Easy axis anisotropy creating high contrast magnetic zones on magnetic tunnel junctions based molecular spintronics devices (MTJMSD)
Magnetic tunnel junction-based molecular spintronics device (MTJMSD) may enable novel magnetic metamaterials by chemically bonding magnetic molecules and ferromagnets (FM) with a vast range of magnetic anisotropy. MTJMSD have experimentally shown intriguing microscopic phenomenon such as the develop...
Saved in:
Published in | Scientific reports Vol. 12; no. 1; pp. 5721 - 14 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
06.04.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Magnetic tunnel junction-based molecular spintronics device (MTJMSD) may enable novel magnetic metamaterials by chemically bonding magnetic molecules and ferromagnets (FM) with a vast range of magnetic anisotropy. MTJMSD have experimentally shown intriguing microscopic phenomenon such as the development of highly contrasting magnetic phases on a ferromagnetic electrode at room temperature. This paper focuses on Monte Carlo Simulations (MCS) on MTJMSD to understand the potential mechanism and explore fundamental knowledge about the impact of magnetic anisotropy. The selection of MCS is based on our prior study showing the potential of MCS in explaining experimental results (Tyagi et al. in Nanotechnology 26:305602, 2015). In this paper, MCS is carried out on the 3D Heisenberg model of cross-junction-shaped MTJMSDs. Our research represents the experimentally studied cross-junction-shaped MTJMSD where paramagnetic molecules are covalently bonded between two FM electrodes along the exposed side edges of the magnetic tunnel junction (MTJ). We have studied atomistic MTJMSDs properties by simulating a wide range of easy-axis anisotropy for the case of experimentally observed predominant molecule-induced strong antiferromagnetic coupling. Our study focused on understanding the effect of anisotropy of the FM electrodes on the overall MTJMSDs at various temperatures. This study shows that the multiple domains of opposite spins start to appear on an FM electrode as the easy-axis anisotropy increases. Interestingly, MCS results resembled the experimentally observed highly contrasted magnetic zones on the ferromagnetic electrodes of MTJMSD. The magnetic phases with starkly different spins were observed around the molecular junction on the FM electrode with high anisotropy. |
---|---|
AbstractList | Abstract
Magnetic tunnel junction-based molecular spintronics device (MTJMSD) may enable novel magnetic metamaterials by chemically bonding magnetic molecules and ferromagnets (FM) with a vast range of magnetic anisotropy. MTJMSD have experimentally shown intriguing microscopic phenomenon such as the development of highly contrasting magnetic phases on a ferromagnetic electrode at room temperature. This paper focuses on Monte Carlo Simulations (MCS) on MTJMSD to understand the potential mechanism and explore fundamental knowledge about the impact of magnetic anisotropy. The selection of MCS is based on our prior study showing the potential of MCS in explaining experimental results (Tyagi et al. in Nanotechnology 26:305602, 2015). In this paper, MCS is carried out on the 3D Heisenberg model of cross-junction-shaped MTJMSDs. Our research represents the experimentally studied cross-junction-shaped MTJMSD where paramagnetic molecules are covalently bonded between two FM electrodes along the exposed side edges of the magnetic tunnel junction (MTJ). We have studied atomistic MTJMSDs properties by simulating a wide range of easy-axis anisotropy for the case of experimentally observed predominant molecule-induced strong antiferromagnetic coupling. Our study focused on understanding the effect of anisotropy of the FM electrodes on the overall MTJMSDs at various temperatures. This study shows that the multiple domains of opposite spins start to appear on an FM electrode as the easy-axis anisotropy increases. Interestingly, MCS results resembled the experimentally observed highly contrasted magnetic zones on the ferromagnetic electrodes of MTJMSD. The magnetic phases with starkly different spins were observed around the molecular junction on the FM electrode with high anisotropy. Magnetic tunnel junction-based molecular spintronics device (MTJMSD) may enable novel magnetic metamaterials by chemically bonding magnetic molecules and ferromagnets (FM) with a vast range of magnetic anisotropy. MTJMSD have experimentally shown intriguing microscopic phenomenon such as the development of highly contrasting magnetic phases on a ferromagnetic electrode at room temperature. This paper focuses on Monte Carlo Simulations (MCS) on MTJMSD to understand the potential mechanism and explore fundamental knowledge about the impact of magnetic anisotropy. The selection of MCS is based on our prior study showing the potential of MCS in explaining experimental results (Tyagi et al. in Nanotechnology 26:305602, 2015). In this paper, MCS is carried out on the 3D Heisenberg model of cross-junction-shaped MTJMSDs. Our research represents the experimentally studied cross-junction-shaped MTJMSD where paramagnetic molecules are covalently bonded between two FM electrodes along the exposed side edges of the magnetic tunnel junction (MTJ). We have studied atomistic MTJMSDs properties by simulating a wide range of easy-axis anisotropy for the case of experimentally observed predominant molecule-induced strong antiferromagnetic coupling. Our study focused on understanding the effect of anisotropy of the FM electrodes on the overall MTJMSDs at various temperatures. This study shows that the multiple domains of opposite spins start to appear on an FM electrode as the easy-axis anisotropy increases. Interestingly, MCS results resembled the experimentally observed highly contrasted magnetic zones on the ferromagnetic electrodes of MTJMSD. The magnetic phases with starkly different spins were observed around the molecular junction on the FM electrode with high anisotropy. Abstract Magnetic tunnel junction-based molecular spintronics device (MTJMSD) may enable novel magnetic metamaterials by chemically bonding magnetic molecules and ferromagnets (FM) with a vast range of magnetic anisotropy. MTJMSD have experimentally shown intriguing microscopic phenomenon such as the development of highly contrasting magnetic phases on a ferromagnetic electrode at room temperature. This paper focuses on Monte Carlo Simulations (MCS) on MTJMSD to understand the potential mechanism and explore fundamental knowledge about the impact of magnetic anisotropy. The selection of MCS is based on our prior study showing the potential of MCS in explaining experimental results (Tyagi et al. in Nanotechnology 26:305602, 2015). In this paper, MCS is carried out on the 3D Heisenberg model of cross-junction-shaped MTJMSDs. Our research represents the experimentally studied cross-junction-shaped MTJMSD where paramagnetic molecules are covalently bonded between two FM electrodes along the exposed side edges of the magnetic tunnel junction (MTJ). We have studied atomistic MTJMSDs properties by simulating a wide range of easy-axis anisotropy for the case of experimentally observed predominant molecule-induced strong antiferromagnetic coupling. Our study focused on understanding the effect of anisotropy of the FM electrodes on the overall MTJMSDs at various temperatures. This study shows that the multiple domains of opposite spins start to appear on an FM electrode as the easy-axis anisotropy increases. Interestingly, MCS results resembled the experimentally observed highly contrasted magnetic zones on the ferromagnetic electrodes of MTJMSD. The magnetic phases with starkly different spins were observed around the molecular junction on the FM electrode with high anisotropy. Magnetic tunnel junction-based molecular spintronics device (MTJMSD) may enable novel magnetic metamaterials by chemically bonding magnetic molecules and ferromagnets (FM) with a vast range of magnetic anisotropy. MTJMSD have experimentally shown intriguing microscopic phenomenon such as the development of highly contrasting magnetic phases on a ferromagnetic electrode at room temperature. This paper focuses on Monte Carlo Simulations (MCS) on MTJMSD to understand the potential mechanism and explore fundamental knowledge about the impact of magnetic anisotropy. The selection of MCS is based on our prior study showing the potential of MCS in explaining experimental results (Tyagi et al. in Nanotechnology 26:305602, 2015). In this paper, MCS is carried out on the 3D Heisenberg model of cross-junction-shaped MTJMSDs. Our research represents the experimentally studied cross-junction-shaped MTJMSD where paramagnetic molecules are covalently bonded between two FM electrodes along the exposed side edges of the magnetic tunnel junction (MTJ). We have studied atomistic MTJMSDs properties by simulating a wide range of easy-axis anisotropy for the case of experimentally observed predominant molecule-induced strong antiferromagnetic coupling. Our study focused on understanding the effect of anisotropy of the FM electrodes on the overall MTJMSDs at various temperatures. This study shows that the multiple domains of opposite spins start to appear on an FM electrode as the easy-axis anisotropy increases. Interestingly, MCS results resembled the experimentally observed highly contrasted magnetic zones on the ferromagnetic electrodes of MTJMSD. The magnetic phases with starkly different spins were observed around the molecular junction on the FM electrode with high anisotropy.Magnetic tunnel junction-based molecular spintronics device (MTJMSD) may enable novel magnetic metamaterials by chemically bonding magnetic molecules and ferromagnets (FM) with a vast range of magnetic anisotropy. MTJMSD have experimentally shown intriguing microscopic phenomenon such as the development of highly contrasting magnetic phases on a ferromagnetic electrode at room temperature. This paper focuses on Monte Carlo Simulations (MCS) on MTJMSD to understand the potential mechanism and explore fundamental knowledge about the impact of magnetic anisotropy. The selection of MCS is based on our prior study showing the potential of MCS in explaining experimental results (Tyagi et al. in Nanotechnology 26:305602, 2015). In this paper, MCS is carried out on the 3D Heisenberg model of cross-junction-shaped MTJMSDs. Our research represents the experimentally studied cross-junction-shaped MTJMSD where paramagnetic molecules are covalently bonded between two FM electrodes along the exposed side edges of the magnetic tunnel junction (MTJ). We have studied atomistic MTJMSDs properties by simulating a wide range of easy-axis anisotropy for the case of experimentally observed predominant molecule-induced strong antiferromagnetic coupling. Our study focused on understanding the effect of anisotropy of the FM electrodes on the overall MTJMSDs at various temperatures. This study shows that the multiple domains of opposite spins start to appear on an FM electrode as the easy-axis anisotropy increases. Interestingly, MCS results resembled the experimentally observed highly contrasted magnetic zones on the ferromagnetic electrodes of MTJMSD. The magnetic phases with starkly different spins were observed around the molecular junction on the FM electrode with high anisotropy. |
ArticleNumber | 5721 |
Author | Savadkoohi, Marzieh Grizzle, Andrew D’Angelo, Christopher Tyagi, Pawan Lamberti, Vincent Dahal, Bishnu R. |
Author_xml | – sequence: 1 givenname: Bishnu R. surname: Dahal fullname: Dahal, Bishnu R. organization: Center for Nanotechnology Research and Education, Mechanical Engineering, University of the District of Columbia – sequence: 2 givenname: Marzieh surname: Savadkoohi fullname: Savadkoohi, Marzieh organization: Center for Nanotechnology Research and Education, Mechanical Engineering, University of the District of Columbia – sequence: 3 givenname: Andrew surname: Grizzle fullname: Grizzle, Andrew organization: Center for Nanotechnology Research and Education, Mechanical Engineering, University of the District of Columbia – sequence: 4 givenname: Christopher surname: D’Angelo fullname: D’Angelo, Christopher organization: Center for Nanotechnology Research and Education, Mechanical Engineering, University of the District of Columbia – sequence: 5 givenname: Vincent surname: Lamberti fullname: Lamberti, Vincent organization: Y-12 National Security Complex – sequence: 6 givenname: Pawan surname: Tyagi fullname: Tyagi, Pawan email: ptyagi@udc.edu organization: Center for Nanotechnology Research and Education, Mechanical Engineering, University of the District of Columbia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35388032$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1861467$$D View this record in Osti.gov |
BookMark | eNp9kktv1DAUhSNUREvpH2CBLNiURcCvOPYGCZUCRa1YUNaW49zJeJSxB9upKGt-OJ5J6YMF3tjyPf587tV5Wu354KGqnhP8hmAm3yZOGiVrTGmNFaOkbh9VBxTzpqaM0r175_3qKKUVLquhihP1pNpnDZMSM3pQ_T416RqZny4h410KOYbNNbIRTHZ-QEs3LJENPkeTMlqbwUN2Fv0qXhIK_u4mT97DiFaTt9kFn1BnEvRoHUaw02giShtXKME7m1APV84WwPHF5ZeLbx9eP6seL8yY4OhmP6y-fzy9PPlcn3_9dHby_ry2jWhzTYhsBeZWSCt4r0DBAgi2EqtugVugssVt16q-oRJDx4WklPWCFxVnkinDDquzmdsHs9Kb6NYmXutgnN5dhDhoE0s3I2jGeNMp1WLcM96ptsOMLayhXFJDiJKF9W5mbaZuDb2F7YzGB9CHFe-WeghXWiopWtkUwMsZEFJ2OlmXwS7LqD3YrIkUhIu2iI5vfonhxwQp67VLFsbReAhT0lRwiUWDhSrSV_9IV2GKvsxzq2qLcbGzTWeVjSGlCItbxwTrbbD0HCxdgqV3wdJbFy_u93r75G-MioDNglRKfoB49_d_sH8AAzLa2g |
CitedBy_id | crossref_primary_10_3390_ijms232214476 crossref_primary_10_1021_acsaelm_3c00369 crossref_primary_10_1038_s41598_023_42731_9 |
Cites_doi | 10.1038/nnano.2007.251a 10.1146/annurev.matsci.29.1.381 10.1038/nmat1349 10.3390/s20010121 10.1088/0022-3727/47/33/333001 10.1063/1.2828536 10.1039/C6RA28727A 10.1126/science.1102068 10.1039/c0jm03291c 10.1103/PhysRevLett.93.136601 10.1016/j.jmmm.2018.01.024 10.1039/b901955n 10.1088/0957-4484/26/30/305602 10.1080/14786430802279778 10.1016/j.orgel.2022.106429 10.1088/0022-3727/46/7/074001 10.1039/D1RA05473B 10.1039/c1cs15047b 10.1063/1.475851 10.1007/s11051-015-3261-5 10.1038/s41598-021-96477-3 10.1126/science.265.5179.1682 10.1063/1.1702682 10.1039/C9RA09003G 10.1103/PhysRevLett.80.1758 10.1002/adma.200900864 10.1016/j.jmmm.2011.05.037 10.1557/mrs2006.99 10.1039/C7RA09841C 10.1016/j.orgel.2019.105421 10.1088/1361-6528/ab3ab0 10.1021/acs.jpcc.1c01398 10.1016/j.jmmm.2021.167902 10.1016/0301-0104(95)00426-O 10.1103/PhysRevLett.26.192 10.1016/j.orgel.2018.10.030 10.1038/nnano.2014.326 10.1021/ja058626i 10.1038/nnano.2007.64 10.1021/ja065789d 10.1088/0022-3727/40/10/S01 10.1021/ja0757632 10.1038/s41467-017-02780-x 10.1103/PhysRevLett.96.206801 10.1038/nnano.2008.406 10.1146/annurev.physchem.57.032905.104709 10.1093/oso/9780198517962.001.0001 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C NPM AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PIMPY PQEST PQQKQ PQUKI PRINS Q9U 7X8 OTOTI 5PM DOA |
DOI | 10.1038/s41598-022-09321-7 |
DatabaseName | SpringerOpen PubMed CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Science Journals Biological Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) Open Access: DOAJ - Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Open Access: DOAJ - Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_3345b99700d34b97b033fca2482a1198 1861467 10_1038_s41598_022_09321_7 35388032 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Science Foundation grantid: 1914751 funderid: http://dx.doi.org/10.13039/100000001 – fundername: National Nuclear Security Administration grantid: DE-FOA-0003945 funderid: http://dx.doi.org/10.13039/100006168 – fundername: National Science Foundation grantid: 1914751 – fundername: National Nuclear Security Administration grantid: DE-FOA-0003945 – fundername: ; grantid: 1914751 – fundername: ; grantid: DE-FOA-0003945 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ADBBV ADRAZ AENEX AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RIG RNT RNTTT RPM SNYQT UKHRP NPM AAYXX AFPKN CITATION 7XB 8FK K9. PQEST PQUKI PRINS Q9U 7X8 OTOTI U1R 5PM |
ID | FETCH-LOGICAL-c567t-1187604c68c64d9e9efe10c809bf07e28707b79d5280eb468223d64efe43839a3 |
IEDL.DBID | RPM |
ISSN | 2045-2322 |
IngestDate | Tue Oct 22 14:51:29 EDT 2024 Tue Sep 17 21:26:32 EDT 2024 Fri May 19 00:34:08 EDT 2023 Sat Oct 26 04:12:51 EDT 2024 Thu Oct 10 22:56:14 EDT 2024 Fri Aug 23 02:47:20 EDT 2024 Tue Oct 29 09:28:45 EDT 2024 Fri Oct 11 20:45:12 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c567t-1187604c68c64d9e9efe10c809bf07e28707b79d5280eb468223d64efe43839a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 FOA-0003945 USDOE National Nuclear Security Administration (NNSA) |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8986785/ |
PMID | 35388032 |
PQID | 2647482698 |
PQPubID | 2041939 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3345b99700d34b97b033fca2482a1198 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8986785 osti_scitechconnect_1861467 proquest_miscellaneous_2648065069 proquest_journals_2647482698 crossref_primary_10_1038_s41598_022_09321_7 pubmed_primary_35388032 springer_journals_10_1038_s41598_022_09321_7 |
PublicationCentury | 2000 |
PublicationDate | 2022-04-06 |
PublicationDateYYYYMMDD | 2022-04-06 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United Kingdom |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Tyagi, Friebe (CR16) 2018; 453 Rojas-Dotti, Martínez-Lillo (CR42) 2017; 7 Rocha, García-suárez, Bailey, Lambert, Ferrer, Sanvito (CR1) 2005; 4 Tedrow, Meservey (CR32) 1971; 26 Li, Clérac, Roubeau, Harté, Mathonière, Le Bris (CR43) 2008; 130 Heersche, de Groot, Folk, van der Zant, Romeike, Wegewijs (CR3) 2006; 96 Shi, Ralph (CR7) 2007; 2 Selzer, Allara (CR45) 2006; 57 Bodnar, Šmejkal, Turek, Jungwirth, Gomonay, Sinova (CR8) 2018; 9 Parkin (CR11) 2006; 31 Coey (CR41) 2010 Uzma, Yang, He, Wang, Hu, Ye (CR19) 2021; 125 de Lima Alves, Amorim, Torres, Bezerra, de Medeiros, Gastelois (CR48) 2017; 7 Tyagi, Riso (CR6) 2019; 75 Vansteenkiste, Van de Wiele (CR46) 2011; 323 O’handley (CR49) 1999 Khvalkovskiy, Apalkov, Watts, Chepulskii, Beach, Ong (CR50) 2013; 46 Grizzle, D'Angelo, Martínez-Lillo, Tyagi (CR34) 2021; 11 Tyagi, Friebe, Baker (CR22) 2015; 17 Moodera, Nassar, Mathon (CR33) 1999; 29 Newman, Barkema (CR40) 1999 Pramanik, Stefanita, Patibandla, Bandyopadhyay, Garre, Harth (CR10) 2007; 2 Tyagi, Riso, Amir, Rojas-Dotti, Martínez-Lillo (CR29) 2020; 10 Coronado, Epsetin (CR5) 2009; 19 Li, Hu, Zhu (CR21) 2010; 22 Stamps, Breitkreutz, Åkerman, Chumak, Otani, Bauer (CR12) 2014; 47 Maruyama, Shiota, Nozaki, Ohta, Toda, Mizuguchi (CR38) 2009; 4 Tyagi, Brown, Grizzle, D’Angelo, Dahal (CR37) 2021; 11 Simmons (CR44) 1963; 34 Affronte, Troiani, Ghirri, Candini, Evangelisti, Corradini (CR4) 2007; 40 Savadkoohi, Dahal, Grizzle, D’Angelo, Tyagi (CR35) 2021; 529 Tyagi, Riso, Friebe (CR9) 2019; 64 Tyagi, Li, Holmes, Hinds (CR31) 2007; 129 Maciel, Marques, Naviner, Zhou, Cai (CR18) 2020; 20 Li, Parkin, Wang, Yee, Clerac, Wernsdorfer (CR30) 2006; 128 Savadkoohi, Dahal, Grizzle, D’Angelo, Tyagi (CR47) 2021; 529 Petrov, Tolokh, May (CR15) 1998; 108 Savadkoohi, D'Angelo, Grizzle, Dahal, Tyagi (CR36) 2022; 102 Voss, Herr, Fonin, Rudiger, Burgert, Groth (CR28) 2008; 103 Petrov, Tolokh, Demidenko, Gorbach (CR14) 1995; 193 Tyagi, Baker, D’Angelo (CR24) 2015; 26 Takahashi, Maekawa (CR17) 1998; 80 Pasupathy, Bialczak, Martinek, Grose, Donev, McEuen (CR20) 2004; 306 Baberschke (CR27) 2008; 88 Billas, Chatelain, de Heer (CR39) 1994; 265 Petta, Slater, Ralph (CR13) 2004; 93 Sanvito (CR23) 2011; 40 Warner, El Hallak, Pruser, Sharp, Persson, Fisher (CR26) 2015; 10 Tyagi (CR2) 2011; 21 Tyagi, Riso (CR25) 2019; 30 Y Selzer (9321_CR45) 2006; 57 JG Simmons (9321_CR44) 1963; 34 JS Moodera (9321_CR33) 1999; 29 P Tyagi (9321_CR29) 2020; 10 JR Petta (9321_CR13) 2004; 93 S Sanvito (9321_CR23) 2011; 40 P Tyagi (9321_CR2) 2011; 21 P Tyagi (9321_CR25) 2019; 30 F Uzma (9321_CR19) 2021; 125 RC O’handley (9321_CR49) 1999 A Grizzle (9321_CR34) 2021; 11 AR Rocha (9321_CR1) 2005; 4 S Parkin (9321_CR11) 2006; 31 RL Stamps (9321_CR12) 2014; 47 JM Coey (9321_CR41) 2010 AV Khvalkovskiy (9321_CR50) 2013; 46 S Pramanik (9321_CR10) 2007; 2 P Tyagi (9321_CR22) 2015; 17 IM Billas (9321_CR39) 1994; 265 T Li (9321_CR21) 2010; 22 P Tyagi (9321_CR9) 2019; 64 EG Petrov (9321_CR14) 1995; 193 K Baberschke (9321_CR27) 2008; 88 D Li (9321_CR43) 2008; 130 EG Petrov (9321_CR15) 1998; 108 HB Heersche (9321_CR3) 2006; 96 AN Pasupathy (9321_CR20) 2004; 306 PM Tedrow (9321_CR32) 1971; 26 DF Li (9321_CR30) 2006; 128 M Affronte (9321_CR4) 2007; 40 M Savadkoohi (9321_CR47) 2021; 529 P Tyagi (9321_CR24) 2015; 26 SY Bodnar (9321_CR8) 2018; 9 SF Shi (9321_CR7) 2007; 2 E Coronado (9321_CR5) 2009; 19 N Maciel (9321_CR18) 2020; 20 T Maruyama (9321_CR38) 2009; 4 TM de Lima Alves (9321_CR48) 2017; 7 ME Newman (9321_CR40) 1999 A Vansteenkiste (9321_CR46) 2011; 323 S Takahashi (9321_CR17) 1998; 80 S Voss (9321_CR28) 2008; 103 P Tyagi (9321_CR31) 2007; 129 P Tyagi (9321_CR16) 2018; 453 M Savadkoohi (9321_CR35) 2021; 529 M Savadkoohi (9321_CR36) 2022; 102 P Tyagi (9321_CR6) 2019; 75 P Tyagi (9321_CR37) 2021; 11 B Warner (9321_CR26) 2015; 10 C Rojas-Dotti (9321_CR42) 2017; 7 |
References_xml | – volume: 2 start-page: 522 year: 2007 end-page: 522 ident: CR7 article-title: Atomic motion in ferromagnetic break junctions publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.251a contributor: fullname: Ralph – volume: 29 start-page: 381 year: 1999 end-page: 432 ident: CR33 article-title: Spin-tunneling in ferromagnetic junctions publication-title: Ann. Rev. Mater. Sci. doi: 10.1146/annurev.matsci.29.1.381 contributor: fullname: Mathon – volume: 4 start-page: 335 year: 2005 end-page: 339 ident: CR1 article-title: Towards molecular spintronics publication-title: Nat. Mater. doi: 10.1038/nmat1349 contributor: fullname: Sanvito – volume: 20 start-page: 121 year: 2020 ident: CR18 article-title: Magnetic tunnel junction applications publication-title: Sensors doi: 10.3390/s20010121 contributor: fullname: Cai – volume: 47 start-page: 333001 year: 2014 ident: CR12 article-title: The 2014 magnetism roadmap publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/47/33/333001 contributor: fullname: Bauer – year: 1999 ident: CR49 publication-title: Modern Magnetic Materials: Principles and Applications contributor: fullname: O’handley – volume: 103 start-page: 07B901 year: 2008 ident: CR28 article-title: Identification of linker molecules suited for deposition and study of Mn-12 single molecule magnets on Au surfaces publication-title: J. Appl. Phys. doi: 10.1063/1.2828536 contributor: fullname: Groth – volume: 7 start-page: 22187 year: 2017 end-page: 22196 ident: CR48 article-title: Wasp-waisted behavior in magnetic hysteresis curves of CoFe 2 O 4 nanopowder at a low temperature: Experimental evidence and theoretical approach publication-title: RSC Adv. doi: 10.1039/C6RA28727A contributor: fullname: Gastelois – volume: 306 start-page: 86 year: 2004 end-page: 89 ident: CR20 article-title: The Kondo effect in the presence of ferromagnetism publication-title: Science doi: 10.1126/science.1102068 contributor: fullname: McEuen – volume: 21 start-page: 4733 year: 2011 end-page: 4742 ident: CR2 article-title: Multilayer edge molecular electronics devices: A review publication-title: J. Mater. Chem. doi: 10.1039/c0jm03291c contributor: fullname: Tyagi – volume: 93 start-page: 136601 year: 2004 ident: CR13 article-title: Spin-dependent transport in molecular tunnel junctions publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.136601 contributor: fullname: Ralph – volume: 453 start-page: 186 year: 2018 end-page: 192 ident: CR16 article-title: Large resistance change on magnetic tunnel junction based molecular spintronics devices publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2018.01.024 contributor: fullname: Friebe – volume: 19 start-page: 1670 year: 2009 end-page: 1671 ident: CR5 article-title: Molecular spintronics and quantum computing publication-title: J. Mater. Chem. doi: 10.1039/b901955n contributor: fullname: Epsetin – volume: 26 start-page: 305602 year: 2015 ident: CR24 article-title: Paramagnetic molecule induced strong antiferromagnetic exchange coupling on a magnetic tunnel junction based molecular spintronics device publication-title: Nanotechnology doi: 10.1088/0957-4484/26/30/305602 contributor: fullname: D’Angelo – volume: 88 start-page: 2643 year: 2008 end-page: 2654 ident: CR27 article-title: Magnetic anisotropy energy and interlayer exchange coupling in ultrathin ferromagnets: Experiment versus theory publication-title: Philos. Mag. doi: 10.1080/14786430802279778 contributor: fullname: Baberschke – volume: 102 start-page: 106429 year: 2022 ident: CR36 article-title: Impact of ferromagnetic electrode length and thickness on magnetic tunnel junction-based molecular spintronic devices (MTJMSD) publication-title: Org. Electron. doi: 10.1016/j.orgel.2022.106429 contributor: fullname: Tyagi – volume: 46 start-page: 074001 year: 2013 ident: CR50 article-title: Basic principles of STT-MRAM cell operation in memory arrays publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/46/7/074001 contributor: fullname: Ong – volume: 11 start-page: 32275 year: 2021 end-page: 32285 ident: CR34 article-title: Spin state of a single-molecule magnet (SMM) creating long-range ordering on ferromagnetic layers of a magnetic tunnel junction—A Monte Carlo study publication-title: RSC Adv. doi: 10.1039/D1RA05473B contributor: fullname: Tyagi – volume: 40 start-page: 3336 year: 2011 end-page: 3355 ident: CR23 article-title: Molecular spintronics publication-title: Chem. Soc. Rev. doi: 10.1039/c1cs15047b contributor: fullname: Sanvito – year: 2010 ident: CR41 publication-title: Magnetism and Magnetic Materials contributor: fullname: Coey – volume: 108 start-page: 4386 year: 1998 end-page: 4396 ident: CR15 article-title: Magnetic field control of an electron tunnel current through a molecular wire publication-title: J. Chem. Phys. doi: 10.1063/1.475851 contributor: fullname: May – volume: 17 start-page: 452 year: 2015 ident: CR22 article-title: Addressing the challenges of using ferromagnetic electrodes in the magnetic tunnel junction-based molecular spintronics devices publication-title: J. Nanopart. Res. doi: 10.1007/s11051-015-3261-5 contributor: fullname: Baker – volume: 11 start-page: 1 year: 2021 end-page: 13 ident: CR37 article-title: Molecular coupling competing with defects within insulator of the magnetic tunnel junction-based molecular spintronics devices publication-title: Sci. Rep. doi: 10.1038/s41598-021-96477-3 contributor: fullname: Dahal – volume: 265 start-page: 1682 year: 1994 end-page: 1684 ident: CR39 article-title: Magnetism from the atom to the bulk in iron, cobalt, and nickel clusters publication-title: Science doi: 10.1126/science.265.5179.1682 contributor: fullname: de Heer – volume: 34 start-page: 1793 year: 1963 ident: CR44 article-title: Generalized formula for electric tunnel effect between similar electrodes separated by a thin insulating film publication-title: J. Appl. Phys. doi: 10.1063/1.1702682 contributor: fullname: Simmons – volume: 10 start-page: 13006 year: 2020 end-page: 13015 ident: CR29 article-title: Exploring room-temperature transport of single-molecule magnet-based molecular spintronics devices using the magnetic tunnel junction as a device platform publication-title: RSC Adv. doi: 10.1039/C9RA09003G contributor: fullname: Martínez-Lillo – volume: 80 start-page: 1758 year: 1998 end-page: 1761 ident: CR17 article-title: Effect of Coulomb blockade on magnetoresistance in ferromagnetic tunnel junctions publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.1758 contributor: fullname: Maekawa – volume: 22 start-page: 286 year: 2010 end-page: 300 ident: CR21 article-title: Nanogap electrodes publication-title: Adv. Mater. doi: 10.1002/adma.200900864 contributor: fullname: Zhu – volume: 323 start-page: 2585 year: 2011 end-page: 2591 ident: CR46 article-title: MuMax: A new high-performance micromagnetic simulation tool publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2011.05.037 contributor: fullname: Van de Wiele – volume: 31 start-page: 389 year: 2006 end-page: 394 ident: CR11 article-title: Spin-polarized current in spin valves and magnetic tunnel junctions publication-title: MRS Bull. doi: 10.1557/mrs2006.99 contributor: fullname: Parkin – volume: 7 start-page: 48841 year: 2017 end-page: 48847 ident: CR42 article-title: Thioester-functionalised and oxime-based hexametallic manganese (III) single-molecule magnets publication-title: RSC Adv. doi: 10.1039/C7RA09841C contributor: fullname: Martínez-Lillo – volume: 75 start-page: 105421 year: 2019 ident: CR6 article-title: Magnetic force microscopy revealing long range molecule impact on magnetic tunnel junction based molecular spintronics devices publication-title: Org. Electron. doi: 10.1016/j.orgel.2019.105421 contributor: fullname: Riso – year: 1999 ident: CR40 publication-title: Monte Carlo Methods in Statistical Physics contributor: fullname: Barkema – volume: 30 start-page: 495401 year: 2019 ident: CR25 article-title: Molecular spintronics devices exhibiting properties of a solar cell publication-title: Nanotechnology doi: 10.1088/1361-6528/ab3ab0 contributor: fullname: Riso – volume: 125 start-page: 6990 year: 2021 ident: CR19 article-title: Understanding the sub-meV precision-tuning of magnetic anisotropy of single-molecule junction publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c01398 contributor: fullname: Ye – volume: 529 start-page: 167902 year: 2021 ident: CR47 article-title: Interaction between magnetic molecules and two ferromagnetic electrodes of a magnetic tunnel junction publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2021.167902 contributor: fullname: Tyagi – volume: 193 start-page: 237 year: 1995 end-page: 253 ident: CR14 article-title: Electron-transfer properties of quantum molecular wires publication-title: Chem. Phys. doi: 10.1016/0301-0104(95)00426-O contributor: fullname: Gorbach – volume: 529 start-page: 167902 year: 2021 ident: CR35 article-title: Interaction between magnetic molecules and two ferromagnetic electrodes of a magnetic tunnel junction (MTJ) publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2021.167902 contributor: fullname: Tyagi – volume: 26 start-page: 192 year: 1971 ident: CR32 article-title: Spin-dependent tunneling into ferromagnetic nickel publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.26.192 contributor: fullname: Meservey – volume: 64 start-page: 188 year: 2019 end-page: 194 ident: CR9 article-title: Magnetic tunnel junction based molecular spintronics devices exhibiting current suppression at room temperature publication-title: Org. Electron. doi: 10.1016/j.orgel.2018.10.030 contributor: fullname: Friebe – volume: 10 start-page: 259 year: 2015 end-page: 263 ident: CR26 article-title: Tunable magnetoresistance in an asymmetrically coupled single-molecule junction publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.326 contributor: fullname: Fisher – volume: 128 start-page: 4214 year: 2006 end-page: 4215 ident: CR30 article-title: An S=6 cyanide-bridged octanuclear (Fe4Ni4II)-Ni-III complex that exhibits slow relaxation of the magnetization publication-title: J. Am. Chem. Soc. doi: 10.1021/ja058626i contributor: fullname: Wernsdorfer – volume: 2 start-page: 216 year: 2007 end-page: 219 ident: CR10 article-title: Observation of extremely long spin relaxation times in an organic nanowire spin valve publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.64 contributor: fullname: Harth – volume: 129 start-page: 4929 year: 2007 end-page: 4938 ident: CR31 article-title: Molecular electrodes at the exposed edge of metal/insulator/metal trilayer structures publication-title: J. Am. Chem. Soc. doi: 10.1021/ja065789d contributor: fullname: Hinds – volume: 40 start-page: 2999 year: 2007 end-page: 3004 ident: CR4 article-title: Single molecule magnets for quantum computation publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/40/10/S01 contributor: fullname: Corradini – volume: 130 start-page: 252 year: 2008 end-page: 258 ident: CR43 article-title: Magnetic and optical bistability driven by thermally and photoinduced intramolecular electron transfer in a molecular cobalt-iron prussian blue analogue publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0757632 contributor: fullname: Le Bris – volume: 9 start-page: 1 year: 2018 end-page: 7 ident: CR8 article-title: Writing and reading antiferromagnetic Mn 2 Au by Néel spin-orbit torques and large anisotropic magnetoresistance publication-title: Nat. Commun. doi: 10.1038/s41467-017-02780-x contributor: fullname: Sinova – volume: 96 start-page: 206801 year: 2006 ident: CR3 article-title: Electron transport through single Mn-12 molecular magnets publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.206801 contributor: fullname: Wegewijs – volume: 4 start-page: 158 year: 2009 end-page: 161 ident: CR38 article-title: Large voltage-induced magnetic anisotropy change in a few atomic layers of iron publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.406 contributor: fullname: Mizuguchi – volume: 57 start-page: 593 year: 2006 end-page: 623 ident: CR45 article-title: Single-molecule electrical junctions publication-title: Ann. Rev. Phys. Chem. doi: 10.1146/annurev.physchem.57.032905.104709 contributor: fullname: Allara – volume: 26 start-page: 305602 year: 2015 ident: 9321_CR24 publication-title: Nanotechnology doi: 10.1088/0957-4484/26/30/305602 contributor: fullname: P Tyagi – volume: 9 start-page: 1 year: 2018 ident: 9321_CR8 publication-title: Nat. Commun. doi: 10.1038/s41467-017-02780-x contributor: fullname: SY Bodnar – volume: 108 start-page: 4386 year: 1998 ident: 9321_CR15 publication-title: J. Chem. Phys. doi: 10.1063/1.475851 contributor: fullname: EG Petrov – volume: 103 start-page: 07B901 year: 2008 ident: 9321_CR28 publication-title: J. Appl. Phys. doi: 10.1063/1.2828536 contributor: fullname: S Voss – volume: 129 start-page: 4929 year: 2007 ident: 9321_CR31 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja065789d contributor: fullname: P Tyagi – volume: 34 start-page: 1793 year: 1963 ident: 9321_CR44 publication-title: J. Appl. Phys. doi: 10.1063/1.1702682 contributor: fullname: JG Simmons – volume: 93 start-page: 136601 year: 2004 ident: 9321_CR13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.136601 contributor: fullname: JR Petta – volume: 21 start-page: 4733 year: 2011 ident: 9321_CR2 publication-title: J. Mater. Chem. doi: 10.1039/c0jm03291c contributor: fullname: P Tyagi – volume: 88 start-page: 2643 year: 2008 ident: 9321_CR27 publication-title: Philos. Mag. doi: 10.1080/14786430802279778 contributor: fullname: K Baberschke – volume: 96 start-page: 206801 year: 2006 ident: 9321_CR3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.206801 contributor: fullname: HB Heersche – volume-title: Magnetism and Magnetic Materials year: 2010 ident: 9321_CR41 contributor: fullname: JM Coey – volume: 11 start-page: 32275 year: 2021 ident: 9321_CR34 publication-title: RSC Adv. doi: 10.1039/D1RA05473B contributor: fullname: A Grizzle – volume: 2 start-page: 522 year: 2007 ident: 9321_CR7 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.251a contributor: fullname: SF Shi – volume: 17 start-page: 452 year: 2015 ident: 9321_CR22 publication-title: J. Nanopart. Res. doi: 10.1007/s11051-015-3261-5 contributor: fullname: P Tyagi – volume: 10 start-page: 13006 year: 2020 ident: 9321_CR29 publication-title: RSC Adv. doi: 10.1039/C9RA09003G contributor: fullname: P Tyagi – volume: 26 start-page: 192 year: 1971 ident: 9321_CR32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.26.192 contributor: fullname: PM Tedrow – volume: 193 start-page: 237 year: 1995 ident: 9321_CR14 publication-title: Chem. Phys. doi: 10.1016/0301-0104(95)00426-O contributor: fullname: EG Petrov – volume: 75 start-page: 105421 year: 2019 ident: 9321_CR6 publication-title: Org. Electron. doi: 10.1016/j.orgel.2019.105421 contributor: fullname: P Tyagi – volume: 7 start-page: 48841 year: 2017 ident: 9321_CR42 publication-title: RSC Adv. doi: 10.1039/C7RA09841C contributor: fullname: C Rojas-Dotti – volume: 29 start-page: 381 year: 1999 ident: 9321_CR33 publication-title: Ann. Rev. Mater. Sci. doi: 10.1146/annurev.matsci.29.1.381 contributor: fullname: JS Moodera – volume: 102 start-page: 106429 year: 2022 ident: 9321_CR36 publication-title: Org. Electron. doi: 10.1016/j.orgel.2022.106429 contributor: fullname: M Savadkoohi – volume: 10 start-page: 259 year: 2015 ident: 9321_CR26 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.326 contributor: fullname: B Warner – volume: 128 start-page: 4214 year: 2006 ident: 9321_CR30 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja058626i contributor: fullname: DF Li – volume: 57 start-page: 593 year: 2006 ident: 9321_CR45 publication-title: Ann. Rev. Phys. Chem. doi: 10.1146/annurev.physchem.57.032905.104709 contributor: fullname: Y Selzer – volume: 529 start-page: 167902 year: 2021 ident: 9321_CR47 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2021.167902 contributor: fullname: M Savadkoohi – volume: 529 start-page: 167902 year: 2021 ident: 9321_CR35 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2021.167902 contributor: fullname: M Savadkoohi – volume: 80 start-page: 1758 year: 1998 ident: 9321_CR17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.1758 contributor: fullname: S Takahashi – volume: 20 start-page: 121 year: 2020 ident: 9321_CR18 publication-title: Sensors doi: 10.3390/s20010121 contributor: fullname: N Maciel – volume: 130 start-page: 252 year: 2008 ident: 9321_CR43 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0757632 contributor: fullname: D Li – volume: 2 start-page: 216 year: 2007 ident: 9321_CR10 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.64 contributor: fullname: S Pramanik – volume: 30 start-page: 495401 year: 2019 ident: 9321_CR25 publication-title: Nanotechnology doi: 10.1088/1361-6528/ab3ab0 contributor: fullname: P Tyagi – volume: 4 start-page: 158 year: 2009 ident: 9321_CR38 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.406 contributor: fullname: T Maruyama – volume: 265 start-page: 1682 year: 1994 ident: 9321_CR39 publication-title: Science doi: 10.1126/science.265.5179.1682 contributor: fullname: IM Billas – volume: 19 start-page: 1670 year: 2009 ident: 9321_CR5 publication-title: J. Mater. Chem. doi: 10.1039/b901955n contributor: fullname: E Coronado – volume: 31 start-page: 389 year: 2006 ident: 9321_CR11 publication-title: MRS Bull. doi: 10.1557/mrs2006.99 contributor: fullname: S Parkin – volume: 40 start-page: 2999 year: 2007 ident: 9321_CR4 publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/40/10/S01 contributor: fullname: M Affronte – volume-title: Modern Magnetic Materials: Principles and Applications year: 1999 ident: 9321_CR49 contributor: fullname: RC O’handley – volume: 125 start-page: 6990 year: 2021 ident: 9321_CR19 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c01398 contributor: fullname: F Uzma – volume: 7 start-page: 22187 year: 2017 ident: 9321_CR48 publication-title: RSC Adv. doi: 10.1039/C6RA28727A contributor: fullname: TM de Lima Alves – volume: 47 start-page: 333001 year: 2014 ident: 9321_CR12 publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/47/33/333001 contributor: fullname: RL Stamps – volume: 306 start-page: 86 year: 2004 ident: 9321_CR20 publication-title: Science doi: 10.1126/science.1102068 contributor: fullname: AN Pasupathy – volume: 323 start-page: 2585 year: 2011 ident: 9321_CR46 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2011.05.037 contributor: fullname: A Vansteenkiste – volume: 22 start-page: 286 year: 2010 ident: 9321_CR21 publication-title: Adv. Mater. doi: 10.1002/adma.200900864 contributor: fullname: T Li – volume-title: Monte Carlo Methods in Statistical Physics year: 1999 ident: 9321_CR40 doi: 10.1093/oso/9780198517962.001.0001 contributor: fullname: ME Newman – volume: 4 start-page: 335 year: 2005 ident: 9321_CR1 publication-title: Nat. Mater. doi: 10.1038/nmat1349 contributor: fullname: AR Rocha – volume: 40 start-page: 3336 year: 2011 ident: 9321_CR23 publication-title: Chem. Soc. Rev. doi: 10.1039/c1cs15047b contributor: fullname: S Sanvito – volume: 11 start-page: 1 year: 2021 ident: 9321_CR37 publication-title: Sci. Rep. doi: 10.1038/s41598-021-96477-3 contributor: fullname: P Tyagi – volume: 64 start-page: 188 year: 2019 ident: 9321_CR9 publication-title: Org. Electron. doi: 10.1016/j.orgel.2018.10.030 contributor: fullname: P Tyagi – volume: 46 start-page: 074001 year: 2013 ident: 9321_CR50 publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/46/7/074001 contributor: fullname: AV Khvalkovskiy – volume: 453 start-page: 186 year: 2018 ident: 9321_CR16 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2018.01.024 contributor: fullname: P Tyagi |
SSID | ssj0000529419 |
Score | 2.4222639 |
Snippet | Magnetic tunnel junction-based molecular spintronics device (MTJMSD) may enable novel magnetic metamaterials by chemically bonding magnetic molecules and... Abstract Magnetic tunnel junction-based molecular spintronics device (MTJMSD) may enable novel magnetic metamaterials by chemically bonding magnetic molecules... Abstract Magnetic tunnel junction-based molecular spintronics device (MTJMSD) may enable novel magnetic metamaterials by chemically bonding magnetic molecules... |
SourceID | doaj pubmedcentral osti proquest crossref pubmed springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 5721 |
SubjectTerms | 639/301 639/766 639/925 Anisotropy Electrodes Humanities and Social Sciences Monte Carlo simulation multidisciplinary Nanotechnology Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: Open Access: DOAJ - Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9F03aVGhh5bWRLZkPY59JITA9tIEchOSLacbiL3EXuj23B_eGcm7yfZBLz0ZZAlLmhnNjGf0DSGvmNeNDszldWVkLrjyuW5KnxfKc1nVoDIa_DUw-yyPTsXxWXV2o9QX5oQleOC0cfuci8oboxhruPBGecZ5W7tS6NIV4DHH05eZG85UQvUujSjMdEuGcb0_wGfxNhn4XuDEl0WutjRRBOyHRw-C9Sdj8_ecyV8Cp1EfHd4jdydDkr5PC7hPboXuAbmdSkuuHpIfB25YUfdtPlDXzYd-vOoXK5pMxO6cIkoxjWnqbhjppTvv8DIj_Y7I_bTvrlvGJSbC0AtQf5FDKaq9hl6uq-rSYTHvUh2dgTYhnjv09ezkePbl05tH5PTw4OTjUT5VXABSSTXmWHtcMlFLXUvRmGBCGwpWa2Z8y1TAoKjyyjRVqVnwQoJ1wRspoBcinhrHH5OdDmb6lFDvW3Q9XahMhZiHrtGF8IXU0rXMmzIjb9e7bxcJWMPGgDjXNtHKAq1spJVVGfmABNr0RFDs2ACsYidWsf9ilYzsInkt2BYIkFtjJlE92kJLVBcZ2VtT3U5yPFgwFxUMlzj45eY1SCCGVVwX-mXsg9FpJk1GniQm2cyTVwi2w2G1aot9thay_aabf40o39poMCSqjLxbM9r1tP6-Uc_-x0btkjtlFBSRM7lHdsarZXgOttfoX0Qx-wlDaSi8 priority: 102 providerName: Directory of Open Access Journals – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA-6h-CL-G29UyL4oGi5tEnz8SSe7nEc7CF6B_cWkibdW-HaddsF12f_cDNpd5f166mQBJpkZjKTmclvEHpJrHTSE5OWheIpo8Km0uU2zYSlvCiDynDgGpic8ZMLdnpZXA4Ot3ZIq1yfifGgdk0JPvLDoLgFC7awku_m31KoGgXR1aGExk20l4ebQj5Ce0fjs0-fN14WiGOxTA2vZQiVh234PbwqC3ewcJnPs1TsaKQI3B8-TRCwvxmdf-ZO_hZAjXrp-C66MxiU-H3PAffQDV_fR7f6EpOrB-jn2LQrbL7PWmzqWdt0i2a-wr2pWE8xoBXjmK5u2g5fm2kNjxrxD0Dwx029bemWkBCDvwY1GDkVg_pz-HpdXRe381nd19NpsfPx_MGvJuenky8fXz9EF8fj8w8n6VB5IZCMiy6FGuScsJLLkjOnvPKVz0gpibIVER6Co8IK5YpcEm8ZD1YGdZyFUYB8qgx9hEZ1mOkThK2t4ApqfKEKwD40TmbMZlxyUxGr8gS9We--nvcAGzoGxqnUPa10oJWOtNIiQUdAoM1IAMeODc1iqgdZ05SywiolCHGUWSUsobQqTR7Yx2SZkgnaB_LqYGMAUG4JGUVlpzPJQW0k6GBNdT3Ic6u33JegF5vuIIkQXjG1b5ZxDESpCVcJetwzyWaetADQHRpWK3bYZ2chuz317CqifUslg0FRJOjtmtG20_r3Rj39_yr20e08igBLCT9Ao26x9M-CddXZ54MI_QKmKCMk priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKERKXijehBRmJAwhCndjx44AQj1ZVpeVCV-rNsmPvsogm201W6nLmh-Nxkq0WFk6REjuyPTOZz5nxNwi9IFY66YlJy0LxlFFhU-lym2bCUl6UwWU4-DUw-sJPxuz0vDjfQUO5o34Bm61bO6gnNV78eHt1uXofDP5dd2RcHjbhjXBQLGyrwv48z1JxA93MgZgLUvl6uN9xfeeKZao_O7O964Z_ijT-4VIHc9sGQf_OpPwjnBq91PEdtNfDS_yh04e7aMdX99CtruDk6j76dWSaFTZXswabatbU7aKer3AHHKspBu5iHJPXTdPiCzOt4Igj_gl8_riuru-0S0iPwd-DU4x6i8EZOnwx1NrFzXxWddV1Gux8_Brhl6Oz09HXz68eoPHx0dmnk7SvwxAEyEWbQkVyTljJZcmZU175ic9IKYmyEyI8hEqFFcoVuSTeMh4wB3WchVbAg6oMfYh2qzDSxwhbO4ENqfGFKoAJ0TiZMZtxyc2EWJUn6PWw-nre0W3oGCanUney0kFWOspKiwR9BAGtWwJVdrxRL6a6tzxNKSusUoIQR5lVwhJKJ6XJmcxNlimZoH0Qrw6IA2hzS8gvKludSQ5OJEEHg9T1oJw6gEgRunPo_Hz9ONglBFtM5etlbAMxa8JVgh51SrIeJy2AgoeG2YoN9dmYyOaTavYtcn9LJQO8KBL0ZlC062H9e6Ge_H8W--h2Hk2ApYQfoN12sfRPA9Zq7bNoQL8B7KIk6Q priority: 102 providerName: Scholars Portal – databaseName: SpringerOpen dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagCIkL4k3agozEAQQRTuz4cYSlVVVpudBKvVl24rSL1GTVZCW2Z344M052q0A5cIpkjyXbM5MZe8bfEPKWeV3pwFxaFkamgiuf6ir3aaY8l0UJJqPCq4H5N3l0Ko7PirMRJgffwkzi91x_6oAaH4HBkQnO3nmWqrvkHtpgLNMwk7PtfQpGrERmxncxtw-d2J4I0Q-fFlTpNvfy7yzJP0Kl0QIdPiIPR9eRfh54_ZjcCc0Tcn8oJrl-Sn4duG5N3c9FR12z6Nr-ql2u6eAUNucUcYlpTEx3XU8v3XmDzxfpNWL107a5aelXmPpCf4DBizJJ0dBV9HJTR5d2y0UzVM7paBXin4a-m58cz79_ff-MnB4enMyO0rHGAjBHqj7FauOSiVLqUorKBBPqkLFSM-NrpgKGQZVXpipyzYIXEvwJXkkBVIhxahx_TnYamOlLQr2v8bDpQmEKRDl0lc6Ez6SWrmbe5An5sNl9uxygNGwMgXNtB15Z4JWNvLIqIV-QQVtKhMGODSAddtQqy7kovDGKsYoLb5RnnNely4XOXZYZnZA9ZK8FbwIhcUvMHSp7m2mJBiIh-xuu21FzOwsOooLhEge_2XaDzmEgxTWhXUUajEczaRLyYhCS7Tx5gfA6HFarJuIzWci0p1lcRFxvbTS4DkVCPm4E7WZa_96o3f8j3yMP8qgSImVyn-z0V6vwCvyq3r-OCvUbWNoakQ priority: 102 providerName: Springer Nature |
Title | Easy axis anisotropy creating high contrast magnetic zones on magnetic tunnel junctions based molecular spintronics devices (MTJMSD) |
URI | https://link.springer.com/article/10.1038/s41598-022-09321-7 https://www.ncbi.nlm.nih.gov/pubmed/35388032 https://www.proquest.com/docview/2647482698 https://www.proquest.com/docview/2648065069 https://www.osti.gov/biblio/1861467 https://pubmed.ncbi.nlm.nih.gov/PMC8986785 https://doaj.org/article/3345b99700d34b97b033fca2482a1198 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2ISReEN-EjcpIPIAgqxM7_nhkpdM0qdMEm9Q3y85HV0STqkklyjN_OD4n6SgfL7wkSuLITu53uXPu_DuEXhMrM5kTE6aJ4iGjwoYyi20YCUt5kjqTkcGvgckFP7tm59NkuoeSfi2MT9pP7fy4_Lo4Luc3PrdyuUiHfZ7Y8HIykkq6b2wy3Ef7DqC_TNFbQu9YsUh1C2QIlcPa9QgLydy0y83f4yiEyns0ARoUGu_YI0_b73aVU6-_uZx_Zk7-Fj71Vun0AbrfuZP4Qzvsh2gvLx-hu22Byc1j9GNs6g023-Y1NuW8rppVtdzg1lEsZxi4irFPVjd1gxdmVsKSRvwd-PtxVd6eadaQDoO_OCPocYrB-GV40dfWxfVyXrbVdGqc5f7rg99Mrs4nnz--fYKuT8dXo7Owq7vgBMZFE0IFck5YymXKWaZylRd5RFJJlC2IyCE0KqxQWRJLklvGnY9BM85cK-A9VYY-RQelG-lzhK0tYAJq8kQlwHxoMhkxG3HJTUGsigP0rn_7etnSa2gfFqdSt2LTTmzai02LAJ2AgLYtgRrbn6hWM90BRFPKEquUICSjzCphCaVFamImYxNFSgboEMSrnYcBNLkp5BOljY4kB6MRoKNe6rrT5lo7p1G42znc_Gp72ekhBFdMmVdr3wZi1ISrAD1rQbIdZ4-1AIkd-Ow8yO4VB33P9d1BPUDve6DdDuvfL-rFf3d0iO7FXlFYSPgROmhW6_ylc7saO3DKNhUDdOdkfHH5yR2N-Gjgf2G47YTJgVfDnyftL_I |
link.rule.ids | 230,315,730,783,787,867,888,2109,2228,12070,21402,24332,27938,27939,31733,31734,33758,33759,41134,42203,43324,43819,51590,53806,53808,74081,74638 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgEYIL4rmEXcBIHEAQrRM7fpwQj12VZbsXulJvlh27pUiblCaVKGd-OB4nbVVep0i2pdieGc94ZvwNQs-JlU56YtKyUDxlVNhUutymmbCUF2VQGQ5cA8NzPrhgp-Ni3Dvcmj6tcn0mxoPa1SX4yI-C4hYs2MJKvpl_S6FqFERX-xIaV9E1wOEC7HwxFhsfC0SxWKb6tzKEyqMm_BzelIUbWLjK51kqdvRRhO0PnzqI199Mzj8zJ38Ln0atdHIb3erNSfy2o_8ddMVXd9H1rsDk6h76eWyaFTbfZw021ayp20U9X-HOUKymGLCKcUxWN02LL820gieN-Afg9-O62ra0S0iHwV-DEox8ikH5OXy5rq2Lm_ms6qrpNNj5ePrgF8PR6fDzh5f30cXJ8ej9IO3rLgSCcdGmUIGcE1ZyWXLmlFd-4jNSSqLshAgPoVFhhXJFLom3jAcbgzrOwijAPVWGPkB7VZjpQ4StncAF1PhCFYB8aJzMmM245GZCrMoT9Gq9-3rewWvoGBanUne00oFWOtJKiwS9AwJtRgI0dmyoF1PdS5qmlBVWKUGIo8wqYQmlk9LkgXlMlimZoAMgrw4WBsDklpBPVLY6kxyURoIO11TXvTQ3est7CXq26Q5yCMEVU_l6GcdAjJpwlaD9jkk286QFQO7QsFqxwz47C9ntqWZfIta3VDKYE0WCXq8ZbTutf2_Uo_-v4im6MRgNz_TZx_NPB-hmHsWBpYQfor12sfSPg53V2idRmH4BnVgkrw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgEYgL4k3YBYzEAQRRndrx44SA3WpZ6AqJXak3y86jFGmT0qQS5cwPZ8ZJW5XXKZLjg-2Z8Tf2jL8h5BnzOtcFc3GWGhkLrnys86GPE-W5TDOAjByvBsan8vhcnEzSSZ__1PRples9MWzUeZ3hHfkAgFsJ8IWNHpR9WsSnw9Hr-bcYK0hhpLUvp3GZXFECgA50W03U5r4FI1oiMf27Gcb1oIGB4PsyOI3BsX6YxGoHmwKFP3xqMLW_uZ9_ZlH-FkoNCDW6SW70riV90-nCLXKpqG6Tq12xydUd8vPINSvqvs8a6qpZU7eLer6indNYTSnyFtOQuO6all64aYXPG-kP5PKndbVtaZeYGkO_AiAGnaUIhDm9WNfZpc18VnWVdRqaF2Enos_HZyfjz4cv7pLz0dHZu-O4r8EAwpOqjbEauWQikzqTIjeFKcoiYZlmxpdMFRgmVV6ZPB1qVnghwd_guRTQCzlQjeP3yF4FI31AqPclHkZdkZoUWRBdrhPhE6mlK5k3w4i8XK--nXdUGzaEyLm2nawsyMoGWVkVkbcooE1PpMkODfVianurs5yL1BujGMu58EZ5xnmZuSEokksSoyOyj-K14G0gZW6GuUVZaxMtEUAicrCWuu0tu7FbPYzI081vsEkMtLiqqJehD8armTQRud8pyWacPEX6HQ6zVTvqszOR3T_V7Evg_dZGg2uRRuTVWtG2w_r3Qj38_yyekGtgR_bj-9MP--T6MFiDiJk8IHvtYlk8Aper9Y-DLf0Cf4so5A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Easy+axis+anisotropy+creating+high+contrast+magnetic+zones+on+magnetic+tunnel+junctions+based+molecular+spintronics+devices+%28MTJMSD%29&rft.jtitle=Scientific+reports&rft.au=Dahal%2C+Bishnu+R&rft.au=Savadkoohi+Marzieh&rft.au=Grizzle%2C+Andrew&rft.au=D%E2%80%99Angelo+Christopher&rft.date=2022-04-06&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-022-09321-7&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |