Computational homogenization of nonlinear elastic materials using neural networks
Summary In this work, a decoupled computational homogenization method for nonlinear elastic materials is proposed using neural networks. In this method, the effective potential is represented as a response surface parameterized by the macroscopic strains and some microstructural parameters. The disc...
Saved in:
Published in | International journal for numerical methods in engineering Vol. 104; no. 12; pp. 1061 - 1084 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Blackwell Publishing Ltd
21.12.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
In this work, a decoupled computational homogenization method for nonlinear elastic materials is proposed using neural networks. In this method, the effective potential is represented as a response surface parameterized by the macroscopic strains and some microstructural parameters. The discrete values of the effective potential are computed by finite element method through random sampling in the parameter space, and neural networks are used to approximate the surface response and to derive the macroscopic stress and tangent tensor components. We show through several numerical convergence analyses that smooth functions can be efficiently evaluated in parameter spaces with dimension up to 10, allowing to consider three‐dimensional representative volume elements and an explicit dependence of the effective behavior on microstructural parameters like volume fraction. We present several applications of this technique to the homogenization of nonlinear elastic composites, involving a two‐scale example of heterogeneous structure with graded nonlinear properties. Copyright © 2015 John Wiley & Sons, Ltd. |
---|---|
AbstractList | In this work, a decoupled computational homogenization method for nonlinear elastic materials is proposed using neural networks. In this method, the effective potential is represented as a response surface parameterized by the macroscopic strains and some microstructural parameters. The discrete values of the effective potential are computed by finite element method through random sampling in the parameter space, and neural networks are used to approximate the surface response and to derive the macroscopic stress and tangent tensor components. We show through several numerical convergence analyses that smooth functions can be efficiently evaluated in parameter spaces with dimension up to 10, allowing to consider three-dimensional representative volume elements and an explicit dependence of the effective behavior on microstructural parameters like volume fraction. We present several applications of this technique to the homogenization of nonlinear elastic composites, involving a two-scale example of heterogeneous structure with graded nonlinear properties. In this work, a decoupled computational homogenization method for nonlinear elastic materials is proposed using neural networks. In this method, the effective potential is represented as a response surface parameterized by the macroscopic strains and some microstructural parameters. The discrete values of the effective potential are computed by finite element method through random sampling in the parameter space, and neural networks are used to approximate the surface response and to derive the macroscopic stress and tangent tensor components. We show through several numerical convergence analyses that smooth functions can be efficiently evaluated in parameter spaces with dimension up to 10, allowing to consider three‐dimensional representative volume elements and an explicit dependence of the effective behavior on microstructural parameters like volume fraction. We present several applications of this technique to the homogenization of nonlinear elastic composites, involving a two‐scale example of heterogeneous structure with graded nonlinear properties. Copyright © 2015 John Wiley & Sons, Ltd. Summary In this work, a decoupled computational homogenization method for nonlinear elastic materials is proposed using neural networks. In this method, the effective potential is represented as a response surface parameterized by the macroscopic strains and some microstructural parameters. The discrete values of the effective potential are computed by finite element method through random sampling in the parameter space, and neural networks are used to approximate the surface response and to derive the macroscopic stress and tangent tensor components. We show through several numerical convergence analyses that smooth functions can be efficiently evaluated in parameter spaces with dimension up to 10, allowing to consider three-dimensional representative volume elements and an explicit dependence of the effective behavior on microstructural parameters like volume fraction. We present several applications of this technique to the homogenization of nonlinear elastic composites, involving a two-scale example of heterogeneous structure with graded nonlinear properties. Copyright © 2015John Wiley & Sons, Ltd. Summary In this work, a decoupled computational homogenization method for nonlinear elastic materials is proposed using neural networks. In this method, the effective potential is represented as a response surface parameterized by the macroscopic strains and some microstructural parameters. The discrete values of the effective potential are computed by finite element method through random sampling in the parameter space, and neural networks are used to approximate the surface response and to derive the macroscopic stress and tangent tensor components. We show through several numerical convergence analyses that smooth functions can be efficiently evaluated in parameter spaces with dimension up to 10, allowing to consider three‐dimensional representative volume elements and an explicit dependence of the effective behavior on microstructural parameters like volume fraction. We present several applications of this technique to the homogenization of nonlinear elastic composites, involving a two‐scale example of heterogeneous structure with graded nonlinear properties. Copyright © 2015 John Wiley & Sons, Ltd. |
Author | He, Q.-C. Le, B. A. Yvonnet, J. |
Author_xml | – sequence: 1 givenname: B. A. surname: Le fullname: Le, B. A. organization: Laboratoire Modélisation et Simulation Multi Echelle, Université Paris-Est, MSME UMR 8208 CNRS, 5 Bd Descartes77454Marne-la-Vallée Cedex 2, France – sequence: 2 givenname: J. surname: Yvonnet fullname: Yvonnet, J. email: Correspondence to: Julien Yvonnet, Université Paris-Est, 5 Bd Descartes, 77454 Marne-la-Vallée Cedex, France., Julien.yvonnet@univ-paris-est.fr organization: Laboratoire Modélisation et Simulation Multi Echelle, Université Paris-Est, MSME UMR 8208 CNRS, 5 Bd Descartes77454Marne-la-Vallée Cedex 2, France – sequence: 3 givenname: Q.-C. surname: He fullname: He, Q.-C. organization: Laboratoire Modélisation et Simulation Multi Echelle, Université Paris-Est, MSME UMR 8208 CNRS, 5 Bd Descartes77454Marne-la-Vallée Cedex 2, France |
BookMark | eNqF0d1rFDEQAPAgFbxWwT9hwRdf9kw2X5tHOfthrVeEio9hLjtX0-4mZ7JLrX99c15pUSw-Dcz8Zhhm9sleiAEJec3onFHavAsDzoWR_BmZMWp0TRuq98islEwtTctekP2cryhlTFI-I18WcdhMI4w-Buir73GIlxj8r9-JKq6rMr73ASFV2EMevasGGDF56HM1ZR8uq4BTKq0Bx5uYrvNL8nxdivjqPh6Qr0eHF4uT-uz8-OPi_VntpNK8XisOq1Zy5CsA03SNYYoK2TAGrVaq09CB4ALANUKwzjFjnHIlqVYdslbxA_J2N3eT4o8J82gHnx32PQSMU7asZVIZoVrxf6p1S5k2jSz0zV_0Kk6pnGaruOSiLKeLmu-USzHnhGvr_O6GYwLfW0bt9hm2PMNun_G4wUPDJvkB0u2_aL2jN77H2yedXX4-_NP7POLPBw_p2pZNtbTflse2ERf0dPnpxH7gdxJ1qdQ |
CODEN | IJNMBH |
CitedBy_id | crossref_primary_10_1007_s00366_022_01693_8 crossref_primary_10_1016_j_cma_2023_116131 crossref_primary_10_1002_nme_7239 crossref_primary_10_1016_j_finel_2023_104069 crossref_primary_10_1142_S1758825122500831 crossref_primary_10_1016_j_jmps_2020_103984 crossref_primary_10_1016_j_jcp_2016_01_040 crossref_primary_10_1038_s41524_022_00753_3 crossref_primary_10_1016_j_cma_2016_09_019 crossref_primary_10_1186_s40323_020_00175_0 crossref_primary_10_1016_j_ijmecsci_2023_108897 crossref_primary_10_1016_j_jcp_2020_110010 crossref_primary_10_1007_s00339_023_06629_7 crossref_primary_10_1038_s41746_019_0193_y crossref_primary_10_1016_j_cma_2019_112724 crossref_primary_10_1016_j_compscitech_2023_110388 crossref_primary_10_1016_j_finel_2023_104053 crossref_primary_10_1016_j_ijmecsci_2024_109801 crossref_primary_10_1016_j_jmps_2022_104828 crossref_primary_10_1115_1_4044257 crossref_primary_10_1016_j_crme_2019_11_009 crossref_primary_10_1016_j_mbs_2020_108411 crossref_primary_10_1007_s00466_022_02183_w crossref_primary_10_1016_j_cma_2020_113008 crossref_primary_10_3390_app9245458 crossref_primary_10_1145_3618396 crossref_primary_10_1016_j_cma_2018_09_020 crossref_primary_10_1002_nme_7473 crossref_primary_10_1016_j_cma_2024_117725 crossref_primary_10_1007_s00466_018_1655_9 crossref_primary_10_1007_s00466_024_02588_9 crossref_primary_10_1016_j_euromechsol_2017_11_007 crossref_primary_10_1007_s00419_022_02213_2 crossref_primary_10_1016_j_cma_2020_113362 crossref_primary_10_1016_j_compgeo_2024_106294 crossref_primary_10_1007_s00371_024_03411_5 crossref_primary_10_1007_s40430_024_04750_z crossref_primary_10_1016_j_cma_2020_113482 crossref_primary_10_1016_j_cma_2020_113480 crossref_primary_10_1016_j_compstruct_2019_111505 crossref_primary_10_1016_j_cma_2021_113756 crossref_primary_10_1016_j_compstruct_2023_117359 crossref_primary_10_1016_j_cma_2020_113234 crossref_primary_10_1002_nme_6058 crossref_primary_10_1007_s00466_018_1643_0 crossref_primary_10_1007_s00521_019_04480_7 crossref_primary_10_1016_j_jcp_2020_109491 crossref_primary_10_1002_pamm_202200203 crossref_primary_10_1016_j_cma_2024_116745 crossref_primary_10_1007_s00466_017_1478_0 crossref_primary_10_1002_nme_6957 crossref_primary_10_1007_s00158_021_02907_1 crossref_primary_10_1557_mrs_2016_165 crossref_primary_10_1016_j_cma_2024_117278 crossref_primary_10_1016_j_ijmecsci_2024_109824 crossref_primary_10_3390_polym9100519 crossref_primary_10_1016_j_ijmecsci_2022_107858 crossref_primary_10_1016_j_cma_2021_113886 crossref_primary_10_1002_nme_7136 crossref_primary_10_1002_nme_5751 crossref_primary_10_1016_j_cma_2024_117708 crossref_primary_10_1177_07316844241292694 crossref_primary_10_3390_ma15248878 crossref_primary_10_1016_j_jmrt_2024_05_023 crossref_primary_10_1007_s00419_022_02170_w crossref_primary_10_1016_j_compstruc_2023_107042 crossref_primary_10_1016_j_compstruc_2023_107162 crossref_primary_10_1016_j_compstruct_2023_116837 crossref_primary_10_1016_j_ijsolstr_2024_112946 crossref_primary_10_1016_j_compstruct_2020_112118 crossref_primary_10_1016_j_compositesb_2021_109152 crossref_primary_10_1007_s00466_022_02195_6 crossref_primary_10_1016_j_cma_2020_113299 crossref_primary_10_1016_j_cma_2021_114300 crossref_primary_10_1002_nme_7203 crossref_primary_10_1016_j_compscitech_2024_110516 crossref_primary_10_1039_D0SM00488J crossref_primary_10_1016_j_commatsci_2019_02_042 crossref_primary_10_1007_s00466_021_02090_6 crossref_primary_10_1016_j_euromechsol_2025_105612 crossref_primary_10_1007_s00466_023_02434_4 crossref_primary_10_1016_j_commatsci_2020_109850 crossref_primary_10_1007_s41939_020_00087_x crossref_primary_10_1016_j_compstruc_2023_106982 crossref_primary_10_1016_j_finel_2023_103956 crossref_primary_10_1061_JENMDT_EMENG_6945 crossref_primary_10_1016_j_jmps_2022_105043 crossref_primary_10_1016_j_cma_2024_116837 crossref_primary_10_1016_j_mtcomm_2024_108268 crossref_primary_10_1007_s13160_020_00423_1 crossref_primary_10_1016_j_compstruc_2021_106505 crossref_primary_10_1007_s00466_020_01954_7 crossref_primary_10_1016_j_camwa_2023_09_036 crossref_primary_10_3390_mca24020040 crossref_primary_10_1016_j_compstruc_2021_106623 crossref_primary_10_1016_j_jcp_2024_113710 crossref_primary_10_1016_j_cma_2019_112657 crossref_primary_10_1002_nme_6925 crossref_primary_10_1016_j_cma_2022_115384 crossref_primary_10_1016_j_addma_2022_103237 crossref_primary_10_1016_j_jcp_2016_10_070 crossref_primary_10_1002_pamm_202300052 crossref_primary_10_1039_D0MH01451F crossref_primary_10_1186_s40323_020_00185_y crossref_primary_10_1115_1_4047036 crossref_primary_10_3390_app10175917 crossref_primary_10_3390_computation13030068 crossref_primary_10_1016_j_mechmat_2021_104156 crossref_primary_10_1007_s11831_016_9203_2 crossref_primary_10_1002_nme_6493 crossref_primary_10_1002_nme_6012 crossref_primary_10_1016_j_cma_2017_11_005 crossref_primary_10_1007_s11709_020_0691_7 crossref_primary_10_1016_j_cma_2023_116522 crossref_primary_10_1016_j_ijplas_2024_104072 crossref_primary_10_1007_s11831_016_9170_7 crossref_primary_10_1016_j_euromechsol_2023_105157 crossref_primary_10_1016_j_euromechsol_2021_104384 crossref_primary_10_1145_3618325 crossref_primary_10_1016_j_compositesb_2020_108591 crossref_primary_10_1016_j_eswa_2022_118039 crossref_primary_10_1016_j_jmps_2023_105245 crossref_primary_10_1177_1081286518823834 crossref_primary_10_1016_j_jmps_2023_105363 crossref_primary_10_1016_j_finel_2019_07_001 crossref_primary_10_1016_j_tws_2024_112058 crossref_primary_10_1016_j_cma_2022_115248 crossref_primary_10_1007_s11831_023_10009_y crossref_primary_10_1016_j_commatsci_2020_109629 crossref_primary_10_1016_j_mechrescom_2019_103443 crossref_primary_10_1016_j_cma_2024_116932 crossref_primary_10_1016_j_dt_2023_03_012 crossref_primary_10_1002_nme_7211 crossref_primary_10_1088_1361_651X_ad8ad7 crossref_primary_10_1051_matecconf_201821004030 crossref_primary_10_1016_j_cma_2025_117867 crossref_primary_10_1016_j_cma_2023_116098 crossref_primary_10_1016_j_euromechsol_2024_105242 crossref_primary_10_1002_nme_7635 crossref_primary_10_1016_j_compscitech_2024_110951 crossref_primary_10_1063_5_0051062 crossref_primary_10_1016_j_cma_2021_114354 crossref_primary_10_1016_j_actbio_2022_03_037 crossref_primary_10_1016_j_cma_2019_112791 crossref_primary_10_1093_jom_ufac037 crossref_primary_10_32604_cmc_2020_012911 crossref_primary_10_1007_s00466_021_02009_1 crossref_primary_10_1016_j_ijsolstr_2023_112226 crossref_primary_10_1002_nag_3196 crossref_primary_10_1007_s00366_023_01813_y crossref_primary_10_1016_j_tws_2022_110267 crossref_primary_10_1016_j_neucom_2016_09_032 crossref_primary_10_1038_s41563_020_00913_0 crossref_primary_10_1016_j_jcpx_2020_100083 crossref_primary_10_7498_aps_73_20240482 crossref_primary_10_1007_s11831_024_10199_z crossref_primary_10_1016_j_jmps_2019_03_004 crossref_primary_10_1002_pamm_202000248 crossref_primary_10_1016_j_cma_2021_114476 crossref_primary_10_1016_j_cma_2025_117747 crossref_primary_10_1016_j_cma_2024_117446 crossref_primary_10_1016_j_cma_2023_116672 crossref_primary_10_1016_j_cma_2019_112693 crossref_primary_10_1016_j_euromechsol_2020_103995 crossref_primary_10_1007_s11831_018_9301_4 crossref_primary_10_1016_j_mechmat_2024_105090 crossref_primary_10_1016_j_compositesa_2024_108287 crossref_primary_10_1016_j_compstruc_2022_106774 crossref_primary_10_1017_aer_2024_104 crossref_primary_10_1038_s41598_017_15601_4 crossref_primary_10_2139_ssrn_4179173 crossref_primary_10_1007_s11831_024_10196_2 crossref_primary_10_3390_encyclopedia2020072 crossref_primary_10_1016_j_ijmecsci_2023_108952 crossref_primary_10_1016_j_cma_2021_113914 crossref_primary_10_1016_j_eml_2024_102260 crossref_primary_10_1016_j_mechmat_2023_104707 crossref_primary_10_3390_mca28040091 crossref_primary_10_1016_j_cma_2025_117735 crossref_primary_10_1007_s12205_022_1918_z crossref_primary_10_1016_j_compstruct_2024_118570 crossref_primary_10_1007_s00466_022_02260_0 crossref_primary_10_1145_3386569_3392412 crossref_primary_10_1016_j_jcp_2020_110072 crossref_primary_10_1016_j_ijsolstr_2022_111769 crossref_primary_10_1016_j_jmps_2021_104703 crossref_primary_10_1145_3654662 crossref_primary_10_1016_j_cma_2020_112898 crossref_primary_10_1016_j_ijsolstr_2023_112123 crossref_primary_10_1016_j_mtcomm_2023_107659 crossref_primary_10_3390_ma17010154 crossref_primary_10_1007_s11831_022_09795_8 crossref_primary_10_1016_j_cma_2020_112893 crossref_primary_10_1016_j_compstruct_2023_117187 crossref_primary_10_1002_nme_6565 crossref_primary_10_1016_j_cma_2021_114217 crossref_primary_10_1016_j_cma_2021_113924 crossref_primary_10_1016_j_cma_2024_117309 crossref_primary_10_1002_nme_6869 crossref_primary_10_1002_nme_6505 crossref_primary_10_1016_j_cma_2018_11_026 crossref_primary_10_1016_j_cma_2021_114030 crossref_primary_10_1007_s00466_021_02061_x crossref_primary_10_1016_j_ijnonlinmec_2024_104950 crossref_primary_10_1088_1361_651X_ac88e8 crossref_primary_10_1016_j_engappai_2024_108622 crossref_primary_10_3390_ma15020605 crossref_primary_10_2118_208885_PA crossref_primary_10_1016_j_cma_2019_06_003 crossref_primary_10_1007_s00466_019_01716_0 crossref_primary_10_1016_j_ijplas_2022_103484 crossref_primary_10_1016_j_engfracmech_2024_110120 crossref_primary_10_1115_1_4045040 crossref_primary_10_1016_j_compstruc_2020_106474 crossref_primary_10_1002_nme_6871 crossref_primary_10_1002_nme_6992 crossref_primary_10_1016_j_cma_2023_116569 crossref_primary_10_1007_s11340_023_00977_4 crossref_primary_10_1016_j_cma_2022_115636 crossref_primary_10_1016_j_tws_2023_111394 crossref_primary_10_1016_j_commatsci_2022_111493 crossref_primary_10_1007_s42405_022_00547_3 crossref_primary_10_1016_j_cma_2021_114160 crossref_primary_10_1016_j_compstruct_2021_114808 crossref_primary_10_1080_15376494_2024_2439557 crossref_primary_10_1016_j_cma_2023_116463 crossref_primary_10_1016_j_jrmge_2024_02_009 crossref_primary_10_1016_j_cma_2023_116467 crossref_primary_10_1016_j_cma_2024_117532 crossref_primary_10_1016_j_cma_2017_03_037 crossref_primary_10_1007_s00466_019_01728_w crossref_primary_10_3390_ma14112875 crossref_primary_10_1016_j_ijplas_2019_11_003 crossref_primary_10_1016_j_pmatsci_2018_01_005 crossref_primary_10_1002_nme_7390 crossref_primary_10_1016_j_ijmecsci_2022_107756 crossref_primary_10_1016_j_ijplas_2019_05_008 crossref_primary_10_1016_j_cma_2020_112913 crossref_primary_10_1016_j_cma_2025_117827 crossref_primary_10_1115_1_4034024 crossref_primary_10_1016_j_compstruct_2020_112658 crossref_primary_10_1016_j_eml_2024_102170 crossref_primary_10_1016_j_cma_2024_117085 crossref_primary_10_1007_s00158_023_03648_z crossref_primary_10_1016_j_ijengsci_2021_103522 crossref_primary_10_1016_j_cma_2021_113952 crossref_primary_10_1007_s00466_016_1333_8 crossref_primary_10_1016_j_cma_2023_115930 crossref_primary_10_1016_j_cma_2021_114128 crossref_primary_10_3389_fmats_2019_00110 crossref_primary_10_1016_j_ijmecsci_2023_108232 crossref_primary_10_3390_polym10060644 crossref_primary_10_1007_s00419_024_02664_9 crossref_primary_10_1002_nme_6634 crossref_primary_10_1016_j_cma_2024_117192 crossref_primary_10_1016_j_euromechsol_2019_103874 crossref_primary_10_1016_j_cma_2024_117191 crossref_primary_10_1016_j_eml_2024_102188 crossref_primary_10_1016_j_compstruc_2022_106742 crossref_primary_10_1007_s00466_025_02613_5 crossref_primary_10_3934_nhm_2025012 crossref_primary_10_1016_j_cma_2022_114798 crossref_primary_10_1007_s11831_020_09507_0 crossref_primary_10_1016_j_cma_2022_115768 crossref_primary_10_1002_nme_7178 crossref_primary_10_1007_s00707_021_03125_y |
Cites_doi | 10.1016/S0045-7825(02)00287-6 10.1016/j.commatsci.2007.11.001 10.1146/annurev.pc.45.100194.002255 10.1016/j.cma.2007.03.017 10.1016/S0020-7683(03)00346-9 10.1016/j.jcp.2006.09.019 10.1002/cnm.1053 10.1016/S0045-7825(97)00215-6 10.1016/S0893-6080(97)00097-X 10.1016/S0098-1354(00)00587-1 10.1029/JB076i008p01905 10.1016/j.susc.2009.12.025 10.1023/A:1019188517934 10.1016/0021-9045(81)90103-9 10.1098/rspa.1988.0035 10.1002/nme.541 10.1016/j.buildenv.2009.08.016 10.1016/S0009-2614(01)01381-1 10.1063/1.2746846 10.1016/j.compscitech.2007.10.032 10.1007/s00466-011-0646-x 10.1016/j.cma.2011.06.012 10.1063/1.3021471 10.1007/s00466-006-0097-y 10.1016/j.cma.2009.03.017 10.1007/BF02551274 10.1063/1.474210 10.1063/1.3231686 10.1016/S0045-7825(01)00179-7 10.1016/S0927-0256(99)00077-4 10.1016/j.cma.2012.10.016 10.1016/j.cma.2014.12.018 10.1016/j.jnnfm.2006.07.007 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J 10.1016/j.compscitech.2012.12.012 10.1002/nme.4413 10.1063/1.2831790 10.1002/nme.4755 10.1063/1.2387950 10.1063/1.2336223 10.1016/j.cpc.2009.05.022 10.1615/IntJMultCompEng.2013005374 10.1016/j.cma.2003.12.073 10.1002/nme.4293 10.1007/s11831-013-9080-x 10.1016/0022-5096(63)90036-X 10.1007/s10114-013-1730-2 10.1016/S0045-7825(98)00227-8 10.1021/es801372q |
ContentType | Journal Article |
Copyright | Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2015 John Wiley & Sons, Ltd. – notice: Copyright © 2015John Wiley & Sons, Ltd. |
DBID | BSCLL AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D 7QO P64 |
DOI | 10.1002/nme.4953 |
DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts Engineering Research Database CrossRef Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Mathematics |
EISSN | 1097-0207 |
EndPage | 1084 |
ExternalDocumentID | 3873892821 10_1002_nme_4953 NME4953 ark_67375_WNG_24T0JNKH_D |
Genre | article |
GrantInformation_xml | – fundername: Institut Universitaire de France (IUF) – fundername: Publishing Arts Research Council |
GroupedDBID | -~X .3N .4S .DC .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 TUS UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AEUQT AFPWT RWI RWS WRC AAYXX AEYWJ AGQPQ AGYGG CITATION 7SC 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 JQ2 KR7 L7M L~C L~D 7QO P64 |
ID | FETCH-LOGICAL-c5673-f63ab853e3baa92d2916045211a8766d7ada434aac2441dc199c6cada6bde1863 |
IEDL.DBID | DR2 |
ISSN | 0029-5981 |
IngestDate | Thu Jul 10 23:14:43 EDT 2025 Fri Jul 11 05:16:50 EDT 2025 Fri Jul 25 12:31:13 EDT 2025 Tue Jul 01 04:32:01 EDT 2025 Thu Apr 24 23:05:05 EDT 2025 Wed Jan 22 16:42:42 EST 2025 Wed Mar 05 09:12:34 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5673-f63ab853e3baa92d2916045211a8766d7ada434aac2441dc199c6cada6bde1863 |
Notes | Institut Universitaire de France (IUF) istex:58AFE0E33105FC574380143043389CA3800422C9 ark:/67375/WNG-24T0JNKH-D ArticleID:NME4953 Publishing Arts Research Council ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/nme.4953 |
PQID | 1735348767 |
PQPubID | 996376 |
PageCount | 24 |
ParticipantIDs | proquest_miscellaneous_1815694684 proquest_miscellaneous_1778017925 proquest_journals_1735348767 crossref_citationtrail_10_1002_nme_4953 crossref_primary_10_1002_nme_4953 wiley_primary_10_1002_nme_4953_NME4953 istex_primary_ark_67375_WNG_24T0JNKH_D |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 21 December 2015 |
PublicationDateYYYYMMDD | 2015-12-21 |
PublicationDate_xml | – month: 12 year: 2015 text: 21 December 2015 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | International journal for numerical methods in engineering |
PublicationTitleAlternate | Int. J. Numer. Meth. Engng |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Manzhos S, Carrington T. Using neural networks, optimized coordinates, and high-dimensional model representations to obtain a vinyl bromide potential surface. The Journal of Chemical Physics 2008; 129: 224104. Temizer I, Zohdi TI. A numerical method for homogenization in non-linear elasticity. Computational Mechanics 2007; 40(2): 281-298. Carter S, Culik SJ, Bowman JM. Vibrational self-consistent field method for manymode systems: a new approach and application to the vibrations of CO adsorbed on Cu(100). The Journal of Chemical Physics 1997; 107:10458. Papadrakakis M, Lagaros ND, Tsompanakis Y. Structural optimization using evolution strategies and neural networks. Computer Methods in Applied Mechanics and Engineering 1998; 156:309-333. Carter S, Handy NC. On the representation of potential energy surfaces of polyatomic molecules in normal coordinates. Chemical Physics Letters 2002; 352:1-7. Kouznetsova V, Geers MGD, Brekelmans WAM. Multi-scale constitutive modeling of heterogeneous materials with gradient enhanced computational homogenization scheme. International Journal for Numerical Methods in Engineering 2002; 54:1235-1260. Michel J-C, Suquet P. Nonuniform transformation field analysis. International Journal of Solids and Structures 2003; 40(25): 6937-6955. Clément A, Soize C, Yvonnet J. Computational nonlinear stochastic homogenization using a non-concurrent multiscale approach for hyperelastic heterogenous microstructures analysis. International Journal for Numerical Methods in Engineering 2012; 91(8): 799-824. Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 1999; 46(1): 131-156. Yvonnet J, He Q. -C.. The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains. Journal of Computational Physics 2007; 223:341-368. Tran AB, Yvonnet J, He Q-C, Toulemonde C, Sanahuja J. A simple computational homogenization method for structures made of heterogeneous linear viscoelastic materials. Computer Methods in Applied Mechanics and Engineering 2011; 200(45-46): 2956-2970. Augusto C, Nascimento O, Giudici R, Guardani R. Neural network based approach for optimization of industrial chemical processes. Computers & Chemical Engineering 2000; 24:2303-2314. Hill R. Elastic properties of reinforced solids: some theoretical principles. Journal of the Mechanics and Physics of Solids 1963; 11:357-372. Getino C, Sumpter BG, Noid DW. Theory and applications of neural computing in chemical science. Annual Review of Physical Chemistry 1994; 45:439. Renard J, Marmonier MF. Etude de l'initiation de l'endommagement dans la matrice d'un matériau composite par une méthode d'homogénéisation. Aerospace Science and Technology 1987; 9:36-51. Yvonnet J, Monteiro E, He Q-C. Computational homogenization method and reduced database model for hyperelastic heterogeneous structures. International Journal for Multiscale Computational Engineering 2013; 11(3): 201-225. Terada K, Kikuchi N. A class of general algorithms for multi-scale analysis of heterogeneous media. Computer Methods in Applied Mechanics and Engineering 2001; 190:5427-5464. Yvonnet J, Gonzalez D, He Q-C. Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials. Computer Methods in Applied Mechanics and Engineering 2009; 198:2723-2737. Rabitz H, Alis OF. General foundations of high-dimensional model representations. Journal of Mathematical Chemistry 1999; 25:197-233. Heyberger C, Boucard P-A, Néron D. Multiparametric analysis within the proper generalized decomposition framework. Computational Mechanics 2012; 49(3): 277-289. Michel J-C, Moulinec H, Suquet P. Effective properties of composite materials with periodic microstructure: a computational approach. Computer Methods in Applied Mechanics and Engineering 1999; 172:109-143. Kasiri MB, Aleboyeh H, Aleboyeh A. Modeling and optimization of heterogeneous photo-fenton process with response surface methodology and artificial neural networks. Environmental Science & Technology 2008; 42:7970-7975. Mosby M, Matous K. Hierarchically parallel coupled finite strain multiscale solver for modeling heterogeneous layers. International Journal for Numerical Methods in Engineering 2015; 102:748-765. Manzhos S, Carrington T. Using neural networks to represent potential surfaces as sums of products. Journal of Chemical Physics ABR. ISO 2006; 125:194105. Feyel F. Multiscale FE2 elastoviscoplastic analysis of composite structure. Computational Materials Science 1999; 16(1-4): 433-454. Goodrich RK, Gustafson KE. Weighted trigonometric approximation and inner-outer functions on higher dimensional euclidean spaces. Journal of Approximation Theory 1981; 31:362-382. Manzhos S, Yamashita Koichi, Carrington T. Fitting sparse multidimensional data with low-dimensional terms. Computer Physics Communications 2009; 180:2002-2012. Kouznetsova VG, Geers MGD, Brekelmans WAM. Multi-scale second order computational homogenization of multi-phase materials: a nested finite element solution strategy. Computer Methods in Applied Mechanics and Engineering 2004; 193:5525-5550. Xia L, Breitkopf P. Multiscale structural topology optimization with an approimate constitutive model for local material microstructure. Computer Methods in Applied Mechanics and Engineering 2015; 286:147-167. Manzhos S, Carrington T. Using redundant coordinates to represent potential energy surfaces with lower-dimensional functions. The Journal of Chemical Physics 2007; 127:014103. Ponte-Castañeda P. On the overall properties of nonlinearly viscous composites. Proceedings of the Royal Society of London A 1988; 416:217-244. Chowdhury R, Rao BN, Prasad AM. High dimensional model representation for piece-wise continuous function approximation. Communications in Numerical Methods in Engineering 2008; 24:1587-1609. Dawes R, Thompson DL, Wagner AF, Minkoff M. Interpolating moving least-squares methods for fitting potential energy surfaces: a strategy for efficient automatic data point placement in high dimensions. The Journal of Chemical Physics 2008; 128(8): 084107. Manzhos S, Carrington T. A random-sampling high dimensional model representation neural network for building potential energy surfaces. The Journal of Chemical Physics 2006; 125:084109. Manzhos S, Yamashita K. A model for the dissociative adsorption of N2O on Cu(1 0 0) using a continuous potential energy surface. Surface Science 2010; 604:554-560. Fritzen F, Boehlke T. Reduced basis homogenization of viscoelastic composites. Composites Science and Technology 2013; 76:84-91. Clément A, Soize C, Yvonnet J. Uncertainty quantification in computational stochastic multiscale analysis of nonlinear elastic materials. Computer Methods in Applied Mechanics and Engineering 2013; 254:61-82. Monteiro E, Yvonnet J, He Q-C. Computational homogenization for nonlinear conduction in heterogeneous materials using model reduction. Computational Materials Science 2008; 42:704-712. Chinesta F, Leygue A, Bordeu F, Aguado JV, Cueto E. PGD-based computational vademecum for efficient design optimization and control. Archives of Computational Methods in Engineering 2013; 20(1): 31-59. Sobol IM. Sensitivity analysis for non-linear mathematical models. Mathematical Modeling and Computational 1993; 1:407-414. Hardy RL. Multiquadric equations of topography and other irregular surfaces. In : Journal of Geophysical Research 1971; 76(8): 1905-1915. Temizer I, Wriggers P. An adaptive method for homogenization in orthotropic nonlinear elasticity. Computer Methods in Applied Mechanics and Engineering 2007; 35-36:3409-3423. Ammar A, Mokdad B, Chinesta F, Keunings R. A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. Journal of Non-Newtonian Fluid Mechanics 2006; 139(3): 153-176. Papadrakakis M, Lagaros ND. Reliability-based structural optimization using neural networks and Monte Carlo simulation. Computer Methods in Applied Mechanics and Engineering 2002; 191:3491-3507. Ammar A, Cueto E, Chinesta F. On incremental proper generalized decomposition solution of parametric uncoupled models defined in evolving domains. International Journal for Numerical Methods in Engineering 2013; 93:887-904. Magnier L, Haghighat F. Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and artificial neural network. Building and Environment 2010; 45:739-746. Scarselli F, Tsoi AC. Universal approximation using feedforward neural networks: a survey of some existing methods and some new results. Neural Networks 1998; 11(1): 15-37. Roussette S, Michel JC, Suquet P. Non uniform transformation field analysis of elastic-viscoplastic composites. Composites Science and Technology 2009;:22-27. Yu DS. Approximation by neural networks with sigmoidal functions. Acta Mathematica Sinica 2013; 29(10): 2013-2026. Malshe M, Pukrittayakamee A, Hagan LM, Sukkapatnam S, Komanduri R. Accurate prediction of higher-level electronic structure energies for large databases susing neural networks, Hartree-Fock energies, and small subsets of the database. The Journal of Chemical Physics 2009; 131:124127. Cybenko G. Approximations by superpositions of sigmoidal functions. Mathematics of Control, Signals, and Systems 1989; 2(4): 303-314. 2013; 29 2007; 223 2002; 191 1987; 9 2002; 352 2015; 102 1999; 172 2002; 54 2013; 20 2009; 198 1999; 46 2006; 139 1998; 156 2007; 35–36 1997; 107 2013; 11 1999; 16 1 2008; 24 2003; 40 1988; 416 2011; 200 1981; 31 1998; 11 2006; 125 1989; 2 2007; 127 2010; 604 2009; 180 2000; 24 2015; 286 1999; 25 2009 1994; 45 2013; 93 2008; 129 2008; 128 2009; 131 2010; 45 2012; 91 1971; 76 1963; 11 2001; 190 2013; 76 2004; 193 2013; 254 2007; 40 2012; 49 2008; 42 e_1_2_8_28_1 Sobol IM (e_1_2_8_40_1); 1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_18_1 e_1_2_8_39_1 Renard J (e_1_2_8_2_1) 1987; 9 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – reference: Mosby M, Matous K. Hierarchically parallel coupled finite strain multiscale solver for modeling heterogeneous layers. International Journal for Numerical Methods in Engineering 2015; 102:748-765. – reference: Manzhos S, Carrington T. Using redundant coordinates to represent potential energy surfaces with lower-dimensional functions. The Journal of Chemical Physics 2007; 127:014103. – reference: Carter S, Culik SJ, Bowman JM. Vibrational self-consistent field method for manymode systems: a new approach and application to the vibrations of CO adsorbed on Cu(100). The Journal of Chemical Physics 1997; 107:10458. – reference: Feyel F. Multiscale FE2 elastoviscoplastic analysis of composite structure. Computational Materials Science 1999; 16(1-4): 433-454. – reference: Dawes R, Thompson DL, Wagner AF, Minkoff M. Interpolating moving least-squares methods for fitting potential energy surfaces: a strategy for efficient automatic data point placement in high dimensions. The Journal of Chemical Physics 2008; 128(8): 084107. – reference: Manzhos S, Carrington T. A random-sampling high dimensional model representation neural network for building potential energy surfaces. The Journal of Chemical Physics 2006; 125:084109. – reference: Cybenko G. Approximations by superpositions of sigmoidal functions. Mathematics of Control, Signals, and Systems 1989; 2(4): 303-314. – reference: Carter S, Handy NC. On the representation of potential energy surfaces of polyatomic molecules in normal coordinates. Chemical Physics Letters 2002; 352:1-7. – reference: Michel J-C, Suquet P. Nonuniform transformation field analysis. International Journal of Solids and Structures 2003; 40(25): 6937-6955. – reference: Kasiri MB, Aleboyeh H, Aleboyeh A. Modeling and optimization of heterogeneous photo-fenton process with response surface methodology and artificial neural networks. Environmental Science & Technology 2008; 42:7970-7975. – reference: Malshe M, Pukrittayakamee A, Hagan LM, Sukkapatnam S, Komanduri R. Accurate prediction of higher-level electronic structure energies for large databases susing neural networks, Hartree-Fock energies, and small subsets of the database. The Journal of Chemical Physics 2009; 131:124127. – reference: Chowdhury R, Rao BN, Prasad AM. High dimensional model representation for piece-wise continuous function approximation. Communications in Numerical Methods in Engineering 2008; 24:1587-1609. – reference: Hill R. Elastic properties of reinforced solids: some theoretical principles. Journal of the Mechanics and Physics of Solids 1963; 11:357-372. – reference: Yvonnet J, He Q. -C.. The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains. Journal of Computational Physics 2007; 223:341-368. – reference: Fritzen F, Boehlke T. Reduced basis homogenization of viscoelastic composites. Composites Science and Technology 2013; 76:84-91. – reference: Terada K, Kikuchi N. A class of general algorithms for multi-scale analysis of heterogeneous media. Computer Methods in Applied Mechanics and Engineering 2001; 190:5427-5464. – reference: Manzhos S, Carrington T. Using neural networks, optimized coordinates, and high-dimensional model representations to obtain a vinyl bromide potential surface. The Journal of Chemical Physics 2008; 129: 224104. – reference: Clément A, Soize C, Yvonnet J. Computational nonlinear stochastic homogenization using a non-concurrent multiscale approach for hyperelastic heterogenous microstructures analysis. International Journal for Numerical Methods in Engineering 2012; 91(8): 799-824. – reference: Ammar A, Cueto E, Chinesta F. On incremental proper generalized decomposition solution of parametric uncoupled models defined in evolving domains. International Journal for Numerical Methods in Engineering 2013; 93:887-904. – reference: Heyberger C, Boucard P-A, Néron D. Multiparametric analysis within the proper generalized decomposition framework. Computational Mechanics 2012; 49(3): 277-289. – reference: Papadrakakis M, Lagaros ND. Reliability-based structural optimization using neural networks and Monte Carlo simulation. Computer Methods in Applied Mechanics and Engineering 2002; 191:3491-3507. – reference: Magnier L, Haghighat F. Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and artificial neural network. Building and Environment 2010; 45:739-746. – reference: Manzhos S, Yamashita Koichi, Carrington T. Fitting sparse multidimensional data with low-dimensional terms. Computer Physics Communications 2009; 180:2002-2012. – reference: Manzhos S, Yamashita K. A model for the dissociative adsorption of N2O on Cu(1 0 0) using a continuous potential energy surface. Surface Science 2010; 604:554-560. – reference: Clément A, Soize C, Yvonnet J. Uncertainty quantification in computational stochastic multiscale analysis of nonlinear elastic materials. Computer Methods in Applied Mechanics and Engineering 2013; 254:61-82. – reference: Papadrakakis M, Lagaros ND, Tsompanakis Y. Structural optimization using evolution strategies and neural networks. Computer Methods in Applied Mechanics and Engineering 1998; 156:309-333. – reference: Yvonnet J, Monteiro E, He Q-C. Computational homogenization method and reduced database model for hyperelastic heterogeneous structures. International Journal for Multiscale Computational Engineering 2013; 11(3): 201-225. – reference: Scarselli F, Tsoi AC. Universal approximation using feedforward neural networks: a survey of some existing methods and some new results. Neural Networks 1998; 11(1): 15-37. – reference: Roussette S, Michel JC, Suquet P. Non uniform transformation field analysis of elastic-viscoplastic composites. Composites Science and Technology 2009;:22-27. – reference: Hardy RL. Multiquadric equations of topography and other irregular surfaces. In : Journal of Geophysical Research 1971; 76(8): 1905-1915. – reference: Temizer I, Wriggers P. An adaptive method for homogenization in orthotropic nonlinear elasticity. Computer Methods in Applied Mechanics and Engineering 2007; 35-36:3409-3423. – reference: Chinesta F, Leygue A, Bordeu F, Aguado JV, Cueto E. PGD-based computational vademecum for efficient design optimization and control. Archives of Computational Methods in Engineering 2013; 20(1): 31-59. – reference: Ponte-Castañeda P. On the overall properties of nonlinearly viscous composites. Proceedings of the Royal Society of London A 1988; 416:217-244. – reference: Xia L, Breitkopf P. Multiscale structural topology optimization with an approimate constitutive model for local material microstructure. Computer Methods in Applied Mechanics and Engineering 2015; 286:147-167. – reference: Temizer I, Zohdi TI. A numerical method for homogenization in non-linear elasticity. Computational Mechanics 2007; 40(2): 281-298. – reference: Michel J-C, Moulinec H, Suquet P. Effective properties of composite materials with periodic microstructure: a computational approach. Computer Methods in Applied Mechanics and Engineering 1999; 172:109-143. – reference: Kouznetsova VG, Geers MGD, Brekelmans WAM. Multi-scale second order computational homogenization of multi-phase materials: a nested finite element solution strategy. Computer Methods in Applied Mechanics and Engineering 2004; 193:5525-5550. – reference: Tran AB, Yvonnet J, He Q-C, Toulemonde C, Sanahuja J. A simple computational homogenization method for structures made of heterogeneous linear viscoelastic materials. Computer Methods in Applied Mechanics and Engineering 2011; 200(45-46): 2956-2970. – reference: Getino C, Sumpter BG, Noid DW. Theory and applications of neural computing in chemical science. Annual Review of Physical Chemistry 1994; 45:439. – reference: Monteiro E, Yvonnet J, He Q-C. Computational homogenization for nonlinear conduction in heterogeneous materials using model reduction. Computational Materials Science 2008; 42:704-712. – reference: Rabitz H, Alis OF. General foundations of high-dimensional model representations. Journal of Mathematical Chemistry 1999; 25:197-233. – reference: Goodrich RK, Gustafson KE. Weighted trigonometric approximation and inner-outer functions on higher dimensional euclidean spaces. Journal of Approximation Theory 1981; 31:362-382. – reference: Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 1999; 46(1): 131-156. – reference: Ammar A, Mokdad B, Chinesta F, Keunings R. A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. Journal of Non-Newtonian Fluid Mechanics 2006; 139(3): 153-176. – reference: Renard J, Marmonier MF. Etude de l'initiation de l'endommagement dans la matrice d'un matériau composite par une méthode d'homogénéisation. Aerospace Science and Technology 1987; 9:36-51. – reference: Manzhos S, Carrington T. Using neural networks to represent potential surfaces as sums of products. Journal of Chemical Physics ABR. ISO 2006; 125:194105. – reference: Yvonnet J, Gonzalez D, He Q-C. Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials. Computer Methods in Applied Mechanics and Engineering 2009; 198:2723-2737. – reference: Sobol IM. Sensitivity analysis for non-linear mathematical models. Mathematical Modeling and Computational 1993; 1:407-414. – reference: Yu DS. Approximation by neural networks with sigmoidal functions. Acta Mathematica Sinica 2013; 29(10): 2013-2026. – reference: Augusto C, Nascimento O, Giudici R, Guardani R. Neural network based approach for optimization of industrial chemical processes. Computers & Chemical Engineering 2000; 24:2303-2314. – reference: Kouznetsova V, Geers MGD, Brekelmans WAM. Multi-scale constitutive modeling of heterogeneous materials with gradient enhanced computational homogenization scheme. International Journal for Numerical Methods in Engineering 2002; 54:1235-1260. – volume: 91 start-page: 799 issue: 8 year: 2012 end-page: 824 article-title: Computational nonlinear stochastic homogenization using a non‐concurrent multiscale approach for hyperelastic heterogenous microstructures analysis publication-title: International Journal for Numerical Methods in Engineering – volume: 125 start-page: 194105 year: 2006 article-title: Using neural networks to represent potential surfaces as sums of products publication-title: Journal of Chemical Physics ABR. ISO – volume: 45 start-page: 439 year: 1994 article-title: Theory and applications of neural computing in chemical science publication-title: Annual Review of Physical Chemistry – volume: 191 start-page: 3491 year: 2002 end-page: 3507 article-title: Reliability‐based structural optimization using neural networks and Monte Carlo simulation publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 93 start-page: 887 year: 2013 end-page: 904 article-title: On incremental proper generalized decomposition solution of parametric uncoupled models defined in evolving domains publication-title: International Journal for Numerical Methods in Engineering – volume: 254 start-page: 61 year: 2013 end-page: 82 article-title: Uncertainty quantification in computational stochastic multiscale analysis of nonlinear elastic materials publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 46 start-page: 131 issue: 1 year: 1999 end-page: 156 article-title: A finite element method for crack growth without remeshing publication-title: International Journal for Numerical Methods in Engineering – volume: 76 start-page: 84 year: 2013 end-page: 91 article-title: Reduced basis homogenization of viscoelastic composites publication-title: Composites Science and Technology – volume: 129 year: 2008 article-title: Using neural networks, optimized coordinates, and high‐dimensional model representations to obtain a vinyl bromide potential surface publication-title: The Journal of Chemical Physics – volume: 193 start-page: 5525 year: 2004 end-page: 5550 article-title: Multi‐scale second order computational homogenization of multi‐phase materials: a nested finite element solution strategy publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 42 start-page: 7970 year: 2008 end-page: 7975 article-title: Modeling and optimization of heterogeneous photo‐fenton process with response surface methodology and artificial neural networks publication-title: Environmental Science & Technology – volume: 180 start-page: 2002 year: 2009 end-page: 2012 article-title: Fitting sparse multidimensional data with low‐dimensional terms publication-title: Computer Physics Communications – volume: 31 start-page: 362 year: 1981 end-page: 382 article-title: Weighted trigonometric approximation and inner‐outer functions on higher dimensional euclidean spaces publication-title: Journal of Approximation Theory – volume: 1 start-page: 407 end-page: 414 article-title: Sensitivity analysis for non‐linear mathematical models publication-title: Mathematical Modeling and Computational – volume: 45 start-page: 739 year: 2010 end-page: 746 article-title: Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and artificial neural network publication-title: Building and Environment – volume: 9 start-page: 36 year: 1987 end-page: 51 article-title: Etude de l'initiation de l'endommagement dans la matrice d'un matériau composite par une méthode d'homogénéisation publication-title: Aerospace Science and Technology – volume: 286 start-page: 147 year: 2015 end-page: 167 article-title: Multiscale structural topology optimization with an approimate constitutive model for local material microstructure publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 156 start-page: 309 year: 1998 end-page: 333 article-title: Structural optimization using evolution strategies and neural networks publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 11 start-page: 357 year: 1963 end-page: 372 article-title: Elastic properties of reinforced solids: some theoretical principles publication-title: Journal of the Mechanics and Physics of Solids – volume: 25 start-page: 197 year: 1999 end-page: 233 article-title: General foundations of high‐dimensional model representations publication-title: Journal of Mathematical Chemistry – volume: 102 start-page: 748 year: 2015 end-page: 765 article-title: Hierarchically parallel coupled finite strain multiscale solver for modeling heterogeneous layers publication-title: International Journal for Numerical Methods in Engineering – volume: 20 start-page: 31 issue: 1 year: 2013 end-page: 59 article-title: PGD‐based computational vademecum for efficient design optimization and control publication-title: Archives of Computational Methods in Engineering – volume: 40 start-page: 281 issue: 2 year: 2007 end-page: 298 article-title: A numerical method for homogenization in non‐linear elasticity publication-title: Computational Mechanics – volume: 604 start-page: 554 year: 2010 end-page: 560 article-title: A model for the dissociative adsorption of N2O on Cu(1 0 0) using a continuous potential energy surface publication-title: Surface Science – volume: 107 start-page: 10458 year: 1997 article-title: Vibrational self‐consistent field method for manymode systems: a new approach and application to the vibrations of CO adsorbed on Cu(100) publication-title: The Journal of Chemical Physics – volume: 131 start-page: 124127 year: 2009 article-title: Accurate prediction of higher‐level electronic structure energies for large databases susing neural networks, Hartree–Fock energies, and small subsets of the database publication-title: The Journal of Chemical Physics – volume: 76 start-page: 1905 issue: 8 year: 1971 end-page: 1915 article-title: Multiquadric equations of topography and other irregular surfaces publication-title: In : Journal of Geophysical Research – volume: 352 start-page: 1 year: 2002 end-page: 7 article-title: On the representation of potential energy surfaces of polyatomic molecules in normal coordinates publication-title: Chemical Physics Letters – volume: 49 start-page: 277 issue: 3 year: 2012 end-page: 289 article-title: Multiparametric analysis within the proper generalized decomposition framework publication-title: Computational Mechanics – volume: 54 start-page: 1235 year: 2002 end-page: 1260 article-title: Multi‐scale constitutive modeling of heterogeneous materials with gradient enhanced computational homogenization scheme publication-title: International Journal for Numerical Methods in Engineering – volume: 35–36 start-page: 3409 year: 2007 end-page: 3423 article-title: An adaptive method for homogenization in orthotropic nonlinear elasticity publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 416 start-page: 217 year: 1988 end-page: 244 article-title: On the overall properties of nonlinearly viscous composites publication-title: Proceedings of the Royal Society of London A – volume: 42 start-page: 704 year: 2008 end-page: 712 article-title: Computational homogenization for nonlinear conduction in heterogeneous materials using model reduction publication-title: Computational Materials Science – volume: 128 start-page: 084107 issue: 8 year: 2008 article-title: Interpolating moving least‐squares methods for fitting potential energy surfaces: a strategy for efficient automatic data point placement in high dimensions publication-title: The Journal of Chemical Physics – volume: 29 start-page: 2013 issue: 10 year: 2013 end-page: 2026 article-title: Approximation by neural networks with sigmoidal functions publication-title: Acta Mathematica Sinica – volume: 24 start-page: 1587 year: 2008 end-page: 1609 article-title: High dimensional model representation for piece‐wise continuous function approximation publication-title: Communications in Numerical Methods in Engineering – volume: 198 start-page: 2723 year: 2009 end-page: 2737 article-title: Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 223 start-page: 341 year: 2007 end-page: 368 article-title: The reduced model multiscale method (R3M) for the non‐linear homogenization of hyperelastic media at finite strains publication-title: Journal of Computational Physics – volume: 24 start-page: 2303 year: 2000 end-page: 2314 article-title: Neural network based approach for optimization of industrial chemical processes publication-title: Computers & Chemical Engineering – volume: 127 start-page: 014103 year: 2007 article-title: Using redundant coordinates to represent potential energy surfaces with lower‐dimensional functions publication-title: The Journal of Chemical Physics – volume: 172 start-page: 109 year: 1999 end-page: 143 article-title: Effective properties of composite materials with periodic microstructure: a computational approach publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 200 start-page: 2956 issue: 45–46 year: 2011 end-page: 2970 article-title: A simple computational homogenization method for structures made of heterogeneous linear viscoelastic materials publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 190 start-page: 5427 year: 2001 end-page: 5464 article-title: A class of general algorithms for multi‐scale analysis of heterogeneous media publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 11 start-page: 15 issue: 1 year: 1998 end-page: 37 article-title: Universal approximation using feedforward neural networks: a survey of some existing methods and some new results publication-title: Neural Networks – volume: 40 start-page: 6937 issue: 25 year: 2003 end-page: 6955 article-title: Nonuniform transformation field analysis publication-title: International Journal of Solids and Structures – volume: 139 start-page: 153 issue: 3 year: 2006 end-page: 176 article-title: A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids publication-title: Journal of Non‐Newtonian Fluid Mechanics – start-page: 22 year: 2009 end-page: 27 article-title: Non uniform transformation field analysis of elastic‐viscoplastic composites publication-title: Composites Science and Technology – volume: 2 start-page: 303 issue: 4 year: 1989 end-page: 314 article-title: Approximations by superpositions of sigmoidal functions publication-title: Mathematics of Control, Signals, and Systems – volume: 16 start-page: 433 issue: 1–4 year: 1999 end-page: 454 article-title: Multiscale FE elastoviscoplastic analysis of composite structure publication-title: Computational Materials Science – volume: 11 start-page: 201 issue: 3 year: 2013 end-page: 225 article-title: Computational homogenization method and reduced database model for hyperelastic heterogeneous structures publication-title: International Journal for Multiscale Computational Engineering – volume: 125 start-page: 084109 year: 2006 article-title: A random‐sampling high dimensional model representation neural network for building potential energy surfaces publication-title: The Journal of Chemical Physics – ident: e_1_2_8_29_1 doi: 10.1016/S0045-7825(02)00287-6 – ident: e_1_2_8_8_1 doi: 10.1016/j.commatsci.2007.11.001 – ident: e_1_2_8_44_1 doi: 10.1146/annurev.pc.45.100194.002255 – ident: e_1_2_8_14_1 doi: 10.1016/j.cma.2007.03.017 – ident: e_1_2_8_11_1 doi: 10.1016/S0020-7683(03)00346-9 – ident: e_1_2_8_7_1 doi: 10.1016/j.jcp.2006.09.019 – ident: e_1_2_8_21_1 doi: 10.1002/cnm.1053 – ident: e_1_2_8_30_1 doi: 10.1016/S0045-7825(97)00215-6 – ident: e_1_2_8_42_1 doi: 10.1016/S0893-6080(97)00097-X – ident: e_1_2_8_32_1 doi: 10.1016/S0098-1354(00)00587-1 – ident: e_1_2_8_23_1 doi: 10.1029/JB076i008p01905 – ident: e_1_2_8_37_1 doi: 10.1016/j.susc.2009.12.025 – ident: e_1_2_8_41_1 doi: 10.1023/A:1019188517934 – ident: e_1_2_8_22_1 doi: 10.1016/0021-9045(81)90103-9 – ident: e_1_2_8_49_1 doi: 10.1098/rspa.1988.0035 – ident: e_1_2_8_5_1 doi: 10.1002/nme.541 – ident: e_1_2_8_31_1 doi: 10.1016/j.buildenv.2009.08.016 – ident: e_1_2_8_39_1 doi: 10.1016/S0009-2614(01)01381-1 – ident: e_1_2_8_36_1 doi: 10.1063/1.2746846 – ident: e_1_2_8_12_1 doi: 10.1016/j.compscitech.2007.10.032 – ident: e_1_2_8_26_1 doi: 10.1007/s00466-011-0646-x – ident: e_1_2_8_13_1 doi: 10.1016/j.cma.2011.06.012 – ident: e_1_2_8_46_1 doi: 10.1063/1.3021471 – ident: e_1_2_8_15_1 doi: 10.1007/s00466-006-0097-y – volume: 9 start-page: 36 year: 1987 ident: e_1_2_8_2_1 article-title: Etude de l'initiation de l'endommagement dans la matrice d'un matériau composite par une méthode d'homogénéisation publication-title: Aerospace Science and Technology – ident: e_1_2_8_16_1 doi: 10.1016/j.cma.2009.03.017 – ident: e_1_2_8_47_1 doi: 10.1007/BF02551274 – ident: e_1_2_8_38_1 doi: 10.1063/1.474210 – ident: e_1_2_8_43_1 doi: 10.1063/1.3231686 – ident: e_1_2_8_4_1 doi: 10.1016/S0045-7825(01)00179-7 – ident: e_1_2_8_3_1 doi: 10.1016/S0927-0256(99)00077-4 – ident: e_1_2_8_19_1 doi: 10.1016/j.cma.2012.10.016 – ident: e_1_2_8_20_1 doi: 10.1016/j.cma.2014.12.018 – ident: e_1_2_8_25_1 doi: 10.1016/j.jnnfm.2006.07.007 – volume: 1 start-page: 407 ident: e_1_2_8_40_1 article-title: Sensitivity analysis for non‐linear mathematical models publication-title: Mathematical Modeling and Computational – ident: e_1_2_8_51_1 doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J – ident: e_1_2_8_9_1 doi: 10.1016/j.compscitech.2012.12.012 – ident: e_1_2_8_27_1 doi: 10.1002/nme.4413 – ident: e_1_2_8_24_1 doi: 10.1063/1.2831790 – ident: e_1_2_8_10_1 doi: 10.1002/nme.4755 – ident: e_1_2_8_34_1 doi: 10.1063/1.2387950 – ident: e_1_2_8_35_1 doi: 10.1063/1.2336223 – ident: e_1_2_8_48_1 doi: 10.1016/j.cpc.2009.05.022 – ident: e_1_2_8_17_1 doi: 10.1615/IntJMultCompEng.2013005374 – ident: e_1_2_8_6_1 doi: 10.1016/j.cma.2003.12.073 – ident: e_1_2_8_18_1 doi: 10.1002/nme.4293 – ident: e_1_2_8_28_1 doi: 10.1007/s11831-013-9080-x – ident: e_1_2_8_50_1 doi: 10.1016/0022-5096(63)90036-X – ident: e_1_2_8_45_1 doi: 10.1007/s10114-013-1730-2 – ident: e_1_2_8_52_1 doi: 10.1016/S0045-7825(98)00227-8 – ident: e_1_2_8_33_1 doi: 10.1021/es801372q |
SSID | ssj0011503 |
Score | 2.615 |
Snippet | Summary
In this work, a decoupled computational homogenization method for nonlinear elastic materials is proposed using neural networks. In this method, the... In this work, a decoupled computational homogenization method for nonlinear elastic materials is proposed using neural networks. In this method, the effective... Summary In this work, a decoupled computational homogenization method for nonlinear elastic materials is proposed using neural networks. In this method, the... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1061 |
SubjectTerms | Computation computational homogenization high-dimensional approximation Homogenization Homogenizing Mathematical analysis Mathematical models Microstructure multiscale methods Neural networks nonlinear homogenization Nonlinearity |
Title | Computational homogenization of nonlinear elastic materials using neural networks |
URI | https://api.istex.fr/ark:/67375/WNG-24T0JNKH-D/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.4953 https://www.proquest.com/docview/1735348767 https://www.proquest.com/docview/1778017925 https://www.proquest.com/docview/1815694684 |
Volume | 104 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbQuMCBsQGi20CehOCUrv6Z5IhgoxpqJaZNTOJg2Y4D0rZ2aloJ8dfzXuxE3TSmiVOU-Dl6sd-zvySfPxPyrgrchjrkmQcwmknPy8zWlmVO2FFdey9lu75iMtXjM3l8rs4TqxLXwkR9iP6DG2ZGO15jglvXHKyJhl6FIZIjYfhFqhbioZNeOQpxjujYHaosWKc7O-IHXcUbM9FjbNTfN2DmOlhtZ5ujTfKj8zOSTC6Gq6Ub-j-3JBz_70Gek2cJhNKPMWq2yKMw2yabCZDSlO7NNnm6plYIZ5Ne4rV5Qb7F_SDSt0T6a341h1hMqzrpvKaz6Jtd0AAIHSpRqBrjnSLb_idFLU2oOotM9OYlOTs6PP00ztL-DJlXOhdZrYV1MN0H4awtecUBaqJCO2MWxlhd5bayUkhrPWAIVnlWll57uKhdFVihxSuyAb6E14SWynFZOQfltSx8cDXcSRcYRqrwLh-QD11fGZ_Ey3EPjUsTZZe5gVY02IoDst9bXkfBjjts3rfd3RvYxQUS3HJlvk-_GC5PR8fTr2PzeUD2ungwKbcbw3KhBLznafBqvy-GrMRfLXYW5iu0yQsc67i6xwaFekp4Sgn-tAHyT4fNdHKIx52HGu6SJ4DsFPJuONsjG8vFKrwB9LR0b9s8-QtAYBk- |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V9gAcWiggFlpwJQSnbNeOnYc4IdqytN1IoK3oAcmyHYdKbXfRPqSKX89MnERbBAhxihKPo7EzY392xt8AvCq9ML7yaeQQjEbSiTwyleGRjc2gqpyTsj5fMSqS4Zk8Plfna_C2PQsT-CG6DTfyjHq8JgenDen9FdbQa9-n6Mg7sEEJvev11OeOO4qQTtzGd6g84y3z7EDstzVvzUUb1K03t4DmKlyt55ujLfjaahrCTC77y4Xtux-_kDj-Z1MewGaDQ9m7YDgPYc1PtmGrwaSs8fj5NtxfISzEu1HH8jp_BJ9CSohmO5FdTK-naI7NwU42rdgkKGdmzCNIx0oMqwaTZxRw_40RnSZWnYRg9PljODs6HL8fRk2KhsipJI2jKomNxRnfx9aYXJQC0SaRtHNucJhNytSURsbSGIcwgpeO57lLHD5MbOl5lsRPYB118U-B5coKWVqL5ZXMnLcVvinJyJJU5mzagzftx9Ku4S-nNBpXOjAvC429qKkXe7DXSX4PnB2_kXldf-9OwMwuKcYtVfpL8UELOR4cFydDfdCDndYgdOPec83TWMW41EtQq72uGB2T_raYiZ8uSSbNaLgT6i8yxNWTYysl6lNbyB8V1sXokK7P_lXwJdwdjken-vRjcfIc7iHQUxSGI_gOrC9mS7-LYGphX9RO8xO0YB1Z |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgkxA8MBggCht4EoKndPVHnORxWlfKRiNAm5jEg2U7Dkhj7dQPCfHXcxc7UTcBQjxFie-is31n_-KcfybkVeW58bXPEgdgNJGOF4mpDUusMIO6dk7KZn_FpFTjM3l8np7HrErcCxP4IboFN4yMZrzGAL-q6v010tBL38fkyNtkU6pBjh49_NRRRyHQEW16R1rkrCWeHfD9VvPaVLSJrfrjGs5cR6vNdDPaIl9aQ0OWyUV_tbR99_MGh-P_1eQBuR9RKD0IbvOQ3PLTbbIVESmN8b7YJvfW6ArhbtJxvC4ekY_hQIi4mEi_zS5n4IxxWyed1XQabDNz6gGigxIF1eDwFNPtv1Ik0wTVaUhFXzwmZ6Oj08NxEg9oSFyqMpHUShgL870X1piCVxywJlK0M2ZgkFVVZiojhTTGAYhglWNF4ZSDh8pWnuVKPCEbYIt_SmiRWi4ra6G8lrnztoY3qRz9KM2dzXrkTdtX2kX2cjxE47sOvMtcQytqbMUe2eskrwJjx29kXjfd3QmY-QVmuGWp_ly-1VyeDo7Lk7Ee9shO6w86BvdCs0ykAj70FFi11xVDWOK_FjP1sxXKZDkOdjz9iwwy9RRQSwn2NA7yR4N1OTnC67N_FXxJ7nwYjvT7d-XJc3IXUF6KOTic7ZCN5XzldwFJLe2LJmR-AW3VHBE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+homogenization+of+nonlinear+elastic+materials+using+neural+networks&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Le%2C+BA&rft.au=Yvonnet%2C+J&rft.au=He%2C+Q-C&rft.date=2015-12-21&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=104&rft.issue=12&rft.spage=1061&rft.epage=1084&rft_id=info:doi/10.1002%2Fnme.4953&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon |