Computational homogenization of nonlinear elastic materials using neural networks

Summary In this work, a decoupled computational homogenization method for nonlinear elastic materials is proposed using neural networks. In this method, the effective potential is represented as a response surface parameterized by the macroscopic strains and some microstructural parameters. The disc...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical methods in engineering Vol. 104; no. 12; pp. 1061 - 1084
Main Authors Le, B. A., Yvonnet, J., He, Q.-C.
Format Journal Article
LanguageEnglish
Published Bognor Regis Blackwell Publishing Ltd 21.12.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary In this work, a decoupled computational homogenization method for nonlinear elastic materials is proposed using neural networks. In this method, the effective potential is represented as a response surface parameterized by the macroscopic strains and some microstructural parameters. The discrete values of the effective potential are computed by finite element method through random sampling in the parameter space, and neural networks are used to approximate the surface response and to derive the macroscopic stress and tangent tensor components. We show through several numerical convergence analyses that smooth functions can be efficiently evaluated in parameter spaces with dimension up to 10, allowing to consider three‐dimensional representative volume elements and an explicit dependence of the effective behavior on microstructural parameters like volume fraction. We present several applications of this technique to the homogenization of nonlinear elastic composites, involving a two‐scale example of heterogeneous structure with graded nonlinear properties. Copyright © 2015 John Wiley & Sons, Ltd.
AbstractList In this work, a decoupled computational homogenization method for nonlinear elastic materials is proposed using neural networks. In this method, the effective potential is represented as a response surface parameterized by the macroscopic strains and some microstructural parameters. The discrete values of the effective potential are computed by finite element method through random sampling in the parameter space, and neural networks are used to approximate the surface response and to derive the macroscopic stress and tangent tensor components. We show through several numerical convergence analyses that smooth functions can be efficiently evaluated in parameter spaces with dimension up to 10, allowing to consider three-dimensional representative volume elements and an explicit dependence of the effective behavior on microstructural parameters like volume fraction. We present several applications of this technique to the homogenization of nonlinear elastic composites, involving a two-scale example of heterogeneous structure with graded nonlinear properties.
In this work, a decoupled computational homogenization method for nonlinear elastic materials is proposed using neural networks. In this method, the effective potential is represented as a response surface parameterized by the macroscopic strains and some microstructural parameters. The discrete values of the effective potential are computed by finite element method through random sampling in the parameter space, and neural networks are used to approximate the surface response and to derive the macroscopic stress and tangent tensor components. We show through several numerical convergence analyses that smooth functions can be efficiently evaluated in parameter spaces with dimension up to 10, allowing to consider three‐dimensional representative volume elements and an explicit dependence of the effective behavior on microstructural parameters like volume fraction. We present several applications of this technique to the homogenization of nonlinear elastic composites, involving a two‐scale example of heterogeneous structure with graded nonlinear properties. Copyright © 2015 John Wiley & Sons, Ltd.
Summary In this work, a decoupled computational homogenization method for nonlinear elastic materials is proposed using neural networks. In this method, the effective potential is represented as a response surface parameterized by the macroscopic strains and some microstructural parameters. The discrete values of the effective potential are computed by finite element method through random sampling in the parameter space, and neural networks are used to approximate the surface response and to derive the macroscopic stress and tangent tensor components. We show through several numerical convergence analyses that smooth functions can be efficiently evaluated in parameter spaces with dimension up to 10, allowing to consider three-dimensional representative volume elements and an explicit dependence of the effective behavior on microstructural parameters like volume fraction. We present several applications of this technique to the homogenization of nonlinear elastic composites, involving a two-scale example of heterogeneous structure with graded nonlinear properties. Copyright © 2015John Wiley & Sons, Ltd.
Summary In this work, a decoupled computational homogenization method for nonlinear elastic materials is proposed using neural networks. In this method, the effective potential is represented as a response surface parameterized by the macroscopic strains and some microstructural parameters. The discrete values of the effective potential are computed by finite element method through random sampling in the parameter space, and neural networks are used to approximate the surface response and to derive the macroscopic stress and tangent tensor components. We show through several numerical convergence analyses that smooth functions can be efficiently evaluated in parameter spaces with dimension up to 10, allowing to consider three‐dimensional representative volume elements and an explicit dependence of the effective behavior on microstructural parameters like volume fraction. We present several applications of this technique to the homogenization of nonlinear elastic composites, involving a two‐scale example of heterogeneous structure with graded nonlinear properties. Copyright © 2015 John Wiley & Sons, Ltd.
Author He, Q.-C.
Le, B. A.
Yvonnet, J.
Author_xml – sequence: 1
  givenname: B. A.
  surname: Le
  fullname: Le, B. A.
  organization: Laboratoire Modélisation et Simulation Multi Echelle, Université Paris-Est, MSME UMR 8208 CNRS, 5 Bd Descartes77454Marne-la-Vallée Cedex 2, France
– sequence: 2
  givenname: J.
  surname: Yvonnet
  fullname: Yvonnet, J.
  email: Correspondence to: Julien Yvonnet, Université Paris-Est, 5 Bd Descartes, 77454 Marne-la-Vallée Cedex, France., Julien.yvonnet@univ-paris-est.fr
  organization: Laboratoire Modélisation et Simulation Multi Echelle, Université Paris-Est, MSME UMR 8208 CNRS, 5 Bd Descartes77454Marne-la-Vallée Cedex 2, France
– sequence: 3
  givenname: Q.-C.
  surname: He
  fullname: He, Q.-C.
  organization: Laboratoire Modélisation et Simulation Multi Echelle, Université Paris-Est, MSME UMR 8208 CNRS, 5 Bd Descartes77454Marne-la-Vallée Cedex 2, France
BookMark eNqF0d1rFDEQAPAgFbxWwT9hwRdf9kw2X5tHOfthrVeEio9hLjtX0-4mZ7JLrX99c15pUSw-Dcz8Zhhm9sleiAEJec3onFHavAsDzoWR_BmZMWp0TRuq98islEwtTctekP2cryhlTFI-I18WcdhMI4w-Buir73GIlxj8r9-JKq6rMr73ASFV2EMevasGGDF56HM1ZR8uq4BTKq0Bx5uYrvNL8nxdivjqPh6Qr0eHF4uT-uz8-OPi_VntpNK8XisOq1Zy5CsA03SNYYoK2TAGrVaq09CB4ALANUKwzjFjnHIlqVYdslbxA_J2N3eT4o8J82gHnx32PQSMU7asZVIZoVrxf6p1S5k2jSz0zV_0Kk6pnGaruOSiLKeLmu-USzHnhGvr_O6GYwLfW0bt9hm2PMNun_G4wUPDJvkB0u2_aL2jN77H2yedXX4-_NP7POLPBw_p2pZNtbTflse2ERf0dPnpxH7gdxJ1qdQ
CODEN IJNMBH
CitedBy_id crossref_primary_10_1007_s00366_022_01693_8
crossref_primary_10_1016_j_cma_2023_116131
crossref_primary_10_1002_nme_7239
crossref_primary_10_1016_j_finel_2023_104069
crossref_primary_10_1142_S1758825122500831
crossref_primary_10_1016_j_jmps_2020_103984
crossref_primary_10_1016_j_jcp_2016_01_040
crossref_primary_10_1038_s41524_022_00753_3
crossref_primary_10_1016_j_cma_2016_09_019
crossref_primary_10_1186_s40323_020_00175_0
crossref_primary_10_1016_j_ijmecsci_2023_108897
crossref_primary_10_1016_j_jcp_2020_110010
crossref_primary_10_1007_s00339_023_06629_7
crossref_primary_10_1038_s41746_019_0193_y
crossref_primary_10_1016_j_cma_2019_112724
crossref_primary_10_1016_j_compscitech_2023_110388
crossref_primary_10_1016_j_finel_2023_104053
crossref_primary_10_1016_j_ijmecsci_2024_109801
crossref_primary_10_1016_j_jmps_2022_104828
crossref_primary_10_1115_1_4044257
crossref_primary_10_1016_j_crme_2019_11_009
crossref_primary_10_1016_j_mbs_2020_108411
crossref_primary_10_1007_s00466_022_02183_w
crossref_primary_10_1016_j_cma_2020_113008
crossref_primary_10_3390_app9245458
crossref_primary_10_1145_3618396
crossref_primary_10_1016_j_cma_2018_09_020
crossref_primary_10_1002_nme_7473
crossref_primary_10_1016_j_cma_2024_117725
crossref_primary_10_1007_s00466_018_1655_9
crossref_primary_10_1007_s00466_024_02588_9
crossref_primary_10_1016_j_euromechsol_2017_11_007
crossref_primary_10_1007_s00419_022_02213_2
crossref_primary_10_1016_j_cma_2020_113362
crossref_primary_10_1016_j_compgeo_2024_106294
crossref_primary_10_1007_s00371_024_03411_5
crossref_primary_10_1007_s40430_024_04750_z
crossref_primary_10_1016_j_cma_2020_113482
crossref_primary_10_1016_j_cma_2020_113480
crossref_primary_10_1016_j_compstruct_2019_111505
crossref_primary_10_1016_j_cma_2021_113756
crossref_primary_10_1016_j_compstruct_2023_117359
crossref_primary_10_1016_j_cma_2020_113234
crossref_primary_10_1002_nme_6058
crossref_primary_10_1007_s00466_018_1643_0
crossref_primary_10_1007_s00521_019_04480_7
crossref_primary_10_1016_j_jcp_2020_109491
crossref_primary_10_1002_pamm_202200203
crossref_primary_10_1016_j_cma_2024_116745
crossref_primary_10_1007_s00466_017_1478_0
crossref_primary_10_1002_nme_6957
crossref_primary_10_1007_s00158_021_02907_1
crossref_primary_10_1557_mrs_2016_165
crossref_primary_10_1016_j_cma_2024_117278
crossref_primary_10_1016_j_ijmecsci_2024_109824
crossref_primary_10_3390_polym9100519
crossref_primary_10_1016_j_ijmecsci_2022_107858
crossref_primary_10_1016_j_cma_2021_113886
crossref_primary_10_1002_nme_7136
crossref_primary_10_1002_nme_5751
crossref_primary_10_1016_j_cma_2024_117708
crossref_primary_10_1177_07316844241292694
crossref_primary_10_3390_ma15248878
crossref_primary_10_1016_j_jmrt_2024_05_023
crossref_primary_10_1007_s00419_022_02170_w
crossref_primary_10_1016_j_compstruc_2023_107042
crossref_primary_10_1016_j_compstruc_2023_107162
crossref_primary_10_1016_j_compstruct_2023_116837
crossref_primary_10_1016_j_ijsolstr_2024_112946
crossref_primary_10_1016_j_compstruct_2020_112118
crossref_primary_10_1016_j_compositesb_2021_109152
crossref_primary_10_1007_s00466_022_02195_6
crossref_primary_10_1016_j_cma_2020_113299
crossref_primary_10_1016_j_cma_2021_114300
crossref_primary_10_1002_nme_7203
crossref_primary_10_1016_j_compscitech_2024_110516
crossref_primary_10_1039_D0SM00488J
crossref_primary_10_1016_j_commatsci_2019_02_042
crossref_primary_10_1007_s00466_021_02090_6
crossref_primary_10_1016_j_euromechsol_2025_105612
crossref_primary_10_1007_s00466_023_02434_4
crossref_primary_10_1016_j_commatsci_2020_109850
crossref_primary_10_1007_s41939_020_00087_x
crossref_primary_10_1016_j_compstruc_2023_106982
crossref_primary_10_1016_j_finel_2023_103956
crossref_primary_10_1061_JENMDT_EMENG_6945
crossref_primary_10_1016_j_jmps_2022_105043
crossref_primary_10_1016_j_cma_2024_116837
crossref_primary_10_1016_j_mtcomm_2024_108268
crossref_primary_10_1007_s13160_020_00423_1
crossref_primary_10_1016_j_compstruc_2021_106505
crossref_primary_10_1007_s00466_020_01954_7
crossref_primary_10_1016_j_camwa_2023_09_036
crossref_primary_10_3390_mca24020040
crossref_primary_10_1016_j_compstruc_2021_106623
crossref_primary_10_1016_j_jcp_2024_113710
crossref_primary_10_1016_j_cma_2019_112657
crossref_primary_10_1002_nme_6925
crossref_primary_10_1016_j_cma_2022_115384
crossref_primary_10_1016_j_addma_2022_103237
crossref_primary_10_1016_j_jcp_2016_10_070
crossref_primary_10_1002_pamm_202300052
crossref_primary_10_1039_D0MH01451F
crossref_primary_10_1186_s40323_020_00185_y
crossref_primary_10_1115_1_4047036
crossref_primary_10_3390_app10175917
crossref_primary_10_3390_computation13030068
crossref_primary_10_1016_j_mechmat_2021_104156
crossref_primary_10_1007_s11831_016_9203_2
crossref_primary_10_1002_nme_6493
crossref_primary_10_1002_nme_6012
crossref_primary_10_1016_j_cma_2017_11_005
crossref_primary_10_1007_s11709_020_0691_7
crossref_primary_10_1016_j_cma_2023_116522
crossref_primary_10_1016_j_ijplas_2024_104072
crossref_primary_10_1007_s11831_016_9170_7
crossref_primary_10_1016_j_euromechsol_2023_105157
crossref_primary_10_1016_j_euromechsol_2021_104384
crossref_primary_10_1145_3618325
crossref_primary_10_1016_j_compositesb_2020_108591
crossref_primary_10_1016_j_eswa_2022_118039
crossref_primary_10_1016_j_jmps_2023_105245
crossref_primary_10_1177_1081286518823834
crossref_primary_10_1016_j_jmps_2023_105363
crossref_primary_10_1016_j_finel_2019_07_001
crossref_primary_10_1016_j_tws_2024_112058
crossref_primary_10_1016_j_cma_2022_115248
crossref_primary_10_1007_s11831_023_10009_y
crossref_primary_10_1016_j_commatsci_2020_109629
crossref_primary_10_1016_j_mechrescom_2019_103443
crossref_primary_10_1016_j_cma_2024_116932
crossref_primary_10_1016_j_dt_2023_03_012
crossref_primary_10_1002_nme_7211
crossref_primary_10_1088_1361_651X_ad8ad7
crossref_primary_10_1051_matecconf_201821004030
crossref_primary_10_1016_j_cma_2025_117867
crossref_primary_10_1016_j_cma_2023_116098
crossref_primary_10_1016_j_euromechsol_2024_105242
crossref_primary_10_1002_nme_7635
crossref_primary_10_1016_j_compscitech_2024_110951
crossref_primary_10_1063_5_0051062
crossref_primary_10_1016_j_cma_2021_114354
crossref_primary_10_1016_j_actbio_2022_03_037
crossref_primary_10_1016_j_cma_2019_112791
crossref_primary_10_1093_jom_ufac037
crossref_primary_10_32604_cmc_2020_012911
crossref_primary_10_1007_s00466_021_02009_1
crossref_primary_10_1016_j_ijsolstr_2023_112226
crossref_primary_10_1002_nag_3196
crossref_primary_10_1007_s00366_023_01813_y
crossref_primary_10_1016_j_tws_2022_110267
crossref_primary_10_1016_j_neucom_2016_09_032
crossref_primary_10_1038_s41563_020_00913_0
crossref_primary_10_1016_j_jcpx_2020_100083
crossref_primary_10_7498_aps_73_20240482
crossref_primary_10_1007_s11831_024_10199_z
crossref_primary_10_1016_j_jmps_2019_03_004
crossref_primary_10_1002_pamm_202000248
crossref_primary_10_1016_j_cma_2021_114476
crossref_primary_10_1016_j_cma_2025_117747
crossref_primary_10_1016_j_cma_2024_117446
crossref_primary_10_1016_j_cma_2023_116672
crossref_primary_10_1016_j_cma_2019_112693
crossref_primary_10_1016_j_euromechsol_2020_103995
crossref_primary_10_1007_s11831_018_9301_4
crossref_primary_10_1016_j_mechmat_2024_105090
crossref_primary_10_1016_j_compositesa_2024_108287
crossref_primary_10_1016_j_compstruc_2022_106774
crossref_primary_10_1017_aer_2024_104
crossref_primary_10_1038_s41598_017_15601_4
crossref_primary_10_2139_ssrn_4179173
crossref_primary_10_1007_s11831_024_10196_2
crossref_primary_10_3390_encyclopedia2020072
crossref_primary_10_1016_j_ijmecsci_2023_108952
crossref_primary_10_1016_j_cma_2021_113914
crossref_primary_10_1016_j_eml_2024_102260
crossref_primary_10_1016_j_mechmat_2023_104707
crossref_primary_10_3390_mca28040091
crossref_primary_10_1016_j_cma_2025_117735
crossref_primary_10_1007_s12205_022_1918_z
crossref_primary_10_1016_j_compstruct_2024_118570
crossref_primary_10_1007_s00466_022_02260_0
crossref_primary_10_1145_3386569_3392412
crossref_primary_10_1016_j_jcp_2020_110072
crossref_primary_10_1016_j_ijsolstr_2022_111769
crossref_primary_10_1016_j_jmps_2021_104703
crossref_primary_10_1145_3654662
crossref_primary_10_1016_j_cma_2020_112898
crossref_primary_10_1016_j_ijsolstr_2023_112123
crossref_primary_10_1016_j_mtcomm_2023_107659
crossref_primary_10_3390_ma17010154
crossref_primary_10_1007_s11831_022_09795_8
crossref_primary_10_1016_j_cma_2020_112893
crossref_primary_10_1016_j_compstruct_2023_117187
crossref_primary_10_1002_nme_6565
crossref_primary_10_1016_j_cma_2021_114217
crossref_primary_10_1016_j_cma_2021_113924
crossref_primary_10_1016_j_cma_2024_117309
crossref_primary_10_1002_nme_6869
crossref_primary_10_1002_nme_6505
crossref_primary_10_1016_j_cma_2018_11_026
crossref_primary_10_1016_j_cma_2021_114030
crossref_primary_10_1007_s00466_021_02061_x
crossref_primary_10_1016_j_ijnonlinmec_2024_104950
crossref_primary_10_1088_1361_651X_ac88e8
crossref_primary_10_1016_j_engappai_2024_108622
crossref_primary_10_3390_ma15020605
crossref_primary_10_2118_208885_PA
crossref_primary_10_1016_j_cma_2019_06_003
crossref_primary_10_1007_s00466_019_01716_0
crossref_primary_10_1016_j_ijplas_2022_103484
crossref_primary_10_1016_j_engfracmech_2024_110120
crossref_primary_10_1115_1_4045040
crossref_primary_10_1016_j_compstruc_2020_106474
crossref_primary_10_1002_nme_6871
crossref_primary_10_1002_nme_6992
crossref_primary_10_1016_j_cma_2023_116569
crossref_primary_10_1007_s11340_023_00977_4
crossref_primary_10_1016_j_cma_2022_115636
crossref_primary_10_1016_j_tws_2023_111394
crossref_primary_10_1016_j_commatsci_2022_111493
crossref_primary_10_1007_s42405_022_00547_3
crossref_primary_10_1016_j_cma_2021_114160
crossref_primary_10_1016_j_compstruct_2021_114808
crossref_primary_10_1080_15376494_2024_2439557
crossref_primary_10_1016_j_cma_2023_116463
crossref_primary_10_1016_j_jrmge_2024_02_009
crossref_primary_10_1016_j_cma_2023_116467
crossref_primary_10_1016_j_cma_2024_117532
crossref_primary_10_1016_j_cma_2017_03_037
crossref_primary_10_1007_s00466_019_01728_w
crossref_primary_10_3390_ma14112875
crossref_primary_10_1016_j_ijplas_2019_11_003
crossref_primary_10_1016_j_pmatsci_2018_01_005
crossref_primary_10_1002_nme_7390
crossref_primary_10_1016_j_ijmecsci_2022_107756
crossref_primary_10_1016_j_ijplas_2019_05_008
crossref_primary_10_1016_j_cma_2020_112913
crossref_primary_10_1016_j_cma_2025_117827
crossref_primary_10_1115_1_4034024
crossref_primary_10_1016_j_compstruct_2020_112658
crossref_primary_10_1016_j_eml_2024_102170
crossref_primary_10_1016_j_cma_2024_117085
crossref_primary_10_1007_s00158_023_03648_z
crossref_primary_10_1016_j_ijengsci_2021_103522
crossref_primary_10_1016_j_cma_2021_113952
crossref_primary_10_1007_s00466_016_1333_8
crossref_primary_10_1016_j_cma_2023_115930
crossref_primary_10_1016_j_cma_2021_114128
crossref_primary_10_3389_fmats_2019_00110
crossref_primary_10_1016_j_ijmecsci_2023_108232
crossref_primary_10_3390_polym10060644
crossref_primary_10_1007_s00419_024_02664_9
crossref_primary_10_1002_nme_6634
crossref_primary_10_1016_j_cma_2024_117192
crossref_primary_10_1016_j_euromechsol_2019_103874
crossref_primary_10_1016_j_cma_2024_117191
crossref_primary_10_1016_j_eml_2024_102188
crossref_primary_10_1016_j_compstruc_2022_106742
crossref_primary_10_1007_s00466_025_02613_5
crossref_primary_10_3934_nhm_2025012
crossref_primary_10_1016_j_cma_2022_114798
crossref_primary_10_1007_s11831_020_09507_0
crossref_primary_10_1016_j_cma_2022_115768
crossref_primary_10_1002_nme_7178
crossref_primary_10_1007_s00707_021_03125_y
Cites_doi 10.1016/S0045-7825(02)00287-6
10.1016/j.commatsci.2007.11.001
10.1146/annurev.pc.45.100194.002255
10.1016/j.cma.2007.03.017
10.1016/S0020-7683(03)00346-9
10.1016/j.jcp.2006.09.019
10.1002/cnm.1053
10.1016/S0045-7825(97)00215-6
10.1016/S0893-6080(97)00097-X
10.1016/S0098-1354(00)00587-1
10.1029/JB076i008p01905
10.1016/j.susc.2009.12.025
10.1023/A:1019188517934
10.1016/0021-9045(81)90103-9
10.1098/rspa.1988.0035
10.1002/nme.541
10.1016/j.buildenv.2009.08.016
10.1016/S0009-2614(01)01381-1
10.1063/1.2746846
10.1016/j.compscitech.2007.10.032
10.1007/s00466-011-0646-x
10.1016/j.cma.2011.06.012
10.1063/1.3021471
10.1007/s00466-006-0097-y
10.1016/j.cma.2009.03.017
10.1007/BF02551274
10.1063/1.474210
10.1063/1.3231686
10.1016/S0045-7825(01)00179-7
10.1016/S0927-0256(99)00077-4
10.1016/j.cma.2012.10.016
10.1016/j.cma.2014.12.018
10.1016/j.jnnfm.2006.07.007
10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
10.1016/j.compscitech.2012.12.012
10.1002/nme.4413
10.1063/1.2831790
10.1002/nme.4755
10.1063/1.2387950
10.1063/1.2336223
10.1016/j.cpc.2009.05.022
10.1615/IntJMultCompEng.2013005374
10.1016/j.cma.2003.12.073
10.1002/nme.4293
10.1007/s11831-013-9080-x
10.1016/0022-5096(63)90036-X
10.1007/s10114-013-1730-2
10.1016/S0045-7825(98)00227-8
10.1021/es801372q
ContentType Journal Article
Copyright Copyright © 2015 John Wiley & Sons, Ltd.
Copyright © 2015John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2015 John Wiley & Sons, Ltd.
– notice: Copyright © 2015John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7QO
P64
DOI 10.1002/nme.4953
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Civil Engineering Abstracts
Engineering Research Database
CrossRef
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1097-0207
EndPage 1084
ExternalDocumentID 3873892821
10_1002_nme_4953
NME4953
ark_67375_WNG_24T0JNKH_D
Genre article
GrantInformation_xml – fundername: Institut Universitaire de France (IUF)
– fundername: Publishing Arts Research Council
GroupedDBID -~X
.3N
.4S
.DC
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AEUQT
AFPWT
RWI
RWS
WRC
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
7SC
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
JQ2
KR7
L7M
L~C
L~D
7QO
P64
ID FETCH-LOGICAL-c5673-f63ab853e3baa92d2916045211a8766d7ada434aac2441dc199c6cada6bde1863
IEDL.DBID DR2
ISSN 0029-5981
IngestDate Thu Jul 10 23:14:43 EDT 2025
Fri Jul 11 05:16:50 EDT 2025
Fri Jul 25 12:31:13 EDT 2025
Tue Jul 01 04:32:01 EDT 2025
Thu Apr 24 23:05:05 EDT 2025
Wed Jan 22 16:42:42 EST 2025
Wed Mar 05 09:12:34 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5673-f63ab853e3baa92d2916045211a8766d7ada434aac2441dc199c6cada6bde1863
Notes Institut Universitaire de France (IUF)
istex:58AFE0E33105FC574380143043389CA3800422C9
ark:/67375/WNG-24T0JNKH-D
ArticleID:NME4953
Publishing Arts Research Council
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/nme.4953
PQID 1735348767
PQPubID 996376
PageCount 24
ParticipantIDs proquest_miscellaneous_1815694684
proquest_miscellaneous_1778017925
proquest_journals_1735348767
crossref_citationtrail_10_1002_nme_4953
crossref_primary_10_1002_nme_4953
wiley_primary_10_1002_nme_4953_NME4953
istex_primary_ark_67375_WNG_24T0JNKH_D
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 21 December 2015
PublicationDateYYYYMMDD 2015-12-21
PublicationDate_xml – month: 12
  year: 2015
  text: 21 December 2015
  day: 21
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal for numerical methods in engineering
PublicationTitleAlternate Int. J. Numer. Meth. Engng
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Manzhos S, Carrington T. Using neural networks, optimized coordinates, and high-dimensional model representations to obtain a vinyl bromide potential surface. The Journal of Chemical Physics 2008; 129: 224104.
Temizer I, Zohdi TI. A numerical method for homogenization in non-linear elasticity. Computational Mechanics 2007; 40(2): 281-298.
Carter S, Culik SJ, Bowman JM. Vibrational self-consistent field method for manymode systems: a new approach and application to the vibrations of CO adsorbed on Cu(100). The Journal of Chemical Physics 1997; 107:10458.
Papadrakakis M, Lagaros ND, Tsompanakis Y. Structural optimization using evolution strategies and neural networks. Computer Methods in Applied Mechanics and Engineering 1998; 156:309-333.
Carter S, Handy NC. On the representation of potential energy surfaces of polyatomic molecules in normal coordinates. Chemical Physics Letters 2002; 352:1-7.
Kouznetsova V, Geers MGD, Brekelmans WAM. Multi-scale constitutive modeling of heterogeneous materials with gradient enhanced computational homogenization scheme. International Journal for Numerical Methods in Engineering 2002; 54:1235-1260.
Michel J-C, Suquet P. Nonuniform transformation field analysis. International Journal of Solids and Structures 2003; 40(25): 6937-6955.
Clément A, Soize C, Yvonnet J. Computational nonlinear stochastic homogenization using a non-concurrent multiscale approach for hyperelastic heterogenous microstructures analysis. International Journal for Numerical Methods in Engineering 2012; 91(8): 799-824.
Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 1999; 46(1): 131-156.
Yvonnet J, He Q. -C.. The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains. Journal of Computational Physics 2007; 223:341-368.
Tran AB, Yvonnet J, He Q-C, Toulemonde C, Sanahuja J. A simple computational homogenization method for structures made of heterogeneous linear viscoelastic materials. Computer Methods in Applied Mechanics and Engineering 2011; 200(45-46): 2956-2970.
Augusto C, Nascimento O, Giudici R, Guardani R. Neural network based approach for optimization of industrial chemical processes. Computers & Chemical Engineering 2000; 24:2303-2314.
Hill R. Elastic properties of reinforced solids: some theoretical principles. Journal of the Mechanics and Physics of Solids 1963; 11:357-372.
Getino C, Sumpter BG, Noid DW. Theory and applications of neural computing in chemical science. Annual Review of Physical Chemistry 1994; 45:439.
Renard J, Marmonier MF. Etude de l'initiation de l'endommagement dans la matrice d'un matériau composite par une méthode d'homogénéisation. Aerospace Science and Technology 1987; 9:36-51.
Yvonnet J, Monteiro E, He Q-C. Computational homogenization method and reduced database model for hyperelastic heterogeneous structures. International Journal for Multiscale Computational Engineering 2013; 11(3): 201-225.
Terada K, Kikuchi N. A class of general algorithms for multi-scale analysis of heterogeneous media. Computer Methods in Applied Mechanics and Engineering 2001; 190:5427-5464.
Yvonnet J, Gonzalez D, He Q-C. Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials. Computer Methods in Applied Mechanics and Engineering 2009; 198:2723-2737.
Rabitz H, Alis OF. General foundations of high-dimensional model representations. Journal of Mathematical Chemistry 1999; 25:197-233.
Heyberger C, Boucard P-A, Néron D. Multiparametric analysis within the proper generalized decomposition framework. Computational Mechanics 2012; 49(3): 277-289.
Michel J-C, Moulinec H, Suquet P. Effective properties of composite materials with periodic microstructure: a computational approach. Computer Methods in Applied Mechanics and Engineering 1999; 172:109-143.
Kasiri MB, Aleboyeh H, Aleboyeh A. Modeling and optimization of heterogeneous photo-fenton process with response surface methodology and artificial neural networks. Environmental Science & Technology 2008; 42:7970-7975.
Mosby M, Matous K. Hierarchically parallel coupled finite strain multiscale solver for modeling heterogeneous layers. International Journal for Numerical Methods in Engineering 2015; 102:748-765.
Manzhos S, Carrington T. Using neural networks to represent potential surfaces as sums of products. Journal of Chemical Physics ABR. ISO 2006; 125:194105.
Feyel F. Multiscale FE2 elastoviscoplastic analysis of composite structure. Computational Materials Science 1999; 16(1-4): 433-454.
Goodrich RK, Gustafson KE. Weighted trigonometric approximation and inner-outer functions on higher dimensional euclidean spaces. Journal of Approximation Theory 1981; 31:362-382.
Manzhos S, Yamashita Koichi, Carrington T. Fitting sparse multidimensional data with low-dimensional terms. Computer Physics Communications 2009; 180:2002-2012.
Kouznetsova VG, Geers MGD, Brekelmans WAM. Multi-scale second order computational homogenization of multi-phase materials: a nested finite element solution strategy. Computer Methods in Applied Mechanics and Engineering 2004; 193:5525-5550.
Xia L, Breitkopf P. Multiscale structural topology optimization with an approimate constitutive model for local material microstructure. Computer Methods in Applied Mechanics and Engineering 2015; 286:147-167.
Manzhos S, Carrington T. Using redundant coordinates to represent potential energy surfaces with lower-dimensional functions. The Journal of Chemical Physics 2007; 127:014103.
Ponte-Castañeda P. On the overall properties of nonlinearly viscous composites. Proceedings of the Royal Society of London A 1988; 416:217-244.
Chowdhury R, Rao BN, Prasad AM. High dimensional model representation for piece-wise continuous function approximation. Communications in Numerical Methods in Engineering 2008; 24:1587-1609.
Dawes R, Thompson DL, Wagner AF, Minkoff M. Interpolating moving least-squares methods for fitting potential energy surfaces: a strategy for efficient automatic data point placement in high dimensions. The Journal of Chemical Physics 2008; 128(8): 084107.
Manzhos S, Carrington T. A random-sampling high dimensional model representation neural network for building potential energy surfaces. The Journal of Chemical Physics 2006; 125:084109.
Manzhos S, Yamashita K. A model for the dissociative adsorption of N2O on Cu(1 0 0) using a continuous potential energy surface. Surface Science 2010; 604:554-560.
Fritzen F, Boehlke T. Reduced basis homogenization of viscoelastic composites. Composites Science and Technology 2013; 76:84-91.
Clément A, Soize C, Yvonnet J. Uncertainty quantification in computational stochastic multiscale analysis of nonlinear elastic materials. Computer Methods in Applied Mechanics and Engineering 2013; 254:61-82.
Monteiro E, Yvonnet J, He Q-C. Computational homogenization for nonlinear conduction in heterogeneous materials using model reduction. Computational Materials Science 2008; 42:704-712.
Chinesta F, Leygue A, Bordeu F, Aguado JV, Cueto E. PGD-based computational vademecum for efficient design optimization and control. Archives of Computational Methods in Engineering 2013; 20(1): 31-59.
Sobol IM. Sensitivity analysis for non-linear mathematical models. Mathematical Modeling and Computational 1993; 1:407-414.
Hardy RL. Multiquadric equations of topography and other irregular surfaces. In : Journal of Geophysical Research 1971; 76(8): 1905-1915.
Temizer I, Wriggers P. An adaptive method for homogenization in orthotropic nonlinear elasticity. Computer Methods in Applied Mechanics and Engineering 2007; 35-36:3409-3423.
Ammar A, Mokdad B, Chinesta F, Keunings R. A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. Journal of Non-Newtonian Fluid Mechanics 2006; 139(3): 153-176.
Papadrakakis M, Lagaros ND. Reliability-based structural optimization using neural networks and Monte Carlo simulation. Computer Methods in Applied Mechanics and Engineering 2002; 191:3491-3507.
Ammar A, Cueto E, Chinesta F. On incremental proper generalized decomposition solution of parametric uncoupled models defined in evolving domains. International Journal for Numerical Methods in Engineering 2013; 93:887-904.
Magnier L, Haghighat F. Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and artificial neural network. Building and Environment 2010; 45:739-746.
Scarselli F, Tsoi AC. Universal approximation using feedforward neural networks: a survey of some existing methods and some new results. Neural Networks 1998; 11(1): 15-37.
Roussette S, Michel JC, Suquet P. Non uniform transformation field analysis of elastic-viscoplastic composites. Composites Science and Technology 2009;:22-27.
Yu DS. Approximation by neural networks with sigmoidal functions. Acta Mathematica Sinica 2013; 29(10): 2013-2026.
Malshe M, Pukrittayakamee A, Hagan LM, Sukkapatnam S, Komanduri R. Accurate prediction of higher-level electronic structure energies for large databases susing neural networks, Hartree-Fock energies, and small subsets of the database. The Journal of Chemical Physics 2009; 131:124127.
Cybenko G. Approximations by superpositions of sigmoidal functions. Mathematics of Control, Signals, and Systems 1989; 2(4): 303-314.
2013; 29
2007; 223
2002; 191
1987; 9
2002; 352
2015; 102
1999; 172
2002; 54
2013; 20
2009; 198
1999; 46
2006; 139
1998; 156
2007; 35–36
1997; 107
2013; 11
1999; 16
1
2008; 24
2003; 40
1988; 416
2011; 200
1981; 31
1998; 11
2006; 125
1989; 2
2007; 127
2010; 604
2009; 180
2000; 24
2015; 286
1999; 25
2009
1994; 45
2013; 93
2008; 129
2008; 128
2009; 131
2010; 45
2012; 91
1971; 76
1963; 11
2001; 190
2013; 76
2004; 193
2013; 254
2007; 40
2012; 49
2008; 42
e_1_2_8_28_1
Sobol IM (e_1_2_8_40_1); 1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_18_1
e_1_2_8_39_1
Renard J (e_1_2_8_2_1) 1987; 9
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – reference: Mosby M, Matous K. Hierarchically parallel coupled finite strain multiscale solver for modeling heterogeneous layers. International Journal for Numerical Methods in Engineering 2015; 102:748-765.
– reference: Manzhos S, Carrington T. Using redundant coordinates to represent potential energy surfaces with lower-dimensional functions. The Journal of Chemical Physics 2007; 127:014103.
– reference: Carter S, Culik SJ, Bowman JM. Vibrational self-consistent field method for manymode systems: a new approach and application to the vibrations of CO adsorbed on Cu(100). The Journal of Chemical Physics 1997; 107:10458.
– reference: Feyel F. Multiscale FE2 elastoviscoplastic analysis of composite structure. Computational Materials Science 1999; 16(1-4): 433-454.
– reference: Dawes R, Thompson DL, Wagner AF, Minkoff M. Interpolating moving least-squares methods for fitting potential energy surfaces: a strategy for efficient automatic data point placement in high dimensions. The Journal of Chemical Physics 2008; 128(8): 084107.
– reference: Manzhos S, Carrington T. A random-sampling high dimensional model representation neural network for building potential energy surfaces. The Journal of Chemical Physics 2006; 125:084109.
– reference: Cybenko G. Approximations by superpositions of sigmoidal functions. Mathematics of Control, Signals, and Systems 1989; 2(4): 303-314.
– reference: Carter S, Handy NC. On the representation of potential energy surfaces of polyatomic molecules in normal coordinates. Chemical Physics Letters 2002; 352:1-7.
– reference: Michel J-C, Suquet P. Nonuniform transformation field analysis. International Journal of Solids and Structures 2003; 40(25): 6937-6955.
– reference: Kasiri MB, Aleboyeh H, Aleboyeh A. Modeling and optimization of heterogeneous photo-fenton process with response surface methodology and artificial neural networks. Environmental Science & Technology 2008; 42:7970-7975.
– reference: Malshe M, Pukrittayakamee A, Hagan LM, Sukkapatnam S, Komanduri R. Accurate prediction of higher-level electronic structure energies for large databases susing neural networks, Hartree-Fock energies, and small subsets of the database. The Journal of Chemical Physics 2009; 131:124127.
– reference: Chowdhury R, Rao BN, Prasad AM. High dimensional model representation for piece-wise continuous function approximation. Communications in Numerical Methods in Engineering 2008; 24:1587-1609.
– reference: Hill R. Elastic properties of reinforced solids: some theoretical principles. Journal of the Mechanics and Physics of Solids 1963; 11:357-372.
– reference: Yvonnet J, He Q. -C.. The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains. Journal of Computational Physics 2007; 223:341-368.
– reference: Fritzen F, Boehlke T. Reduced basis homogenization of viscoelastic composites. Composites Science and Technology 2013; 76:84-91.
– reference: Terada K, Kikuchi N. A class of general algorithms for multi-scale analysis of heterogeneous media. Computer Methods in Applied Mechanics and Engineering 2001; 190:5427-5464.
– reference: Manzhos S, Carrington T. Using neural networks, optimized coordinates, and high-dimensional model representations to obtain a vinyl bromide potential surface. The Journal of Chemical Physics 2008; 129: 224104.
– reference: Clément A, Soize C, Yvonnet J. Computational nonlinear stochastic homogenization using a non-concurrent multiscale approach for hyperelastic heterogenous microstructures analysis. International Journal for Numerical Methods in Engineering 2012; 91(8): 799-824.
– reference: Ammar A, Cueto E, Chinesta F. On incremental proper generalized decomposition solution of parametric uncoupled models defined in evolving domains. International Journal for Numerical Methods in Engineering 2013; 93:887-904.
– reference: Heyberger C, Boucard P-A, Néron D. Multiparametric analysis within the proper generalized decomposition framework. Computational Mechanics 2012; 49(3): 277-289.
– reference: Papadrakakis M, Lagaros ND. Reliability-based structural optimization using neural networks and Monte Carlo simulation. Computer Methods in Applied Mechanics and Engineering 2002; 191:3491-3507.
– reference: Magnier L, Haghighat F. Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and artificial neural network. Building and Environment 2010; 45:739-746.
– reference: Manzhos S, Yamashita Koichi, Carrington T. Fitting sparse multidimensional data with low-dimensional terms. Computer Physics Communications 2009; 180:2002-2012.
– reference: Manzhos S, Yamashita K. A model for the dissociative adsorption of N2O on Cu(1 0 0) using a continuous potential energy surface. Surface Science 2010; 604:554-560.
– reference: Clément A, Soize C, Yvonnet J. Uncertainty quantification in computational stochastic multiscale analysis of nonlinear elastic materials. Computer Methods in Applied Mechanics and Engineering 2013; 254:61-82.
– reference: Papadrakakis M, Lagaros ND, Tsompanakis Y. Structural optimization using evolution strategies and neural networks. Computer Methods in Applied Mechanics and Engineering 1998; 156:309-333.
– reference: Yvonnet J, Monteiro E, He Q-C. Computational homogenization method and reduced database model for hyperelastic heterogeneous structures. International Journal for Multiscale Computational Engineering 2013; 11(3): 201-225.
– reference: Scarselli F, Tsoi AC. Universal approximation using feedforward neural networks: a survey of some existing methods and some new results. Neural Networks 1998; 11(1): 15-37.
– reference: Roussette S, Michel JC, Suquet P. Non uniform transformation field analysis of elastic-viscoplastic composites. Composites Science and Technology 2009;:22-27.
– reference: Hardy RL. Multiquadric equations of topography and other irregular surfaces. In : Journal of Geophysical Research 1971; 76(8): 1905-1915.
– reference: Temizer I, Wriggers P. An adaptive method for homogenization in orthotropic nonlinear elasticity. Computer Methods in Applied Mechanics and Engineering 2007; 35-36:3409-3423.
– reference: Chinesta F, Leygue A, Bordeu F, Aguado JV, Cueto E. PGD-based computational vademecum for efficient design optimization and control. Archives of Computational Methods in Engineering 2013; 20(1): 31-59.
– reference: Ponte-Castañeda P. On the overall properties of nonlinearly viscous composites. Proceedings of the Royal Society of London A 1988; 416:217-244.
– reference: Xia L, Breitkopf P. Multiscale structural topology optimization with an approimate constitutive model for local material microstructure. Computer Methods in Applied Mechanics and Engineering 2015; 286:147-167.
– reference: Temizer I, Zohdi TI. A numerical method for homogenization in non-linear elasticity. Computational Mechanics 2007; 40(2): 281-298.
– reference: Michel J-C, Moulinec H, Suquet P. Effective properties of composite materials with periodic microstructure: a computational approach. Computer Methods in Applied Mechanics and Engineering 1999; 172:109-143.
– reference: Kouznetsova VG, Geers MGD, Brekelmans WAM. Multi-scale second order computational homogenization of multi-phase materials: a nested finite element solution strategy. Computer Methods in Applied Mechanics and Engineering 2004; 193:5525-5550.
– reference: Tran AB, Yvonnet J, He Q-C, Toulemonde C, Sanahuja J. A simple computational homogenization method for structures made of heterogeneous linear viscoelastic materials. Computer Methods in Applied Mechanics and Engineering 2011; 200(45-46): 2956-2970.
– reference: Getino C, Sumpter BG, Noid DW. Theory and applications of neural computing in chemical science. Annual Review of Physical Chemistry 1994; 45:439.
– reference: Monteiro E, Yvonnet J, He Q-C. Computational homogenization for nonlinear conduction in heterogeneous materials using model reduction. Computational Materials Science 2008; 42:704-712.
– reference: Rabitz H, Alis OF. General foundations of high-dimensional model representations. Journal of Mathematical Chemistry 1999; 25:197-233.
– reference: Goodrich RK, Gustafson KE. Weighted trigonometric approximation and inner-outer functions on higher dimensional euclidean spaces. Journal of Approximation Theory 1981; 31:362-382.
– reference: Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 1999; 46(1): 131-156.
– reference: Ammar A, Mokdad B, Chinesta F, Keunings R. A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. Journal of Non-Newtonian Fluid Mechanics 2006; 139(3): 153-176.
– reference: Renard J, Marmonier MF. Etude de l'initiation de l'endommagement dans la matrice d'un matériau composite par une méthode d'homogénéisation. Aerospace Science and Technology 1987; 9:36-51.
– reference: Manzhos S, Carrington T. Using neural networks to represent potential surfaces as sums of products. Journal of Chemical Physics ABR. ISO 2006; 125:194105.
– reference: Yvonnet J, Gonzalez D, He Q-C. Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials. Computer Methods in Applied Mechanics and Engineering 2009; 198:2723-2737.
– reference: Sobol IM. Sensitivity analysis for non-linear mathematical models. Mathematical Modeling and Computational 1993; 1:407-414.
– reference: Yu DS. Approximation by neural networks with sigmoidal functions. Acta Mathematica Sinica 2013; 29(10): 2013-2026.
– reference: Augusto C, Nascimento O, Giudici R, Guardani R. Neural network based approach for optimization of industrial chemical processes. Computers & Chemical Engineering 2000; 24:2303-2314.
– reference: Kouznetsova V, Geers MGD, Brekelmans WAM. Multi-scale constitutive modeling of heterogeneous materials with gradient enhanced computational homogenization scheme. International Journal for Numerical Methods in Engineering 2002; 54:1235-1260.
– volume: 91
  start-page: 799
  issue: 8
  year: 2012
  end-page: 824
  article-title: Computational nonlinear stochastic homogenization using a non‐concurrent multiscale approach for hyperelastic heterogenous microstructures analysis
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 125
  start-page: 194105
  year: 2006
  article-title: Using neural networks to represent potential surfaces as sums of products
  publication-title: Journal of Chemical Physics ABR. ISO
– volume: 45
  start-page: 439
  year: 1994
  article-title: Theory and applications of neural computing in chemical science
  publication-title: Annual Review of Physical Chemistry
– volume: 191
  start-page: 3491
  year: 2002
  end-page: 3507
  article-title: Reliability‐based structural optimization using neural networks and Monte Carlo simulation
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 93
  start-page: 887
  year: 2013
  end-page: 904
  article-title: On incremental proper generalized decomposition solution of parametric uncoupled models defined in evolving domains
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 254
  start-page: 61
  year: 2013
  end-page: 82
  article-title: Uncertainty quantification in computational stochastic multiscale analysis of nonlinear elastic materials
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 46
  start-page: 131
  issue: 1
  year: 1999
  end-page: 156
  article-title: A finite element method for crack growth without remeshing
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 76
  start-page: 84
  year: 2013
  end-page: 91
  article-title: Reduced basis homogenization of viscoelastic composites
  publication-title: Composites Science and Technology
– volume: 129
  year: 2008
  article-title: Using neural networks, optimized coordinates, and high‐dimensional model representations to obtain a vinyl bromide potential surface
  publication-title: The Journal of Chemical Physics
– volume: 193
  start-page: 5525
  year: 2004
  end-page: 5550
  article-title: Multi‐scale second order computational homogenization of multi‐phase materials: a nested finite element solution strategy
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 42
  start-page: 7970
  year: 2008
  end-page: 7975
  article-title: Modeling and optimization of heterogeneous photo‐fenton process with response surface methodology and artificial neural networks
  publication-title: Environmental Science & Technology
– volume: 180
  start-page: 2002
  year: 2009
  end-page: 2012
  article-title: Fitting sparse multidimensional data with low‐dimensional terms
  publication-title: Computer Physics Communications
– volume: 31
  start-page: 362
  year: 1981
  end-page: 382
  article-title: Weighted trigonometric approximation and inner‐outer functions on higher dimensional euclidean spaces
  publication-title: Journal of Approximation Theory
– volume: 1
  start-page: 407
  end-page: 414
  article-title: Sensitivity analysis for non‐linear mathematical models
  publication-title: Mathematical Modeling and Computational
– volume: 45
  start-page: 739
  year: 2010
  end-page: 746
  article-title: Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and artificial neural network
  publication-title: Building and Environment
– volume: 9
  start-page: 36
  year: 1987
  end-page: 51
  article-title: Etude de l'initiation de l'endommagement dans la matrice d'un matériau composite par une méthode d'homogénéisation
  publication-title: Aerospace Science and Technology
– volume: 286
  start-page: 147
  year: 2015
  end-page: 167
  article-title: Multiscale structural topology optimization with an approimate constitutive model for local material microstructure
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 156
  start-page: 309
  year: 1998
  end-page: 333
  article-title: Structural optimization using evolution strategies and neural networks
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 11
  start-page: 357
  year: 1963
  end-page: 372
  article-title: Elastic properties of reinforced solids: some theoretical principles
  publication-title: Journal of the Mechanics and Physics of Solids
– volume: 25
  start-page: 197
  year: 1999
  end-page: 233
  article-title: General foundations of high‐dimensional model representations
  publication-title: Journal of Mathematical Chemistry
– volume: 102
  start-page: 748
  year: 2015
  end-page: 765
  article-title: Hierarchically parallel coupled finite strain multiscale solver for modeling heterogeneous layers
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 20
  start-page: 31
  issue: 1
  year: 2013
  end-page: 59
  article-title: PGD‐based computational vademecum for efficient design optimization and control
  publication-title: Archives of Computational Methods in Engineering
– volume: 40
  start-page: 281
  issue: 2
  year: 2007
  end-page: 298
  article-title: A numerical method for homogenization in non‐linear elasticity
  publication-title: Computational Mechanics
– volume: 604
  start-page: 554
  year: 2010
  end-page: 560
  article-title: A model for the dissociative adsorption of N2O on Cu(1 0 0) using a continuous potential energy surface
  publication-title: Surface Science
– volume: 107
  start-page: 10458
  year: 1997
  article-title: Vibrational self‐consistent field method for manymode systems: a new approach and application to the vibrations of CO adsorbed on Cu(100)
  publication-title: The Journal of Chemical Physics
– volume: 131
  start-page: 124127
  year: 2009
  article-title: Accurate prediction of higher‐level electronic structure energies for large databases susing neural networks, Hartree–Fock energies, and small subsets of the database
  publication-title: The Journal of Chemical Physics
– volume: 76
  start-page: 1905
  issue: 8
  year: 1971
  end-page: 1915
  article-title: Multiquadric equations of topography and other irregular surfaces
  publication-title: In : Journal of Geophysical Research
– volume: 352
  start-page: 1
  year: 2002
  end-page: 7
  article-title: On the representation of potential energy surfaces of polyatomic molecules in normal coordinates
  publication-title: Chemical Physics Letters
– volume: 49
  start-page: 277
  issue: 3
  year: 2012
  end-page: 289
  article-title: Multiparametric analysis within the proper generalized decomposition framework
  publication-title: Computational Mechanics
– volume: 54
  start-page: 1235
  year: 2002
  end-page: 1260
  article-title: Multi‐scale constitutive modeling of heterogeneous materials with gradient enhanced computational homogenization scheme
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 35–36
  start-page: 3409
  year: 2007
  end-page: 3423
  article-title: An adaptive method for homogenization in orthotropic nonlinear elasticity
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 416
  start-page: 217
  year: 1988
  end-page: 244
  article-title: On the overall properties of nonlinearly viscous composites
  publication-title: Proceedings of the Royal Society of London A
– volume: 42
  start-page: 704
  year: 2008
  end-page: 712
  article-title: Computational homogenization for nonlinear conduction in heterogeneous materials using model reduction
  publication-title: Computational Materials Science
– volume: 128
  start-page: 084107
  issue: 8
  year: 2008
  article-title: Interpolating moving least‐squares methods for fitting potential energy surfaces: a strategy for efficient automatic data point placement in high dimensions
  publication-title: The Journal of Chemical Physics
– volume: 29
  start-page: 2013
  issue: 10
  year: 2013
  end-page: 2026
  article-title: Approximation by neural networks with sigmoidal functions
  publication-title: Acta Mathematica Sinica
– volume: 24
  start-page: 1587
  year: 2008
  end-page: 1609
  article-title: High dimensional model representation for piece‐wise continuous function approximation
  publication-title: Communications in Numerical Methods in Engineering
– volume: 198
  start-page: 2723
  year: 2009
  end-page: 2737
  article-title: Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 223
  start-page: 341
  year: 2007
  end-page: 368
  article-title: The reduced model multiscale method (R3M) for the non‐linear homogenization of hyperelastic media at finite strains
  publication-title: Journal of Computational Physics
– volume: 24
  start-page: 2303
  year: 2000
  end-page: 2314
  article-title: Neural network based approach for optimization of industrial chemical processes
  publication-title: Computers & Chemical Engineering
– volume: 127
  start-page: 014103
  year: 2007
  article-title: Using redundant coordinates to represent potential energy surfaces with lower‐dimensional functions
  publication-title: The Journal of Chemical Physics
– volume: 172
  start-page: 109
  year: 1999
  end-page: 143
  article-title: Effective properties of composite materials with periodic microstructure: a computational approach
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 200
  start-page: 2956
  issue: 45–46
  year: 2011
  end-page: 2970
  article-title: A simple computational homogenization method for structures made of heterogeneous linear viscoelastic materials
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 190
  start-page: 5427
  year: 2001
  end-page: 5464
  article-title: A class of general algorithms for multi‐scale analysis of heterogeneous media
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 11
  start-page: 15
  issue: 1
  year: 1998
  end-page: 37
  article-title: Universal approximation using feedforward neural networks: a survey of some existing methods and some new results
  publication-title: Neural Networks
– volume: 40
  start-page: 6937
  issue: 25
  year: 2003
  end-page: 6955
  article-title: Nonuniform transformation field analysis
  publication-title: International Journal of Solids and Structures
– volume: 139
  start-page: 153
  issue: 3
  year: 2006
  end-page: 176
  article-title: A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids
  publication-title: Journal of Non‐Newtonian Fluid Mechanics
– start-page: 22
  year: 2009
  end-page: 27
  article-title: Non uniform transformation field analysis of elastic‐viscoplastic composites
  publication-title: Composites Science and Technology
– volume: 2
  start-page: 303
  issue: 4
  year: 1989
  end-page: 314
  article-title: Approximations by superpositions of sigmoidal functions
  publication-title: Mathematics of Control, Signals, and Systems
– volume: 16
  start-page: 433
  issue: 1–4
  year: 1999
  end-page: 454
  article-title: Multiscale FE elastoviscoplastic analysis of composite structure
  publication-title: Computational Materials Science
– volume: 11
  start-page: 201
  issue: 3
  year: 2013
  end-page: 225
  article-title: Computational homogenization method and reduced database model for hyperelastic heterogeneous structures
  publication-title: International Journal for Multiscale Computational Engineering
– volume: 125
  start-page: 084109
  year: 2006
  article-title: A random‐sampling high dimensional model representation neural network for building potential energy surfaces
  publication-title: The Journal of Chemical Physics
– ident: e_1_2_8_29_1
  doi: 10.1016/S0045-7825(02)00287-6
– ident: e_1_2_8_8_1
  doi: 10.1016/j.commatsci.2007.11.001
– ident: e_1_2_8_44_1
  doi: 10.1146/annurev.pc.45.100194.002255
– ident: e_1_2_8_14_1
  doi: 10.1016/j.cma.2007.03.017
– ident: e_1_2_8_11_1
  doi: 10.1016/S0020-7683(03)00346-9
– ident: e_1_2_8_7_1
  doi: 10.1016/j.jcp.2006.09.019
– ident: e_1_2_8_21_1
  doi: 10.1002/cnm.1053
– ident: e_1_2_8_30_1
  doi: 10.1016/S0045-7825(97)00215-6
– ident: e_1_2_8_42_1
  doi: 10.1016/S0893-6080(97)00097-X
– ident: e_1_2_8_32_1
  doi: 10.1016/S0098-1354(00)00587-1
– ident: e_1_2_8_23_1
  doi: 10.1029/JB076i008p01905
– ident: e_1_2_8_37_1
  doi: 10.1016/j.susc.2009.12.025
– ident: e_1_2_8_41_1
  doi: 10.1023/A:1019188517934
– ident: e_1_2_8_22_1
  doi: 10.1016/0021-9045(81)90103-9
– ident: e_1_2_8_49_1
  doi: 10.1098/rspa.1988.0035
– ident: e_1_2_8_5_1
  doi: 10.1002/nme.541
– ident: e_1_2_8_31_1
  doi: 10.1016/j.buildenv.2009.08.016
– ident: e_1_2_8_39_1
  doi: 10.1016/S0009-2614(01)01381-1
– ident: e_1_2_8_36_1
  doi: 10.1063/1.2746846
– ident: e_1_2_8_12_1
  doi: 10.1016/j.compscitech.2007.10.032
– ident: e_1_2_8_26_1
  doi: 10.1007/s00466-011-0646-x
– ident: e_1_2_8_13_1
  doi: 10.1016/j.cma.2011.06.012
– ident: e_1_2_8_46_1
  doi: 10.1063/1.3021471
– ident: e_1_2_8_15_1
  doi: 10.1007/s00466-006-0097-y
– volume: 9
  start-page: 36
  year: 1987
  ident: e_1_2_8_2_1
  article-title: Etude de l'initiation de l'endommagement dans la matrice d'un matériau composite par une méthode d'homogénéisation
  publication-title: Aerospace Science and Technology
– ident: e_1_2_8_16_1
  doi: 10.1016/j.cma.2009.03.017
– ident: e_1_2_8_47_1
  doi: 10.1007/BF02551274
– ident: e_1_2_8_38_1
  doi: 10.1063/1.474210
– ident: e_1_2_8_43_1
  doi: 10.1063/1.3231686
– ident: e_1_2_8_4_1
  doi: 10.1016/S0045-7825(01)00179-7
– ident: e_1_2_8_3_1
  doi: 10.1016/S0927-0256(99)00077-4
– ident: e_1_2_8_19_1
  doi: 10.1016/j.cma.2012.10.016
– ident: e_1_2_8_20_1
  doi: 10.1016/j.cma.2014.12.018
– ident: e_1_2_8_25_1
  doi: 10.1016/j.jnnfm.2006.07.007
– volume: 1
  start-page: 407
  ident: e_1_2_8_40_1
  article-title: Sensitivity analysis for non‐linear mathematical models
  publication-title: Mathematical Modeling and Computational
– ident: e_1_2_8_51_1
  doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
– ident: e_1_2_8_9_1
  doi: 10.1016/j.compscitech.2012.12.012
– ident: e_1_2_8_27_1
  doi: 10.1002/nme.4413
– ident: e_1_2_8_24_1
  doi: 10.1063/1.2831790
– ident: e_1_2_8_10_1
  doi: 10.1002/nme.4755
– ident: e_1_2_8_34_1
  doi: 10.1063/1.2387950
– ident: e_1_2_8_35_1
  doi: 10.1063/1.2336223
– ident: e_1_2_8_48_1
  doi: 10.1016/j.cpc.2009.05.022
– ident: e_1_2_8_17_1
  doi: 10.1615/IntJMultCompEng.2013005374
– ident: e_1_2_8_6_1
  doi: 10.1016/j.cma.2003.12.073
– ident: e_1_2_8_18_1
  doi: 10.1002/nme.4293
– ident: e_1_2_8_28_1
  doi: 10.1007/s11831-013-9080-x
– ident: e_1_2_8_50_1
  doi: 10.1016/0022-5096(63)90036-X
– ident: e_1_2_8_45_1
  doi: 10.1007/s10114-013-1730-2
– ident: e_1_2_8_52_1
  doi: 10.1016/S0045-7825(98)00227-8
– ident: e_1_2_8_33_1
  doi: 10.1021/es801372q
SSID ssj0011503
Score 2.615
Snippet Summary In this work, a decoupled computational homogenization method for nonlinear elastic materials is proposed using neural networks. In this method, the...
In this work, a decoupled computational homogenization method for nonlinear elastic materials is proposed using neural networks. In this method, the effective...
Summary In this work, a decoupled computational homogenization method for nonlinear elastic materials is proposed using neural networks. In this method, the...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1061
SubjectTerms Computation
computational homogenization
high-dimensional approximation
Homogenization
Homogenizing
Mathematical analysis
Mathematical models
Microstructure
multiscale methods
Neural networks
nonlinear homogenization
Nonlinearity
Title Computational homogenization of nonlinear elastic materials using neural networks
URI https://api.istex.fr/ark:/67375/WNG-24T0JNKH-D/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.4953
https://www.proquest.com/docview/1735348767
https://www.proquest.com/docview/1778017925
https://www.proquest.com/docview/1815694684
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbQuMCBsQGi20CehOCUrv6Z5IhgoxpqJaZNTOJg2Y4D0rZ2aloJ8dfzXuxE3TSmiVOU-Dl6sd-zvySfPxPyrgrchjrkmQcwmknPy8zWlmVO2FFdey9lu75iMtXjM3l8rs4TqxLXwkR9iP6DG2ZGO15jglvXHKyJhl6FIZIjYfhFqhbioZNeOQpxjujYHaosWKc7O-IHXcUbM9FjbNTfN2DmOlhtZ5ujTfKj8zOSTC6Gq6Ub-j-3JBz_70Gek2cJhNKPMWq2yKMw2yabCZDSlO7NNnm6plYIZ5Ne4rV5Qb7F_SDSt0T6a341h1hMqzrpvKaz6Jtd0AAIHSpRqBrjnSLb_idFLU2oOotM9OYlOTs6PP00ztL-DJlXOhdZrYV1MN0H4awtecUBaqJCO2MWxlhd5bayUkhrPWAIVnlWll57uKhdFVihxSuyAb6E14SWynFZOQfltSx8cDXcSRcYRqrwLh-QD11fGZ_Ey3EPjUsTZZe5gVY02IoDst9bXkfBjjts3rfd3RvYxQUS3HJlvk-_GC5PR8fTr2PzeUD2ungwKbcbw3KhBLznafBqvy-GrMRfLXYW5iu0yQsc67i6xwaFekp4Sgn-tAHyT4fNdHKIx52HGu6SJ4DsFPJuONsjG8vFKrwB9LR0b9s8-QtAYBk-
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V9gAcWiggFlpwJQSnbNeOnYc4IdqytN1IoK3oAcmyHYdKbXfRPqSKX89MnERbBAhxihKPo7EzY392xt8AvCq9ML7yaeQQjEbSiTwyleGRjc2gqpyTsj5fMSqS4Zk8Plfna_C2PQsT-CG6DTfyjHq8JgenDen9FdbQa9-n6Mg7sEEJvev11OeOO4qQTtzGd6g84y3z7EDstzVvzUUb1K03t4DmKlyt55ujLfjaahrCTC77y4Xtux-_kDj-Z1MewGaDQ9m7YDgPYc1PtmGrwaSs8fj5NtxfISzEu1HH8jp_BJ9CSohmO5FdTK-naI7NwU42rdgkKGdmzCNIx0oMqwaTZxRw_40RnSZWnYRg9PljODs6HL8fRk2KhsipJI2jKomNxRnfx9aYXJQC0SaRtHNucJhNytSURsbSGIcwgpeO57lLHD5MbOl5lsRPYB118U-B5coKWVqL5ZXMnLcVvinJyJJU5mzagzftx9Ku4S-nNBpXOjAvC429qKkXe7DXSX4PnB2_kXldf-9OwMwuKcYtVfpL8UELOR4cFydDfdCDndYgdOPec83TWMW41EtQq72uGB2T_raYiZ8uSSbNaLgT6i8yxNWTYysl6lNbyB8V1sXokK7P_lXwJdwdjken-vRjcfIc7iHQUxSGI_gOrC9mS7-LYGphX9RO8xO0YB1Z
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgkxA8MBggCht4EoKndPVHnORxWlfKRiNAm5jEg2U7Dkhj7dQPCfHXcxc7UTcBQjxFie-is31n_-KcfybkVeW58bXPEgdgNJGOF4mpDUusMIO6dk7KZn_FpFTjM3l8np7HrErcCxP4IboFN4yMZrzGAL-q6v010tBL38fkyNtkU6pBjh49_NRRRyHQEW16R1rkrCWeHfD9VvPaVLSJrfrjGs5cR6vNdDPaIl9aQ0OWyUV_tbR99_MGh-P_1eQBuR9RKD0IbvOQ3PLTbbIVESmN8b7YJvfW6ArhbtJxvC4ekY_hQIi4mEi_zS5n4IxxWyed1XQabDNz6gGigxIF1eDwFNPtv1Ik0wTVaUhFXzwmZ6Oj08NxEg9oSFyqMpHUShgL870X1piCVxywJlK0M2ZgkFVVZiojhTTGAYhglWNF4ZSDh8pWnuVKPCEbYIt_SmiRWi4ra6G8lrnztoY3qRz9KM2dzXrkTdtX2kX2cjxE47sOvMtcQytqbMUe2eskrwJjx29kXjfd3QmY-QVmuGWp_ly-1VyeDo7Lk7Ee9shO6w86BvdCs0ykAj70FFi11xVDWOK_FjP1sxXKZDkOdjz9iwwy9RRQSwn2NA7yR4N1OTnC67N_FXxJ7nwYjvT7d-XJc3IXUF6KOTic7ZCN5XzldwFJLe2LJmR-AW3VHBE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+homogenization+of+nonlinear+elastic+materials+using+neural+networks&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Le%2C+BA&rft.au=Yvonnet%2C+J&rft.au=He%2C+Q-C&rft.date=2015-12-21&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=104&rft.issue=12&rft.spage=1061&rft.epage=1084&rft_id=info:doi/10.1002%2Fnme.4953&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon