Micro energy harvesting for IoT platform: Review analysis toward future research opportunities
Micro-energy harvesting (MEH) is a technology of renewable power generation which is a key technology for hosting the future low-powered electronic devices for wireless sensor networks (WSNs) and, the Internet of Things (IoT). Recent technological advancements have given rise to several resources an...
Saved in:
Published in | Heliyon Vol. 10; no. 6; p. e27778 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
30.03.2024
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2405-8440 2405-8440 |
DOI | 10.1016/j.heliyon.2024.e27778 |
Cover
Abstract | Micro-energy harvesting (MEH) is a technology of renewable power generation which is a key technology for hosting the future low-powered electronic devices for wireless sensor networks (WSNs) and, the Internet of Things (IoT). Recent technological advancements have given rise to several resources and technologies that are boosting particular facets of society. Many researchers are now interested in studying MEH systems for ultra-low power IoT sensors and WSNs. A comprehensive study of IoT will help to manage a single MEH as a power source for multiple WSNs. The popular database from Scopus was used in this study to perform a review analysis of the MEH system for ultra-low power IoT sensors. All relevant and important literature studies published in this field were statistically analysed using a review analysis method by VOSviewer software, and research gaps, challenges and recommendations of this field were investigated. The findings of the study indicate that there has been an increasing number of literature studies published on the subject of MEH systems for IoT platforms throughout time, particularly from 2013 to 2023. The results demonstrate that 67% of manuscripts highlight problem-solving, modelling and technical overview, simulation, experimental setup and prototype. In observation, 27% of papers are based on bibliometric analysis, systematic review, survey, review and based on case study, and 2% of conference manuscripts are based on modelling, simulation, and review analysis. The top-cited articles are published in 5 different countries and 9 publishers including IEEE 51%, Elsevier 16%, MDPI 10% and others. In addition, several MEH system-related problems and challenges are noted to identify current limitations and research gaps, including technical, modelling, economic, power quality, and environmental concerns. Also, the study offers guidelines and recommendations for the improvement of future MEH technology to increase its energy efficiency, topologies, design, operational performance, and capabilities. This study's detailed information, perceptive analysis, and critical argument are expected to improve MEH research's viable future. |
---|---|
AbstractList | Micro-energy harvesting (MEH) is a technology of renewable power generation which is a key technology for hosting the future low-powered electronic devices for wireless sensor networks (WSNs) and, the Internet of Things (IoT). Recent technological advancements have given rise to several resources and technologies that are boosting particular facets of society. Many researchers are now interested in studying MEH systems for ultra-low power IoT sensors and WSNs. A comprehensive study of IoT will help to manage a single MEH as a power source for multiple WSNs. The popular database from Scopus was used in this study to perform a review analysis of the MEH system for ultra-low power IoT sensors. All relevant and important literature studies published in this field were statistically analysed using a review analysis method by VOSviewer software, and research gaps, challenges and recommendations of this field were investigated. The findings of the study indicate that there has been an increasing number of literature studies published on the subject of MEH systems for IoT platforms throughout time, particularly from 2013 to 2023. The results demonstrate that 67% of manuscripts highlight problem-solving, modelling and technical overview, simulation, experimental setup and prototype. In observation, 27% of papers are based on bibliometric analysis, systematic review, survey, review and based on case study, and 2% of conference manuscripts are based on modelling, simulation, and review analysis. The top-cited articles are published in 5 different countries and 9 publishers including IEEE 51%, Elsevier 16%, MDPI 10% and others. In addition, several MEH system-related problems and challenges are noted to identify current limitations and research gaps, including technical, modelling, economic, power quality, and environmental concerns. Also, the study offers guidelines and recommendations for the improvement of future MEH technology to increase its energy efficiency, topologies, design, operational performance, and capabilities. This study's detailed information, perceptive analysis, and critical argument are expected to improve MEH research's viable future. Micro-energy harvesting (MEH) is a technology of renewable power generation which is a key technology for hosting the future low-powered electronic devices for wireless sensor networks (WSNs) and, the Internet of Things (IoT). Recent technological advancements have given rise to several resources and technologies that are boosting particular facets of society. Many researchers are now interested in studying MEH systems for ultra-low power IoT sensors and WSNs. A comprehensive study of IoT will help to manage a single MEH as a power source for multiple WSNs. The popular database from Scopus was used in this study to perform a review analysis of the MEH system for ultra-low power IoT sensors. All relevant and important literature studies published in this field were statistically analysed using a review analysis method by VOSviewer software, and research gaps, challenges and recommendations of this field were investigated. The findings of the study indicate that there has been an increasing number of literature studies published on the subject of MEH systems for IoT platforms throughout time, particularly from 2013 to 2023. The results demonstrate that 67% of manuscripts highlight problem-solving, modelling and technical overview, simulation, experimental setup and prototype. In observation, 27% of papers are based on bibliometric analysis, systematic review, survey, review and based on case study, and 2% of conference manuscripts are based on modelling, simulation, and review analysis. The top-cited articles are published in 5 different countries and 9 publishers including IEEE 51%, Elsevier 16%, MDPI 10% and others. In addition, several MEH system-related problems and challenges are noted to identify current limitations and research gaps, including technical, modelling, economic, power quality, and environmental concerns. Also, the study offers guidelines and recommendations for the improvement of future MEH technology to increase its energy efficiency, topologies, design, operational performance, and capabilities. This study's detailed information, perceptive analysis, and critical argument are expected to improve MEH research's viable future.Micro-energy harvesting (MEH) is a technology of renewable power generation which is a key technology for hosting the future low-powered electronic devices for wireless sensor networks (WSNs) and, the Internet of Things (IoT). Recent technological advancements have given rise to several resources and technologies that are boosting particular facets of society. Many researchers are now interested in studying MEH systems for ultra-low power IoT sensors and WSNs. A comprehensive study of IoT will help to manage a single MEH as a power source for multiple WSNs. The popular database from Scopus was used in this study to perform a review analysis of the MEH system for ultra-low power IoT sensors. All relevant and important literature studies published in this field were statistically analysed using a review analysis method by VOSviewer software, and research gaps, challenges and recommendations of this field were investigated. The findings of the study indicate that there has been an increasing number of literature studies published on the subject of MEH systems for IoT platforms throughout time, particularly from 2013 to 2023. The results demonstrate that 67% of manuscripts highlight problem-solving, modelling and technical overview, simulation, experimental setup and prototype. In observation, 27% of papers are based on bibliometric analysis, systematic review, survey, review and based on case study, and 2% of conference manuscripts are based on modelling, simulation, and review analysis. The top-cited articles are published in 5 different countries and 9 publishers including IEEE 51%, Elsevier 16%, MDPI 10% and others. In addition, several MEH system-related problems and challenges are noted to identify current limitations and research gaps, including technical, modelling, economic, power quality, and environmental concerns. Also, the study offers guidelines and recommendations for the improvement of future MEH technology to increase its energy efficiency, topologies, design, operational performance, and capabilities. This study's detailed information, perceptive analysis, and critical argument are expected to improve MEH research's viable future. |
ArticleNumber | e27778 |
Author | Olazagoitia, José Luis Lipu, M.S. Hossain Md Saad, Mohamad Hanif Riaz, Amna Sarker, Mahidur R. Kadir, Rabiah Abdul Ahmad, Mohammad Nazir |
Author_xml | – sequence: 1 givenname: Mahidur R. orcidid: 0000-0002-5363-6219 surname: Sarker fullname: Sarker, Mahidur R. email: mahidursarker@ukm.edu.my organization: Institute of Visual Informatics, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia – sequence: 2 givenname: Amna surname: Riaz fullname: Riaz, Amna organization: Department of Electrical Engineering, Bahauddin Zakariya University, Punjab, Pakistan – sequence: 3 givenname: M.S. Hossain surname: Lipu fullname: Lipu, M.S. Hossain organization: Department of Electrical and Electronic Engineering, Green University of Bangladesh, Dhaka, 1207, Bangladesh – sequence: 4 givenname: Mohamad Hanif surname: Md Saad fullname: Md Saad, Mohamad Hanif organization: Department of Mechanical Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia – sequence: 5 givenname: Mohammad Nazir surname: Ahmad fullname: Ahmad, Mohammad Nazir organization: Institute of Visual Informatics, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia – sequence: 6 givenname: Rabiah Abdul surname: Kadir fullname: Kadir, Rabiah Abdul organization: Institute of Visual Informatics, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia – sequence: 7 givenname: José Luis surname: Olazagoitia fullname: Olazagoitia, José Luis organization: Universidad de Diseño, Innovación y Tecnología, UDIT, Av. Alfonso XIII, 97, 28016 Madrid, Spain |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38509887$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1vEzEQXaEiWkp_AshHLgn2-nPhgKqKj0hFSKhcsbze2cTRxg62N1X-PV4SqpZLTh6P37wZz3svqzMfPFTVa4LnBBPxbj1fweD2wc9rXLM51FJK9ay6qBnmM8UYPnsUn1dXKa0xxoQr0Uj6ojqniuNGKXlR_frmbAwIPMTlHq1M3EHKzi9RHyJahDu0HUwu8eY9-gE7B_fIeDPsk0soh3sTO9SPeYyAIiQw0a5Q2G5DzKN32UF6VT3vzZDg6nheVj8_f7q7-Tq7_f5lcXN9O7NcyDwjtGW2YQJbQgU0tMFtT3lXE8qbrlw5pz2W0NkeGmtqpYjBhBIubFurTjT0sloceLtg1nob3cbEvQ7G6b-JEJfaxOzsAFpJzKA1imJFGRPE9L1RkhEjgTFJROH6eODaju2m9ASfoxmekD598W6ll2GnCW44EYQWhrdHhhh-j2WheuOShWEwHsKYdJmcqqm9Ogmti2BFctVM0DeP53oY6J-YBcAPgKJoShH6BwjBevKNXuujb_TkG33wTan78F-dddlkF6bvueFk9XFdUPQtDok6WQfeQuci2FwEcCcY_gD4_OK7 |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3525263 crossref_primary_10_1109_OJCOMS_2024_3443920 crossref_primary_10_1016_j_rineng_2024_102700 crossref_primary_10_1007_s10483_024_3185_8 crossref_primary_10_1016_j_applthermaleng_2024_124746 crossref_primary_10_3390_electronics14030415 crossref_primary_10_3390_su16104073 |
Cites_doi | 10.1109/ACCESS.2018.2848586 10.1021/acs.nanolett.0c01987 10.1016/j.nanoen.2020.105251 10.3390/s16060938 10.1039/C9EE03245B 10.1016/j.mejo.2019.104635 10.1016/j.renene.2022.11.079 10.1016/j.ref.2022.10.004 10.1557/mrs.2018.32 10.3390/en15207495 10.1109/ACCESS.2017.2716344 10.1016/j.adhoc.2023.103241 10.3390/en12020229 10.1016/j.compchemeng.2013.05.030 10.1109/JIOT.2018.2813162 10.1109/JSSC.2019.2914581 10.1016/j.egyr.2023.01.027 10.1109/TMTT.2016.2603985 10.3390/smartcities3030052 10.1109/TWC.2018.2859389 10.1016/j.sna.2018.01.038 10.1016/j.adhoc.2018.01.004 10.1109/ACCESS.2018.2851940 10.3991/ijet.v14i08.10485 10.1016/j.measen.2022.100551 10.1109/JIOT.2018.2875926 10.1016/j.mejo.2020.104824 10.1109/JIOT.2018.2865248 10.1109/JIOT.2018.2837354 10.1109/JSSC.2014.2331953 10.1016/j.eml.2019.100576 10.1016/j.isci.2022.103977 10.1109/JIOT.2018.2861401 10.3390/en13215528 10.1109/COMST.2018.2841964 10.1109/TMC.2019.2901474 10.1109/TVLSI.2014.2387167 10.1109/LSENS.2019.2924058 10.1021/acssuschemeng.9b05058 10.1109/JIOT.2020.3024246 10.1016/j.compag.2020.105338 10.1002/adma.201901958 10.1109/JSSC.2016.2545709 10.1016/j.nanoen.2022.107878 10.3390/chemosensors11040236 10.1109/JIOT.2018.2882207 10.1016/j.heliyon.2021.e06406 10.1016/j.iot.2022.100655 10.1007/s11036-015-0592-5 10.1007/s11276-017-1457-6 10.3390/electronics9091345 10.1109/JSEN.2019.2914796 10.1109/MCOM.2015.7120024 10.1109/ACCESS.2016.2600242 10.1155/2017/1858532 10.1016/j.nanoen.2023.108239 10.1109/JSEN.2015.2445094 10.1109/ACCESS.2022.3149276 10.1016/j.matpr.2017.11.151 10.1016/j.jksus.2017.05.019 10.1016/j.nanoen.2018.10.013 10.1016/j.comcom.2021.02.011 10.1109/JSEN.2019.2892604 10.1109/MCOM.2017.1600218CM 10.1557/jmr.2018.172 10.1016/j.measen.2022.100515 10.1002/adem.201700743 10.1109/JSSC.2017.2725959 10.1109/JIOT.2018.2790578 10.1016/j.iot.2023.100697 10.1016/j.nanoen.2021.106757 10.1016/j.adhoc.2021.102625 10.1109/TII.2018.2794467 10.1016/j.nanoen.2020.104738 10.1007/978-981-10-4286-7_34 10.1016/j.isci.2021.102300 10.1016/j.suscom.2017.10.009 10.1016/B978-0-12-821204-2.00130-6 10.1016/j.rser.2020.109901 10.1016/j.rineng.2023.101264 10.1016/j.nanoen.2018.02.033 10.1016/j.future.2017.12.059 10.3390/s21248332 10.3390/s21227433 10.1002/er.5816 10.1007/s00542-018-3846-x 10.1002/advs.201802230 10.3390/s18030751 10.1016/j.mejo.2019.03.013 10.1109/JIOT.2017.2742663 10.3390/fi11040099 10.1021/acsami.6b16477 10.1002/aenm.201703313 10.1016/j.measen.2023.100809 10.1109/ACCESS.2018.2834392 10.1016/j.ymssp.2019.106412 10.26599/TST.2021.9010050 10.1016/j.future.2018.04.092 10.1109/ACCESS.2019.2909146 10.1109/ACCESS.2019.2928523 10.1016/j.measen.2023.100726 10.1109/JIOT.2018.2796124 10.1016/j.nanoen.2022.107887 10.1109/ACCESS.2021.3064066 10.3390/electronics10010075 10.1016/j.measurement.2023.112505 10.1016/j.heliyon.2019.e02264 10.1109/JMEMS.2017.2782748 10.1109/JIOT.2017.2786705 10.3390/ma14164738 10.1109/TCAD.2017.2717782 10.1016/j.future.2023.04.030 10.1039/C8EE03008A 10.3390/sym11070865 10.1016/j.egyr.2022.02.280 10.1109/TGCN.2018.2839593 10.1109/ACCESS.2018.2859383 10.1109/MCOM.2019.1800175 10.1039/C7SE00403F 10.1016/j.sna.2018.07.023 10.1109/JSAC.2015.2391690 10.1109/MCOM.2016.1500649CM 10.1016/j.measen.2023.100734 10.1016/j.iot.2023.100736 10.3390/en12122229 10.1016/j.nanoen.2019.104319 10.1016/j.compeleceng.2019.106525 10.1088/1361-6501/ace78f 10.1155/2020/8828479 10.1016/j.future.2021.07.008 10.1109/TWC.2017.2697864 10.1109/TIM.2017.2677619 10.1016/j.energy.2023.128256 10.1039/C9TA09864J 10.1016/j.measen.2023.100825 10.1016/j.nanoen.2019.01.096 10.1109/JIOT.2017.2778766 10.1016/j.solener.2020.07.029 10.1109/JIOT.2019.2913403 10.1109/TVT.2018.2890685 10.3390/s20020407 10.1109/TWC.2017.2665629 10.1016/j.teac.2022.e00173 10.1109/COMST.2019.2962526 10.1109/JIOT.2018.2882783 10.1007/s11036-017-0961-3 10.1016/j.future.2018.03.052 10.1016/j.egypro.2012.01.164 10.1016/j.measen.2022.100509 10.3390/s20092495 10.1016/j.autcon.2017.12.033 10.1109/JIOT.2020.2982417 |
ContentType | Journal Article |
Copyright | 2024 The Authors 2024 The Authors. Published by Elsevier Ltd. 2024 The Authors. Published by Elsevier Ltd. 2024 |
Copyright_xml | – notice: 2024 The Authors – notice: 2024 The Authors. Published by Elsevier Ltd. – notice: 2024 The Authors. Published by Elsevier Ltd. 2024 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 7S9 L.6 5PM DOA |
DOI | 10.1016/j.heliyon.2024.e27778 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2405-8440 |
ExternalDocumentID | oai_doaj_org_article_8704eba830834461affa8741a7e44716 PMC10951613 38509887 10_1016_j_heliyon_2024_e27778 S240584402403809X |
Genre | Journal Article Review |
GroupedDBID | 0R~ 457 53G 5VS 6I. AAEDW AAFTH AAFWJ AALRI AAYWO ABMAC ACGFS ACLIJ ACVFH ADBBV ADCNI ADEZE ADVLN AEUPX AEXQZ AFJKZ AFPKN AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BAWUL BCNDV DIK EBS FDB GROUPED_DOAJ HYE KQ8 M~E O9- OK1 ROL RPM SSZ AAYXX CITATION EJD IPNFZ RIG 0SF AACTN NCXOZ NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c567t-13b4c9460c136e9390bf35d21359d939553f07edcfe9ca2881a013156cb28d693 |
IEDL.DBID | DOA |
ISSN | 2405-8440 |
IngestDate | Wed Aug 27 01:29:58 EDT 2025 Thu Aug 21 18:34:44 EDT 2025 Fri Aug 22 20:25:28 EDT 2025 Fri Jul 11 01:22:28 EDT 2025 Thu Jan 02 22:36:24 EST 2025 Thu Jul 10 08:54:15 EDT 2025 Thu Apr 24 22:50:33 EDT 2025 Sat Aug 09 17:30:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Internet of things Low-cost sensors Low power applications Micro energy harvesting Ultra-low power |
Language | English |
License | This is an open access article under the CC BY license. 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c567t-13b4c9460c136e9390bf35d21359d939553f07edcfe9ca2881a013156cb28d693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-5363-6219 |
OpenAccessLink | https://doaj.org/article/8704eba830834461affa8741a7e44716 |
PMID | 38509887 |
PQID | 2973101898 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8704eba830834461affa8741a7e44716 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10951613 proquest_miscellaneous_3153808348 proquest_miscellaneous_2973101898 pubmed_primary_38509887 crossref_primary_10_1016_j_heliyon_2024_e27778 crossref_citationtrail_10_1016_j_heliyon_2024_e27778 elsevier_sciencedirect_doi_10_1016_j_heliyon_2024_e27778 |
PublicationCentury | 2000 |
PublicationDate | 2024-03-30 |
PublicationDateYYYYMMDD | 2024-03-30 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Heliyon |
PublicationTitleAlternate | Heliyon |
PublicationYear | 2024 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Aslam, Mehmood, Arshad, Ishfaq, Zaheer, Ul Haq Khan, Sufyan (bib66) 2020; 207 Adegbija, Rogacs, Patel, Gordon-Ross (bib101) 2018; 37 Amuthan, M, Velrajkumar, Sivakumar, Jarin (bib142) 2023; 27 Yuksel, Fidan (bib156) 2021; 122 Jameel, Ristaniemi, Khan, Lee (bib112) 2019 Ochoa-Estopier, Jobson, Smith (bib146) 2013; 59 Shi, Liu, Zhang, Yang, Shu, Yang, Ren, Wang, Chen, Chen, Chai, Tao (bib30) 2020; 32 Prauzek, Konecny, Borova, Janosova, Hlavica, Musilek (bib46) 2018 Lu, Ding, Liu, Yang (bib32) 2020; 78 Mao, Kawamoto, Kato (bib54) 2020; 7 Du, Seshia (bib64) 2017; 52 Aslam, Ejaz, Ibnkahla (bib86) 2018; 5 Shirvanimoghaddam, Shirvanimoghaddam, Abolhasani, Farhangi, Zahiri Barsari, Liu, Dohler, Naebe (bib53) 2019; 7 Divakaran, Das Krishna (bib57) 2019; 29 Vaisband, Friedman (bib159) 2018; 87 Han, Huang (bib44) 2017; 16 Lau, Song, Hall, Jiang, Lim, Perez-Wurfl, Ouyang, Lennon (bib97) 2019; 13 Noaman, Khan, Abrar, Ali, Alvi, Saleem (bib180) 2022; 2022 Khan, Liu, Ullah (bib131) 2019; 12 Maharjan, Toyabur, Park (bib56) 2018; 46 Qian, Parks, Smith, Gao, Jin (bib98) 2019; 6 Kim, Song, Kim, cheol Kim, Lin, Choi, Park (bib16) 2022; 104 Hamidah, Pawinanto, Mulyanti, Yunas (bib5) 2021; 7 Min, Xiao, Chen, Cheng, Wu, Zhuang (bib29) 2019; 68 Thouti, Venu, Rinku, Arora, Rajeswaran (bib179) 2022; 24 Haras, Skotnicki (bib36) 2018; 54 Wei, Zhao, Su, Lu (bib71) 2019; 6 Jin, Xiao, Deng, Nashalian, He, Raveendran, Yan, Su, Chu, Yang, Li, Yang, Chen (bib35) 2020; 20 Ma, Lan, Hassan, Hu, Das (bib42) 2020; 22 Landaluce, Arjona, Perallos, Falcone, Angulo, Muralter (bib40) 2020; 20 Khan, Alvi, Javed, Al-Otaibi, Bashir (bib150) 2021; 171 Ruchi, Savant, Kalam, Khurana, Prachi, Kumar (bib125) 2022 Min, Wan, Xiao, Chen, Xia, Wu, Dai (bib50) 2019; 6 Mishu, Rokonuzzaman, Pasupuleti, Shakeri, Rahman, Hamid, Tiong, Amin (bib11) 2020; 9 Sherazi, Grieco, Boggia (bib67) 2018; 71 Sabovic, Aernouts, Subotic, Fontaine, De Poorter, Famaey (bib166) 2023; 22 Singh, Kaur, Singh (bib90) 2021; 45 Tang, Liu, Zhang, Xiong, Zeng, Wang (bib99) 2018; 18 Kantareddy, Mathews, Bhattacharyya, Peters, Buonassisi, Sarma (bib123) 2019; 6 Aktakka, Najafi (bib172) 2014; 49 Barzegar, Blanks, Gharehdash, Timms (bib25) 2023; 34 Sadowski, Spachos (bib76) 2020; 172 Fulzele, Daigavane (bib132) 2018; 5 Saavedra, Mascaraque, Calderon, Del Campo, Santamaria (bib178) 2021; 21 Muthukumar, Manikandan, Muniraj, Jarin, Sebi (bib129) 2023; 28 Luo, Wu, Pan, Zha (bib147) 2015; 20 Ouafiq, Saadane, Chehri, Jeon (bib158) 2022; 52 Izadgoshasb (bib152) 2021; 21 Ejaz, Naeem, Shahid, Anpalagan, Jo (bib31) 2017; 55 Priyanka, Udayaraju, Koppireddy, Neethika (bib163) 2023; 27 Hossain, Zahid, Chowdhury, Maruf Hossain, Hossain (bib17) 2023; 19 Khaleel (bib164) 2023; 22 Dibal, Onwuka, Zubair, Nwankwo, Okoh, Salihu, Mustaphab (bib170) 2023; 21 Na, Lv, Jiang, Xiong, Zhao (bib120) 2019; 6 J. Kymissis, C. Kendall, J. Paradiso, N. Gershenfeld, Parasitic power harvesting in shoes, in: Dig. Pap. Second Int. Symp. Wearable Comput. (Cat. No.98EX215), IEEE Comput. Soc, n.d.: pp. 132–139. Narita, Fox (bib33) 2018; 20 Gurjar, Nguyen, Tuan (bib83) 2019; 6 Sodhro, Pirbhulal, Sangaiah (bib63) 2018; 86 Lin, Wu, Bashir, Li, Yang, Piran (bib116) 2022; 9 Ozger, Cetinkaya, Akan (bib122) 2018; 23 Bakytbekov, Nguyen, Zhang, Strano, Salama, Shamim (bib155) 2023; 9 Wu, Redoute, Yuce (bib80) 2018; 6 Wang (bib160) 2021; 45 Ji, Chen, Chen, Zhou, Li, Wen (bib161) 2020; 135 Eltresy, Dardeer, Al-Habal, Elhariri, Abotaleb, Elsheakh, Khattab, Taie, Mostafa, Elsadek, Abdallah (bib128) 2020; 2020 Liu, Parks, Talla, Gollakota, Wetherall, Smith (bib26) 2013 Liu, Li, Teng, Hu, Liang (bib168) 2022; 104 Babar, Rahman, Arif, Jeon (bib8) 2018; 20 Shafique, Khawaja, Khurram, Sibtain, Siddiqui, Mustaqim, Chattha, Yang (bib75) 2018; 6 Ahmed, Hassan, El-Kady, Radhi, Jeong, Selvaganapathy, Zu, Ren, Wang, Kaner (bib45) 2019; 6 Correia, Borges Carvalho, Kawasaki (bib121) 2016; 64 Kim, Jung, Hong, Lee, Nam, Jang (bib175) 2018 Loss, Gonçalves, Lopes, Pinho, Salvado, Mariani, Lehmhus, Ciucci, Vallan, Messervey (bib111) 2016; 16 Gorlatova, Sarik, Grebla, Cong, Kymissis, Zussman (bib58) 2015; 33 Mohd, Hayajneh (bib95) 2018; 6 Kamran, Khan, Nisar, Farooq, Rehman (bib7) 2020; 81 Cilfone, Davoli, Belli, Ferrari (bib3) 2019; 11 Bing, Zhang, Han, Zhou, Mei, Zhang (bib22) 2023; 11 Sanislav, Mois, Zeadally, Folea (bib69) 2021; 9 Lee, Kim, Park, Il Park, Lee, Jeong (bib72) 2019; 20 Khan, S, Agarwal, M, Thupakula, Raja Ambethkar (bib9) 2022; 24 Fan, He, Mu, Qian, Zhang, Yang, Hou, Geng, Wang, Chou (bib68) 2020; 68 Kamalinejad, Mahapatra, Sheng, Mirabbasi, Victor, Guan (bib28) 2015; 53 Choi, Aziz, Setiawan, Tran, Ginting, Kim (bib70) 2018; 5 Fang, Tang, Li, Hou, Wen, Yang, Chen, Sun, Liu, Lee (bib141) 2021; 24 Zhang, Tan, Ren, Awad, Zhang, Zhang, Wan (bib82) 2020; 19 Cho, Kim, Jabbar, Sin Woo, Ahn, Hwang, Jeong, Cheong, Yoo, Sung (bib145) 2018; 280 Pan, Fan, Leng, Li, Xin, Zhang, Hao, Gallop, Novoselov, Hu (bib37) 2018; 91 Din, Paul (bib79) 2019; 91 Carreon-Bautista, Huang, Sanchez-Sinencio (bib81) 2016; 51 Abbas, Abu Bakar, Ayaz, Mohamed (bib151) 2018; 24 Shuvo, Titirsha, Amin, Islam (bib20) 2022; 15 Huff (bib23) 2017 Santhosh Kumar, Kamath, Boyapati, Joel Josephson, Natrayan, Daniel Shadrach (bib15) 2022; 53 P, S, Rayudu (bib136) 2023; 27 Zeadally, Shaikh, Talpur, Sheng (bib51) 2020; 128 Annapureddy, Palneedi, Hwang, Peddigari, Jeong, Yoon, Kim, Ryu (bib62) 2017; 1 Elahi, Munir, Eugeni, Atek, Gaudenzi (bib55) 2020; 13 Lazaro, Villarino, Girbau (bib74) 2018 Zhang, Li, Gao, Yuan, He, Yu, Wang, Cheng (bib137) 2023; 108 Asthana, Khanna (bib144) 2019; 93 Kang, Liang, Yang (bib65) 2018; 17 Govindan (bib143) 2023 Hassan, El-Shaboury, Mohamed, Askar, Mowafy, Mosaad, Hassan, Mostafa (bib153) 2020; 102 Li, Jiang, Zhao, Shao, Ying, Ping (bib108) 2020; 73 Hou, Chen, Li, Vucetic (bib93) 2018; 5 Sun, Yin, Wei, Li, Wang, Jin (bib117) 2018; 24 Ravikumar (bib126) 2022; 1665 CCIS Kanan, Elhassan, Bensalem (bib49) 2018; 88 AlRikabi, Alaidi, Abdalrada, Abed (bib102) 2019; 14 Alsharif, Kim, Kuruoğlu (bib104) 2019; 11 Joris, Dupont, Laurent, Bellier, Stoukatch, Redoute (bib119) 2019; 3 Chen, Zhao, Lu, Chen (bib109) 2023; 28 Somkuwar, Chandwani, Deshmukh (bib124) 2018; 24 Jeong, Hyeon, Hwang, Lee, Lee, Park, Il Park (bib100) 2019; 7 Yin, Yu, Wang, Wang, Lu, Cheng, Wang (bib138) 2019; 33 Yang, Xu, Pan, Pan, Chen (bib47) 2018; 5 Martinez, Montón, Vilajosana, Prades (bib34) 2015; 15 Belli, Cilfone, Davoli, Ferrari, Adorni, Di Nocera, Dall’olio, Pellegrini, Mordacci, Bertolotti (bib2) 2020; 3 Hsueh, Chen (bib13) 2019; 87 Lim, Peddigari, Park, Lee, Min, Kim, Ahn, Choi, Hahn, Choi, Park, Hong, Yeom, Yoon, Ryu, Yi, Hwang (bib78) 2019; 12 Ahmed, Kim, Zeeshan, Chun (bib133) 2019; 12 Miao, Huo, Rong, Mu, Sun (bib157) 2023; 149 Zhang, Zhao, Jia, Chen (bib149) 2021; 125 Andal, Jayapal (bib14) 2022; 43 Saraereh, Alsaraira, Khan, Choi (bib103) 2020; 20 Liu, Ansari (bib61) 2019; 57 Davino (bib177) 2021; 14 Wu, Wu, Redoute, Yuce (bib21) 2017; 5 Spanias (bib139) 2018 Kim, Lee, Dilimon, Kim, Nam, Cho, Noh, Roh, Kwon, Song (bib114) 2020; 13 Maharjan, Bhatta, Cho, Hui, Park, Yoon, Salauddin, Rahman, Rana, Park (bib88) 2020; 10 Sarker, Mohamed, Saad, Tahir, Hussain, Mohamed (bib171) 2021; 10 Yan, Liao, Yan, Chen (bib43) 2018; 27 Muncuk, Alemdar, Sarode, Chowdhury (bib60) 2018; 5 Mori, Priya (bib52) 2018; 43 Shyam Sunder Reddy, Manohara, Shailaja, Revathy, Kumar, Premalatha (bib148) 2022; 24 Abella, Bonina, Cucuccio, D'Angelo, Giustolisi, Grasso, Imbruglia, Mauro, Nastasi, Palumbo, Pennisi, Sorbello, Scuderi (bib92) 2019; 19 Xu, Flandre, Bol (bib173) 2019; 54 Paracha, Abdul Rahim, Soh, Khalily (bib39) 2019; 7 La Rosa, Livreri, Trigona, Di Donato, Sorbello (bib84) 2019 Mois, Folea, Sanislav (bib38) 2017; 66 Buchli, Sutton, Beutel, Thiele (bib24) 2014 Huang, Liu, Liu (bib87) 2018; 5 Nguyen, Khan, Ngo (bib59) 2018; 2 Guo, Zhou, Chen, Wang, Chu, Niu (bib107) 2016; 54 Kang, Sriramdas, Lee, Chun, Maurya, Hwang, Ryu, Priya (bib77) 2018; 8 Akan, Cetinkaya, Koca, Ozger (bib48) 2018; 5 Hidalgo-Leon, Urquizo, Silva, Silva-Leon, Wu, Singh, Soriano (bib169) 2022; 8 Elsisi, Amer, Dababat, Su (bib154) 2023; 281 Iannacci (bib18) 2019; 31 Liu, Huang, Zhou, Durrani (bib115) 2017; 16 Rauniyar, Engelstad, Osterbo (bib118) 2019; 19 Badave, Karthikeyan, Badave, Mahajan, Sanjeevikumar, Gill (bib140) 2018; 435 Yuan, Xiao, Shen, Zhang, Jin (bib165) 2023; 147 Macário, Domingos, Carvalho, Pinho, Alves (bib127) 2022; 25 Zabek, Seunarine, Spacie, Bowen (bib85) 2017; 9 Wang, Liu, Ma, Wang, Peng, Wu (bib176) 2017; 2017 Van Huynh, Hoang, Lu, Niyato, Wang, Kim (bib27) 2018; 20 Iannacci (bib89) 2018; 272 Sun, Shi, Hasan, Yazici, Zhu, Ma, Dong, Liu, Lee (bib91) 2019; 58 Gupta, Zhang, Hanzo (bib110) 2017; 5 Jayakumar, Lee, Lee, Raha, Kim, Raghunathan (bib41) 2015 Liu, Sanchez-Sinencio (bib73) 2015; 23 Wu, Redouté, Yuce (bib106) 2018; 6 Kramp, van Kranenburg, Lange (bib4) 2013 Ghosh, Roy, Mishra, Sahoo, Mahanty, Vishwakarma, Mandal (bib96) 2020; 8 Garrido-Momparler, Peris (bib10) 2022; 35 Maurya, Peddigari, Kang, Geng, Sharpes, Annapureddy, Palneedi, Sriramdas, Yan, Song, Wang, Ryu, Priya (bib113) 2018; 3316 Dachyar, Zagloel, Saragih (bib1) 2019; 5 Hinze, Bowen, König (bib6) 2022; 23 Yang, Liu, Guo, Wen, Huang, Meng, Duan, Tang (bib135) 2022; 92 Asha, Arunachalam, Poonguzhali, Urooj, Alelyani (bib162) 2023; 210 Ullah, Keshavarz, Abolhasan, Lipman, Esselle, Shariati (bib105) 2022; 10 Shi, Chang, Xia, Tong, Jia, Li, Wang, Xia, Ye (bib167) 2023; 202 Yamashita, Villanueva (bib12) 2023 Yu, Yue (bib130) 2012; 16 Martfnez-Cisneros, Velosa-Moncada, Del Angel-Arroyo, Aguilera-Cortés, Cerón-Álvarez, Herrera-May (bib19) 2020; 13 Nguyen, Sato, Ishibashi (bib174) 2020 Saleem, Jangsher, Qureshi, Hassan (bib94) 2018; 14 Khaleel (10.1016/j.heliyon.2024.e27778_bib164) 2023; 22 Babar (10.1016/j.heliyon.2024.e27778_bib8) 2018; 20 Kanan (10.1016/j.heliyon.2024.e27778_bib49) 2018; 88 Liu (10.1016/j.heliyon.2024.e27778_bib168) 2022; 104 P (10.1016/j.heliyon.2024.e27778_bib136) 2023; 27 Shi (10.1016/j.heliyon.2024.e27778_bib30) 2020; 32 Ma (10.1016/j.heliyon.2024.e27778_bib42) 2020; 22 Du (10.1016/j.heliyon.2024.e27778_bib64) 2017; 52 Kamran (10.1016/j.heliyon.2024.e27778_bib7) 2020; 81 Tang (10.1016/j.heliyon.2024.e27778_bib99) 2018; 18 AlRikabi (10.1016/j.heliyon.2024.e27778_bib102) 2019; 14 Lu (10.1016/j.heliyon.2024.e27778_bib32) 2020; 78 Haras (10.1016/j.heliyon.2024.e27778_bib36) 2018; 54 Davino (10.1016/j.heliyon.2024.e27778_bib177) 2021; 14 Zhang (10.1016/j.heliyon.2024.e27778_bib82) 2020; 19 Joris (10.1016/j.heliyon.2024.e27778_bib119) 2019; 3 Hinze (10.1016/j.heliyon.2024.e27778_bib6) 2022; 23 Hsueh (10.1016/j.heliyon.2024.e27778_bib13) 2019; 87 Khan (10.1016/j.heliyon.2024.e27778_bib131) 2019; 12 Ullah (10.1016/j.heliyon.2024.e27778_bib105) 2022; 10 10.1016/j.heliyon.2024.e27778_bib134 Belli (10.1016/j.heliyon.2024.e27778_bib2) 2020; 3 Ahmed (10.1016/j.heliyon.2024.e27778_bib45) 2019; 6 Badave (10.1016/j.heliyon.2024.e27778_bib140) 2018; 435 Santhosh Kumar (10.1016/j.heliyon.2024.e27778_bib15) 2022; 53 Kim (10.1016/j.heliyon.2024.e27778_bib16) 2022; 104 Van Huynh (10.1016/j.heliyon.2024.e27778_bib27) 2018; 20 Saraereh (10.1016/j.heliyon.2024.e27778_bib103) 2020; 20 Ruchi (10.1016/j.heliyon.2024.e27778_bib125) 2022 Carreon-Bautista (10.1016/j.heliyon.2024.e27778_bib81) 2016; 51 Lim (10.1016/j.heliyon.2024.e27778_bib78) 2019; 12 Abella (10.1016/j.heliyon.2024.e27778_bib92) 2019; 19 Sun (10.1016/j.heliyon.2024.e27778_bib117) 2018; 24 Ahmed (10.1016/j.heliyon.2024.e27778_bib133) 2019; 12 Rauniyar (10.1016/j.heliyon.2024.e27778_bib118) 2019; 19 Andal (10.1016/j.heliyon.2024.e27778_bib14) 2022; 43 Jin (10.1016/j.heliyon.2024.e27778_bib35) 2020; 20 Nguyen (10.1016/j.heliyon.2024.e27778_bib59) 2018; 2 Akan (10.1016/j.heliyon.2024.e27778_bib48) 2018; 5 Cho (10.1016/j.heliyon.2024.e27778_bib145) 2018; 280 Jayakumar (10.1016/j.heliyon.2024.e27778_bib41) 2015 Kim (10.1016/j.heliyon.2024.e27778_bib114) 2020; 13 Mao (10.1016/j.heliyon.2024.e27778_bib54) 2020; 7 Izadgoshasb (10.1016/j.heliyon.2024.e27778_bib152) 2021; 21 Nguyen (10.1016/j.heliyon.2024.e27778_bib174) 2020 Abbas (10.1016/j.heliyon.2024.e27778_bib151) 2018; 24 Yang (10.1016/j.heliyon.2024.e27778_bib135) 2022; 92 Jameel (10.1016/j.heliyon.2024.e27778_bib112) 2019 Han (10.1016/j.heliyon.2024.e27778_bib44) 2017; 16 Aslam (10.1016/j.heliyon.2024.e27778_bib86) 2018; 5 Liu (10.1016/j.heliyon.2024.e27778_bib115) 2017; 16 Shi (10.1016/j.heliyon.2024.e27778_bib167) 2023; 202 Sarker (10.1016/j.heliyon.2024.e27778_bib171) 2021; 10 Wu (10.1016/j.heliyon.2024.e27778_bib21) 2017; 5 Barzegar (10.1016/j.heliyon.2024.e27778_bib25) 2023; 34 Shuvo (10.1016/j.heliyon.2024.e27778_bib20) 2022; 15 Loss (10.1016/j.heliyon.2024.e27778_bib111) 2016; 16 Gorlatova (10.1016/j.heliyon.2024.e27778_bib58) 2015; 33 Qian (10.1016/j.heliyon.2024.e27778_bib98) 2019; 6 Priyanka (10.1016/j.heliyon.2024.e27778_bib163) 2023; 27 Sun (10.1016/j.heliyon.2024.e27778_bib91) 2019; 58 Elahi (10.1016/j.heliyon.2024.e27778_bib55) 2020; 13 Sodhro (10.1016/j.heliyon.2024.e27778_bib63) 2018; 86 Yang (10.1016/j.heliyon.2024.e27778_bib47) 2018; 5 Choi (10.1016/j.heliyon.2024.e27778_bib70) 2018; 5 Zeadally (10.1016/j.heliyon.2024.e27778_bib51) 2020; 128 Ghosh (10.1016/j.heliyon.2024.e27778_bib96) 2020; 8 Mois (10.1016/j.heliyon.2024.e27778_bib38) 2017; 66 Wang (10.1016/j.heliyon.2024.e27778_bib176) 2017; 2017 Khan (10.1016/j.heliyon.2024.e27778_bib9) 2022; 24 Annapureddy (10.1016/j.heliyon.2024.e27778_bib62) 2017; 1 Maurya (10.1016/j.heliyon.2024.e27778_bib113) 2018; 3316 Lazaro (10.1016/j.heliyon.2024.e27778_bib74) 2018 Na (10.1016/j.heliyon.2024.e27778_bib120) 2019; 6 Hidalgo-Leon (10.1016/j.heliyon.2024.e27778_bib169) 2022; 8 Huang (10.1016/j.heliyon.2024.e27778_bib87) 2018; 5 Kramp (10.1016/j.heliyon.2024.e27778_bib4) 2013 Hamidah (10.1016/j.heliyon.2024.e27778_bib5) 2021; 7 Spanias (10.1016/j.heliyon.2024.e27778_bib139) 2018 Singh (10.1016/j.heliyon.2024.e27778_bib90) 2021; 45 Adegbija (10.1016/j.heliyon.2024.e27778_bib101) 2018; 37 Zabek (10.1016/j.heliyon.2024.e27778_bib85) 2017; 9 Ji (10.1016/j.heliyon.2024.e27778_bib161) 2020; 135 Guo (10.1016/j.heliyon.2024.e27778_bib107) 2016; 54 Garrido-Momparler (10.1016/j.heliyon.2024.e27778_bib10) 2022; 35 Chen (10.1016/j.heliyon.2024.e27778_bib109) 2023; 28 Khan (10.1016/j.heliyon.2024.e27778_bib150) 2021; 171 Prauzek (10.1016/j.heliyon.2024.e27778_bib46) 2018 Yan (10.1016/j.heliyon.2024.e27778_bib43) 2018; 27 Iannacci (10.1016/j.heliyon.2024.e27778_bib18) 2019; 31 Divakaran (10.1016/j.heliyon.2024.e27778_bib57) 2019; 29 Yamashita (10.1016/j.heliyon.2024.e27778_bib12) 2023 Martinez (10.1016/j.heliyon.2024.e27778_bib34) 2015; 15 Zhang (10.1016/j.heliyon.2024.e27778_bib137) 2023; 108 Xu (10.1016/j.heliyon.2024.e27778_bib173) 2019; 54 Gupta (10.1016/j.heliyon.2024.e27778_bib110) 2017; 5 Iannacci (10.1016/j.heliyon.2024.e27778_bib89) 2018; 272 Alsharif (10.1016/j.heliyon.2024.e27778_bib104) 2019; 11 Mishu (10.1016/j.heliyon.2024.e27778_bib11) 2020; 9 Narita (10.1016/j.heliyon.2024.e27778_bib33) 2018; 20 Dachyar (10.1016/j.heliyon.2024.e27778_bib1) 2019; 5 Maharjan (10.1016/j.heliyon.2024.e27778_bib56) 2018; 46 Ejaz (10.1016/j.heliyon.2024.e27778_bib31) 2017; 55 Yin (10.1016/j.heliyon.2024.e27778_bib138) 2019; 33 Min (10.1016/j.heliyon.2024.e27778_bib50) 2019; 6 Jeong (10.1016/j.heliyon.2024.e27778_bib100) 2019; 7 Muthukumar (10.1016/j.heliyon.2024.e27778_bib129) 2023; 28 Noaman (10.1016/j.heliyon.2024.e27778_bib180) 2022; 2022 Yuan (10.1016/j.heliyon.2024.e27778_bib165) 2023; 147 Li (10.1016/j.heliyon.2024.e27778_bib108) 2020; 73 Wei (10.1016/j.heliyon.2024.e27778_bib71) 2019; 6 Martfnez-Cisneros (10.1016/j.heliyon.2024.e27778_bib19) 2020; 13 Lau (10.1016/j.heliyon.2024.e27778_bib97) 2019; 13 Liu (10.1016/j.heliyon.2024.e27778_bib61) 2019; 57 Saleem (10.1016/j.heliyon.2024.e27778_bib94) 2018; 14 Luo (10.1016/j.heliyon.2024.e27778_bib147) 2015; 20 Lee (10.1016/j.heliyon.2024.e27778_bib72) 2019; 20 Ouafiq (10.1016/j.heliyon.2024.e27778_bib158) 2022; 52 Kang (10.1016/j.heliyon.2024.e27778_bib77) 2018; 8 Wang (10.1016/j.heliyon.2024.e27778_bib160) 2021; 45 Fan (10.1016/j.heliyon.2024.e27778_bib68) 2020; 68 Somkuwar (10.1016/j.heliyon.2024.e27778_bib124) 2018; 24 Dibal (10.1016/j.heliyon.2024.e27778_bib170) 2023; 21 Ravikumar (10.1016/j.heliyon.2024.e27778_bib126) 2022; 1665 CCIS Huff (10.1016/j.heliyon.2024.e27778_bib23) 2017 Kamalinejad (10.1016/j.heliyon.2024.e27778_bib28) 2015; 53 Muncuk (10.1016/j.heliyon.2024.e27778_bib60) 2018; 5 Asha (10.1016/j.heliyon.2024.e27778_bib162) 2023; 210 Yu (10.1016/j.heliyon.2024.e27778_bib130) 2012; 16 Sabovic (10.1016/j.heliyon.2024.e27778_bib166) 2023; 22 Min (10.1016/j.heliyon.2024.e27778_bib29) 2019; 68 Kang (10.1016/j.heliyon.2024.e27778_bib65) 2018; 17 Aslam (10.1016/j.heliyon.2024.e27778_bib66) 2020; 207 Macário (10.1016/j.heliyon.2024.e27778_bib127) 2022; 25 Aktakka (10.1016/j.heliyon.2024.e27778_bib172) 2014; 49 Shirvanimoghaddam (10.1016/j.heliyon.2024.e27778_bib53) 2019; 7 Miao (10.1016/j.heliyon.2024.e27778_bib157) 2023; 149 La Rosa (10.1016/j.heliyon.2024.e27778_bib84) 2019 Mori (10.1016/j.heliyon.2024.e27778_bib52) 2018; 43 Bakytbekov (10.1016/j.heliyon.2024.e27778_bib155) 2023; 9 Shafique (10.1016/j.heliyon.2024.e27778_bib75) 2018; 6 Liu (10.1016/j.heliyon.2024.e27778_bib26) 2013 Vaisband (10.1016/j.heliyon.2024.e27778_bib159) 2018; 87 Bing (10.1016/j.heliyon.2024.e27778_bib22) 2023; 11 Zhang (10.1016/j.heliyon.2024.e27778_bib149) 2021; 125 Elsisi (10.1016/j.heliyon.2024.e27778_bib154) 2023; 281 Wu (10.1016/j.heliyon.2024.e27778_bib106) 2018; 6 Amuthan (10.1016/j.heliyon.2024.e27778_bib142) 2023; 27 Din (10.1016/j.heliyon.2024.e27778_bib79) 2019; 91 Ozger (10.1016/j.heliyon.2024.e27778_bib122) 2018; 23 Fang (10.1016/j.heliyon.2024.e27778_bib141) 2021; 24 Thouti (10.1016/j.heliyon.2024.e27778_bib179) 2022; 24 Kim (10.1016/j.heliyon.2024.e27778_bib175) 2018 Paracha (10.1016/j.heliyon.2024.e27778_bib39) 2019; 7 Govindan (10.1016/j.heliyon.2024.e27778_bib143) 2023 Kantareddy (10.1016/j.heliyon.2024.e27778_bib123) 2019; 6 Sherazi (10.1016/j.heliyon.2024.e27778_bib67) 2018; 71 Lin (10.1016/j.heliyon.2024.e27778_bib116) 2022; 9 Liu (10.1016/j.heliyon.2024.e27778_bib73) 2015; 23 Gurjar (10.1016/j.heliyon.2024.e27778_bib83) 2019; 6 Eltresy (10.1016/j.heliyon.2024.e27778_bib128) 2020; 2020 Wu (10.1016/j.heliyon.2024.e27778_bib80) 2018; 6 Maharjan (10.1016/j.heliyon.2024.e27778_bib88) 2020; 10 Pan (10.1016/j.heliyon.2024.e27778_bib37) 2018; 91 Ochoa-Estopier (10.1016/j.heliyon.2024.e27778_bib146) 2013; 59 Sanislav (10.1016/j.heliyon.2024.e27778_bib69) 2021; 9 Hou (10.1016/j.heliyon.2024.e27778_bib93) 2018; 5 Correia (10.1016/j.heliyon.2024.e27778_bib121) 2016; 64 Saavedra (10.1016/j.heliyon.2024.e27778_bib178) 2021; 21 Buchli (10.1016/j.heliyon.2024.e27778_bib24) 2014 Mohd (10.1016/j.heliyon.2024.e27778_bib95) 2018; 6 Landaluce (10.1016/j.heliyon.2024.e27778_bib40) 2020; 20 Shyam Sunder Reddy (10.1016/j.heliyon.2024.e27778_bib148) 2022; 24 Cilfone (10.1016/j.heliyon.2024.e27778_bib3) 2019; 11 Hassan (10.1016/j.heliyon.2024.e27778_bib153) 2020; 102 Hossain (10.1016/j.heliyon.2024.e27778_bib17) 2023; 19 Fulzele (10.1016/j.heliyon.2024.e27778_bib132) 2018; 5 Yuksel (10.1016/j.heliyon.2024.e27778_bib156) 2021; 122 Sadowski (10.1016/j.heliyon.2024.e27778_bib76) 2020; 172 Asthana (10.1016/j.heliyon.2024.e27778_bib144) 2019; 93 |
References_xml | – volume: 10 year: 2020 ident: bib88 article-title: A fully functional universal self-chargeable power module for portable/wearable electronics and self-powered IoT applications publication-title: Adv. Energy Mater. – volume: 37 start-page: 7 year: 2018 end-page: 20 ident: bib101 article-title: Microprocessor optimizations for the internet of things: a survey publication-title: IEEE Trans. Comput. Des. Integr. Circuits Syst. – volume: 16 start-page: 938 year: 2016 ident: bib111 article-title: Smart coat with a fully-embedded textile antenna for IoT applications publication-title: Sensors – volume: 24 start-page: 2133 year: 2018 end-page: 2143 ident: bib151 article-title: An overview of routing techniques for road and pipeline monitoring in linear sensor networks publication-title: Wirel. Networks. – volume: 2 start-page: 1115 year: 2018 end-page: 1127 ident: bib59 article-title: A distributed energy-harvesting-aware routing algorithm for heterogeneous IoT networks publication-title: IEEE Trans. Green Commun. Netw. – volume: 12 year: 2019 ident: bib131 article-title: A new hybrid approach to forecast wind power for large scale wind turbine data using deep learning with tensorflow framework and principal component analysis publication-title: Energies – volume: 171 start-page: 28 year: 2021 end-page: 38 ident: bib150 article-title: An efficient medium access control protocol for RF energy harvesting based IoT devices publication-title: Comput. Commun. – volume: 33 start-page: 1624 year: 2015 end-page: 1639 ident: bib58 article-title: Movers and Shakers: kinetic energy harvesting for the internet of things publication-title: IEEE J. Sel. Areas Commun. – volume: 21 year: 2023 ident: bib170 article-title: Processor power and energy consumption estimation techniques in IoT applications: a review publication-title: Internet of Things – volume: 14 start-page: 4738 year: 2021 ident: bib177 article-title: Smart materials and devices for energy harvesting publication-title: Mater – volume: 20 year: 2018 ident: bib33 article-title: A review on piezoelectric, magnetostrictive, and magnetoelectric materials and device technologies for energy harvesting applications publication-title: Adv. Eng. Mater. – start-page: 1019 year: 2018 end-page: 1023 ident: bib175 article-title: A beamforming based wireless energy transmitter and energy harvester for IoT/m2m applications publication-title: 9th Int. Conf. Inf. Commun. Technol. Converg. ICT Converg. Powered by Smart Intell. ICTC 2018 – volume: 9 start-page: 1345 year: 2020 ident: bib11 article-title: Prospective efficient ambient energy harvesting sources for IoT-equipped sensor applications publication-title: Electron – volume: 19 start-page: 3501 year: 2019 end-page: 3512 ident: bib92 article-title: Autonomous energy-efficient wireless sensor network platform for home/office automation publication-title: IEEE Sens. J. – volume: 19 start-page: 880 year: 2020 end-page: 893 ident: bib82 article-title: Near-optimal and truthful online auction for computation offloading in green edge-computing systems publication-title: IEEE Trans. Mob. Comput. – volume: 5 start-page: 229 year: 2018 end-page: 245 ident: bib47 article-title: Energy efficient resource allocation in machine-to-machine communications with multiple access and energy harvesting for IoT publication-title: IEEE Internet Things J. – volume: 6 start-page: 4436 year: 2019 end-page: 4447 ident: bib71 article-title: Dynamic edge computation offloading for internet of things with energy harvesting: a learning method publication-title: IEEE Internet Things J. – volume: 24 year: 2022 ident: bib179 article-title: Investigation on identify the multiple issues in IoT devices using Convolutional Neural Network publication-title: Meas. Sensors. – volume: 19 year: 2023 ident: bib17 article-title: MEMS-based energy harvesting devices for low-power applications – a review publication-title: Results Eng – volume: 23 year: 2022 ident: bib6 article-title: Wearable technology for hazardous remote environments: smart shirt and Rugged IoT network for forestry worker health publication-title: Smart Heal – volume: 20 start-page: 758 year: 2019 end-page: 773 ident: bib72 article-title: Modulation of surface physics and chemistry in triboelectric energy harvesting technologies publication-title: VmBmuzZFCUk – volume: 57 start-page: 104 year: 2019 end-page: 110 ident: bib61 article-title: Toward green IoT: energy solutions and key challenges publication-title: IEEE Commun. Mag. – volume: 11 start-page: 99 year: 2019 ident: bib3 article-title: Wireless mesh networking: an IoT-oriented perspective survey on relevant technologies publication-title: Future Internet – volume: 15 start-page: 5777 year: 2015 end-page: 5789 ident: bib34 article-title: The power of models: modeling power consumption for IoT devices publication-title: IEEE Sens. J. – volume: 20 start-page: 6404 year: 2020 end-page: 6411 ident: bib35 article-title: Manipulating relative permittivity for high-performance wearable triboelectric nanogenerators publication-title: Nano Lett. – volume: 87 start-page: 55 year: 2019 end-page: 64 ident: bib13 article-title: An ultra-low voltage chaos-based true random number generator for IoT applications publication-title: Microelectronics J – volume: 68 year: 2020 ident: bib68 article-title: Triboelectric-electromagnetic hybrid nanogenerator driven by wind for self-powered wireless transmission in Internet of Things and self-powered wind speed sensor publication-title: Nano Energy – volume: 91 start-page: 1 year: 2018 end-page: 10 ident: bib37 article-title: Sustainable production of highly conductive multilayer graphene ink for wireless connectivity and IoT applications publication-title: Nature.Com.Eresourcesptsl.Ukm.Remotexs.Comunications – volume: 24 start-page: 3033 year: 2018 end-page: 3044 ident: bib124 article-title: Wideband auto-tunable vibration energy harvester using change in centre of gravity publication-title: Microsyst. Technol. – volume: 108 year: 2023 ident: bib137 article-title: Self-powered triboelectric mechanical motion sensor for simultaneous monitoring of linear-rotary multi-motion publication-title: Nano Energy – volume: 135 year: 2020 ident: bib161 article-title: Joint optimization for ambient backscatter communication system with energy harvesting for IoT publication-title: Mech. Syst. Signal Process. – volume: 5 start-page: 11413 year: 2017 end-page: 11422 ident: bib21 article-title: An autonomous wireless body area network implementation towards IoT connected healthcare applications publication-title: IEEE Access – volume: 32 year: 2020 ident: bib30 article-title: Smart textile-integrated microelectronic systems for wearable applications publication-title: Adv. Mater. – start-page: 37 year: 2023 end-page: 51 ident: bib143 article-title: IoT-based smart monitoring panel for floating horizontal axis wind turbine publication-title: Recent Adv. IoT Devices Pollut. Control Heal. Appl. – volume: 5 start-page: 810 year: 2018 end-page: 818 ident: bib132 article-title: Design and optimization of hybrid PV-wind renewable energy system publication-title: Mater. Today Proc. – volume: 5 start-page: 7405 year: 2017 end-page: 7413 ident: bib110 article-title: Energy harvesting aided device-to-device communication underlaying the cellular downlink publication-title: IEEE Access – volume: 281 year: 2023 ident: bib154 article-title: A comprehensive review of machine learning and IoT solutions for demand side energy management, conservation, and resilient operation publication-title: Energy – volume: 16 start-page: 4361 year: 2017 end-page: 4377 ident: bib115 article-title: Full-duplex backscatter interference networks based on time-hopping spread spectrum publication-title: IEEE Trans. Wirel. Commun. – volume: 7 start-page: 25481 year: 2019 end-page: 25489 ident: bib100 article-title: Nanowire-percolated piezoelectric copolymer-based highly transparent and flexible self-powered sensors publication-title: J. Mater. Chem. A. – volume: 21 start-page: 7433 year: 2021 ident: bib178 article-title: The smart meter challenge: feasibility of autonomous indoor IoT devices depending on its energy harvesting source and IoT wireless technology publication-title: Sensors – volume: 55 start-page: 84 year: 2017 end-page: 91 ident: bib31 article-title: Efficient energy management for the internet of things in smart cities publication-title: IEEE Commun. Mag. – volume: 23 start-page: 3065 year: 2015 end-page: 3075 ident: bib73 article-title: A highly efficient ultralow photovoltaic power harvesting system with MPPT for internet of things smart nodes publication-title: IEEE Trans. Very Large Scale Integr. Syst. – volume: 14 start-page: 23 year: 2019 end-page: 37 ident: bib102 article-title: Analysis the efficient energy prediction for 5G wireless communication technologies publication-title: Int. J. Emerg. Technol. Learn. – volume: 66 start-page: 2056 year: 2017 end-page: 2064 ident: bib38 article-title: Analysis of three IoT-based wireless sensors for environmental monitoring publication-title: IEEE Trans. Instrum. Meas. – volume: 27 year: 2023 ident: bib136 article-title: IoT based solar panel fault and maintenance detection using decision tree with light gradient boosting publication-title: Meas. Sensors. – volume: 6 start-page: 35801 year: 2018 end-page: 35808 ident: bib106 article-title: A wireless implantable sensor design with subcutaneous energy harvesting for long-term IoT healthcare applications publication-title: IEEE Access – volume: 9 start-page: 1875 year: 2023 end-page: 1885 ident: bib155 article-title: Synergistic multi-source ambient RF and thermal energy harvester for green IoT applications publication-title: Energy Rep. – volume: 20 start-page: 155 year: 2018 end-page: 164 ident: bib8 article-title: Energy-harvesting based on internet of things and big data analytics for smart health monitoring publication-title: Sustain. Comput. Informatics Syst. – volume: 22 start-page: 1222 year: 2020 end-page: 1250 ident: bib42 article-title: Sensing, computing, and communications for energy harvesting IoTs: a survey publication-title: IEEE Commun. Surv. Tutorials. – volume: 27 year: 2023 ident: bib163 article-title: Developing a region-based energy-efficient IoT agriculture network using region- based clustering and shortest path routing for making sustainable agriculture environment publication-title: Meas. Sensors. – volume: 21 year: 2021 ident: bib152 article-title: Piezoelectric energy harvesting towards self-powered internet of things (IoT) sensors in smart cities publication-title: Sensors – start-page: 36 year: 2023 end-page: 44 ident: bib12 article-title: Integration of renewable energy sources, energy storages, and their impacts publication-title: Encycl. Electr. Electron. Power Eng. – volume: 86 start-page: 380 year: 2018 end-page: 391 ident: bib63 article-title: Convergence of IoT and product lifecycle management in medical health care publication-title: Futur. Gener. Comput. Syst. – volume: 54 start-page: 143 year: 2016 end-page: 149 ident: bib107 article-title: Simultaneous information and energy flow for IoT relay systems with crowd harvesting publication-title: IEEE Commun. Mag. – volume: 104 year: 2022 ident: bib16 article-title: All-aerosol-sprayed high-performance transparent triboelectric nanogenerator with embedded charge-storage layer for self-powered invisible security IoT system and raindrop-solar hybrid energy harvester publication-title: Nano Energy – volume: 12 start-page: 666 year: 2019 end-page: 674 ident: bib78 article-title: A high output magneto-mechano-triboelectric generator enabled by accelerated water-soluble nano-bullets for powering a wireless indoor positioning system publication-title: Energy Environ. Sci. – volume: 10 start-page: 17231 year: 2022 end-page: 17267 ident: bib105 article-title: A review on antenna technologies for ambient RF energy harvesting and wireless power transfer: designs, challenges and applications publication-title: IEEE Access – volume: 7 start-page: 7032 year: 2020 end-page: 7042 ident: bib54 article-title: AI-based joint optimization of QoS and security for 6G energy harvesting internet of things publication-title: IEEE Internet Things J. – volume: 17 start-page: 6335 year: 2018 end-page: 6347 ident: bib65 article-title: Riding on the primary: a new spectrum sharing paradigm for wireless-powered IoT devices publication-title: IEEE Trans. Wirel. Commun. – volume: 20 start-page: 407 year: 2020 ident: bib103 article-title: A hybrid energy harvesting design for on-body internet-of-things (IoT) networks publication-title: Sensors – volume: 122 year: 2021 ident: bib156 article-title: Energy-aware system design for batteryless LPWAN devices in IoT applications publication-title: Ad Hoc Netw. – volume: 54 start-page: 2717 year: 2019 end-page: 2729 ident: bib173 article-title: Analysis, modeling, and design of a 2.45-GHz RF energy harvester for SWIPT IoT smart sensors publication-title: IEEE J. Solid-State Circuits. – volume: 2020 year: 2020 ident: bib128 article-title: Smart home IoT system by using RF energy harvesting publication-title: J. Sensors. – volume: 52 start-page: 2746 year: 2017 end-page: 2757 ident: bib64 article-title: An inductorless bias-flip rectifier for piezoelectric energy harvesting publication-title: IEEE J. Solid-State Circuits. – volume: 6 start-page: 4307 year: 2019 end-page: 4316 ident: bib50 article-title: Learning-based privacy-aware offloading for healthcare IoT with energy harvesting publication-title: IEEE Internet Things J. – start-page: 1 year: 2013 end-page: 10 ident: bib4 article-title: Introduction to the Internet of Things, Enabling Things to Talk – volume: 53 year: 2022 ident: bib15 article-title: IoT battery management system in electric vehicle based on LR parameter estimation and ORMeshNet gateway topology publication-title: Sustain. Energy Technol. Assessments – volume: 6 start-page: 40846 year: 2018 end-page: 40853 ident: bib80 article-title: WE-safe: a self-powered wearable IoT sensor network for safety applications based on lora publication-title: IEEE Access – volume: 3316 start-page: 2235 year: 2018 end-page: 2263 ident: bib113 article-title: Lead-free piezoelectric materials and composites for high power density energy harvesting publication-title: J. Mater. Res. – volume: 53 start-page: 102 year: 2015 end-page: 108 ident: bib28 article-title: Wireless energy harvesting for the internet of things publication-title: IEEE Commun. Mag. – volume: 24 year: 2022 ident: bib9 article-title: Assessment on economic power management for smart city through IoT sensor model publication-title: Meas. Sensors. – volume: 27 year: 2023 ident: bib142 article-title: IOT based adjustment mechanism for direct reference model adaptive IMC to support voltage sag in DFIG wind farm publication-title: Meas. Sensors. – start-page: 19 year: 2019 ident: bib84 article-title: Strategies and techniques for powering wireless sensor nodes through energy harvesting and wireless power transfer publication-title: Sensors – volume: 3 year: 2019 ident: bib119 article-title: An autonomous sigfox wireless sensor node for environmental monitoring publication-title: IEEE Sensors Lett – volume: 45 year: 2021 ident: bib160 article-title: Energy-efficient resource allocation optimization algorithm in industrial IoTs scenarios based on energy harvesting publication-title: Sustain. Energy Technol. Assessments – volume: 54 start-page: 461 year: 2018 end-page: 476 ident: bib36 article-title: Thermoelectricity for IoT – a review publication-title: Nano Energy – volume: 6 start-page: 3257 year: 2019 end-page: 3270 ident: bib83 article-title: Wireless information and power transfer for IoT applications in overlay cognitive radio networks publication-title: IEEE Internet Things J. – volume: 8 start-page: 3809 year: 2022 end-page: 3826 ident: bib169 article-title: Powering nodes of wireless sensor networks with energy harvesters for intelligent buildings: a review publication-title: Energy Rep. – volume: 172 year: 2020 ident: bib76 article-title: Wireless technologies for smart agricultural monitoring using internet of things devices with energy harvesting capabilities publication-title: Comput. Electron. Agric. – volume: 24 start-page: 2853 year: 2018 end-page: 2869 ident: bib117 article-title: MEMS based energy harvesting for the Internet of Things: a survey, Microsyst publication-title: Technol. – volume: 9 start-page: 9161 year: 2017 end-page: 9167 ident: bib85 article-title: Graphene ink laminate structures on poly(vinylidene difluoride) (PVDF) for pyroelectric thermal energy harvesting and waste heat recovery publication-title: ACS Appl. Mater. Interfaces. – volume: 51 start-page: 1457 year: 2016 end-page: 1474 ident: bib81 article-title: An autonomous energy harvesting power management unit with digital regulation for IoT applications publication-title: IEEE J. Solid-State Circuits – volume: 43 start-page: 176 year: 2018 end-page: 180 ident: bib52 article-title: Materials for energy harvesting: at the forefront of a new wave publication-title: MRS Bull. – start-page: 18 year: 2018 ident: bib46 article-title: Energy harvesting sources, storage devices and system topologies for environmental wireless sensor networks: a review publication-title: Sensors – volume: 15 start-page: 7495 year: 2022 ident: bib20 article-title: Energy harvesting in implantable and wearable medical devices for enduring precision healthcare publication-title: Energies – volume: 272 start-page: 187 year: 2018 end-page: 198 ident: bib89 article-title: Internet of things (IoT); internet of everything (IoE); tactile internet; 5G – a (not so evanescent) unifying vision empowered by EH-MEMS (energy harvesting MEMS) and RF-MEMS (radio frequency MEMS) publication-title: Sensors Actuators A Phys – volume: 5 start-page: 2646 year: 2018 end-page: 2656 ident: bib87 article-title: Energy-efficient SWIPT in IoT distributed antenna systems publication-title: IEEE Internet Things J. – volume: 6 start-page: 844 year: 2019 end-page: 855 ident: bib98 article-title: IoT communications with M -PSK modulated ambient backscatter: algorithm, analysis, and implementation publication-title: IEEE Internet Things J. – volume: 3 start-page: 1039 year: 2020 end-page: 1071 ident: bib2 article-title: IoT-enabled smart sustainable cities: challenges and approaches publication-title: Smart Cities – volume: 7 start-page: 56694 year: 2019 end-page: 56712 ident: bib39 article-title: Wearable antennas: a review of materials, structures, and innovative features for autonomous communication and sensing publication-title: IEEE Access – volume: 13 start-page: 1473 year: 2020 end-page: 1480 ident: bib114 article-title: Indoor-light-energy-harvesting dye-sensitized photo-rechargeable battery publication-title: Energy Environ. Sci. – volume: 1665 CCIS start-page: 171 year: 2022 end-page: 182 ident: bib126 article-title: IoT applications powered by piezoelectric vibration energy harvesting device publication-title: Commun. Comput. Inf. Sci. – volume: 59 start-page: 178 year: 2013 end-page: 185 ident: bib146 article-title: Operational optimization of crude oil distillation systems using artificial neural networks publication-title: Comput. Chem. Eng. – start-page: 31 year: 2014 end-page: 45 ident: bib24 article-title: Dynamic Power Management for Long-Term Energy Neutral Operation of Solar Energy Harvesting Systems – volume: 5 start-page: 3220 year: 2018 end-page: 3233 ident: bib86 article-title: Energy and spectral efficient cognitive radio sensor networks for internet of things publication-title: IEEE Internet Things J. – volume: 13 start-page: 22 year: 2019 end-page: 44 ident: bib97 article-title: Hybrid solar energy harvesting and storage devices: the promises and challenges, Mater publication-title: Today Energy – volume: 28 year: 2023 ident: bib129 article-title: Energy efficient dual axis solar tracking system using IOT publication-title: Meas. Sensors. – volume: 20 start-page: 2889 year: 2018 end-page: 2922 ident: bib27 article-title: Ambient backscatter communications: a contemporary survey publication-title: IEEE Commun. Surv. Tutorials. – start-page: 1 year: 2019 end-page: 9 ident: bib112 article-title: Simultaneous harvest-and-transmit ambient backscatter communications under Rayleigh fading publication-title: EURASIP J. Wirel. Commun. Netw. – volume: 73 year: 2020 ident: bib108 article-title: A self-charging device with bionic self-cleaning interface for energy harvesting publication-title: Nano Energy – volume: 52 year: 2022 ident: bib158 article-title: AI-based modeling and data-driven evaluation for smart farming-oriented big data architecture using IoT with energy harvesting capabilities publication-title: Sustain. Energy Technol. Assessments – volume: 2017 year: 2017 ident: bib176 article-title: Energy harvesting for internet of things with heterogeneous users publication-title: Wireless Commun. Mobile Comput. – volume: 29 year: 2019 ident: bib57 article-title: Nasimuddin, RF energy harvesting systems: an overview and design issues publication-title: Int. J. RF Microw. Comput. Eng. – volume: 24 year: 2022 ident: bib148 article-title: Power management using AI-based IOT systems publication-title: Meas. Sensors. – volume: 1 start-page: 2039 year: 2017 end-page: 2052 ident: bib62 article-title: Magnetic energy harvesting with magnetoelectrics: an emerging technology for self-powered autonomous systems publication-title: Sustain. Energy Fuels – volume: 149 year: 2023 ident: bib157 article-title: IoT adaptive threshold energy management algorithm based on energy harvesting publication-title: Ad Hoc Netw. – volume: 43 start-page: 255 year: 2022 end-page: 262 ident: bib14 article-title: Design and implementation of IoT based intelligent energy management controller for PV/wind/battery system with cost minimization publication-title: Renew. Energy Focus. – volume: 5 start-page: 2620 year: 2018 end-page: 2632 ident: bib93 article-title: Incentive mechanism design for wireless energy harvesting-based internet of things publication-title: IEEE Internet Things J. – volume: 5 start-page: 2657 year: 2018 end-page: 2671 ident: bib70 article-title: Distributed wireless power transfer system for internet of things devices publication-title: IEEE Internet Things J. – start-page: 147 year: 2017 end-page: 166 ident: bib23 article-title: Mems: an enabling technology for the internet of things (IoT), internet things data publication-title: Anal. Handb. – start-page: 1 year: 2018 end-page: 4 ident: bib139 article-title: Solar energy management as an internet of things (IoT) application publication-title: 2017 8th Int. Conf. Information, Intell. Syst. Appl. IISA 2017. 2018-January – volume: 12 start-page: 1 year: 2019 end-page: 10 ident: bib133 article-title: Development of a tree-shaped hybrid nanogenerator using flexible sheets of photovoltaic and piezoelectric films publication-title: Energies – volume: 13 start-page: 5528 year: 2020 ident: bib55 article-title: Energy harvesting towards self-powered IoT devices publication-title: Energies – volume: 207 start-page: 874 year: 2020 end-page: 892 ident: bib66 article-title: Dye-sensitized solar cells (DSSCs) as a potential photovoltaic technology for the self-powered internet of things (IoTs) applications publication-title: Sol. Energy – volume: 71 start-page: 117 year: 2018 end-page: 134 ident: bib67 article-title: A comprehensive review on energy harvesting MAC protocols in WSNs: challenges and tradeoffs publication-title: Ad Hoc Netw. – volume: 93 year: 2019 ident: bib144 article-title: A broadband piezoelectric energy harvester for IoT based applications publication-title: Microelectronics J – volume: 58 start-page: 612 year: 2019 end-page: 623 ident: bib91 article-title: Self-powered multifunctional monitoring system using hybrid integrated triboelectric nanogenerators and piezoelectric microsensors publication-title: Nano Energy – volume: 7 start-page: 94533 year: 2019 end-page: 94556 ident: bib53 article-title: Towards a green and self-powered internet of things using piezoelectric energy harvesting publication-title: IEEE Access – volume: 7 year: 2021 ident: bib5 article-title: A bibliometric analysis of micro electro mechanical system energy harvester research publication-title: Heliyon – volume: 35 year: 2022 ident: bib10 article-title: Smart sensors in environmental/water quality monitoring using IoT and cloud services publication-title: Trends Environ. Anal. Chem. – volume: 6 start-page: 30932 year: 2018 end-page: 30941 ident: bib75 article-title: Energy harvesting using a low-cost rectenna for internet of things (IoT) applications publication-title: IEEE Access – volume: 8 start-page: 864 year: 2020 end-page: 873 ident: bib96 article-title: Rollable magnetoelectric energy harvester as a wireless IoT sensor publication-title: ACS Sustain. Chem. Eng. – volume: 5 start-page: 2700 year: 2018 end-page: 2714 ident: bib60 article-title: Multiband ambient RF energy harvesting circuit design for enabling batteryless sensors and IoT publication-title: IEEE Internet Things J. – start-page: 418 year: 2022 end-page: 422 ident: bib125 article-title: Energy harvesting for IoT applications, 3rd publication-title: Int. Conf. Electron. Sustain. Commun. Syst. ICESC 2022 - Proc – volume: 128 year: 2020 ident: bib51 article-title: Design architectures for energy harvesting in the Internet of Things publication-title: Renew. Sustain. Energy Rev. – volume: 147 start-page: 179 year: 2023 end-page: 194 ident: bib165 article-title: ELECT: energy-efficient intelligent edge–cloud collaboration for remote IoT services publication-title: Futur. Gener. Comput. Syst. – volume: 92 year: 2022 ident: bib135 article-title: Triboelectric sensor array for internet of things based smart traffic monitoring and management system publication-title: Nano Energy – volume: 104 year: 2022 ident: bib168 article-title: Energy and dynamic analysis of quasi-static toggling mechanical energy harvester publication-title: Nano Energy – start-page: 45 year: 2020 end-page: 49 ident: bib174 article-title: 7.6 μw ambient energy harvesting rectenna from LTE mobile phone signal for IoT applications publication-title: Int. Conf. Adv. Technol. Commun – start-page: 39 year: 2013 end-page: 50 ident: bib26 article-title: Ambient backscatter: wireless communication out of thin air publication-title: SIGCOMM 2013 - Proc. ACM SIGCOMM 2013 Conf. Appl. Technol. Archit. Protoc. Comput. Commun – volume: 91 start-page: 611 year: 2019 end-page: 619 ident: bib79 article-title: RETRACTED: smart health monitoring and management system: toward autonomous wearable sensing for Internet of Things using big data analytics publication-title: Futur. Gener. Comput. Syst. – volume: 6 start-page: 6989 year: 2019 end-page: 6996 ident: bib123 article-title: Long range battery-less PV-powered RFID tag sensors publication-title: IEEE Internet Things J. – volume: 19 start-page: 7668 year: 2019 end-page: 7682 ident: bib118 article-title: Performance analysis of rf energy harvesting and information transmission based on noma with interfering signal for iot relay systems publication-title: IEEE Sens. J. – volume: 46 start-page: 383 year: 2018 end-page: 395 ident: bib56 article-title: A human locomotion inspired hybrid nanogenerator for wrist-wearable electronic device and sensor applications publication-title: Nano Energy – start-page: 375 year: 2015 end-page: 380 ident: bib41 article-title: Powering the internet of things publication-title: Proc. Int. Symp. Low Power Electron. Des. – volume: 5 start-page: 736 year: 2018 end-page: 746 ident: bib48 article-title: Internet of hybrid energy harvesting things publication-title: IEEE Internet Things J. – volume: 6 start-page: 35966 year: 2018 end-page: 35978 ident: bib95 article-title: Lightweight block ciphers for IoT: energy optimization and survivability techniques publication-title: IEEE Access – volume: 5 year: 2019 ident: bib1 article-title: Knowledge growth and development: internet of things (IoT) research, 2006–2018 publication-title: Heliyon – volume: 25 start-page: 1 year: 2022 end-page: 29 ident: bib127 article-title: Harvesting circuits for triboelectric nanogenerators for wearable applications publication-title: iScience – volume: 27 start-page: 1 year: 2018 end-page: 18 ident: bib43 article-title: Review of micro thermoelectric generator publication-title: J. Microelectromechanical Syst. – volume: 16 start-page: 2548 year: 2017 end-page: 2561 ident: bib44 article-title: Wirelessly powered backscatter communication networks: modeling, coverage, and capacity publication-title: IEEE Trans. Wirel. Commun. – volume: 11 start-page: 865 year: 2019 ident: bib104 article-title: Energy harvesting techniques for wireless sensor networks/radio-frequency identification: a review publication-title: Symmetry – volume: 23 start-page: 956 year: 2018 end-page: 966 ident: bib122 article-title: Energy harvesting cognitive radio networking for IoT-enabled smart grid publication-title: Mobile Network. Appl. – volume: 280 start-page: 340 year: 2018 end-page: 349 ident: bib145 article-title: Design of optimized cantilever form of a piezoelectric energy harvesting system for a wireless remote switch publication-title: Sensors Actuators A Phys – volume: 64 start-page: 3723 year: 2016 end-page: 3731 ident: bib121 article-title: Continuously power delivering for passive backscatter wireless sensor networks publication-title: IEEE Trans. Microw. Theory Tech. – volume: 22 year: 2023 ident: bib166 article-title: Towards energy-aware tinyML on battery-less IoT devices publication-title: Internet of Things – volume: 14 start-page: 2608 year: 2018 end-page: 2617 ident: bib94 article-title: Joint subcarrier and power allocation in the energy-harvesting-aided D2D communication publication-title: IEEE Trans. Ind. Inf. – volume: 13 start-page: 1 year: 2020 end-page: 16 ident: bib19 article-title: Electromechanical modeling of MEMS-based piezoelectric energy harvesting devices for applications in domestic washing machines publication-title: Energies – volume: 20 start-page: 2495 year: 2020 ident: bib40 article-title: A review of IoT sensing applications and challenges using RFID and wireless sensor networks publication-title: Sensors – volume: 68 start-page: 1930 year: 2019 end-page: 1941 ident: bib29 article-title: Learning-based computation offloading for IoT devices with energy harvesting publication-title: IEEE Trans. Veh. Technol. – volume: 2022 year: 2022 ident: bib180 article-title: Challenges in integration of heterogeneous internet of things publication-title: Sci. Program. – volume: 81 year: 2020 ident: bib7 article-title: Blockchain and internet of things: a bibliometric study publication-title: Comput. Electr. Eng. – volume: 9 start-page: 39530 year: 2021 end-page: 39549 ident: bib69 article-title: Energy harvesting techniques for internet of things (IoT) publication-title: IEEE Access – volume: 210 year: 2023 ident: bib162 article-title: Optimized RNN-based performance prediction of IoT and WSN-oriented smart city application using improved honey badger algorithm publication-title: Measurement – volume: 28 start-page: 421 year: 2023 end-page: 432 ident: bib109 article-title: Dynamic task offloading for mobile edge computing with hybrid energy supply publication-title: Tsinghua Sci. Technol. – reference: J. Kymissis, C. Kendall, J. Paradiso, N. Gershenfeld, Parasitic power harvesting in shoes, in: Dig. Pap. Second Int. Symp. Wearable Comput. (Cat. No.98EX215), IEEE Comput. Soc, n.d.: pp. 132–139. – volume: 22 year: 2023 ident: bib164 article-title: Efficient job scheduling paradigm based on hybrid sparrow search algorithm and differential evolution optimization for heterogeneous cloud computing platforms publication-title: Internet of Things – volume: 20 start-page: 169 year: 2015 end-page: 180 ident: bib147 article-title: Optimal energy strategy for node selection and data relay in WSN-based IoT publication-title: Mobile Network. Appl. – volume: 33 year: 2019 ident: bib138 article-title: Multi-plate structured triboelectric nanogenerator based on cycloidal displacement for harvesting hydroenergy publication-title: Extrem. Mech. Lett. – volume: 125 start-page: 677 year: 2021 end-page: 686 ident: bib149 article-title: Collaborative algorithms that combine AI with IoT towards monitoring and control system publication-title: Futur. Gener. Comput. Syst. – volume: 202 start-page: 513 year: 2023 end-page: 524 ident: bib167 article-title: A wearable collaborative energy harvester combination of frequency-up conversion vibration, ambient light and thermal energy publication-title: Renew. Energy – volume: 16 start-page: 1027 year: 2012 end-page: 1032 ident: bib130 article-title: Indoor light energy harvesting system for energy-aware wireless sensor node publication-title: Energy Proc. – volume: 18 start-page: 751 year: 2018 ident: bib99 article-title: A trust-based secure routing scheme using the traceback approach for energy-harvesting wireless sensor networks publication-title: Sensors – volume: 88 start-page: 73 year: 2018 end-page: 86 ident: bib49 article-title: An IoT-based autonomous system for workers' safety in construction sites with real-time alarming, monitoring, and positioning strategies publication-title: Autom. Constr. – volume: 45 start-page: 118 year: 2021 end-page: 140 ident: bib90 article-title: Energy harvesting in wireless sensor networks: a taxonomic survey publication-title: Int. J. Energy Res. – volume: 8 year: 2018 ident: bib77 article-title: High power magnetic field energy harvesting through amplified magneto-mechanical vibration publication-title: Adv. Energy Mater. – volume: 9 start-page: 14685 year: 2022 end-page: 14698 ident: bib116 article-title: Blockchain-based incentive energy-knowledge trading in IoT: joint power transfer and AI design publication-title: IEEE Internet Things J. – volume: 435 start-page: 347 year: 2018 end-page: 355 ident: bib140 article-title: Health monitoring system of solar photovoltaic panel: an internet of things application publication-title: Lect. Notes Electr. Eng. – volume: 10 start-page: 75 year: 2021 ident: bib171 article-title: A hybrid optimization approach for the enhancement of efficiency of a piezoelectric energy harvesting system publication-title: Electronics – volume: 78 year: 2020 ident: bib32 article-title: Flexible PVDF based piezoelectric nanogenerators publication-title: Nano Energy – volume: 6 start-page: 5999 year: 2019 end-page: 6006 ident: bib120 article-title: Joint subcarrier and subsymbol allocation-based simultaneous wireless information and power transfer for multiuser GFDM in IoT publication-title: IEEE Internet Things J. – start-page: 18 year: 2018 ident: bib74 article-title: A survey of NFC sensors based on energy harvesting for IoT applications publication-title: Sensors – volume: 87 start-page: 152 year: 2018 end-page: 158 ident: bib159 article-title: Heterogeneous 3-D ICs as a platform for hybrid energy harvesting in IoT systems, Futur publication-title: Gener. Comput. Syst. – volume: 31 start-page: 66 year: 2019 end-page: 74 ident: bib18 article-title: Microsystem based energy harvesting (EH-MEMS): powering pervasivity of the internet of things (IoT) – a review with focus on mechanical vibrations publication-title: J. King Saud Univ. Sci. – volume: 34 year: 2023 ident: bib25 article-title: Development of IOT-based low-cost MEMS pressure sensor for groundwater level monitoring publication-title: Meas. Sci. Technol. – volume: 6 year: 2019 ident: bib45 article-title: Integrated triboelectric nanogenerators in the era of the internet of things publication-title: Adv. Sci. – volume: 102 year: 2020 ident: bib153 article-title: A high-efficiency piezoelectric-based integrated power supply for low-power platforms publication-title: Microelectronics J – volume: 24 year: 2021 ident: bib141 article-title: A high-performance triboelectric-electromagnetic hybrid wind energy harvester based on rotational tapered rollers aiming at outdoor IoT applications publication-title: iScience – volume: 11 year: 2023 ident: bib22 article-title: A method of ultra-low power consumption implementation for MEMS gas sensors publication-title: Chemosensors – volume: 49 start-page: 2017 year: 2014 end-page: 2029 ident: bib172 article-title: A micro inertial energy harvesting platform with self-supplied power management circuit for autonomous wireless sensor nodes publication-title: IEEE J. Solid-State Circuits. – volume: 6 start-page: 35966 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib95 article-title: Lightweight block ciphers for IoT: energy optimization and survivability techniques publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2848586 – volume: 20 start-page: 6404 year: 2020 ident: 10.1016/j.heliyon.2024.e27778_bib35 article-title: Manipulating relative permittivity for high-performance wearable triboelectric nanogenerators publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c01987 – volume: 78 year: 2020 ident: 10.1016/j.heliyon.2024.e27778_bib32 article-title: Flexible PVDF based piezoelectric nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105251 – volume: 16 start-page: 938 year: 2016 ident: 10.1016/j.heliyon.2024.e27778_bib111 article-title: Smart coat with a fully-embedded textile antenna for IoT applications publication-title: Sensors doi: 10.3390/s16060938 – volume: 13 start-page: 1473 year: 2020 ident: 10.1016/j.heliyon.2024.e27778_bib114 article-title: Indoor-light-energy-harvesting dye-sensitized photo-rechargeable battery publication-title: Energy Environ. Sci. doi: 10.1039/C9EE03245B – volume: 93 year: 2019 ident: 10.1016/j.heliyon.2024.e27778_bib144 article-title: A broadband piezoelectric energy harvester for IoT based applications publication-title: Microelectronics J doi: 10.1016/j.mejo.2019.104635 – volume: 202 start-page: 513 year: 2023 ident: 10.1016/j.heliyon.2024.e27778_bib167 article-title: A wearable collaborative energy harvester combination of frequency-up conversion vibration, ambient light and thermal energy publication-title: Renew. Energy doi: 10.1016/j.renene.2022.11.079 – volume: 43 start-page: 255 year: 2022 ident: 10.1016/j.heliyon.2024.e27778_bib14 article-title: Design and implementation of IoT based intelligent energy management controller for PV/wind/battery system with cost minimization publication-title: Renew. Energy Focus. doi: 10.1016/j.ref.2022.10.004 – volume: 43 start-page: 176 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib52 article-title: Materials for energy harvesting: at the forefront of a new wave publication-title: MRS Bull. doi: 10.1557/mrs.2018.32 – volume: 15 start-page: 7495 year: 2022 ident: 10.1016/j.heliyon.2024.e27778_bib20 article-title: Energy harvesting in implantable and wearable medical devices for enduring precision healthcare publication-title: Energies doi: 10.3390/en15207495 – volume: 5 start-page: 11413 year: 2017 ident: 10.1016/j.heliyon.2024.e27778_bib21 article-title: An autonomous wireless body area network implementation towards IoT connected healthcare applications publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2716344 – start-page: 39 year: 2013 ident: 10.1016/j.heliyon.2024.e27778_bib26 article-title: Ambient backscatter: wireless communication out of thin air – volume: 149 year: 2023 ident: 10.1016/j.heliyon.2024.e27778_bib157 article-title: IoT adaptive threshold energy management algorithm based on energy harvesting publication-title: Ad Hoc Netw. doi: 10.1016/j.adhoc.2023.103241 – volume: 52 year: 2022 ident: 10.1016/j.heliyon.2024.e27778_bib158 article-title: AI-based modeling and data-driven evaluation for smart farming-oriented big data architecture using IoT with energy harvesting capabilities publication-title: Sustain. Energy Technol. Assessments – start-page: 375 year: 2015 ident: 10.1016/j.heliyon.2024.e27778_bib41 article-title: Powering the internet of things publication-title: Proc. Int. Symp. Low Power Electron. Des. – volume: 12 start-page: 1 year: 2019 ident: 10.1016/j.heliyon.2024.e27778_bib133 article-title: Development of a tree-shaped hybrid nanogenerator using flexible sheets of photovoltaic and piezoelectric films publication-title: Energies doi: 10.3390/en12020229 – volume: 59 start-page: 178 year: 2013 ident: 10.1016/j.heliyon.2024.e27778_bib146 article-title: Operational optimization of crude oil distillation systems using artificial neural networks publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2013.05.030 – volume: 5 start-page: 2700 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib60 article-title: Multiband ambient RF energy harvesting circuit design for enabling batteryless sensors and IoT publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2813162 – volume: 54 start-page: 2717 year: 2019 ident: 10.1016/j.heliyon.2024.e27778_bib173 article-title: Analysis, modeling, and design of a 2.45-GHz RF energy harvester for SWIPT IoT smart sensors publication-title: IEEE J. Solid-State Circuits. doi: 10.1109/JSSC.2019.2914581 – volume: 9 start-page: 1875 year: 2023 ident: 10.1016/j.heliyon.2024.e27778_bib155 article-title: Synergistic multi-source ambient RF and thermal energy harvester for green IoT applications publication-title: Energy Rep. doi: 10.1016/j.egyr.2023.01.027 – volume: 64 start-page: 3723 year: 2016 ident: 10.1016/j.heliyon.2024.e27778_bib121 article-title: Continuously power delivering for passive backscatter wireless sensor networks publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/TMTT.2016.2603985 – volume: 3 start-page: 1039 year: 2020 ident: 10.1016/j.heliyon.2024.e27778_bib2 article-title: IoT-enabled smart sustainable cities: challenges and approaches publication-title: Smart Cities doi: 10.3390/smartcities3030052 – volume: 17 start-page: 6335 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib65 article-title: Riding on the primary: a new spectrum sharing paradigm for wireless-powered IoT devices publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2018.2859389 – volume: 272 start-page: 187 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib89 article-title: Internet of things (IoT); internet of everything (IoE); tactile internet; 5G – a (not so evanescent) unifying vision empowered by EH-MEMS (energy harvesting MEMS) and RF-MEMS (radio frequency MEMS) publication-title: Sensors Actuators A Phys doi: 10.1016/j.sna.2018.01.038 – volume: 71 start-page: 117 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib67 article-title: A comprehensive review on energy harvesting MAC protocols in WSNs: challenges and tradeoffs publication-title: Ad Hoc Netw. doi: 10.1016/j.adhoc.2018.01.004 – volume: 6 start-page: 35801 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib106 article-title: A wireless implantable sensor design with subcutaneous energy harvesting for long-term IoT healthcare applications publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2851940 – start-page: 1 year: 2013 ident: 10.1016/j.heliyon.2024.e27778_bib4 – volume: 14 start-page: 23 year: 2019 ident: 10.1016/j.heliyon.2024.e27778_bib102 article-title: Analysis the efficient energy prediction for 5G wireless communication technologies publication-title: Int. J. Emerg. Technol. Learn. doi: 10.3991/ijet.v14i08.10485 – volume: 24 year: 2022 ident: 10.1016/j.heliyon.2024.e27778_bib148 article-title: Power management using AI-based IOT systems publication-title: Meas. Sensors. doi: 10.1016/j.measen.2022.100551 – volume: 6 start-page: 4307 year: 2019 ident: 10.1016/j.heliyon.2024.e27778_bib50 article-title: Learning-based privacy-aware offloading for healthcare IoT with energy harvesting publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2875926 – volume: 102 year: 2020 ident: 10.1016/j.heliyon.2024.e27778_bib153 article-title: A high-efficiency piezoelectric-based integrated power supply for low-power platforms publication-title: Microelectronics J doi: 10.1016/j.mejo.2020.104824 – start-page: 18 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib46 article-title: Energy harvesting sources, storage devices and system topologies for environmental wireless sensor networks: a review publication-title: Sensors – volume: 6 start-page: 5999 year: 2019 ident: 10.1016/j.heliyon.2024.e27778_bib120 article-title: Joint subcarrier and subsymbol allocation-based simultaneous wireless information and power transfer for multiuser GFDM in IoT publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2865248 – volume: 5 start-page: 3220 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib86 article-title: Energy and spectral efficient cognitive radio sensor networks for internet of things publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2837354 – volume: 49 start-page: 2017 year: 2014 ident: 10.1016/j.heliyon.2024.e27778_bib172 article-title: A micro inertial energy harvesting platform with self-supplied power management circuit for autonomous wireless sensor nodes publication-title: IEEE J. Solid-State Circuits. doi: 10.1109/JSSC.2014.2331953 – volume: 33 year: 2019 ident: 10.1016/j.heliyon.2024.e27778_bib138 article-title: Multi-plate structured triboelectric nanogenerator based on cycloidal displacement for harvesting hydroenergy publication-title: Extrem. Mech. Lett. doi: 10.1016/j.eml.2019.100576 – volume: 25 start-page: 1 year: 2022 ident: 10.1016/j.heliyon.2024.e27778_bib127 article-title: Harvesting circuits for triboelectric nanogenerators for wearable applications publication-title: iScience doi: 10.1016/j.isci.2022.103977 – start-page: 1019 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib175 article-title: A beamforming based wireless energy transmitter and energy harvester for IoT/m2m applications – volume: 6 start-page: 844 year: 2019 ident: 10.1016/j.heliyon.2024.e27778_bib98 article-title: IoT communications with M -PSK modulated ambient backscatter: algorithm, analysis, and implementation publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2861401 – volume: 13 start-page: 5528 year: 2020 ident: 10.1016/j.heliyon.2024.e27778_bib55 article-title: Energy harvesting towards self-powered IoT devices publication-title: Energies doi: 10.3390/en13215528 – volume: 20 start-page: 2889 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib27 article-title: Ambient backscatter communications: a contemporary survey publication-title: IEEE Commun. Surv. Tutorials. doi: 10.1109/COMST.2018.2841964 – volume: 19 start-page: 880 year: 2020 ident: 10.1016/j.heliyon.2024.e27778_bib82 article-title: Near-optimal and truthful online auction for computation offloading in green edge-computing systems publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2019.2901474 – volume: 13 start-page: 22 year: 2019 ident: 10.1016/j.heliyon.2024.e27778_bib97 article-title: Hybrid solar energy harvesting and storage devices: the promises and challenges, Mater publication-title: Today Energy – volume: 23 start-page: 3065 year: 2015 ident: 10.1016/j.heliyon.2024.e27778_bib73 article-title: A highly efficient ultralow photovoltaic power harvesting system with MPPT for internet of things smart nodes publication-title: IEEE Trans. Very Large Scale Integr. Syst. doi: 10.1109/TVLSI.2014.2387167 – volume: 3 year: 2019 ident: 10.1016/j.heliyon.2024.e27778_bib119 article-title: An autonomous sigfox wireless sensor node for environmental monitoring publication-title: IEEE Sensors Lett doi: 10.1109/LSENS.2019.2924058 – volume: 8 start-page: 864 year: 2020 ident: 10.1016/j.heliyon.2024.e27778_bib96 article-title: Rollable magnetoelectric energy harvester as a wireless IoT sensor publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b05058 – start-page: 1 year: 2019 ident: 10.1016/j.heliyon.2024.e27778_bib112 article-title: Simultaneous harvest-and-transmit ambient backscatter communications under Rayleigh fading publication-title: EURASIP J. Wirel. Commun. Netw. – volume: 9 start-page: 14685 year: 2022 ident: 10.1016/j.heliyon.2024.e27778_bib116 article-title: Blockchain-based incentive energy-knowledge trading in IoT: joint power transfer and AI design publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.3024246 – volume: 172 year: 2020 ident: 10.1016/j.heliyon.2024.e27778_bib76 article-title: Wireless technologies for smart agricultural monitoring using internet of things devices with energy harvesting capabilities publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105338 – volume: 32 year: 2020 ident: 10.1016/j.heliyon.2024.e27778_bib30 article-title: Smart textile-integrated microelectronic systems for wearable applications publication-title: Adv. Mater. doi: 10.1002/adma.201901958 – volume: 51 start-page: 1457 year: 2016 ident: 10.1016/j.heliyon.2024.e27778_bib81 article-title: An autonomous energy harvesting power management unit with digital regulation for IoT applications publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.2016.2545709 – volume: 104 year: 2022 ident: 10.1016/j.heliyon.2024.e27778_bib16 article-title: All-aerosol-sprayed high-performance transparent triboelectric nanogenerator with embedded charge-storage layer for self-powered invisible security IoT system and raindrop-solar hybrid energy harvester publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107878 – volume: 11 year: 2023 ident: 10.1016/j.heliyon.2024.e27778_bib22 article-title: A method of ultra-low power consumption implementation for MEMS gas sensors publication-title: Chemosensors doi: 10.3390/chemosensors11040236 – volume: 6 start-page: 3257 year: 2019 ident: 10.1016/j.heliyon.2024.e27778_bib83 article-title: Wireless information and power transfer for IoT applications in overlay cognitive radio networks publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2882207 – volume: 24 start-page: 2853 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib117 article-title: MEMS based energy harvesting for the Internet of Things: a survey, Microsyst publication-title: Technol. – volume: 7 year: 2021 ident: 10.1016/j.heliyon.2024.e27778_bib5 article-title: A bibliometric analysis of micro electro mechanical system energy harvester research publication-title: Heliyon doi: 10.1016/j.heliyon.2021.e06406 – volume: 21 year: 2023 ident: 10.1016/j.heliyon.2024.e27778_bib170 article-title: Processor power and energy consumption estimation techniques in IoT applications: a review publication-title: Internet of Things doi: 10.1016/j.iot.2022.100655 – volume: 20 start-page: 169 year: 2015 ident: 10.1016/j.heliyon.2024.e27778_bib147 article-title: Optimal energy strategy for node selection and data relay in WSN-based IoT publication-title: Mobile Network. Appl. doi: 10.1007/s11036-015-0592-5 – volume: 13 start-page: 1 year: 2020 ident: 10.1016/j.heliyon.2024.e27778_bib19 article-title: Electromechanical modeling of MEMS-based piezoelectric energy harvesting devices for applications in domestic washing machines publication-title: Energies – volume: 24 start-page: 2133 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib151 article-title: An overview of routing techniques for road and pipeline monitoring in linear sensor networks publication-title: Wirel. Networks. doi: 10.1007/s11276-017-1457-6 – volume: 9 start-page: 1345 year: 2020 ident: 10.1016/j.heliyon.2024.e27778_bib11 article-title: Prospective efficient ambient energy harvesting sources for IoT-equipped sensor applications publication-title: Electron doi: 10.3390/electronics9091345 – volume: 19 start-page: 7668 year: 2019 ident: 10.1016/j.heliyon.2024.e27778_bib118 article-title: Performance analysis of rf energy harvesting and information transmission based on noma with interfering signal for iot relay systems publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2914796 – volume: 53 start-page: 102 year: 2015 ident: 10.1016/j.heliyon.2024.e27778_bib28 article-title: Wireless energy harvesting for the internet of things publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2015.7120024 – volume: 5 start-page: 7405 year: 2017 ident: 10.1016/j.heliyon.2024.e27778_bib110 article-title: Energy harvesting aided device-to-device communication underlaying the cellular downlink publication-title: IEEE Access doi: 10.1109/ACCESS.2016.2600242 – volume: 2017 year: 2017 ident: 10.1016/j.heliyon.2024.e27778_bib176 article-title: Energy harvesting for internet of things with heterogeneous users publication-title: Wireless Commun. Mobile Comput. doi: 10.1155/2017/1858532 – volume: 108 year: 2023 ident: 10.1016/j.heliyon.2024.e27778_bib137 article-title: Self-powered triboelectric mechanical motion sensor for simultaneous monitoring of linear-rotary multi-motion publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.108239 – volume: 2022 year: 2022 ident: 10.1016/j.heliyon.2024.e27778_bib180 article-title: Challenges in integration of heterogeneous internet of things publication-title: Sci. Program. – volume: 15 start-page: 5777 year: 2015 ident: 10.1016/j.heliyon.2024.e27778_bib34 article-title: The power of models: modeling power consumption for IoT devices publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2015.2445094 – volume: 10 start-page: 17231 year: 2022 ident: 10.1016/j.heliyon.2024.e27778_bib105 article-title: A review on antenna technologies for ambient RF energy harvesting and wireless power transfer: designs, challenges and applications publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3149276 – volume: 5 start-page: 810 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib132 article-title: Design and optimization of hybrid PV-wind renewable energy system publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2017.11.151 – volume: 31 start-page: 66 year: 2019 ident: 10.1016/j.heliyon.2024.e27778_bib18 article-title: Microsystem based energy harvesting (EH-MEMS): powering pervasivity of the internet of things (IoT) – a review with focus on mechanical vibrations publication-title: J. King Saud Univ. Sci. doi: 10.1016/j.jksus.2017.05.019 – volume: 54 start-page: 461 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib36 article-title: Thermoelectricity for IoT – a review publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.10.013 – ident: 10.1016/j.heliyon.2024.e27778_bib134 – volume: 171 start-page: 28 year: 2021 ident: 10.1016/j.heliyon.2024.e27778_bib150 article-title: An efficient medium access control protocol for RF energy harvesting based IoT devices publication-title: Comput. Commun. doi: 10.1016/j.comcom.2021.02.011 – volume: 19 start-page: 3501 year: 2019 ident: 10.1016/j.heliyon.2024.e27778_bib92 article-title: Autonomous energy-efficient wireless sensor network platform for home/office automation publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2892604 – volume: 55 start-page: 84 year: 2017 ident: 10.1016/j.heliyon.2024.e27778_bib31 article-title: Efficient energy management for the internet of things in smart cities publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2017.1600218CM – volume: 3316 start-page: 2235 issue: 33 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib113 article-title: Lead-free piezoelectric materials and composites for high power density energy harvesting publication-title: J. Mater. Res. doi: 10.1557/jmr.2018.172 – volume: 24 year: 2022 ident: 10.1016/j.heliyon.2024.e27778_bib9 article-title: Assessment on economic power management for smart city through IoT sensor model publication-title: Meas. Sensors. doi: 10.1016/j.measen.2022.100515 – volume: 20 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib33 article-title: A review on piezoelectric, magnetostrictive, and magnetoelectric materials and device technologies for energy harvesting applications publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201700743 – volume: 52 start-page: 2746 year: 2017 ident: 10.1016/j.heliyon.2024.e27778_bib64 article-title: An inductorless bias-flip rectifier for piezoelectric energy harvesting publication-title: IEEE J. Solid-State Circuits. doi: 10.1109/JSSC.2017.2725959 – volume: 5 start-page: 2657 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib70 article-title: Distributed wireless power transfer system for internet of things devices publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2790578 – volume: 22 year: 2023 ident: 10.1016/j.heliyon.2024.e27778_bib164 article-title: Efficient job scheduling paradigm based on hybrid sparrow search algorithm and differential evolution optimization for heterogeneous cloud computing platforms publication-title: Internet of Things doi: 10.1016/j.iot.2023.100697 – volume: 92 year: 2022 ident: 10.1016/j.heliyon.2024.e27778_bib135 article-title: Triboelectric sensor array for internet of things based smart traffic monitoring and management system publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106757 – volume: 122 year: 2021 ident: 10.1016/j.heliyon.2024.e27778_bib156 article-title: Energy-aware system design for batteryless LPWAN devices in IoT applications publication-title: Ad Hoc Netw. doi: 10.1016/j.adhoc.2021.102625 – volume: 14 start-page: 2608 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib94 article-title: Joint subcarrier and power allocation in the energy-harvesting-aided D2D communication publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2018.2794467 – volume: 73 year: 2020 ident: 10.1016/j.heliyon.2024.e27778_bib108 article-title: A self-charging device with bionic self-cleaning interface for energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104738 – volume: 435 start-page: 347 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib140 article-title: Health monitoring system of solar photovoltaic panel: an internet of things application publication-title: Lect. Notes Electr. Eng. doi: 10.1007/978-981-10-4286-7_34 – volume: 24 year: 2021 ident: 10.1016/j.heliyon.2024.e27778_bib141 article-title: A high-performance triboelectric-electromagnetic hybrid wind energy harvester based on rotational tapered rollers aiming at outdoor IoT applications publication-title: iScience doi: 10.1016/j.isci.2021.102300 – volume: 20 start-page: 155 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib8 article-title: Energy-harvesting based on internet of things and big data analytics for smart health monitoring publication-title: Sustain. Comput. Informatics Syst. doi: 10.1016/j.suscom.2017.10.009 – start-page: 36 year: 2023 ident: 10.1016/j.heliyon.2024.e27778_bib12 article-title: Integration of renewable energy sources, energy storages, and their impacts publication-title: Encycl. Electr. Electron. Power Eng. doi: 10.1016/B978-0-12-821204-2.00130-6 – volume: 128 year: 2020 ident: 10.1016/j.heliyon.2024.e27778_bib51 article-title: Design architectures for energy harvesting in the Internet of Things publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.109901 – volume: 19 year: 2023 ident: 10.1016/j.heliyon.2024.e27778_bib17 article-title: MEMS-based energy harvesting devices for low-power applications – a review publication-title: Results Eng doi: 10.1016/j.rineng.2023.101264 – volume: 46 start-page: 383 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib56 article-title: A human locomotion inspired hybrid nanogenerator for wrist-wearable electronic device and sensor applications publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.02.033 – volume: 91 start-page: 611 year: 2019 ident: 10.1016/j.heliyon.2024.e27778_bib79 article-title: RETRACTED: smart health monitoring and management system: toward autonomous wearable sensing for Internet of Things using big data analytics publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2017.12.059 – start-page: 19 year: 2019 ident: 10.1016/j.heliyon.2024.e27778_bib84 article-title: Strategies and techniques for powering wireless sensor nodes through energy harvesting and wireless power transfer publication-title: Sensors – volume: 21 year: 2021 ident: 10.1016/j.heliyon.2024.e27778_bib152 article-title: Piezoelectric energy harvesting towards self-powered internet of things (IoT) sensors in smart cities publication-title: Sensors doi: 10.3390/s21248332 – volume: 21 start-page: 7433 year: 2021 ident: 10.1016/j.heliyon.2024.e27778_bib178 article-title: The smart meter challenge: feasibility of autonomous indoor IoT devices depending on its energy harvesting source and IoT wireless technology publication-title: Sensors doi: 10.3390/s21227433 – volume: 45 start-page: 118 year: 2021 ident: 10.1016/j.heliyon.2024.e27778_bib90 article-title: Energy harvesting in wireless sensor networks: a taxonomic survey publication-title: Int. J. Energy Res. doi: 10.1002/er.5816 – volume: 24 start-page: 3033 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib124 article-title: Wideband auto-tunable vibration energy harvester using change in centre of gravity publication-title: Microsyst. Technol. doi: 10.1007/s00542-018-3846-x – volume: 6 year: 2019 ident: 10.1016/j.heliyon.2024.e27778_bib45 article-title: Integrated triboelectric nanogenerators in the era of the internet of things publication-title: Adv. Sci. doi: 10.1002/advs.201802230 – volume: 18 start-page: 751 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib99 article-title: A trust-based secure routing scheme using the traceback approach for energy-harvesting wireless sensor networks publication-title: Sensors doi: 10.3390/s18030751 – volume: 87 start-page: 55 year: 2019 ident: 10.1016/j.heliyon.2024.e27778_bib13 article-title: An ultra-low voltage chaos-based true random number generator for IoT applications publication-title: Microelectronics J doi: 10.1016/j.mejo.2019.03.013 – volume: 5 start-page: 736 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib48 article-title: Internet of hybrid energy harvesting things publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2017.2742663 – volume: 11 start-page: 99 year: 2019 ident: 10.1016/j.heliyon.2024.e27778_bib3 article-title: Wireless mesh networking: an IoT-oriented perspective survey on relevant technologies publication-title: Future Internet doi: 10.3390/fi11040099 – volume: 9 start-page: 9161 year: 2017 ident: 10.1016/j.heliyon.2024.e27778_bib85 article-title: Graphene ink laminate structures on poly(vinylidene difluoride) (PVDF) for pyroelectric thermal energy harvesting and waste heat recovery publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.6b16477 – volume: 91 start-page: 1 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib37 article-title: Sustainable production of highly conductive multilayer graphene ink for wireless connectivity and IoT applications publication-title: Nature.Com.Eresourcesptsl.Ukm.Remotexs.Comunications – volume: 8 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib77 article-title: High power magnetic field energy harvesting through amplified magneto-mechanical vibration publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703313 – volume: 27 year: 2023 ident: 10.1016/j.heliyon.2024.e27778_bib142 article-title: IOT based adjustment mechanism for direct reference model adaptive IMC to support voltage sag in DFIG wind farm publication-title: Meas. Sensors. doi: 10.1016/j.measen.2023.100809 – volume: 6 start-page: 30932 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib75 article-title: Energy harvesting using a low-cost rectenna for internet of things (IoT) applications publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2834392 – volume: 1665 CCIS start-page: 171 year: 2022 ident: 10.1016/j.heliyon.2024.e27778_bib126 article-title: IoT applications powered by piezoelectric vibration energy harvesting device publication-title: Commun. Comput. Inf. Sci. – volume: 135 year: 2020 ident: 10.1016/j.heliyon.2024.e27778_bib161 article-title: Joint optimization for ambient backscatter communication system with energy harvesting for IoT publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2019.106412 – volume: 28 start-page: 421 year: 2023 ident: 10.1016/j.heliyon.2024.e27778_bib109 article-title: Dynamic task offloading for mobile edge computing with hybrid energy supply publication-title: Tsinghua Sci. Technol. doi: 10.26599/TST.2021.9010050 – start-page: 418 year: 2022 ident: 10.1016/j.heliyon.2024.e27778_bib125 article-title: Energy harvesting for IoT applications, 3rd – volume: 87 start-page: 152 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib159 article-title: Heterogeneous 3-D ICs as a platform for hybrid energy harvesting in IoT systems, Futur publication-title: Gener. Comput. Syst. doi: 10.1016/j.future.2018.04.092 – volume: 7 start-page: 56694 year: 2019 ident: 10.1016/j.heliyon.2024.e27778_bib39 article-title: Wearable antennas: a review of materials, structures, and innovative features for autonomous communication and sensing publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2909146 – volume: 7 start-page: 94533 year: 2019 ident: 10.1016/j.heliyon.2024.e27778_bib53 article-title: Towards a green and self-powered internet of things using piezoelectric energy harvesting publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2928523 – volume: 27 year: 2023 ident: 10.1016/j.heliyon.2024.e27778_bib136 article-title: IoT based solar panel fault and maintenance detection using decision tree with light gradient boosting publication-title: Meas. Sensors. doi: 10.1016/j.measen.2023.100726 – volume: 5 start-page: 2646 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib87 article-title: Energy-efficient SWIPT in IoT distributed antenna systems publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2796124 – volume: 104 year: 2022 ident: 10.1016/j.heliyon.2024.e27778_bib168 article-title: Energy and dynamic analysis of quasi-static toggling mechanical energy harvester publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107887 – start-page: 18 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib74 article-title: A survey of NFC sensors based on energy harvesting for IoT applications publication-title: Sensors – volume: 45 year: 2021 ident: 10.1016/j.heliyon.2024.e27778_bib160 article-title: Energy-efficient resource allocation optimization algorithm in industrial IoTs scenarios based on energy harvesting publication-title: Sustain. Energy Technol. Assessments – start-page: 1 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib139 article-title: Solar energy management as an internet of things (IoT) application – start-page: 147 year: 2017 ident: 10.1016/j.heliyon.2024.e27778_bib23 article-title: Mems: an enabling technology for the internet of things (IoT), internet things data publication-title: Anal. Handb. – volume: 9 start-page: 39530 year: 2021 ident: 10.1016/j.heliyon.2024.e27778_bib69 article-title: Energy harvesting techniques for internet of things (IoT) publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3064066 – volume: 10 start-page: 75 year: 2021 ident: 10.1016/j.heliyon.2024.e27778_bib171 article-title: A hybrid optimization approach for the enhancement of efficiency of a piezoelectric energy harvesting system publication-title: Electronics doi: 10.3390/electronics10010075 – volume: 210 year: 2023 ident: 10.1016/j.heliyon.2024.e27778_bib162 article-title: Optimized RNN-based performance prediction of IoT and WSN-oriented smart city application using improved honey badger algorithm publication-title: Measurement doi: 10.1016/j.measurement.2023.112505 – volume: 5 year: 2019 ident: 10.1016/j.heliyon.2024.e27778_bib1 article-title: Knowledge growth and development: internet of things (IoT) research, 2006–2018 publication-title: Heliyon doi: 10.1016/j.heliyon.2019.e02264 – volume: 27 start-page: 1 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib43 article-title: Review of micro thermoelectric generator publication-title: J. Microelectromechanical Syst. doi: 10.1109/JMEMS.2017.2782748 – volume: 5 start-page: 2620 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib93 article-title: Incentive mechanism design for wireless energy harvesting-based internet of things publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2017.2786705 – volume: 14 start-page: 4738 year: 2021 ident: 10.1016/j.heliyon.2024.e27778_bib177 article-title: Smart materials and devices for energy harvesting publication-title: Mater doi: 10.3390/ma14164738 – volume: 37 start-page: 7 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib101 article-title: Microprocessor optimizations for the internet of things: a survey publication-title: IEEE Trans. Comput. Des. Integr. Circuits Syst. doi: 10.1109/TCAD.2017.2717782 – volume: 53 year: 2022 ident: 10.1016/j.heliyon.2024.e27778_bib15 article-title: IoT battery management system in electric vehicle based on LR parameter estimation and ORMeshNet gateway topology publication-title: Sustain. Energy Technol. Assessments – volume: 147 start-page: 179 year: 2023 ident: 10.1016/j.heliyon.2024.e27778_bib165 article-title: ELECT: energy-efficient intelligent edge–cloud collaboration for remote IoT services publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2023.04.030 – volume: 12 start-page: 666 year: 2019 ident: 10.1016/j.heliyon.2024.e27778_bib78 article-title: A high output magneto-mechano-triboelectric generator enabled by accelerated water-soluble nano-bullets for powering a wireless indoor positioning system publication-title: Energy Environ. Sci. doi: 10.1039/C8EE03008A – volume: 11 start-page: 865 year: 2019 ident: 10.1016/j.heliyon.2024.e27778_bib104 article-title: Energy harvesting techniques for wireless sensor networks/radio-frequency identification: a review publication-title: Symmetry doi: 10.3390/sym11070865 – volume: 8 start-page: 3809 year: 2022 ident: 10.1016/j.heliyon.2024.e27778_bib169 article-title: Powering nodes of wireless sensor networks with energy harvesters for intelligent buildings: a review publication-title: Energy Rep. doi: 10.1016/j.egyr.2022.02.280 – volume: 2 start-page: 1115 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib59 article-title: A distributed energy-harvesting-aware routing algorithm for heterogeneous IoT networks publication-title: IEEE Trans. Green Commun. Netw. doi: 10.1109/TGCN.2018.2839593 – volume: 6 start-page: 40846 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib80 article-title: WE-safe: a self-powered wearable IoT sensor network for safety applications based on lora publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2859383 – volume: 57 start-page: 104 year: 2019 ident: 10.1016/j.heliyon.2024.e27778_bib61 article-title: Toward green IoT: energy solutions and key challenges publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2019.1800175 – volume: 1 start-page: 2039 year: 2017 ident: 10.1016/j.heliyon.2024.e27778_bib62 article-title: Magnetic energy harvesting with magnetoelectrics: an emerging technology for self-powered autonomous systems publication-title: Sustain. Energy Fuels doi: 10.1039/C7SE00403F – volume: 280 start-page: 340 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib145 article-title: Design of optimized cantilever form of a piezoelectric energy harvesting system for a wireless remote switch publication-title: Sensors Actuators A Phys doi: 10.1016/j.sna.2018.07.023 – volume: 33 start-page: 1624 year: 2015 ident: 10.1016/j.heliyon.2024.e27778_bib58 article-title: Movers and Shakers: kinetic energy harvesting for the internet of things publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2015.2391690 – volume: 54 start-page: 143 year: 2016 ident: 10.1016/j.heliyon.2024.e27778_bib107 article-title: Simultaneous information and energy flow for IoT relay systems with crowd harvesting publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2016.1500649CM – volume: 27 year: 2023 ident: 10.1016/j.heliyon.2024.e27778_bib163 article-title: Developing a region-based energy-efficient IoT agriculture network using region- based clustering and shortest path routing for making sustainable agriculture environment publication-title: Meas. Sensors. doi: 10.1016/j.measen.2023.100734 – volume: 29 year: 2019 ident: 10.1016/j.heliyon.2024.e27778_bib57 article-title: Nasimuddin, RF energy harvesting systems: an overview and design issues publication-title: Int. J. RF Microw. Comput. Eng. – volume: 22 year: 2023 ident: 10.1016/j.heliyon.2024.e27778_bib166 article-title: Towards energy-aware tinyML on battery-less IoT devices publication-title: Internet of Things doi: 10.1016/j.iot.2023.100736 – volume: 12 year: 2019 ident: 10.1016/j.heliyon.2024.e27778_bib131 article-title: A new hybrid approach to forecast wind power for large scale wind turbine data using deep learning with tensorflow framework and principal component analysis publication-title: Energies doi: 10.3390/en12122229 – volume: 68 year: 2020 ident: 10.1016/j.heliyon.2024.e27778_bib68 article-title: Triboelectric-electromagnetic hybrid nanogenerator driven by wind for self-powered wireless transmission in Internet of Things and self-powered wind speed sensor publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104319 – volume: 81 year: 2020 ident: 10.1016/j.heliyon.2024.e27778_bib7 article-title: Blockchain and internet of things: a bibliometric study publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2019.106525 – volume: 20 start-page: 758 year: 2019 ident: 10.1016/j.heliyon.2024.e27778_bib72 article-title: Modulation of surface physics and chemistry in triboelectric energy harvesting technologies publication-title: VmBmuzZFCUk – volume: 34 year: 2023 ident: 10.1016/j.heliyon.2024.e27778_bib25 article-title: Development of IOT-based low-cost MEMS pressure sensor for groundwater level monitoring publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ace78f – volume: 2020 year: 2020 ident: 10.1016/j.heliyon.2024.e27778_bib128 article-title: Smart home IoT system by using RF energy harvesting publication-title: J. Sensors. doi: 10.1155/2020/8828479 – volume: 125 start-page: 677 year: 2021 ident: 10.1016/j.heliyon.2024.e27778_bib149 article-title: Collaborative algorithms that combine AI with IoT towards monitoring and control system publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2021.07.008 – start-page: 45 year: 2020 ident: 10.1016/j.heliyon.2024.e27778_bib174 article-title: 7.6 μw ambient energy harvesting rectenna from LTE mobile phone signal for IoT applications – volume: 16 start-page: 4361 year: 2017 ident: 10.1016/j.heliyon.2024.e27778_bib115 article-title: Full-duplex backscatter interference networks based on time-hopping spread spectrum publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2017.2697864 – volume: 66 start-page: 2056 year: 2017 ident: 10.1016/j.heliyon.2024.e27778_bib38 article-title: Analysis of three IoT-based wireless sensors for environmental monitoring publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2017.2677619 – volume: 10 year: 2020 ident: 10.1016/j.heliyon.2024.e27778_bib88 article-title: A fully functional universal self-chargeable power module for portable/wearable electronics and self-powered IoT applications publication-title: Adv. Energy Mater. – volume: 281 year: 2023 ident: 10.1016/j.heliyon.2024.e27778_bib154 article-title: A comprehensive review of machine learning and IoT solutions for demand side energy management, conservation, and resilient operation publication-title: Energy doi: 10.1016/j.energy.2023.128256 – volume: 7 start-page: 25481 year: 2019 ident: 10.1016/j.heliyon.2024.e27778_bib100 article-title: Nanowire-percolated piezoelectric copolymer-based highly transparent and flexible self-powered sensors publication-title: J. Mater. Chem. A. doi: 10.1039/C9TA09864J – volume: 28 year: 2023 ident: 10.1016/j.heliyon.2024.e27778_bib129 article-title: Energy efficient dual axis solar tracking system using IOT publication-title: Meas. Sensors. doi: 10.1016/j.measen.2023.100825 – volume: 58 start-page: 612 year: 2019 ident: 10.1016/j.heliyon.2024.e27778_bib91 article-title: Self-powered multifunctional monitoring system using hybrid integrated triboelectric nanogenerators and piezoelectric microsensors publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.01.096 – volume: 23 year: 2022 ident: 10.1016/j.heliyon.2024.e27778_bib6 article-title: Wearable technology for hazardous remote environments: smart shirt and Rugged IoT network for forestry worker health publication-title: Smart Heal – volume: 5 start-page: 229 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib47 article-title: Energy efficient resource allocation in machine-to-machine communications with multiple access and energy harvesting for IoT publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2017.2778766 – volume: 207 start-page: 874 year: 2020 ident: 10.1016/j.heliyon.2024.e27778_bib66 article-title: Dye-sensitized solar cells (DSSCs) as a potential photovoltaic technology for the self-powered internet of things (IoTs) applications publication-title: Sol. Energy doi: 10.1016/j.solener.2020.07.029 – volume: 6 start-page: 6989 year: 2019 ident: 10.1016/j.heliyon.2024.e27778_bib123 article-title: Long range battery-less PV-powered RFID tag sensors publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2019.2913403 – volume: 68 start-page: 1930 year: 2019 ident: 10.1016/j.heliyon.2024.e27778_bib29 article-title: Learning-based computation offloading for IoT devices with energy harvesting publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2018.2890685 – volume: 20 start-page: 407 year: 2020 ident: 10.1016/j.heliyon.2024.e27778_bib103 article-title: A hybrid energy harvesting design for on-body internet-of-things (IoT) networks publication-title: Sensors doi: 10.3390/s20020407 – start-page: 31 year: 2014 ident: 10.1016/j.heliyon.2024.e27778_bib24 – volume: 16 start-page: 2548 year: 2017 ident: 10.1016/j.heliyon.2024.e27778_bib44 article-title: Wirelessly powered backscatter communication networks: modeling, coverage, and capacity publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2017.2665629 – volume: 35 year: 2022 ident: 10.1016/j.heliyon.2024.e27778_bib10 article-title: Smart sensors in environmental/water quality monitoring using IoT and cloud services publication-title: Trends Environ. Anal. Chem. doi: 10.1016/j.teac.2022.e00173 – volume: 22 start-page: 1222 year: 2020 ident: 10.1016/j.heliyon.2024.e27778_bib42 article-title: Sensing, computing, and communications for energy harvesting IoTs: a survey publication-title: IEEE Commun. Surv. Tutorials. doi: 10.1109/COMST.2019.2962526 – volume: 6 start-page: 4436 year: 2019 ident: 10.1016/j.heliyon.2024.e27778_bib71 article-title: Dynamic edge computation offloading for internet of things with energy harvesting: a learning method publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2882783 – volume: 23 start-page: 956 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib122 article-title: Energy harvesting cognitive radio networking for IoT-enabled smart grid publication-title: Mobile Network. Appl. doi: 10.1007/s11036-017-0961-3 – start-page: 37 year: 2023 ident: 10.1016/j.heliyon.2024.e27778_bib143 article-title: IoT-based smart monitoring panel for floating horizontal axis wind turbine publication-title: Recent Adv. IoT Devices Pollut. Control Heal. Appl. – volume: 86 start-page: 380 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib63 article-title: Convergence of IoT and product lifecycle management in medical health care publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2018.03.052 – volume: 16 start-page: 1027 year: 2012 ident: 10.1016/j.heliyon.2024.e27778_bib130 article-title: Indoor light energy harvesting system for energy-aware wireless sensor node publication-title: Energy Proc. doi: 10.1016/j.egypro.2012.01.164 – volume: 24 year: 2022 ident: 10.1016/j.heliyon.2024.e27778_bib179 article-title: Investigation on identify the multiple issues in IoT devices using Convolutional Neural Network publication-title: Meas. Sensors. doi: 10.1016/j.measen.2022.100509 – volume: 20 start-page: 2495 year: 2020 ident: 10.1016/j.heliyon.2024.e27778_bib40 article-title: A review of IoT sensing applications and challenges using RFID and wireless sensor networks publication-title: Sensors doi: 10.3390/s20092495 – volume: 88 start-page: 73 year: 2018 ident: 10.1016/j.heliyon.2024.e27778_bib49 article-title: An IoT-based autonomous system for workers' safety in construction sites with real-time alarming, monitoring, and positioning strategies publication-title: Autom. Constr. doi: 10.1016/j.autcon.2017.12.033 – volume: 7 start-page: 7032 year: 2020 ident: 10.1016/j.heliyon.2024.e27778_bib54 article-title: AI-based joint optimization of QoS and security for 6G energy harvesting internet of things publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.2982417 |
SSID | ssj0001586973 |
Score | 2.3631015 |
SecondaryResourceType | review_article |
Snippet | Micro-energy harvesting (MEH) is a technology of renewable power generation which is a key technology for hosting the future low-powered electronic devices for... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e27778 |
SubjectTerms | bibliometric analysis case studies computer software energy efficiency Internet Internet of things Low power applications Low-cost sensors Micro energy harvesting power generation problem solving prototypes Review society surveys systematic review Ultra-low power |
Title | Micro energy harvesting for IoT platform: Review analysis toward future research opportunities |
URI | https://dx.doi.org/10.1016/j.heliyon.2024.e27778 https://www.ncbi.nlm.nih.gov/pubmed/38509887 https://www.proquest.com/docview/2973101898 https://www.proquest.com/docview/3153808348 https://pubmed.ncbi.nlm.nih.gov/PMC10951613 https://doaj.org/article/8704eba830834461affa8741a7e44716 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQkBAviG_KYDISr-mS-CM2bwMxDabygDaxJyw7sWmnKqlG-8B_vzvbLS1I9IXHJHZi-y6-38l3vyPkbQAnwdrWFRo2u4K7UBc2-KawDvSrY4qLyN05-SLPLvnnK3G1VeoLY8ISPXBauGPQJ-6dVazEihCysiFYBWbQNp7DxhrJtktdbjlTKT9YSd2w3yk7x9fjqZ_Pfg3IeVrzsa-bBkurbRmjyNm_Y5P-xpx_hk5u2aLTh-RBBpH0JA3-Ebnj-8fk3iQfkz8h3ycYZkd9zOujU3sTuTT6HxQQKv00XNDF3C4Rrb6j6WyA2sxNQpcxjJYmqhGaqYCmdFggTl_1kX_1Kbk8_Xjx4azIhRSKVsgGy8073mouy7Zi0mumSxeY6OqKCd3BpRAslA1MKnjd2lqpyiINj5Ctq1UnNXtGDvqh9y8IBQ8EIU9wpfVcgPiZD-BRBdm1rO6YGxG-XlHTZpZxLHYxN-twsmuTBWFQECYJYkTGm26LRLOxr8N7FNemMbJkxxugOybrjtmnOyOi1sI2GXAkIAGvmu37_pu1chj4IfGUxfZ-WP00sRhYWSn9jzYM7QwOCto8Twq1mQlTgOFg64fB7ajazlR3n_SzaSQGrxAvAz57-T8W55Dcx_nG_MvyFTlY3qz8awBgS3dE7p6cf_12fhT_uVuHlTHM |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Micro+energy+harvesting+for+IoT+platform%3A+Review+analysis+toward+future+research+opportunities&rft.jtitle=Heliyon&rft.au=Sarker%2C+Mahidur+R.&rft.au=Riaz%2C+Amna&rft.au=Lipu%2C+M.S.+Hossain&rft.au=Md+Saad%2C+Mohamad+Hanif&rft.date=2024-03-30&rft.issn=2405-8440&rft.eissn=2405-8440&rft.volume=10&rft.issue=6&rft.spage=e27778&rft_id=info:doi/10.1016%2Fj.heliyon.2024.e27778&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_heliyon_2024_e27778 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8440&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8440&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8440&client=summon |