Hyperthermia and central fatigue during prolonged exercise in humans
Department of Human Physiology, Institute of Exercise and Sport Sciences, University of Copenhagen, DK-2200 Copenhagen Ø, Denmark The present study investigated the effects of hyperthermia on the contributions of central and peripheral factors to the development of neuromuscular fatigue. Fourteen me...
Saved in:
Published in | Journal of applied physiology (1985) Vol. 91; no. 3; pp. 1055 - 1060 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Bethesda, MD
Am Physiological Soc
01.09.2001
American Physiological Society |
Subjects | |
Online Access | Get full text |
ISSN | 8750-7587 1522-1601 |
DOI | 10.1152/jappl.2001.91.3.1055 |
Cover
Abstract | Department of Human Physiology, Institute of Exercise and Sport
Sciences, University of Copenhagen, DK-2200 Copenhagen Ø, Denmark
The present study investigated the effects of hyperthermia on
the contributions of central and peripheral factors to the development
of neuromuscular fatigue. Fourteen men exercised at 60% maximal oxygen
consumption on a cycle ergometer in hot (40°C; hyperthermia) and
thermoneutral (18°C; control) environments. In hyperthermia, the core
temperature increased throughout the exercise period and reached a peak
value of 40.0 ± 0.1°C (mean ± SE) at exhaustion after
50 ± 3 min of exercise. In control, core temperature stabilized
at ~38.0 ± 0.1°C, and exercise was maintained for 1 h
without exhausting the subjects. Immediately after the cycle trials,
subjects performed 2 min of sustained maximal voluntary contraction
(MVC) either with the exercised legs (knee extension) or with a
"nonexercised" muscle group (handgrip). The degree of voluntary
activation during sustained maximal knee extensions was assessed by
superimposing electrical stimulation (EL) to nervus femoralis.
Voluntary knee extensor force was similar during the first 5 s of
contraction in hyperthermia and control. Thereafter, force declined in
both trials, but the reduction in maximal voluntary force was more
pronounced in the hyperthermic trial, and, from 30 to 120 s, the
force was significantly lower in hyperthermia compared with control.
Calculation of the voluntary activation percentage (MVC/MVC + EL)
revealed that the degree of central activation was significantly lower
in hyperthermia (54 ± 7%) compared with control (82 ± 6%). In contrast, total force of the knee extensors (MVC + force
from EL) was not different in the two trials. Force development during
handgrip contraction followed the same pattern of response as was
observed for the knee extensors. In conclusion, these data demonstrate
that the ability to generate force during a prolonged MVC is attenuated with hyperthermia, and the impaired performance is associated with a
reduction in the voluntary activation percentage.
central activation; core temperature; muscle contractions |
---|---|
AbstractList | The present study investigated the effects of hyperthermia on the contributions of central and peripheral factors to the development of neuromuscular fatigue. Fourteen men exercised at 60% maximal oxygen consumption on a cycle ergometer in hot (40°C; hyperthermia) and thermoneutral (18°C; control) environments. In hyperthermia, the core temperature increased throughout the exercise period and reached a peak value of 40.0 ± 0.1°C (mean ± SE) at exhaustion after 50 ± 3 min of exercise. In control, core temperature stabilized at ∼38.0 ± 0.1°C, and exercise was maintained for 1 h without exhausting the subjects. Immediately after the cycle trials, subjects performed 2 min of sustained maximal voluntary contraction (MVC) either with the exercised legs (knee extension) or with a “nonexercised” muscle group (handgrip). The degree of voluntary activation during sustained maximal knee extensions was assessed by superimposing electrical stimulation (EL) to nervus femoralis. Voluntary knee extensor force was similar during the first 5 s of contraction in hyperthermia and control. Thereafter, force declined in both trials, but the reduction in maximal voluntary force was more pronounced in the hyperthermic trial, and, from 30 to 120 s, the force was significantly lower in hyperthermia compared with control. Calculation of the voluntary activation percentage (MVC/MVC + EL) revealed that the degree of central activation was significantly lower in hyperthermia (54 ± 7%) compared with control (82 ± 6%). In contrast, total force of the knee extensors (MVC + force from EL) was not different in the two trials. Force development during handgrip contraction followed the same pattern of response as was observed for the knee extensors. In conclusion, these data demonstrate that the ability to generate force during a prolonged MVC is attenuated with hyperthermia, and the impaired performance is associated with a reduction in the voluntary activation percentage. The present study investigated the effects of hyperthermia on the contributions of central and peripheral factors to the development of neuromuscular fatigue. Fourteen men exercised at 60% maximal oxygen consumption on a cycle ergometer in hot (40 degrees C; hyperthermia) and thermoneutral (18 degrees C; control) environments. In hyperthermia, the core temperature increased throughout the exercise period and reached a peak value of 40.0 +/- 0.1 degrees C (mean +/- SE) at exhaustion after 50 +/- 3 min of exercise. In control, core temperature stabilized at approximately 38.0 +/- 0.1 degrees C, and exercise was maintained for 1 h without exhausting the subjects. Immediately after the cycle trials, subjects performed 2 min of sustained maximal voluntary contraction (MVC) either with the exercised legs (knee extension) or with a "nonexercised" muscle group (handgrip). The degree of voluntary activation during sustained maximal knee extensions was assessed by superimposing electrical stimulation (EL) to nervus femoralis. Voluntary knee extensor force was similar during the first 5 s of contraction in hyperthermia and control. Thereafter, force declined in both trials, but the reduction in maximal voluntary force was more pronounced in the hyperthermic trial, and, from 30 to 120 s, the force was significantly lower in hyperthermia compared with control. Calculation of the voluntary activation percentage (MVC/MVC + EL) revealed that the degree of central activation was significantly lower in hyperthermia (54 +/- 7%) compared with control (82 +/- 6%). In contrast, total force of the knee extensors (MVC + force from EL) was not different in the two trials. Force development during handgrip contraction followed the same pattern of response as was observed for the knee extensors. In conclusion, these data demonstrate that the ability to generate force during a prolonged MVC is attenuated with hyperthermia, and the impaired performance is associated with a reduction in the voluntary activation percentage.The present study investigated the effects of hyperthermia on the contributions of central and peripheral factors to the development of neuromuscular fatigue. Fourteen men exercised at 60% maximal oxygen consumption on a cycle ergometer in hot (40 degrees C; hyperthermia) and thermoneutral (18 degrees C; control) environments. In hyperthermia, the core temperature increased throughout the exercise period and reached a peak value of 40.0 +/- 0.1 degrees C (mean +/- SE) at exhaustion after 50 +/- 3 min of exercise. In control, core temperature stabilized at approximately 38.0 +/- 0.1 degrees C, and exercise was maintained for 1 h without exhausting the subjects. Immediately after the cycle trials, subjects performed 2 min of sustained maximal voluntary contraction (MVC) either with the exercised legs (knee extension) or with a "nonexercised" muscle group (handgrip). The degree of voluntary activation during sustained maximal knee extensions was assessed by superimposing electrical stimulation (EL) to nervus femoralis. Voluntary knee extensor force was similar during the first 5 s of contraction in hyperthermia and control. Thereafter, force declined in both trials, but the reduction in maximal voluntary force was more pronounced in the hyperthermic trial, and, from 30 to 120 s, the force was significantly lower in hyperthermia compared with control. Calculation of the voluntary activation percentage (MVC/MVC + EL) revealed that the degree of central activation was significantly lower in hyperthermia (54 +/- 7%) compared with control (82 +/- 6%). In contrast, total force of the knee extensors (MVC + force from EL) was not different in the two trials. Force development during handgrip contraction followed the same pattern of response as was observed for the knee extensors. In conclusion, these data demonstrate that the ability to generate force during a prolonged MVC is attenuated with hyperthermia, and the impaired performance is associated with a reduction in the voluntary activation percentage. The present study investigated the effects of hyperthermia on the contributions of central and peripheral factors to the development of neuromuscular fatigue. Fourteen men exercised at 60% maximal oxygen consumption on a cycle ergometer in hot (40 degrees C; hyperthermia) and thermoneutral (18 degrees C; control) environments. In hyperthermia, the core temperature increased throughout the exercise period and reached a peak value of 40.0 +/- 0.1 degrees C (mean +/- SE) at exhaustion after 50 +/- 3 min of exercise. In control, core temperature stabilized at approx. 38.0 +/- 0.1 degrees C, and exercise was maintained for 1 h without exhausting the subjects. Immediately after the cycle trials, subjects performed 2 min of sustained maximal voluntary contraction (MVC) either with the exercised legs (knee extension) or with a 'nonexercised' muscle group (handgrip). The degree of voluntary activation during sustained maximal knee extensions was assessed by superimposing electrical stimulation (EL) to nervus femoralis. Voluntary knee extensor force was similar during the first 5 s of contraction in hyperthermia and control. Thereafter, force declined in both trials, but the reduction in maximal voluntary force was more pronounced in the hyperthermic trial, and, from 30 to 120 s, the force was significantly lower in hyperthermia compared with control. Calculation of the voluntary activation percentage (MVC/MVC + EL) revealed that the degree of central activation was significantly lower in hyperthermia (54 +/- 7%) compared with control (82 +/- 6%). In contrast, total force of the knee extensors (MVC + force from EL) was not different in the two trials. Force development during handgrip contraction followed the same pattern of response as was observed for the knee extensors. The present study investigated the effects of hyperthermia on the contributions of central and peripheral factors to the development of neuromuscular fatigue. Fourteen men exercised at 60% maximal oxygen consumption on a cycle ergometer in hot (40 degrees C; hyperthermia) and thermoneutral (18 degrees C; control) environments. In hyperthermia, the core temperature increased throughout the exercise period and reached a peak value of 40.0 +/- 0.1 degrees C (mean +/- SE) at exhaustion after 50 +/- 3 min of exercise. In control, core temperature stabilized at approximately 38.0 +/- 0.1 degrees C, and exercise was maintained for 1 h without exhausting the subjects. Immediately after the cycle trials, subjects performed 2 min of sustained maximal voluntary contraction (MVC) either with the exercised legs (knee extension) or with a "nonexercised" muscle group (handgrip). The degree of voluntary activation during sustained maximal knee extensions was assessed by superimposing electrical stimulation (EL) to nervus femoralis. Voluntary knee extensor force was similar during the first 5 s of contraction in hyperthermia and control. Thereafter, force declined in both trials, but the reduction in maximal voluntary force was more pronounced in the hyperthermic trial, and, from 30 to 120 s, the force was significantly lower in hyperthermia compared with control. Calculation of the voluntary activation percentage (MVC/MVC + EL) revealed that the degree of central activation was significantly lower in hyperthermia (54 +/- 7%) compared with control (82 +/- 6%). In contrast, total force of the knee extensors (MVC + force from EL) was not different in the two trials. Force development during handgrip contraction followed the same pattern of response as was observed for the knee extensors. In conclusion, these data demonstrate that the ability to generate force during a prolonged MVC is attenuated with hyperthermia, and the impaired performance is associated with a reduction in the voluntary activation percentage. Department of Human Physiology, Institute of Exercise and Sport Sciences, University of Copenhagen, DK-2200 Copenhagen Ø, Denmark The present study investigated the effects of hyperthermia on the contributions of central and peripheral factors to the development of neuromuscular fatigue. Fourteen men exercised at 60% maximal oxygen consumption on a cycle ergometer in hot (40°C; hyperthermia) and thermoneutral (18°C; control) environments. In hyperthermia, the core temperature increased throughout the exercise period and reached a peak value of 40.0 ± 0.1°C (mean ± SE) at exhaustion after 50 ± 3 min of exercise. In control, core temperature stabilized at ~38.0 ± 0.1°C, and exercise was maintained for 1 h without exhausting the subjects. Immediately after the cycle trials, subjects performed 2 min of sustained maximal voluntary contraction (MVC) either with the exercised legs (knee extension) or with a "nonexercised" muscle group (handgrip). The degree of voluntary activation during sustained maximal knee extensions was assessed by superimposing electrical stimulation (EL) to nervus femoralis. Voluntary knee extensor force was similar during the first 5 s of contraction in hyperthermia and control. Thereafter, force declined in both trials, but the reduction in maximal voluntary force was more pronounced in the hyperthermic trial, and, from 30 to 120 s, the force was significantly lower in hyperthermia compared with control. Calculation of the voluntary activation percentage (MVC/MVC + EL) revealed that the degree of central activation was significantly lower in hyperthermia (54 ± 7%) compared with control (82 ± 6%). In contrast, total force of the knee extensors (MVC + force from EL) was not different in the two trials. Force development during handgrip contraction followed the same pattern of response as was observed for the knee extensors. In conclusion, these data demonstrate that the ability to generate force during a prolonged MVC is attenuated with hyperthermia, and the impaired performance is associated with a reduction in the voluntary activation percentage. central activation; core temperature; muscle contractions The present study investigated the effects of hyperthermia on the contributions of central and peripheral factors to the development of neuromuscular fatigue. Fourteen men exercised at 60% maximal oxygen consumption on a cycle ergometer in hot (40degreesC; hyperthermia) and thermoneutral (18degreesC; control) environments. The present study investigated the effects of hyperthermia on the contributions of central and peripheral factors to the development of neuromuscular fatigue. Fourteen men exercised at 60% maximal oxygen consumption on a cycle ergometer in hot (40 degree C; hyperthermia) and thermoneutral (18 degree C; control) environments. In hyperthermia, the core temperature increased throughout the exercise period and reached a peak value of 40.0 plus or minus 0. 1 degree C (mean plus or minus SE) at exhaustion after 50 plus or minus 3 min of exercise. In control, core temperature stabilized at similar to 38.0 plus or minus 0. 1 degree C, and exercise was maintained for 1 h without exhausting the subjects. Immediately after the cycle trials, subjects performed 2 min of sustained maximal voluntary contraction (MVC) either with the exercised legs (knee extension) or with a "nonexercised" muscle group (handgrip). The degree of voluntary activation during sustained maximal knee extensions was assessed by superimposing electrical stimulation (EL) to nervus femoralis. Voluntary knee extensor force was similar during the first 5 s of contraction in hyperthermia and control. Thereafter, force declined in both trials, but the reduction in maximal voluntary force was more pronounced in the hyperthermic trial, and, from 30 to 120 s, the force was significantly lower in hyperthermia compared with control. Calculation of the voluntary activation percentage (MVC/MVC + EL) revealed that the degree of central activation was significantly lower in hyperthermia (54 plus or minus 7%) compared with control (82 plus or minus 6%). In contrast, total force of the knee extensors (MVC + force from EL) was not different in the two trials. Force development during handgrip contraction followed the same pattern of response as was observed for the knee extensors. In conclusion, these data demonstrate that the ability to generate force during a prolonged MVC is attenuated with hyperthermia, and the impaired performance is associated with a reduction in the voluntary activation percentage. |
Author | Nielsen, Bodil Nybo, Lars |
Author_xml | – sequence: 1 fullname: Nybo, Lars – sequence: 2 fullname: Nielsen, Bodil |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14094934$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/11509498$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk9v1DAQxS1URLeFb4BQhMSfS4InceKYGyqUIlXiUs6W1xknXmWdYCdq99vj7C5FqqriiyX79549b-aMnLjBISGvgWYAZf5po8axz3JKIROQFRnQsnxGVvEqT6GicEJWNS9pysuan5KzEDYRZayEF-Q0GlDBRL0iX692I_qpQ7-1KlGuSTS6yas-MWqy7YxJM3vr2mT0Qz-4FpsE79BrGzCxLunmrXLhJXluVB_w1XE_J78uv91cXKXXP7__uPhyneqy4lMK64rWBS0U6koYEGB0DoxrhlVlxFqDBi60ZnWjFOfKCMBcQzwr0JSizItz8uHgGz_ze8Ywya0NGvteORzmIDmPdVU1g0i-f5oEKsoK6H9BqPMY6N7x7QNwM8zexXJlHhcUvGARenOE5vUWGzl6u1V-J__mHYF3R0AFrXrjlYtR_uPYgu2NPh847YcQPBqp7RQbMiy9sb0Eunjmcj8EchkCKUAWchmCKGYPxPf-T8s-HmSdbbtb61GO3S7Y2PZ2tygee-Ex9HLu-xu8mxbNvUSOjSn-AH_a1gY |
CODEN | JAPHEV |
CitedBy_id | crossref_primary_10_1098_rstb_2015_0386 crossref_primary_10_1152_japplphysiol_00541_2005 crossref_primary_10_1007_s40279_013_0020_6 crossref_primary_10_1186_s40101_015_0077_z crossref_primary_10_1249_MSS_0b013e31827ded04 crossref_primary_10_1016_j_jsams_2007_07_002 crossref_primary_10_1080_23328940_2019_1691896 crossref_primary_10_1080_02640414_2023_2178872 crossref_primary_10_3109_02656736_2013_786141 crossref_primary_10_1123_ijspp_2012_0247 crossref_primary_10_5432_jjpehss_15012 crossref_primary_10_1123_ijspp_2012_0369 crossref_primary_10_1371_journal_pone_0061157 crossref_primary_10_1111_j_1600_0838_2011_01350_x crossref_primary_10_1007_s00421_008_0741_7 crossref_primary_10_14814_phy2_14003 crossref_primary_10_1136_bjsm_2009_057562 crossref_primary_10_1371_journal_pone_0290081 crossref_primary_10_1080_17461391_2020_1809715 crossref_primary_10_1113_expphysiol_2005_031294 crossref_primary_10_1123_ijspp_2012_0366 crossref_primary_10_1249_MSS_0000000000003506 crossref_primary_10_3168_jds_2017_12651 crossref_primary_10_1111_j_1600_0838_2010_01211_x crossref_primary_10_1111_sms_14004 crossref_primary_10_1177_0018720816645457 crossref_primary_10_1113_jphysiol_2004_079202 crossref_primary_10_1016_j_jtherbio_2010_08_002 crossref_primary_10_1123_ijspp_2020_0414 crossref_primary_10_1097_PHM_0b013e31802ba53c crossref_primary_10_1007_s40279_014_0230_6 crossref_primary_10_1249_MSS_0b013e31828e1e77 crossref_primary_10_1016_j_scispo_2018_10_017 crossref_primary_10_1002_mus_20752 crossref_primary_10_1152_japplphysiol_00367_2010 crossref_primary_10_3390_ijerph17082952 crossref_primary_10_1016_j_sbspro_2014_02_388 crossref_primary_10_1111_j_1469_8986_2012_01360_x crossref_primary_10_1186_s40101_021_00262_0 crossref_primary_10_1007_s40279_013_0030_4 crossref_primary_10_2165_00007256_200737040_00032 crossref_primary_10_1152_japplphysiol_01378_2012 crossref_primary_10_1113_jphysiol_2005_101733 crossref_primary_10_1080_23328940_2022_2102375 crossref_primary_10_1080_02640414_2016_1164885 crossref_primary_10_7600_jpfsm_1_671 crossref_primary_10_3390_ijerph20054580 crossref_primary_10_1152_ajpheart_00525_2015 crossref_primary_10_1113_expphysiol_2010_054973 crossref_primary_10_1111_sms_12289 crossref_primary_10_1111_sms_13015 crossref_primary_10_1007_s00421_019_04197_4 crossref_primary_10_1016_j_jsams_2008_08_003 crossref_primary_10_1139_H07_188 crossref_primary_10_1080_02640414_2016_1192294 crossref_primary_10_1111_j_1600_0838_2010_01214_x crossref_primary_10_1016_j_jtherbio_2022_103280 crossref_primary_10_1152_japplphysiol_00651_2019 crossref_primary_10_1249_MSS_0b013e3181854957 crossref_primary_10_1038_srep26614 crossref_primary_10_3389_fphys_2018_01064 crossref_primary_10_3390_ijerph17031031 crossref_primary_10_1139_apnm_2024_0192 crossref_primary_10_1080_02640410903207424 crossref_primary_10_1177_1088868315597841 crossref_primary_10_1016_j_jtherbio_2024_103964 crossref_primary_10_1080_23328940_2022_2115274 crossref_primary_10_1111_sms_12395 crossref_primary_10_1249_mss_0b013e31802ca597 crossref_primary_10_3389_fnrgo_2022_841911 crossref_primary_10_1016_j_jtherbio_2022_103270 crossref_primary_10_1007_s00421_013_2697_5 crossref_primary_10_1152_japplphysiol_00582_2003 crossref_primary_10_1152_ajpregu_00676_2004 crossref_primary_10_1080_02640414_2013_825732 crossref_primary_10_1152_ajpregu_90812_2008 crossref_primary_10_1371_journal_pone_0165318 crossref_primary_10_1007_s00421_011_2165_z crossref_primary_10_1111_j_1753_4887_2005_tb00149_x crossref_primary_10_1136_bjsm_2008_050799 crossref_primary_10_1016_j_jep_2013_08_016 crossref_primary_10_1007_s00421_014_2883_0 crossref_primary_10_1123_ijspp_5_2_140 crossref_primary_10_1590_1414_431x20143561 crossref_primary_10_3389_fneur_2019_00654 crossref_primary_10_1152_japplphysiol_00853_2007 crossref_primary_10_1080_02640414_2022_2151750 crossref_primary_10_3389_fphys_2022_860709 crossref_primary_10_1519_JSC_0b013e31825c3266 crossref_primary_10_1111_sms_12370 crossref_primary_10_1123_ijspp_8_5_527 crossref_primary_10_1113_jphysiol_2007_139477 crossref_primary_10_1080_23328940_2016_1277003 crossref_primary_10_3389_fpsyg_2016_00246 crossref_primary_10_7600_jpfsm_2_429 crossref_primary_10_1080_17461391_2023_2240748 crossref_primary_10_1152_japplphysiol_90911_2008 crossref_primary_10_1007_s00484_023_02453_z crossref_primary_10_2165_00007256_200636100_00006 crossref_primary_10_1249_MSS_0000000000001263 crossref_primary_10_1080_07315724_2007_10719666 crossref_primary_10_1007_s42978_023_00263_8 crossref_primary_10_1136_bjsm_2008_048173 crossref_primary_10_1111_j_1600_0838_2010_01216_x crossref_primary_10_1152_japplphysiol_00241_2003 crossref_primary_10_1016_j_jesf_2023_05_003 crossref_primary_10_1249_mss_0b013e31815adf31 crossref_primary_10_1519_JSC_0000000000003561 crossref_primary_10_1016_j_jsams_2007_10_011 crossref_primary_10_1177_19417381241249470 crossref_primary_10_1186_1550_2783_9_44 crossref_primary_10_1007_s00421_016_3430_y crossref_primary_10_1152_japplphysiol_00460_2010 crossref_primary_10_1007_s00421_010_1405_y crossref_primary_10_1016_j_neulet_2011_07_029 crossref_primary_10_3390_ijerph18179193 crossref_primary_10_1111_j_1600_0838_2010_01204_x crossref_primary_10_1111_sms_12350 crossref_primary_10_3390_sports12010008 crossref_primary_10_1152_japplphysiol_01119_2012 crossref_primary_10_1113_expphysiol_2007_038083 crossref_primary_10_1016_j_jevs_2022_104141 crossref_primary_10_1016_j_jshs_2023_09_001 crossref_primary_10_1123_ijspp_2019_0973 crossref_primary_10_3390_app14072895 crossref_primary_10_1007_s00421_009_1055_0 crossref_primary_10_1016_S0306_4565_02_00032_3 crossref_primary_10_1111_sms_12349 crossref_primary_10_1111_sms_14646 crossref_primary_10_1111_sms_12345 crossref_primary_10_2165_00007256_200636080_00004 crossref_primary_10_1007_s40279_022_01748_2 crossref_primary_10_1111_sms_14520 crossref_primary_10_1136_bjsm_2007_043687 crossref_primary_10_23736_S0022_4707_20_10877_6 crossref_primary_10_1519_JSC_0b013e3181635ba5 crossref_primary_10_1152_japplphysiol_90427_2008 crossref_primary_10_1139_apnm_2013_0394 crossref_primary_10_1249_MSS_0b013e3181b675da crossref_primary_10_1177_0040517513487784 crossref_primary_10_4085_1062_6050_43_6_592 crossref_primary_10_1113_JP280970 crossref_primary_10_1113_jphysiol_2008_157420 crossref_primary_10_1007_s00421_013_2596_9 crossref_primary_10_1080_23328940_2015_1119615 crossref_primary_10_1123_ijspp_6_2_208 crossref_primary_10_3390_nu16223792 crossref_primary_10_1007_s40279_016_0657_z crossref_primary_10_1152_japplphysiol_00093_2005 crossref_primary_10_1007_s00421_010_1734_x crossref_primary_10_1111_j_1748_1716_2009_02051_x crossref_primary_10_1007_s00484_022_02411_1 crossref_primary_10_1152_physrev_00038_2020 crossref_primary_10_1111_sms_12322 crossref_primary_10_1007_s00424_005_0027_4 crossref_primary_10_1111_j_1475_097X_2012_01142_x crossref_primary_10_1016_j_jtherbio_2003_08_008 crossref_primary_10_1113_jphysiol_2002_030023 crossref_primary_10_1016_j_jtherbio_2016_02_006 crossref_primary_10_1007_s00421_024_05460_z crossref_primary_10_2746_042516406778400646 crossref_primary_10_1007_s00421_018_3970_4 crossref_primary_10_1080_17461391_2010_536577 crossref_primary_10_1249_MSS_0b013e3181621336 crossref_primary_10_1016_j_pneurobio_2004_03_005 crossref_primary_10_3390_sports12090252 crossref_primary_10_1113_EP090644 crossref_primary_10_1111_sms_12555 crossref_primary_10_1007_s00421_010_1429_3 crossref_primary_10_1080_15502783_2024_2346563 crossref_primary_10_1249_MSS_0b013e318199eb75 crossref_primary_10_7600_jspfsm_61_459 crossref_primary_10_1139_apnm_2018_0161 crossref_primary_10_3233_IES_230077 crossref_primary_10_1080_23328940_2019_1599182 crossref_primary_10_1007_s42978_024_00294_9 crossref_primary_10_1080_17461391_2019_1695954 crossref_primary_10_1016_j_msard_2022_103557 crossref_primary_10_1111_j_1748_1716_2010_02084_x crossref_primary_10_1123_ijspp_1_3_233 crossref_primary_10_1111_j_1748_1716_2008_01946_x crossref_primary_10_1590_1517_869220192501178036 crossref_primary_10_1080_17461391_2010_487117 crossref_primary_10_1080_17461391_2010_487115 crossref_primary_10_1152_japplphysiol_00577_2009 crossref_primary_10_1007_s00421_011_2218_3 crossref_primary_10_1152_japplphysiol_00876_2015 crossref_primary_10_3389_fnhum_2019_00294 crossref_primary_10_1152_japplphysiol_00683_2007 crossref_primary_10_1002_jemt_22280 crossref_primary_10_1080_02640410903406216 crossref_primary_10_1080_00140139_2011_582960 crossref_primary_10_1123_ijspp_8_3_307 crossref_primary_10_1139_h05_130 crossref_primary_10_1111_sms_12417 crossref_primary_10_1152_japplphysiol_00979_2003 crossref_primary_10_1080_02656730802294020 crossref_primary_10_1007_s11062_019_09794_9 crossref_primary_10_1519_JSC_0b013e3181bf7a4f crossref_primary_10_1080_02640414_2020_1835222 crossref_primary_10_2165_11587320_000000000_00000 crossref_primary_10_1113_expphysiol_2004_028977 crossref_primary_10_4085_1062_6050_46_1_55 crossref_primary_10_1080_23744731_2023_2299174 crossref_primary_10_1089_ham_2016_0034 crossref_primary_10_1007_s00421_009_1109_3 crossref_primary_10_1152_japplphysiol_00135_2010 crossref_primary_10_1371_journal_pone_0195219 crossref_primary_10_1136_bjsports_2014_093918 crossref_primary_10_1080_02640410400021286 crossref_primary_10_1249_MSS_0b013e3182148a9a crossref_primary_10_1113_expphysiol_2013_074583 crossref_primary_10_1139_h11_111 crossref_primary_10_1016_j_jtherbio_2004_08_047 crossref_primary_10_1080_00140139_2019_1683617 crossref_primary_10_1136_bjsm_2007_034207 crossref_primary_10_1152_japplphysiol_00910_2007 crossref_primary_10_1080_23328940_2017_1356427 crossref_primary_10_1007_s00421_009_1122_6 crossref_primary_10_1152_japplphysiol_00261_2021 crossref_primary_10_1136_bjsm_2009_054973 crossref_primary_10_1016_j_ramd_2016_04_001 crossref_primary_10_1007_s00726_012_1429_1 crossref_primary_10_1519_JSC_0000000000002746 crossref_primary_10_3389_fphys_2017_00090 crossref_primary_10_2165_11588760_000000000_00000 crossref_primary_10_1080_02640410310001655813 crossref_primary_10_1186_s40779_020_00287_z crossref_primary_10_1080_02640414_2016_1215501 crossref_primary_10_3390_bioengineering10020132 crossref_primary_10_1007_s42978_024_00274_z crossref_primary_10_1152_japplphysiol_00092_2018 crossref_primary_10_1016_j_jtherbio_2019_07_036 crossref_primary_10_1113_jphysiol_2009_176883 crossref_primary_10_1016_j_cbpc_2004_09_010 crossref_primary_10_1113_jphysiol_2014_272104 crossref_primary_10_3233_IES_160638 crossref_primary_10_1152_japplphysiol_00188_2003 crossref_primary_10_1186_s40101_023_00329_0 crossref_primary_10_1080_23328940_2017_1368877 crossref_primary_10_1016_j_jsams_2021_03_007 crossref_primary_10_1519_JSC_0000000000000578 crossref_primary_10_1113_expphysiol_2006_036327 crossref_primary_10_1016_j_imr_2016_06_002 crossref_primary_10_1080_02640410903165077 crossref_primary_10_1007_s00421_022_05127_7 crossref_primary_10_1111_j_1600_0838_2010_01219_x crossref_primary_10_1249_MSS_0b013e318211be3e crossref_primary_10_1249_01_MSS_0000058433_85789_66 crossref_primary_10_1152_jn_00903_2006 crossref_primary_10_1007_s00421_014_2958_y crossref_primary_10_1152_japplphysiol_00049_2002 crossref_primary_10_1371_journal_pone_0171119 crossref_primary_10_2165_11630550_000000000_00000 crossref_primary_10_1152_japplphysiol_00357_2004 crossref_primary_10_1152_ajpregu_00280_2015 crossref_primary_10_1080_23328940_2016_1179380 crossref_primary_10_1080_02640410500483022 crossref_primary_10_1113_EP091017 crossref_primary_10_1079_ECP200437 crossref_primary_10_3389_fspor_2023_1147845 crossref_primary_10_3390_life11111149 crossref_primary_10_1186_2046_7648_4_S1_A3 crossref_primary_10_1136_bjsports_2012_091739 crossref_primary_10_52082_jssm_2021_69 crossref_primary_10_1007_s00421_011_1876_5 crossref_primary_10_1113_EP089177 crossref_primary_10_1139_apnm_2017_0131 crossref_primary_10_1152_ajpregu_00048_2011 crossref_primary_10_1007_s00421_021_04700_w crossref_primary_10_4085_1062_6050_49_3_27 crossref_primary_10_1139_apnm_2013_0413 crossref_primary_10_1007_s40279_016_0625_7 crossref_primary_10_1113_expphysiol_2011_062273 crossref_primary_10_2165_00007256_200333010_00001 crossref_primary_10_1152_japplphysiol_00253_2021 crossref_primary_10_1113_jphysiol_2006_124388 crossref_primary_10_3389_fphys_2019_00071 crossref_primary_10_1590_2317_6369000015317 crossref_primary_10_1016_j_burns_2010_05_012 crossref_primary_10_2165_11586070_000000000_00000 crossref_primary_10_1016_j_ergon_2014_10_004 crossref_primary_10_1007_s40279_016_0538_5 crossref_primary_10_2174_1875399X01710010052 crossref_primary_10_1016_j_expthermflusci_2016_04_008 crossref_primary_10_1139_H10_098 crossref_primary_10_1016_j_bbr_2013_01_013 crossref_primary_10_1016_j_jtherbio_2005_11_018 crossref_primary_10_1007_s00421_012_2316_x crossref_primary_10_1519_JSC_0000000000001865 crossref_primary_10_1152_japplphysiol_00353_2015 crossref_primary_10_1152_japplphysiol_00049_2013 crossref_primary_10_1016_S0007_9960_11_70009_8 crossref_primary_10_1249_MSS_0000000000001921 crossref_primary_10_1007_s00421_006_0152_6 crossref_primary_10_1136_bjsm_2003_010330 crossref_primary_10_1016_j_physbeh_2019_112567 crossref_primary_10_1123_ijspp_2016_0766 crossref_primary_10_1123_ijspp_4_2_254 crossref_primary_10_1080_23328940_2022_2030634 crossref_primary_10_1111_1440_1681_12407 crossref_primary_10_1002_tsm2_187 crossref_primary_10_1080_02640410701567425 crossref_primary_10_1136_bjsm_2009_063024 crossref_primary_10_1152_ajpregu_00061_2015 crossref_primary_10_1002_met_1631 crossref_primary_10_1038_s41598_024_61536_y crossref_primary_10_1152_ajpregu_00086_2016 crossref_primary_10_1249_MSS_0b013e31816d65a5 crossref_primary_10_1152_japplphysiol_00362_2009 crossref_primary_10_1016_j_jtherbio_2016_10_001 crossref_primary_10_7600_jpfsm_4_143 crossref_primary_10_1007_s00421_022_05051_w crossref_primary_10_1519_JSC_0000000000000319 crossref_primary_10_1007_s00421_019_04172_z crossref_primary_10_1007_s00421_010_1781_3 crossref_primary_10_1007_s00421_012_2336_6 crossref_primary_10_1016_j_jtherbio_2014_11_007 crossref_primary_10_1136_bjsports_2020_102193 crossref_primary_10_23736_S0022_4707_19_09865_7 crossref_primary_10_1113_jphysiol_2002_022285 crossref_primary_10_1080_23328940_2021_1957367 crossref_primary_10_1519_JSC_0000000000000840 crossref_primary_10_3389_fphys_2014_00092 crossref_primary_10_1519_JSC_0000000000000841 crossref_primary_10_1519_SSC_0000000000000484 crossref_primary_10_1080_15459624_2022_2123493 crossref_primary_10_1080_02640414_2014_977938 crossref_primary_10_1371_journal_pone_0095336 crossref_primary_10_1007_s00421_012_2348_2 crossref_primary_10_1016_j_gaitpost_2023_10_004 crossref_primary_10_1152_ajpregu_00055_2017 crossref_primary_10_4103_0044_0507_137845 crossref_primary_10_1136_bjsports_2013_093242 crossref_primary_10_1519_JSC_0b013e318194e0b1 crossref_primary_10_1016_j_jshs_2015_12_002 crossref_primary_10_1186_1550_2783_5_14 crossref_primary_10_1371_journal_pone_0104710 crossref_primary_10_14814_phy2_70013 crossref_primary_10_24985_kjss_2009_20_4_743 crossref_primary_10_1080_23328940_2019_1657344 crossref_primary_10_3389_fphys_2024_1356488 crossref_primary_10_1007_s00421_021_04744_y crossref_primary_10_1002_mus_23397 crossref_primary_10_1016_j_neulet_2015_01_082 crossref_primary_10_1590_1414_431x20176432 crossref_primary_10_1016_j_asmart_2016_06_001 crossref_primary_10_1152_japplphysiol_00523_2012 crossref_primary_10_1016_j_brainresbull_2007_03_004 crossref_primary_10_1111_j_1600_0838_2007_00721_x crossref_primary_10_1139_H07_043 crossref_primary_10_1016_j_msard_2024_105840 crossref_primary_10_2165_00007256_200535100_00004 crossref_primary_10_3390_medicina55030066 crossref_primary_10_3389_fnut_2021_691695 crossref_primary_10_2478_v10054_009_0017_0 crossref_primary_10_3390_nu10020253 crossref_primary_10_1007_s00421_012_2577_4 crossref_primary_10_1016_j_jsams_2017_06_005 crossref_primary_10_1186_2193_1801_2_317 crossref_primary_10_1152_japplphysiol_00486_2012 crossref_primary_10_1186_s12970_021_00449_x crossref_primary_10_33549_physiolres_934114 crossref_primary_10_1016_j_physbeh_2018_06_026 crossref_primary_10_1152_ajpregu_00043_2014 crossref_primary_10_3390_sports5020028 crossref_primary_10_1016_j_jelekin_2011_06_002 crossref_primary_10_1007_s00421_011_2049_2 crossref_primary_10_1016_j_clinph_2010_10_005 crossref_primary_10_1007_s40279_017_0738_7 crossref_primary_10_3389_fnut_2022_959516 crossref_primary_10_2165_00007256_200737080_00001 crossref_primary_10_2165_00007256_200737030_00002 crossref_primary_10_1007_s40279_023_01892_3 crossref_primary_10_1371_journal_pone_0205321 crossref_primary_10_1371_journal_pone_0039202 crossref_primary_10_1002_zaac_202000071 crossref_primary_10_1249_MSS_0000000000000207 crossref_primary_10_1249_MSS_0000000000001418 crossref_primary_10_1113_jphysiol_2004_077115 crossref_primary_10_1113_JP270424 crossref_primary_10_1017_S1049023X12001847 crossref_primary_10_1136_bjsm_36_2_89 crossref_primary_10_23736_S0022_4707_24_16100_2 crossref_primary_10_1016_j_jtherbio_2019_02_012 crossref_primary_10_1007_s00421_012_2444_3 crossref_primary_10_1016_j_jelekin_2010_10_006 crossref_primary_10_1136_bjsports_2013_093160 crossref_primary_10_3390_sports5010004 crossref_primary_10_1016_j_jtherbio_2023_103730 crossref_primary_10_1007_s40279_014_0184_8 crossref_primary_10_1007_s00421_007_0652_z crossref_primary_10_1007_s40279_016_0483_3 crossref_primary_10_1249_01_mss_0000230120_83641_98 crossref_primary_10_1519_JSC_0b013e3181e07585 crossref_primary_10_1007_s00421_011_1972_6 crossref_primary_10_1007_s40279_018_1033_y crossref_primary_10_1113_expphysiol_2011_061002 crossref_primary_10_1016_j_bandc_2013_07_013 crossref_primary_10_1371_journal_pone_0251513 crossref_primary_10_3109_02656736_2011_589096 crossref_primary_10_1007_s40279_012_0014_9 crossref_primary_10_1139_apnm_2020_0079 crossref_primary_10_1111_j_1600_0838_2010_01220_x crossref_primary_10_1152_japplphysiol_01342_2004 crossref_primary_10_1152_japplphysiol_00945_2005 crossref_primary_10_1007_s00421_009_1135_1 crossref_primary_10_3389_fphys_2019_01469 crossref_primary_10_1139_H08_139 crossref_primary_10_1097_00003677_200407000_00005 crossref_primary_10_1152_jappl_2001_91_5_2017 crossref_primary_10_1371_journal_pone_0078918 crossref_primary_10_52082_jssm_2022_164 crossref_primary_10_1152_japplphysiol_00822_2005 crossref_primary_10_1016_j_jtherbio_2016_06_003 crossref_primary_10_5432_ijshs_201615 |
Cites_doi | 10.1152/jappl.1986.61.2.421 10.1097/00005768-199709000-00018 10.1111/j.1469-445X.1999.01815.x 10.1152/jappl.2000.89.2.799 10.1111/j.1469-7793.1999.00577.x 10.1002/mus.880180605 10.1152/jappl.1981.51.5.1131 10.1007/s004210050558 10.1113/jphysiol.1993.sp019482 10.1007/s004240100515 10.1249/00005768-199411000-00009 10.1007/BF00586681 10.1113/jphysiol.1986.sp016263 10.1152/jappl.2001.90.3.1057 10.1152/jappl.1998.84.3.877 10.1152/jappl.1999.86.3.902 10.1152/ajplegacy.1971.220.4.1053 10.1152/jappl.1994.77.6.2827 10.1152/jappl.1999.86.3.1032 10.1016/S0306-4565(98)00014-X |
ContentType | Journal Article |
Copyright | 2002 INIST-CNRS Copyright American Physiological Society Sep 2001 |
Copyright_xml | – notice: 2002 INIST-CNRS – notice: Copyright American Physiological Society Sep 2001 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 7U7 8FD C1K FR3 P64 7X8 |
DOI | 10.1152/jappl.2001.91.3.1055 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Physical Education Index Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Technology Research Database Physical Education Index |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1522-1601 |
EndPage | 1060 |
ExternalDocumentID | 81754030 11509498 14094934 10_1152_jappl_2001_91_3_1055 jap_91_3_1055 |
Genre | Journal Article Feature |
GroupedDBID | - 02 08R 2WC 39C 3O- 53G 55 5VS 85S AALRV ABFLS ABOCM ABUFD ACGFS ACIWK ACPRK ADBBV ADBIT AEILP AENEX AEULQ AFDAS AFRAH AGCDD AGNAY ALMA_UNASSIGNED_HOLDINGS BAWUL C1A CS3 DIK DU5 E3Z EBS EJD F5P FRP GJ GX1 H13 H~9 KQ8 L7B MVM MYA NEJ O0- OHT OK1 P-O P2P PQEST PQQKQ RAP RHF RHI RPL SJN UHB UKR UPT VH1 WH7 WOQ X X7M YCJ ZXP --- -~X .55 .GJ 18M 4.4 AAFWJ AAYXX ABCQX ABDNZ ABHWK ABJNI ABKWE ACBEA ACGFO ADFNX ADXHL AFOSN AI. BKKCC BTFSW CITATION EMOBN ITBOX P6G RPRKH TR2 W8F XSW YBH YQT YWH ~02 1CY 29J 8M5 ACKIV ACYGS AETEA AIDAL AJUXI C2- IQODW J5H XOL YQJ CGR CUY CVF ECM EIF NPM VXZ 7QP 7QR 7TK 7TS 7U7 8FD C1K FR3 P64 7X8 |
ID | FETCH-LOGICAL-c567t-1b608303aec69f191fc2147c4e66f9bc1c179cc48daa77af91e2c11793ef59523 |
ISSN | 8750-7587 |
IngestDate | Thu Sep 04 16:19:25 EDT 2025 Fri Sep 05 03:19:39 EDT 2025 Thu Sep 04 16:11:12 EDT 2025 Mon Jun 30 08:58:40 EDT 2025 Wed Feb 19 02:40:52 EST 2025 Mon Jul 21 09:14:36 EDT 2025 Thu Apr 24 23:02:40 EDT 2025 Tue Jul 01 02:43:45 EDT 2025 Tue Jan 05 17:53:19 EST 2021 Mon May 06 11:38:02 EDT 2019 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Physical exercise Extension Knee Human Body temperature Fatigue Muscle contraction Hyperthermia Prolonged |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c567t-1b608303aec69f191fc2147c4e66f9bc1c179cc48daa77af91e2c11793ef59523 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 11509498 |
PQID | 222213734 |
PQPubID | 40905 |
PageCount | 6 |
ParticipantIDs | proquest_journals_222213734 crossref_citationtrail_10_1152_jappl_2001_91_3_1055 proquest_miscellaneous_771506841 highwire_physiology_jap_91_3_1055 proquest_miscellaneous_71095610 pubmed_primary_11509498 pascalfrancis_primary_14094934 proquest_miscellaneous_18252241 crossref_primary_10_1152_jappl_2001_91_3_1055 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2001-09-01 |
PublicationDateYYYYMMDD | 2001-09-01 |
PublicationDate_xml | – month: 09 year: 2001 text: 2001-09-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Bethesda, MD |
PublicationPlace_xml | – name: Bethesda, MD – name: United States – name: Bethesda |
PublicationTitle | Journal of applied physiology (1985) |
PublicationTitleAlternate | J Appl Physiol (1985) |
PublicationYear | 2001 |
Publisher | Am Physiological Soc American Physiological Society |
Publisher_xml | – name: Am Physiological Soc – name: American Physiological Society |
References | B20 B11 B22 B12 B23 B13 B24 Bigland-Ritchie B (B5) 1978; 54 Brooks GA (B9) 1971; 220 Brück K (B10) 1987; 65 B14 B25 B15 B16 B17 B18 B19 B1 B2 B3 B4 B7 |
References_xml | – ident: B4 doi: 10.1152/jappl.1986.61.2.421 – ident: B14 doi: 10.1097/00005768-199709000-00018 – ident: B23 doi: 10.1111/j.1469-445X.1999.01815.x – ident: B24 doi: 10.1152/jappl.2000.89.2.799 – ident: B15 doi: 10.1111/j.1469-7793.1999.00577.x – ident: B1 doi: 10.1002/mus.880180605 – ident: B2 doi: 10.1152/jappl.1981.51.5.1131 – ident: B17 doi: 10.1007/s004210050558 – volume: 65 start-page: 1274 year: 1987 ident: B10 publication-title: Can J Sport Sci – ident: B18 doi: 10.1113/jphysiol.1993.sp019482 – ident: B19 doi: 10.1007/s004240100515 – ident: B25 doi: 10.1249/00005768-199411000-00009 – ident: B11 doi: 10.1007/BF00586681 – ident: B3 doi: 10.1113/jphysiol.1986.sp016263 – volume: 54 start-page: 609 year: 1978 ident: B5 publication-title: Clin Sci Mol Med – ident: B20 doi: 10.1152/jappl.2001.90.3.1057 – ident: B13 doi: 10.1152/jappl.1998.84.3.877 – ident: B22 doi: 10.1152/jappl.1999.86.3.902 – volume: 220 start-page: 1053 year: 1971 ident: B9 publication-title: Am J Physiol doi: 10.1152/ajplegacy.1971.220.4.1053 – ident: B12 doi: 10.1152/jappl.1994.77.6.2827 – ident: B16 doi: 10.1152/jappl.1999.86.3.1032 – ident: B7 doi: 10.1016/S0306-4565(98)00014-X |
SSID | ssj0014451 |
Score | 2.2557845 |
Snippet | Department of Human Physiology, Institute of Exercise and Sport
Sciences, University of Copenhagen, DK-2200 Copenhagen Ø, Denmark
The present study... The present study investigated the effects of hyperthermia on the contributions of central and peripheral factors to the development of neuromuscular fatigue.... |
SourceID | proquest pubmed pascalfrancis crossref highwire |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1055 |
SubjectTerms | Adult Bicycling - physiology Biological and medical sciences Body Temperature - physiology Electromyography Exercise Fatigue Fever Fever - physiopathology Forearm - physiology Fundamental and applied biological sciences. Psychology Hand Strength - physiology Humans Knee Joint - physiology Male Muscle Contraction - physiology Muscle Fatigue - physiology Muscular system Oxygen consumption Physical Exertion - physiology Temperature Thermoregulation. Hibernation. Estivation. Ecophysiology and environmental effects Vertebrates: anatomy and physiology, studies on body, several organs or systems |
Title | Hyperthermia and central fatigue during prolonged exercise in humans |
URI | http://jap.physiology.org/cgi/content/abstract/91/3/1055 https://www.ncbi.nlm.nih.gov/pubmed/11509498 https://www.proquest.com/docview/222213734 https://www.proquest.com/docview/18252241 https://www.proquest.com/docview/71095610 https://www.proquest.com/docview/771506841 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdbB2Mvo2v3kXXrNBh7Kc4iS7asx7K1hK3NNkggb0KW5VJondIkD91f3zvJHwkkdNuLMfbJFvqdpLvTfRDyScSWGyeKCBjGRUJmJlI8y6OBgO3JKpMxn9TnfJQOJ-L7NJl2dUJ9dMki79s_G-NK_gdVeAa4YpTsPyDbfhQewD3gC1dAGK5_hfEQlMhblOCuQ2jVUe1qeVQCwcXSNUGIsEpezaoLkC2bCkto5vDl-eZbpFNTS6fe8hHyNGFKJ5UlK7aD0V0-6yIX_OkGbrWhAvyaPYG1DlOdy-UgAi1Crq6Riq3wAt-89CaxT_kP3UO1m_UV63MsI5x0W01zvD76qU8nZ2d6fDIdPyZPYin9EfuP390JECZOC7bZ0Js67BH-8mXTP9bFiibVM3q6mjkwexmqlGxXI7w4Md4lz-uRpscB1Bfkkav2yP5xZRaz6zv6mf5qx32PPD2vHSD2ybdVyClATmvIaQ05DZDTFnLaQE4vKxogf0kmpyfjr8OoLoQR2SSVi4jlKUjKA5hUNlUlaNilxfJSVrg0LVVumYVl1VqRFcZIaUrFXGwx1x93ZaKSmL8iO9Wscm8IFVgfoMwza2UhXDFQgzxOcmlYYQQ3QvUIb8ZR2zpLPBYrudJeW0xi7Ucfq5cyrZjmGke_R6K21U3IkvIQfQOR7vhYo9VlDIyCbVpafVOUPfJxEz2QrX7zcA3rriNowlBc9MhBA76uJ_Fcg3gcMy7x7Yf2LayweGxmKjdbzjVo4AkKutsp0J8Z9ZAeodsoJGbyzPAjrwPbdd1jmMNSZW8fbnxAnnUz9h3ZWdwu3XuQiRf5oZ889wlnt8I |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperthermia+and+central+fatigue+during+prolonged+exercise+in+humans&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Nybo%2C+L&rft.au=Nielsen%2C+B&rft.date=2001-09-01&rft.issn=8750-7587&rft.volume=91&rft.issue=3&rft_id=info:doi/10.1152%2Fjappl.2001.91.3.1055&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon |