossref_primary_10_7600_jpfsm_2_429
crossref_primary_10_1080_17461391_2023_2240748
crossref_primary_10_1152_japplphysiol_90911_2008
crossref_primary_10_1007_s00484_023_02453_z
crossref_primary_10_2165_00007256_200636100_00006
crossref_primary_10_1249_MSS_0000000000001263
crossref_primary_10_1080_07315724_2007_10719666
crossref_primary_10_1007_s42978_023_00263_8
crossref_primary_10_1136_bjsm_2008_048173
crossref_primary_10_1111_j_1600_0838_2010_01216_x
crossref_primary_10_1152_japplphysiol_00241_2003
crossref_primary_10_1016_j_jesf_2023_05_003
crossref_primary_10_1249_mss_0b013e31815adf31
crossref_primary_10_1519_JSC_0000000000003561
crossref_primary_10_1016_j_jsams_2007_10_011
crossref_primary_10_1177_19417381241249470
crossref_primary_10_1186_1550_2783_9_44
crossref_primary_10_1007_s00421_016_3430_y
crossref_primary_10_1152_japplphysiol_00460_2010
crossref_primary_10_1007_s00421_010_1405_y
crossref_primary_10_1016_j_neulet_2011_07_029
crossref_primary_10_3390_ijerph18179193
crossref_primary_10_1111_j_1600_0838_2010_01204_x
crossref_primary_10_1111_sms_12350
crossref_primary_10_3390_sports12010008
crossref_primary_10_1152_japplphysiol_01119_2012
crossref_primary_10_1113_expphysiol_2007_038083
crossref_primary_10_1016_j_jevs_2022_104141
crossref_primary_10_1016_j_jshs_2023_09_001
crossref_primary_10_1123_ijspp_2019_0973
crossref_primary_10_3390_app14072895
crossref_primary_10_1007_s00421_009_1055_0
crossref_primary_10_1016_S0306_4565_02_00032_3
crossref_primary_10_1111_sms_12349
crossref_primary_10_1111_sms_14646
crossref_primary_10_1111_sms_12345
crossref_primary_10_2165_00007256_200636080_00004
crossref_primary_10_1007_s40279_022_01748_2
crossref_primary_10_1111_sms_14520
crossref_primary_10_1136_bjsm_2007_043687
crossref_primary_10_23736_S0022_4707_20_10877_6
crossref_primary_10_1519_JSC_0b013e3181635ba5
crossref_primary_10_1152_japplphysiol_90427_2008
crossref_primary_10_1139_apnm_2013_0394
crossref_primary_10_1249_MSS_0b013e3181b675da
crossref_primary_10_1177_0040517513487784
crossref_primary_10_4085_1062_6050_43_6_592
crossref_primary_10_1113_JP280970
crossref_primary_10_1113_jphysiol_2008_157420
crossref_primary_10_1007_s00421_013_2596_9
crossref_primary_10_1080_23328940_2015_1119615
crossref_primary_10_1123_ijspp_6_2_208
crossref_primary_10_3390_nu16223792
crossref_primary_10_1007_s40279_016_0657_z
crossref_primary_10_1152_japplphysiol_00093_2005
crossref_primary_10_1007_s00421_010_1734_x
crossref_primary_10_1111_j_1748_1716_2009_02051_x
crossref_primary_10_1007_s00484_022_02411_1
crossref_primary_10_1152_physrev_00038_2020
crossref_primary_10_1111_sms_12322
crossref_primary_10_1007_s00424_005_0027_4
crossref_primary_10_1111_j_1475_097X_2012_01142_x
crossref_primary_10_1016_j_jtherbio_2003_08_008
crossref_primary_10_1113_jphysiol_2002_030023
crossref_primary_10_1016_j_jtherbio_2016_02_006
crossref_primary_10_1007_s00421_024_05460_z
crossref_primary_10_2746_042516406778400646
crossref_primary_10_1007_s00421_018_3970_4
crossref_primary_10_1080_17461391_2010_536577
crossref_primary_10_1249_MSS_0b013e3181621336
crossref_primary_10_1016_j_pneurobio_2004_03_005
crossref_primary_10_3390_sports12090252
crossref_primary_10_1113_EP090644
crossref_primary_10_1111_sms_12555
crossref_primary_10_1007_s00421_010_1429_3
crossref_primary_10_1080_15502783_2024_2346563
crossref_primary_10_1249_MSS_0b013e318199eb75
crossref_primary_10_7600_jspfsm_61_459
crossref_primary_10_1139_apnm_2018_0161
crossref_primary_10_3233_IES_230077
crossref_primary_10_1080_23328940_2019_1599182
crossref_primary_10_1007_s42978_024_00294_9
crossref_primary_10_1080_17461391_2019_1695954
crossref_primary_10_1016_j_msard_2022_103557
crossref_primary_10_1111_j_1748_1716_2010_02084_x
crossref_primary_10_1123_ijspp_1_3_233
crossref_primary_10_1111_j_1748_1716_2008_01946_x
crossref_primary_10_1590_1517_869220192501178036
crossref_primary_10_1080_17461391_2010_487117
crossref_primary_10_1080_17461391_2010_487115
crossref_primary_10_1152_japplphysiol_00577_2009
crossref_primary_10_1007_s00421_011_2218_3
crossref_primary_10_1152_japplphysiol_00876_2015
crossref_primary_10_3389_fnhum_2019_00294
crossref_primary_10_1152_japplphysiol_00683_2007
crossref_primary_10_1002_jemt_22280
crossref_primary_10_1080_02640410903406216
crossref_primary_10_1080_00140139_2011_582960
crossref_primary_10_1123_ijspp_8_3_307
crossref_primary_10_1139_h05_130
crossref_primary_10_1111_sms_12417
crossref_primary_10_1152_japplphysiol_00979_2003
crossref_primary_10_1080_02656730802294020
crossref_primary_10_1007_s11062_019_09794_9
crossref_primary_10_1519_JSC_0b013e3181bf7a4f
crossref_primary_10_1080_02640414_2020_1835222
crossref_primary_10_2165_11587320_000000000_00000
crossref_primary_10_1113_expphysiol_2004_028977
crossref_primary_10_4085_1062_6050_46_1_55
crossref_primary_10_1080_23744731_2023_2299174
crossref_primary_10_1089_ham_2016_0034
crossref_primary_10_1007_s00421_009_1109_3
crossref_primary_10_1152_japplphysiol_00135_2010
crossref_primary_10_1371_journal_pone_0195219
crossref_primary_10_1136_bjsports_2014_093918
crossref_primary_10_1080_02640410400021286
crossref_primary_10_1249_MSS_0b013e3182148a9a
crossref_primary_10_1113_expphysiol_2013_074583
crossref_primary_10_1139_h11_111
crossref_primary_10_1016_j_jtherbio_2004_08_047
crossref_primary_10_1080_00140139_2019_1683617
crossref_primary_10_1136_bjsm_2007_034207
crossref_primary_10_1152_japplphysiol_00910_2007
crossref_primary_10_1080_23328940_2017_1356427
crossref_primary_10_1007_s00421_009_1122_6
crossref_primary_10_1152_japplphysiol_00261_2021
crossref_primary_10_1136_bjsm_2009_054973
crossref_primary_10_1016_j_ramd_2016_04_001
crossref_primary_10_1007_s00726_012_1429_1
crossref_primary_10_1519_JSC_0000000000002746
crossref_primary_10_3389_fphys_2017_00090
crossref_primary_10_2165_11588760_000000000_00000
crossref_primary_10_1080_02640410310001655813
crossref_primary_10_1186_s40779_020_00287_z
crossref_primary_10_1080_02640414_2016_1215501
crossref_primary_10_3390_bioengineering10020132
crossref_primary_10_1007_s42978_024_00274_z
crossref_primary_10_1152_japplphysiol_00092_2018
crossref_primary_10_1016_j_jtherbio_2019_07_036
crossref_primary_10_1113_jphysiol_2009_176883
crossref_primary_10_1016_j_cbpc_2004_09_010
crossref_primary_10_1113_jphysiol_2014_272104
crossref_primary_10_3233_IES_160638
crossref_primary_10_1152_japplphysiol_00188_2003
crossref_primary_10_1186_s40101_023_00329_0
crossref_primary_10_1080_23328940_2017_1368877
crossref_primary_10_1016_j_jsams_2021_03_007
crossref_primary_10_1519_JSC_0000000000000578
crossref_primary_10_1113_expphysiol_2006_036327
crossref_primary_10_1016_j_imr_2016_06_002
crossref_primary_10_1080_02640410903165077
crossref_primary_10_1007_s00421_022_05127_7
crossref_primary_10_1111_j_1600_0838_2010_01219_x
crossref_primary_10_1249_MSS_0b013e318211be3e
crossref_primary_10_1249_01_MSS_0000058433_85789_66
crossref_primary_10_1152_jn_00903_2006
crossref_primary_10_1007_s00421_014_2958_y
crossref_primary_10_1152_japplphysiol_00049_2002
crossref_primary_10_1371_journal_pone_0171119
crossref_primary_10_2165_11630550_000000000_00000
crossref_primary_10_1152_japplphysiol_00357_2004
crossref_primary_10_1152_ajpregu_00280_2015
crossref_primary_10_1080_23328940_2016_1179380
crossref_primary_10_1080_02640410500483022
crossref_primary_10_1113_EP091017
crossref_primary_10_1079_ECP200437
crossref_primary_10_3389_fspor_2023_1147845
crossref_primary_10_3390_life11111149
crossref_primary_10_1186_2046_7648_4_S1_A3
crossref_primary_10_1136_bjsports_2012_091739
crossref_primary_10_52082_jssm_2021_69
crossref_primary_10_1007_s00421_011_1876_5
crossref_primary_10_1113_EP089177
crossref_primary_10_1139_apnm_2017_0131
crossref_primary_10_1152_ajpregu_00048_2011
crossref_primary_10_1007_s00421_021_04700_w
crossref_primary_10_4085_1062_6050_49_3_27
crossref_primary_10_1139_apnm_2013_0413
crossref_primary_10_1007_s40279_016_0625_7
crossref_primary_10_1113_expphysiol_2011_062273
crossref_primary_10_2165_00007256_200333010_00001
crossref_primary_10_1152_japplphysiol_00253_2021
crossref_primary_10_1113_jphysiol_2006_124388
crossref_primary_10_3389_fphys_2019_00071
crossref_primary_10_1590_2317_6369000015317
crossref_primary_10_1016_j_burns_2010_05_012
crossref_primary_10_2165_11586070_000000000_00000
crossref_primary_10_1016_j_ergon_2014_10_004
crossref_primary_10_1007_s40279_016_0538_5
crossref_primary_10_2174_1875399X01710010052
crossref_primary_10_1016_j_expthermflusci_2016_04_008
crossref_primary_10_1139_H10_098
crossref_primary_10_1016_j_bbr_2013_01_013
crossref_primary_10_1016_j_jtherbio_2005_11_018
crossref_primary_10_1007_s00421_012_2316_x
crossref_primary_10_1519_JSC_0000000000001865
crossref_primary_10_1152_japplphysiol_00353_2015
crossref_primary_10_1152_japplphysiol_00049_2013
crossref_primary_10_1016_S0007_9960_11_70009_8
crossref_primary_10_1249_MSS_0000000000001921
crossref_primary_10_1007_s00421_006_0152_6
crossref_primary_10_1136_bjsm_2003_010330
crossref_primary_10_1016_j_physbeh_2019_112567
crossref_primary_10_1123_ijspp_2016_0766
crossref_primary_10_1123_ijspp_4_2_254
crossref_primary_10_1080_23328940_2022_2030634
crossref_primary_10_1111_1440_1681_12407
crossref_primary_10_1002_tsm2_187
crossref_primary_10_1080_02640410701567425
crossref_primary_10_1136_bjsm_2009_063024
crossref_primary_10_1152_ajpregu_00061_2015
crossref_primary_10_1002_met_1631
crossref_primary_10_1038_s41598_024_61536_y
crossref_primary_10_1152_ajpregu_00086_2016
crossref_primary_10_1249_MSS_0b013e31816d65a5
crossref_primary_10_1152_japplphysiol_00362_2009
crossref_primary_10_1016_j_jtherbio_2016_10_001
crossref_primary_10_7600_jpfsm_4_143
crossref_primary_10_1007_s00421_022_05051_w
crossref_primary_10_1519_JSC_0000000000000319
crossref_primary_10_1007_s00421_019_04172_z
crossref_primary_10_1007_s00421_010_1781_3
crossref_primary_10_1007_s00421_012_2336_6
crossref_primary_10_1016_j_jtherbio_2014_11_007
crossref_primary_10_1136_bjsports_2020_102193
crossref_primary_10_23736_S0022_4707_19_09865_7
crossref_primary_10_1113_jphysiol_2002_022285
crossref_primary_10_1080_23328940_2021_1957367
crossref_primary_10_1519_JSC_0000000000000840
crossref_primary_10_3389_fphys_2014_00092
crossref_primary_10_1519_JSC_0000000000000841
crossref_primary_10_1519_SSC_0000000000000484
crossref_primary_10_1080_15459624_2022_2123493
crossref_primary_10_1080_02640414_2014_977938
crossref_primary_10_1371_journal_pone_0095336
crossref_primary_10_1007_s00421_012_2348_2
crossref_primary_10_1016_j_gaitpost_2023_10_004
crossref_primary_10_1152_ajpregu_00055_2017
crossref_primary_10_4103_0044_0507_137845
crossref_primary_10_1136_bjsports_2013_093242
crossref_primary_10_1519_JSC_0b013e318194e0b1
crossref_primary_10_1016_j_jshs_2015_12_002
crossref_primary_10_1186_1550_2783_5_14
crossref_primary_10_1371_journal_pone_0104710
crossref_primary_10_14814_phy2_70013
crossref_primary_10_24985_kjss_2009_20_4_743
crossref_primary_10_1080_23328940_2019_1657344
crossref_primary_10_3389_fphys_2024_1356488
crossref_primary_10_1007_s00421_021_04744_y
crossref_primary_10_1002_mus_23397
crossref_primary_10_1016_j_neulet_2015_01_082
crossref_primary_10_1590_1414_431x20176432
crossref_primary_10_1016_j_asmart_2016_06_001
crossref_primary_10_1152_japplphysiol_00523_2012
crossref_primary_10_1016_j_brainresbull_2007_03_004
crossref_primary_10_1111_j_1600_0838_2007_00721_x
crossref_primary_10_1139_H07_043
crossref_primary_10_1016_j_msard_2024_105840
crossref_primary_10_2165_00007256_200535100_00004
crossref_primary_10_3390_medicina55030066
crossref_primary_10_3389_fnut_2021_691695
crossref_primary_10_2478_v10054_009_0017_0
crossref_primary_10_3390_nu10020253
crossref_primary_10_1007_s00421_012_2577_4
crossref_primary_10_1016_j_jsams_2017_06_005
crossref_primary_10_1186_2193_1801_2_317
crossref_primary_10_1152_japplphysiol_00486_2012
crossref_primary_10_1186_s12970_021_00449_x
crossref_primary_10_33549_physiolres_934114
crossref_primary_10_1016_j_physbeh_2018_06_026
crossref_primary_10_1152_ajpregu_00043_2014
crossref_primary_10_3390_sports5020028
crossref_primary_10_1016_j_jelekin_2011_06_002
crossref_primary_10_1007_s00421_011_2049_2
crossref_primary_10_1016_j_clinph_2010_10_005
crossref_primary_10_1007_s40279_017_0738_7
crossref_primary_10_3389_fnut_2022_959516
crossref_primary_10_2165_00007256_200737080_00001
crossref_primary_10_2165_00007256_200737030_00002
crossref_primary_10_1007_s40279_023_01892_3
crossref_primary_10_1371_journal_pone_0205321
crossref_primary_10_1371_journal_pone_0039202
crossref_primary_10_1002_zaac_202000071
crossref_primary_10_1249_MSS_0000000000000207
crossref_primary_10_1249_MSS_0000000000001418
crossref_primary_10_1113_jphysiol_2004_077115
crossref_primary_10_1113_JP270424
crossref_primary_10_1017_S1049023X12001847
crossref_primary_10_1136_bjsm_36_2_89
crossref_primary_10_23736_S0022_4707_24_16100_2
crossref_primary_10_1016_j_jtherbio_2019_02_012
crossref_primary_10_1007_s00421_012_2444_3
crossref_primary_10_1016_j_jelekin_2010_10_006
crossref_primary_10_1136_bjsports_2013_093160
crossref_primary_10_3390_sports5010004
crossref_primary_10_1016_j_jtherbio_2023_103730
crossref_primary_10_1007_s40279_014_0184_8
crossref_primary_10_1007_s00421_007_0652_z
crossref_primary_10_1007_s40279_016_0483_3
crossref_primary_10_1249_01_mss_0000230120_83641_98
crossref_primary_10_1519_JSC_0b013e3181e07585
crossref_primary_10_1007_s00421_011_1972_6
crossref_primary_10_1007_s40279_018_1033_y
crossref_primary_10_1113_expphysiol_2011_061002
crossref_primary_10_1016_j_bandc_2013_07_013
crossref_primary_10_1371_journal_pone_0251513
crossref_primary_10_3109_02656736_2011_589096
crossref_primary_10_1007_s40279_012_0014_9
crossref_primary_10_1139_apnm_2020_0079
crossref_primary_10_1111_j_1600_0838_2010_01220_x
crossref_primary_10_1152_japplphysiol_01342_2004
crossref_primary_10_1152_japplphysiol_00945_2005
crossref_primary_10_1007_s00421_009_1135_1
crossref_primary_10_3389_fphys_2019_01469
crossref_primary_10_1139_H08_139
crossref_primary_10_1097_00003677_200407000_00005
crossref_primary_10_1152_jappl_2001_91_5_2017
crossref_primary_10_1371_journal_pone_0078918
crossref_primary_10_52082_jssm_2022_164
crossref_primary_10_1152_japplphysiol_00822_2005
crossref_primary_10_1016_j_jtherbio_2016_06_003
crossref_primary_10_5432_ijshs_201615
Cites_doi 10.1152/jappl.1986.61.2.421
10.1097/00005768-199709000-00018
10.1111/j.1469-445X.1999.01815.x
10.1152/jappl.2000.89.2.799
10.1111/j.1469-7793.1999.00577.x
10.1002/mus.880180605
10.1152/jappl.1981.51.5.1131
10.1007/s004210050558
10.1113/jphysiol.1993.sp019482
10.1007/s004240100515
10.1249/00005768-199411000-00009
10.1007/BF00586681
10.1113/jphysiol.1986.sp016263
10.1152/jappl.2001.90.3.1057
10.1152/jappl.1998.84.3.877
10.1152/jappl.1999.86.3.902
10.1152/ajplegacy.1971.220.4.1053
10.1152/jappl.1994.77.6.2827
10.1152/jappl.1999.86.3.1032
10.1016/S0306-4565(98)00014-X
ContentType Journal Article
Copyright 2002 INIST-CNRS
Copyright American Physiological Society Sep 2001
Copyright_xml – notice: 2002 INIST-CNRS
– notice: Copyright American Physiological Society Sep 2001
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
7U7
8FD
C1K
FR3
P64
7X8
DOI 10.1152/jappl.2001.91.3.1055
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

MEDLINE

Technology Research Database
Physical Education Index
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1601
EndPage 1060
ExternalDocumentID 81754030
11509498
14094934
10_1152_jappl_2001_91_3_1055
jap_91_3_1055
Genre Journal Article
Feature
GroupedDBID -
02
08R
2WC
39C
3O-
53G
55
5VS
85S
AALRV
ABFLS
ABOCM
ABUFD
ACGFS
ACIWK
ACPRK
ADBBV
ADBIT
AEILP
AENEX
AEULQ
AFDAS
AFRAH
AGCDD
AGNAY
ALMA_UNASSIGNED_HOLDINGS
BAWUL
C1A
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GJ
GX1
H13
H~9
KQ8
L7B
MVM
MYA
NEJ
O0-
OHT
OK1
P-O
P2P
PQEST
PQQKQ
RAP
RHF
RHI
RPL
SJN
UHB
UKR
UPT
VH1
WH7
WOQ
X
X7M
YCJ
ZXP
---
-~X
.55
.GJ
18M
4.4
AAFWJ
AAYXX
ABCQX
ABDNZ
ABHWK
ABJNI
ABKWE
ACBEA
ACGFO
ADFNX
ADXHL
AFOSN
AI.
BKKCC
BTFSW
CITATION
EMOBN
ITBOX
P6G
RPRKH
TR2
W8F
XSW
YBH
YQT
YWH
~02
1CY
29J
8M5
ACKIV
ACYGS
AETEA
AIDAL
AJUXI
C2-
IQODW
J5H
XOL
YQJ
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
7QP
7QR
7TK
7TS
7U7
8FD
C1K
FR3
P64
7X8
ID FETCH-LOGICAL-c567t-1b608303aec69f191fc2147c4e66f9bc1c179cc48daa77af91e2c11793ef59523
ISSN 8750-7587
IngestDate Thu Sep 04 16:19:25 EDT 2025
Fri Sep 05 03:19:39 EDT 2025
Thu Sep 04 16:11:12 EDT 2025
Mon Jun 30 08:58:40 EDT 2025
Wed Feb 19 02:40:52 EST 2025
Mon Jul 21 09:14:36 EDT 2025
Thu Apr 24 23:02:40 EDT 2025
Tue Jul 01 02:43:45 EDT 2025
Tue Jan 05 17:53:19 EST 2021
Mon May 06 11:38:02 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Physical exercise
Extension
Knee
Human
Body temperature
Fatigue
Muscle contraction
Hyperthermia
Prolonged
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c567t-1b608303aec69f191fc2147c4e66f9bc1c179cc48daa77af91e2c11793ef59523
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 11509498
PQID 222213734
PQPubID 40905
PageCount 6
ParticipantIDs proquest_journals_222213734
crossref_citationtrail_10_1152_jappl_2001_91_3_1055
proquest_miscellaneous_771506841
highwire_physiology_jap_91_3_1055
proquest_miscellaneous_71095610
pubmed_primary_11509498
pascalfrancis_primary_14094934
proquest_miscellaneous_18252241
crossref_primary_10_1152_jappl_2001_91_3_1055
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2001-09-01
PublicationDateYYYYMMDD 2001-09-01
PublicationDate_xml – month: 09
  year: 2001
  text: 2001-09-01
  day: 01
PublicationDecade 2000
PublicationPlace Bethesda, MD
PublicationPlace_xml – name: Bethesda, MD
– name: United States
– name: Bethesda
PublicationTitle Journal of applied physiology (1985)
PublicationTitleAlternate J Appl Physiol (1985)
PublicationYear 2001
Publisher Am Physiological Soc
American Physiological Society
Publisher_xml – name: Am Physiological Soc
– name: American Physiological Society
References B20
B11
B22
B12
B23
B13
B24
Bigland-Ritchie B (B5) 1978; 54
Brooks GA (B9) 1971; 220
Brück K (B10) 1987; 65
B14
B25
B15
B16
B17
B18
B19
B1
B2
B3
B4
B7
References_xml – ident: B4
  doi: 10.1152/jappl.1986.61.2.421
– ident: B14
  doi: 10.1097/00005768-199709000-00018
– ident: B23
  doi: 10.1111/j.1469-445X.1999.01815.x
– ident: B24
  doi: 10.1152/jappl.2000.89.2.799
– ident: B15
  doi: 10.1111/j.1469-7793.1999.00577.x
– ident: B1
  doi: 10.1002/mus.880180605
– ident: B2
  doi: 10.1152/jappl.1981.51.5.1131
– ident: B17
  doi: 10.1007/s004210050558
– volume: 65
  start-page: 1274
  year: 1987
  ident: B10
  publication-title: Can J Sport Sci
– ident: B18
  doi: 10.1113/jphysiol.1993.sp019482
– ident: B19
  doi: 10.1007/s004240100515
– ident: B25
  doi: 10.1249/00005768-199411000-00009
– ident: B11
  doi: 10.1007/BF00586681
– ident: B3
  doi: 10.1113/jphysiol.1986.sp016263
– volume: 54
  start-page: 609
  year: 1978
  ident: B5
  publication-title: Clin Sci Mol Med
– ident: B20
  doi: 10.1152/jappl.2001.90.3.1057
– ident: B13
  doi: 10.1152/jappl.1998.84.3.877
– ident: B22
  doi: 10.1152/jappl.1999.86.3.902
– volume: 220
  start-page: 1053
  year: 1971
  ident: B9
  publication-title: Am J Physiol
  doi: 10.1152/ajplegacy.1971.220.4.1053
– ident: B12
  doi: 10.1152/jappl.1994.77.6.2827
– ident: B16
  doi: 10.1152/jappl.1999.86.3.1032
– ident: B7
  doi: 10.1016/S0306-4565(98)00014-X
SSID ssj0014451
Score 2.2557845
Snippet Department of Human Physiology, Institute of Exercise and Sport Sciences, University of Copenhagen, DK-2200 Copenhagen Ø, Denmark The present study...
The present study investigated the effects of hyperthermia on the contributions of central and peripheral factors to the development of neuromuscular fatigue....
SourceID proquest
pubmed
pascalfrancis
crossref
highwire
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1055
SubjectTerms Adult
Bicycling - physiology
Biological and medical sciences
Body Temperature - physiology
Electromyography
Exercise
Fatigue
Fever
Fever - physiopathology
Forearm - physiology
Fundamental and applied biological sciences. Psychology
Hand Strength - physiology
Humans
Knee Joint - physiology
Male
Muscle Contraction - physiology
Muscle Fatigue - physiology
Muscular system
Oxygen consumption
Physical Exertion - physiology
Temperature
Thermoregulation. Hibernation. Estivation. Ecophysiology and environmental effects
Vertebrates: anatomy and physiology, studies on body, several organs or systems
Title Hyperthermia and central fatigue during prolonged exercise in humans
URI http://jap.physiology.org/cgi/content/abstract/91/3/1055
https://www.ncbi.nlm.nih.gov/pubmed/11509498
https://www.proquest.com/docview/222213734
https://www.proquest.com/docview/18252241
https://www.proquest.com/docview/71095610
https://www.proquest.com/docview/771506841
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdbB2Mvo2v3kXXrNBh7Kc4iS7asx7K1hK3NNkggb0KW5VJondIkD91f3zvJHwkkdNuLMfbJFvqdpLvTfRDyScSWGyeKCBjGRUJmJlI8y6OBgO3JKpMxn9TnfJQOJ-L7NJl2dUJ9dMki79s_G-NK_gdVeAa4YpTsPyDbfhQewD3gC1dAGK5_hfEQlMhblOCuQ2jVUe1qeVQCwcXSNUGIsEpezaoLkC2bCkto5vDl-eZbpFNTS6fe8hHyNGFKJ5UlK7aD0V0-6yIX_OkGbrWhAvyaPYG1DlOdy-UgAi1Crq6Riq3wAt-89CaxT_kP3UO1m_UV63MsI5x0W01zvD76qU8nZ2d6fDIdPyZPYin9EfuP390JECZOC7bZ0Js67BH-8mXTP9bFiibVM3q6mjkwexmqlGxXI7w4Md4lz-uRpscB1Bfkkav2yP5xZRaz6zv6mf5qx32PPD2vHSD2ybdVyClATmvIaQ05DZDTFnLaQE4vKxogf0kmpyfjr8OoLoQR2SSVi4jlKUjKA5hUNlUlaNilxfJSVrg0LVVumYVl1VqRFcZIaUrFXGwx1x93ZaKSmL8iO9Wscm8IFVgfoMwza2UhXDFQgzxOcmlYYQQ3QvUIb8ZR2zpLPBYrudJeW0xi7Ucfq5cyrZjmGke_R6K21U3IkvIQfQOR7vhYo9VlDIyCbVpafVOUPfJxEz2QrX7zcA3rriNowlBc9MhBA76uJ_Fcg3gcMy7x7Yf2LayweGxmKjdbzjVo4AkKutsp0J8Z9ZAeodsoJGbyzPAjrwPbdd1jmMNSZW8fbnxAnnUz9h3ZWdwu3XuQiRf5oZ889wlnt8I
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperthermia+and+central+fatigue+during+prolonged+exercise+in+humans&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Nybo%2C+L&rft.au=Nielsen%2C+B&rft.date=2001-09-01&rft.issn=8750-7587&rft.volume=91&rft.issue=3&rft_id=info:doi/10.1152%2Fjappl.2001.91.3.1055&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon