A Novel Proposal for Deep Learning-Based Diabetes Prediction: Converting Clinical Data to Image Data
Diabetes, one of the most common diseases worldwide, has become an increasingly global threat to humans in recent years. However, early detection of diabetes greatly inhibits the progression of the disease. This study proposes a new method based on deep learning for the early detection of diabetes....
Saved in:
Published in | Diagnostics (Basel) Vol. 13; no. 4; p. 796 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.02.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Diabetes, one of the most common diseases worldwide, has become an increasingly global threat to humans in recent years. However, early detection of diabetes greatly inhibits the progression of the disease. This study proposes a new method based on deep learning for the early detection of diabetes. Like many other medical data, the PIMA dataset used in the study contains only numerical values. In this sense, the application of popular convolutional neural network (CNN) models to such data are limited. This study converts numerical data into images based on the feature importance to use the robust representation of CNN models in early diabetes diagnosis. Three different classification strategies are then applied to the resulting diabetes image data. In the first, diabetes images are fed into the ResNet18 and ResNet50 CNN models. In the second, deep features of the ResNet models are fused and classified with support vector machines (SVM). In the last approach, the selected fusion features are classified by SVM. The results demonstrate the robustness of diabetes images in the early diagnosis of diabetes. |
---|---|
AbstractList | Diabetes, one of the most common diseases worldwide, has become an increasingly global threat to humans in recent years. However, early detection of diabetes greatly inhibits the progression of the disease. This study proposes a new method based on deep learning for the early detection of diabetes. Like many other medical data, the PIMA dataset used in the study contains only numerical values. In this sense, the application of popular convolutional neural network (CNN) models to such data are limited. This study converts numerical data into images based on the feature importance to use the robust representation of CNN models in early diabetes diagnosis. Three different classification strategies are then applied to the resulting diabetes image data. In the first, diabetes images are fed into the ResNet18 and ResNet50 CNN models. In the second, deep features of the ResNet models are fused and classified with support vector machines (SVM). In the last approach, the selected fusion features are classified by SVM. The results demonstrate the robustness of diabetes images in the early diagnosis of diabetes.Diabetes, one of the most common diseases worldwide, has become an increasingly global threat to humans in recent years. However, early detection of diabetes greatly inhibits the progression of the disease. This study proposes a new method based on deep learning for the early detection of diabetes. Like many other medical data, the PIMA dataset used in the study contains only numerical values. In this sense, the application of popular convolutional neural network (CNN) models to such data are limited. This study converts numerical data into images based on the feature importance to use the robust representation of CNN models in early diabetes diagnosis. Three different classification strategies are then applied to the resulting diabetes image data. In the first, diabetes images are fed into the ResNet18 and ResNet50 CNN models. In the second, deep features of the ResNet models are fused and classified with support vector machines (SVM). In the last approach, the selected fusion features are classified by SVM. The results demonstrate the robustness of diabetes images in the early diagnosis of diabetes. Diabetes, one of the most common diseases worldwide, has become an increasingly global threat to humans in recent years. However, early detection of diabetes greatly inhibits the progression of the disease. This study proposes a new method based on deep learning for the early detection of diabetes. Like many other medical data, the PIMA dataset used in the study contains only numerical values. In this sense, the application of popular convolutional neural network (CNN) models to such data are limited. This study converts numerical data into images based on the feature importance to use the robust representation of CNN models in early diabetes diagnosis. Three different classification strategies are then applied to the resulting diabetes image data. In the first, diabetes images are fed into the ResNet18 and ResNet50 CNN models. In the second, deep features of the ResNet models are fused and classified with support vector machines (SVM). In the last approach, the selected fusion features are classified by SVM. The results demonstrate the robustness of diabetes images in the early diagnosis of diabetes. |
Audience | Academic |
Author | Aslan, Muhammet Fatih Sabanci, Kadir |
AuthorAffiliation | Department of Electrical and Electronics Engineering, Karamanoglu Mehmetbey University, Karaman 70100, Turkey |
AuthorAffiliation_xml | – name: Department of Electrical and Electronics Engineering, Karamanoglu Mehmetbey University, Karaman 70100, Turkey |
Author_xml | – sequence: 1 givenname: Muhammet Fatih orcidid: 0000-0001-7549-0137 surname: Aslan fullname: Aslan, Muhammet Fatih – sequence: 2 givenname: Kadir orcidid: 0000-0003-0238-9606 surname: Sabanci fullname: Sabanci, Kadir |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36832284$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstuEzEUQEeoiJbSL0BCI7Fhk-LnjM0CKU1aiBQBC1hbHvt6cDSxgz2JxN_jNC00VcV4MX6ce-xr35fVSYgBquo1RpeUSvTeet2HmEdvMqaIoVY2z6ozglo-YQyLkwf90-oi5xUqn8RUEP6iOqWNoIQIdlbZaf0l7mCov6W4iVkPtYupngNs6iXoFHzoJ1c6g63nXncwQi4kWG9GH8OHehbDDtJYqHo2-OBNEcz1qOsx1ou17uF29Kp67vSQ4eLuf179uLn-Pvs8WX79tJhNlxPDm2acOOcEbo0z1FmBpMaNoVyyjoCgSFDdYEk1cEp56yTvLMIIN5bxhlEhnOzoebU4eG3UK7VJfq3TbxW1V7cTMfVKl8OaARQm2ErkOO9IwxxQaQFZgQ3XWIAWtLg-HlybbbcGayCMSQ9H0uOV4H-qPu6UlJxTzIrg3Z0gxV9byKNa-2xgGHSAuM2KtAKhlkhGCvr2EbqK2xTKVRWqlZxIwvg_qtclAR9cLPuavVRNW0ZR2VS0hbp8girNwtqbUkTOl_mjgDcPE_2b4X2NFEAeAJNizgmcMn7U-_cvZj8ojNS-JNUTJVli6aPYe_3_ov4AjJnlVw |
CitedBy_id | crossref_primary_10_1007_s00521_023_09184_7 crossref_primary_10_1007_s11831_024_10098_3 crossref_primary_10_1016_j_heliyon_2024_e36112 crossref_primary_10_1038_s41598_025_87471_0 crossref_primary_10_1016_j_procs_2025_01_032 crossref_primary_10_3390_bioengineering10121420 crossref_primary_10_1038_s41598_024_51438_4 crossref_primary_10_7717_peerj_cs_1947 crossref_primary_10_1016_j_applthermaleng_2025_125599 crossref_primary_10_1016_j_bspc_2024_106902 crossref_primary_10_3390_electronics13214177 crossref_primary_10_3390_sym15030764 crossref_primary_10_1007_s11042_024_19766_9 crossref_primary_10_1007_s11227_024_06211_9 |
Cites_doi | 10.4239/wjd.v8.i12.489 10.1109/CVPR.2016.308 10.1016/j.jbi.2018.07.014 10.1016/j.ecoinf.2022.101633 10.1109/ACCESS.2020.3042273 10.4258/hir.2016.22.2.95 10.1007/978-981-13-1280-9_6 10.1016/j.diabres.2018.02.023 10.1186/s40537-019-0175-6 10.1016/j.cegh.2018.12.004 10.1016/j.mehy.2020.109577 10.1136/bmj.k1497 10.1109/JBHI.2020.3040225 10.1016/j.cogsys.2019.09.007 10.1007/s40200-020-00520-5 10.3390/app9173532 10.1007/978-3-030-17795-9_10 10.3389/fgene.2018.00515 10.1016/j.knosys.2020.106688 10.1007/s12525-021-00475-2 10.18201/ijisae.2018648455 10.1016/j.bspc.2021.102716 10.35940/ijitee.K2155.0981119 10.1007/978-981-13-1642-5_59 10.1007/s11227-019-03106-y 10.1016/j.compbiomed.2021.104554 10.3390/app12083989 10.1109/CVPR.2015.7298594 10.1186/s13638-020-01765-7 10.1007/s40618-016-0607-5 10.1016/j.compbiomed.2022.105244 10.1016/j.artmed.2019.07.009 10.1155/2022/5849995 10.1007/s13258-019-00859-x 10.1016/j.chemolab.2020.104054 10.1016/j.measurement.2021.110425 10.1109/ACCESS.2019.2942937 10.1016/j.dcan.2020.12.002 10.3389/fpubh.2022.829519 10.3390/app9214604 10.1007/s00521-021-06431-7 10.1109/CVPR.2017.195 10.1016/j.compbiolchem.2020.107329 10.1109/ICSESS.2017.8342938 10.1007/3-540-57868-4_57 10.1109/CVPR.2016.90 10.1016/j.compbiomed.2020.103795 10.1007/s12553-021-00555-5 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION NPM 3V. 7XB 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO GNUQQ GUQSH M2O MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3390/diagnostics13040796 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Coronavirus Research Database ProQuest Central Korea ProQuest Central Student ProQuest Research Library Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2075-4418 |
ExternalDocumentID | oai_doaj_org_article_121d90f55b264fe39de0d81c5a18ea83 PMC9955314 A743031487 36832284 10_3390_diagnostics13040796 |
Genre | Journal Article |
GeographicLocations | Turkey |
GeographicLocations_xml | – name: Turkey |
GroupedDBID | 53G 5VS 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BCNDV BENPR BPHCQ CCPQU CITATION DWQXO EBD ESX GNUQQ GROUPED_DOAJ GUQSH HYE IAO IHR ITC KQ8 M2O M48 MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM 3V. NPM PMFND 7XB 8FK COVID MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c566t-fff817cfc3fd809a16c3594b2e83083a6193ae53357f95bd01016d4564388f9b3 |
IEDL.DBID | M48 |
ISSN | 2075-4418 |
IngestDate | Wed Aug 27 01:29:13 EDT 2025 Thu Aug 21 18:38:00 EDT 2025 Thu Jul 10 17:46:07 EDT 2025 Sun Jun 29 16:48:48 EDT 2025 Tue Jun 17 22:24:01 EDT 2025 Tue Jun 10 21:17:31 EDT 2025 Thu Jan 02 22:53:37 EST 2025 Tue Jul 01 02:36:18 EDT 2025 Thu Apr 24 23:04:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | PIMA dataset diabetes prediction support vector machines numeric-to-image convolutional neural network |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c566t-fff817cfc3fd809a16c3594b2e83083a6193ae53357f95bd01016d4564388f9b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7549-0137 0000-0003-0238-9606 |
OpenAccessLink | https://doaj.org/article/121d90f55b264fe39de0d81c5a18ea83 |
PMID | 36832284 |
PQID | 2779529245 |
PQPubID | 2032410 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_121d90f55b264fe39de0d81c5a18ea83 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9955314 proquest_miscellaneous_2780072942 proquest_journals_2779529245 gale_infotracmisc_A743031487 gale_infotracacademiconefile_A743031487 pubmed_primary_36832284 crossref_citationtrail_10_3390_diagnostics13040796 crossref_primary_10_3390_diagnostics13040796 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Diagnostics (Basel) |
PublicationTitleAlternate | Diagnostics (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_50 Pippitt (ref_4) 2016; 93 Ayon (ref_14) 2019; 11 Janiesch (ref_25) 2021; 31 Venkataramana (ref_57) 2019; 41 ref_58 ref_12 ref_55 ref_52 Aslan (ref_26) 2021; 68 Sneha (ref_34) 2019; 6 Sarwar (ref_8) 2020; 12 (ref_32) 2022; 69 Kalagotla (ref_62) 2021; 135 Naz (ref_15) 2020; 19 Dadgar (ref_37) 2017; 7 ref_61 Saba (ref_20) 2020; 59 Zhu (ref_46) 2021; 25 Bhoi (ref_1) 2021; 12 Aslan (ref_16) 2018; 6 Rajeswari (ref_40) 2019; 5 Mirbabaie (ref_23) 2021; 11 Azrar (ref_11) 2018; 9 ref_29 ref_28 ref_27 (ref_56) 2020; 76 Kilicarslan (ref_54) 2020; 137 Abuhmed (ref_21) 2021; 213 Alex (ref_45) 2022; 34 Zhou (ref_9) 2020; 2020 Kannadasan (ref_43) 2019; 7 ref_36 ref_31 ref_30 Asiri (ref_17) 2019; 99 Sun (ref_24) 2019; 7 Kaur (ref_22) 2020; 8 ref_39 Jahani (ref_13) 2016; 22 Ardakani (ref_59) 2020; 121 Zolfaghari (ref_33) 2012; 15 Jakka (ref_63) 2019; 8 Mellitus (ref_2) 2005; 28 Chiefari (ref_6) 2017; 40 Noguez (ref_47) 2021; 13 Zou (ref_38) 2018; 9 Doupis (ref_7) 2017; 8 Rahman (ref_44) 2020; 88 Xu (ref_5) 2018; 362 Urbanowicz (ref_51) 2018; 85 ref_42 ref_41 ref_3 Cho (ref_10) 2018; 138 Aslan (ref_18) 2022; 142 Tuncer (ref_53) 2020; 203 Koklu (ref_60) 2022; 188 ref_49 Edeh (ref_35) 2022; 10 Saleem (ref_48) 2021; 7 Baashar (ref_19) 2022; 2022 |
References_xml | – volume: 8 start-page: 489 year: 2017 ident: ref_7 article-title: Gestational diabetes from A to Z publication-title: World J. Diabetes doi: 10.4239/wjd.v8.i12.489 – ident: ref_29 doi: 10.1109/CVPR.2016.308 – volume: 85 start-page: 189 year: 2018 ident: ref_51 article-title: Relief-based feature selection: Introduction and review publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2018.07.014 – volume: 69 start-page: 101633 year: 2022 ident: ref_32 article-title: An effective and fast solution for classification of wood species: A deep transfer learning approach publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2022.101633 – volume: 8 start-page: 228049 year: 2020 ident: ref_22 article-title: Medical Diagnostic Systems Using Artificial Intelligence (AI) Algorithms: Principles and Perspectives publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3042273 – volume: 22 start-page: 95 year: 2016 ident: ref_13 article-title: Comparison of predictive models for the early diagnosis of diabetes publication-title: Healthc. Inform. Res. doi: 10.4258/hir.2016.22.2.95 – ident: ref_39 doi: 10.1007/978-981-13-1280-9_6 – volume: 138 start-page: 271 year: 2018 ident: ref_10 article-title: IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045 publication-title: Diabetes Res. Clin. Pract. doi: 10.1016/j.diabres.2018.02.023 – volume: 6 start-page: 13 year: 2019 ident: ref_34 article-title: Analysis of diabetes mellitus for early prediction using optimal features selection publication-title: J. Big Data doi: 10.1186/s40537-019-0175-6 – volume: 7 start-page: 530 year: 2019 ident: ref_43 article-title: Type 2 diabetes data classification using stacked autoencoders in deep neural networks publication-title: Clin. Epidemiol. Glob. Health doi: 10.1016/j.cegh.2018.12.004 – volume: 137 start-page: 109577 year: 2020 ident: ref_54 article-title: Diagnosis and classification of cancer using hybrid model based on ReliefF and convolutional neural network publication-title: Med. Hypotheses doi: 10.1016/j.mehy.2020.109577 – volume: 362 start-page: k1497 year: 2018 ident: ref_5 article-title: Prevalence of diagnosed type 1 and type 2 diabetes among US adults in 2016 and 2017: Population based study publication-title: BMJ doi: 10.1136/bmj.k1497 – volume: 25 start-page: 2744 year: 2021 ident: ref_46 article-title: Deep Learning for Diabetes: A Systematic Review publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2020.3040225 – volume: 59 start-page: 221 year: 2020 ident: ref_20 article-title: Brain tumor detection using fusion of hand crafted and deep learning features publication-title: Cogn. Syst. Res. doi: 10.1016/j.cogsys.2019.09.007 – volume: 19 start-page: 391 year: 2020 ident: ref_15 article-title: Deep learning approach for diabetes prediction using PIMA Indian dataset publication-title: J. Diabetes Metab. Disord. doi: 10.1007/s40200-020-00520-5 – ident: ref_42 doi: 10.3390/app9173532 – volume: 7 start-page: 3397 year: 2017 ident: ref_37 article-title: A Hybrid Method of Feature Selection and Neural Network with Genetic Algorithm to Predict Diabetes publication-title: Int. J. Mechatron. Electr. Comput. Technol. (IJMEC) – volume: 11 start-page: 21 year: 2019 ident: ref_14 article-title: Diabetes Prediction: A Deep Learning Approach publication-title: Int. J. Inf. Eng. Electron. Bus. – ident: ref_58 – ident: ref_49 doi: 10.1007/978-3-030-17795-9_10 – volume: 13 start-page: 1 year: 2021 ident: ref_47 article-title: Machine learning and deep learning predictive models for type 2 diabetes: A systematic review publication-title: Diabetol. Metab. Syndr. – volume: 12 start-page: 3074 year: 2021 ident: ref_1 article-title: Prediction of diabetes in females of pima Indian heritage: A complete supervised learning approach publication-title: Turk. J. Comput. Math. Educ. (TURCOMAT) – ident: ref_31 – ident: ref_52 – volume: 9 start-page: 515 year: 2018 ident: ref_38 article-title: Predicting Diabetes Mellitus With Machine Learning Techniques publication-title: Front. Genet. doi: 10.3389/fgene.2018.00515 – volume: 213 start-page: 106688 year: 2021 ident: ref_21 article-title: Robust hybrid deep learning models for Alzheimer’s progression detection publication-title: Knowl. -Based Syst. doi: 10.1016/j.knosys.2020.106688 – volume: 31 start-page: 685 year: 2021 ident: ref_25 article-title: Machine learning and deep learning publication-title: Electron. Mark. doi: 10.1007/s12525-021-00475-2 – volume: 6 start-page: 289 year: 2018 ident: ref_16 article-title: Breast Cancer Diagnosis by Different Machine Learning Methods Using Blood Analysis Data publication-title: Int. J. Intell. Syst. Appl. Eng. doi: 10.18201/ijisae.2018648455 – ident: ref_41 – volume: 68 start-page: 102716 year: 2021 ident: ref_26 article-title: A CNN-based novel solution for determining the survival status of heart failure patients with clinical record data: Numeric to image publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102716 – volume: 8 start-page: 1976 year: 2019 ident: ref_63 article-title: Performance evaluation of machine learning models for diabetes prediction publication-title: Int. J. Innov. Technol. Explor. Eng. (IJITEE) doi: 10.35940/ijitee.K2155.0981119 – ident: ref_61 doi: 10.1007/978-981-13-1642-5_59 – volume: 76 start-page: 8413 year: 2020 ident: ref_56 article-title: Efficient deep feature selection for remote sensing image recognition with fused deep learning architectures publication-title: J. Supercomput. doi: 10.1007/s11227-019-03106-y – volume: 135 start-page: 104554 year: 2021 ident: ref_62 article-title: A novel stacking technique for prediction of diabetes publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104554 – ident: ref_3 doi: 10.3390/app12083989 – ident: ref_28 doi: 10.1109/CVPR.2015.7298594 – volume: 2020 start-page: 148 year: 2020 ident: ref_9 article-title: Diabetes prediction model based on an enhanced deep neural network publication-title: EURASIP J. Wirel. Commun. Netw. doi: 10.1186/s13638-020-01765-7 – volume: 40 start-page: 899 year: 2017 ident: ref_6 article-title: Gestational diabetes mellitus: An updated overview publication-title: J. Endocrinol. Investig. doi: 10.1007/s40618-016-0607-5 – volume: 142 start-page: 105244 year: 2022 ident: ref_18 article-title: COVID-19 diagnosis using state-of-the-art CNN architecture features and Bayesian Optimization publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105244 – volume: 99 start-page: 101701 year: 2019 ident: ref_17 article-title: Deep learning based computer-aided diagnosis systems for diabetic retinopathy: A survey publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2019.07.009 – volume: 9 start-page: 320 year: 2018 ident: ref_11 article-title: Data mining models comparison for diabetes prediction publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 28 start-page: S5 year: 2005 ident: ref_2 article-title: Diagnosis and classification of diabetes mellitus publication-title: Diabetes Care – volume: 2022 start-page: 5849995 year: 2022 ident: ref_19 article-title: Effectiveness of artificial intelligence models for cardiovascular disease prediction: Network meta-analysis publication-title: Comput. Intell. Neurosci. doi: 10.1155/2022/5849995 – volume: 41 start-page: 1301 year: 2019 ident: ref_57 article-title: Improving classification accuracy of cancer types using parallel hybrid feature selection on microarray gene expression data publication-title: Genes Genom. doi: 10.1007/s13258-019-00859-x – volume: 15 start-page: 2230 year: 2012 ident: ref_33 article-title: Diagnosis of diabetes in female population of pima indian heritage with ensemble of bp neural network and svm publication-title: Int. J. Comput. Eng. Manag/ – volume: 203 start-page: 104054 year: 2020 ident: ref_53 article-title: An automated residual exemplar local binary pattern and iterative ReliefF based COVID-19 detection method using chest X-ray image publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2020.104054 – volume: 188 start-page: 110425 year: 2022 ident: ref_60 article-title: A CNN-SVM study based on selected deep features for grapevine leaves classification publication-title: Measurement doi: 10.1016/j.measurement.2021.110425 – volume: 7 start-page: 142022 year: 2019 ident: ref_24 article-title: Intelligent Analysis of Medical Big Data Based on Deep Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2942937 – volume: 7 start-page: 526 year: 2021 ident: ref_48 article-title: Deep learning for the internet of things: Potential benefits and use-cases publication-title: Digit. Commun. Netw. doi: 10.1016/j.dcan.2020.12.002 – volume: 10 start-page: 829519 year: 2022 ident: ref_35 article-title: A Classification Algorithm-Based Hybrid Diabetes Prediction Model publication-title: Front. Public Health doi: 10.3389/fpubh.2022.829519 – ident: ref_12 doi: 10.3390/app9214604 – ident: ref_50 – volume: 5 start-page: 2395-1303 year: 2019 ident: ref_40 article-title: A review of diabetic prediction using machine learning techniques publication-title: Int. J. Eng. Tech. – volume: 93 start-page: 103 year: 2016 ident: ref_4 article-title: Diabetes mellitus: Screening and diagnosis publication-title: Am. Fam. Physician – volume: 34 start-page: 1319 year: 2022 ident: ref_45 article-title: Deep convolutional neural network for diabetes mellitus prediction publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06431-7 – ident: ref_30 doi: 10.1109/CVPR.2017.195 – volume: 88 start-page: 107329 year: 2020 ident: ref_44 article-title: A deep learning approach based on convolutional LSTM for detecting diabetes publication-title: Comput. Biol. Chem. doi: 10.1016/j.compbiolchem.2020.107329 – ident: ref_36 doi: 10.1109/ICSESS.2017.8342938 – ident: ref_55 doi: 10.1007/3-540-57868-4_57 – ident: ref_27 doi: 10.1109/CVPR.2016.90 – volume: 121 start-page: 103795 year: 2020 ident: ref_59 article-title: Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: Results of 10 convolutional neural networks publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103795 – volume: 11 start-page: 693 year: 2021 ident: ref_23 article-title: Artificial intelligence in disease diagnostics: A critical review and classification on the current state of research guiding future direction publication-title: Health Technol. doi: 10.1007/s12553-021-00555-5 – volume: 12 start-page: 419 year: 2020 ident: ref_8 article-title: Diagnosis of diabetes type-II using hybrid machine learning based ensemble model publication-title: Int. J. Inf. Technol. |
SSID | ssj0000913825 |
Score | 2.3132646 |
Snippet | Diabetes, one of the most common diseases worldwide, has become an increasingly global threat to humans in recent years. However, early detection of diabetes... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 796 |
SubjectTerms | Accuracy Algorithms Artificial intelligence Big Data Classification convolutional neural network Data mining Datasets Deep learning Diabetes diabetes prediction Disease Electronic data processing Feature selection Health aspects Insulin resistance Machine learning Medical diagnosis Medical records Neural networks numeric-to-image Pancreas PIMA dataset Support vector machines Technology application Womens health |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1Lb9QwEIBHqAfEBfEmUJCRkLgQdRPbic1t21IVpFYcqNSb5fhRkLbZik37-zvjuKtEILhw3PVYij3jeSiTzwDvHReiq60rtXeyFLZDPxg8L11nq8bpJjYtfZx8ctocn4mv5_J8ctUX9YSNeOBx4_aquvJ6EaXsMHTHwLUPC68qJ22lglWJ84kxb1JMJR-sia0nR8wQx7p-z4-da8Q-RreNZQxh-iehKBH7f_fLk8A0b5qcRKGjR_Awp49sOT72Y7gX-idw_yS_IH8KfslO1zdhxb7R7QcbFMWklB2GcMUySfWi3MfA5VluhdmgJM0m_XxiB9SDTlyBC5aBoSt2aAfLhjX7comuJ_16BmdHn78fHJf5IoXSYbY2lDFGVbUuOh69WmjSApcadRQUxxTMYhHFbcDET7ZRy84n7pwn0AxXKuqOP4edft2Hl8C8rq3lXneV90JbYd3CYkrQqChji76hgPpuT43LlHG67GJlsNogRZg_KKKAj9tJVyNk4-_i-6SsrSgRstMfaDcm2435l90U8IFUbegc4wM6mz9HwGUSEcssMbUitL9qC9idSeL5c_PhO2Mx-fxvTN22WtZY2-KGvNsO00zqaevD-ppkVOK2i7qAF6NtbZfEG_K0ShTQzqxutub5SP_zR6KDay3Rr4pX_2OTXsODGpO6sUt9F3aGX9fhDSZhQ_c2nbdb58gwuw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7aBEovpe-4TYsKhV5qsrYsW-ol7OZBWsgSSgO5GVmPbWFjb7NOf39nbK2zpiVHWyOwPNKnb-TxNwAfDc-yKtUmVtaIONMV4qCzPDaVTnKjcp8X9HPy-Tw_u8y-XYmrcOC2DmmVG0zsgNo2hs7ID9KiUCLFaEEcrn7HVDWKvq6GEhoPYRchWGLwtTs7mV98H05ZSPUSY6BebohjfH9g-ww20kBG-MZwhuT6t7akTrn_X3ze2qDGyZNbu9HpU3gSaCSb9n5_Bg9c_RwenYcP5S_ATtm8-eOW7IKqIKzRFMkpO3ZuxYKi6iKe4QZmWUiJWaMl9SY_fWFHlItO-gILFoRDl-xYt5q1Dft6jRDUXb2Ey9OTH0dncSioEBtkbW3svZdJYbzh3sqJIm9wodBXTnKkYhqDKa4dEkBReCUq2-nPWRKc4VJ6VfFXsFM3tdsDZlWqNbeqSqzNlM60mWikBrn0wheIERGkm3damqA2TkUvliVGHeSI8j-OiODz0GnVi23cbz4jZw2mpJTd3WhuFmVYeGWSJlZNvBAVUj_vuLJuYmVihE6k05JH8IlcXdJ6xgc0OvyWgMMkZaxyihSLJP5lEcH-yBLXoRk3byZLGXBgXd7N2gg-DM3Uk3Lbatfcko3s9NuzNILX_dwahsRzQlyZRVCMZt1ozOOW-tfPTiVcKYH4mr25_7HewuMUaVufh74PO-3NrXuHNKut3oe19Bfi1imi priority: 102 providerName: ProQuest |
Title | A Novel Proposal for Deep Learning-Based Diabetes Prediction: Converting Clinical Data to Image Data |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36832284 https://www.proquest.com/docview/2779529245 https://www.proquest.com/docview/2780072942 https://pubmed.ncbi.nlm.nih.gov/PMC9955314 https://doaj.org/article/121d90f55b264fe39de0d81c5a18ea83 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEB_OOxBfDr-NnmUFwRejTTab7Aoi7X1wCi2HWLi3sNmPKtTkru2J_vfOJNtywVN8bHY2ze7MzvymnfwG4KXhWVal2sTKGhFnukI_6CyPTaWT3Kjc5wW9nDyZ5qez7NO5ON-BTVfUsIGrG1M76ic1Wy7e_Lz89QEP_HvKODFlf2u7ojSiNUaPjBmKym_BHoamgk7qJOD91jUrotyjssYUQ2WMUEB2TER_u08vWrWk_n-67muxq19XeS1QndyF_YAw2agziXuw4-r7cHsS_kN_AHbEps0Pt2Bn1CBhhaKIW9mRcxcskK3O4zHGNstCtcwKJWk2qfAdO6QydaIemLPAKbpgR3qt2bphH7-jd2o_PYTZyfGXw9M49FqIDQK6dey9l0lhvOHeyqEiRXGhUI1OckRpGvMsrh1iQ1F4JSrbUtNZ4qLhUnpV8UewWze1ewLMqlRrblWVWJspnWkz1IgacumFL9B9RJBu9rQ0gYic-mEsSkxISBHlDYqI4PV20kXHw_Fv8TEpaytKJNrthWY5L8OZLJM0sWrohagQFXrHlXVDKxMjdCKdljyCV6TqkowPH9Do8MYCLpNIs8oRoi9i_5dFBAc9STyipj-8MZZyY-FlWhRKpJj-4oa82A7TTCp7q11zRTKypXbP0gged7a1XRLPyRnLLIKiZ3W9NfdH6m9fWwJxpQS63uzpf3zvM7iTIqzr6tQPYHe9vHLPEYatqwHsjY-nZ58H7c8Yg_ag_QancDQ2 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgJeEN8EBhgJxAvRmjhObCSE2nVTy9ZqQpu0t8zxR0EqbVk7EP8UfyN3SVoagfa2x8TnyM59J-ffAbw2PEmKWJtQWSPCRBdoB53loSl0lBqV-jSjw8nDUdo_TT6dibMt-L06C0NllSubWBpqOzP0jXw3zjIlYswWxMf595C6RtHf1VULjUosDt2vn5iyLT4MesjfN3F8sH-y1w_rrgKhwdBlGXrvZZQZb7i3sq1oSVwoXLCTHOMRjRkF1w6jIJF5JQpbgrBZQl3hUnpVcHzuDdhOOKYyLdju7o-OP6-_6hDKJuZcFbwR56q9a6uKOcJcRneB6RO1B9hwgWWngH_9wYZDbBZrbni_g7twpw5bWaeSs3uw5ab34eaw_jH_AGyHjWY_3IQdU9eFBZJiMMx6zs1ZjeA6DrvoMC2rS3AWSEmzSS7esz2qfSc8gzGrgUonrKeXmi1nbPANTV559RBOr-VVP4LWdDZ1T4BZFWvNrSoiaxOlE23aGkORVHrhM7RJAcSrd5qbGt2cmmxMcsxyiBH5fxgRwLv1pHkF7nE1eZeYtSYlZO7yxuxinNeKnkdxZFXbC1FgqOkdV9a1rYyM0JF0WvIA3hKrc7IfuECj62MQuE1C4so7GNJRSwGZBbDToES9N83hlbDktd1Z5H-1JIBX62GaSbV0Uze7JBpZ4sUncQCPK9lab4mnZOFlEkDWkLrGnpsj069fSlRypQTa8-Tp1ct6Cbf6J8Oj_GgwOnwGt2MMGasa-B1oLS8u3XMM8ZbFi1qvGJxftyr_AbpPZVc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJ028IO4EBhgJxAtRkzhObCSE2nXVylhVISbtLXN8KUilKWsH4q_x6zgncUsj0N72mPg4snPuyfF3CHmpWZqWidKhNJqHqSrBDlrDQl2qONMyc1mOh5NPxtnRafrhjJ_tkN_rszBYVrm2ibWhNpXGb-TdJM8lTyBb4F3nyyImg-H7xfcQO0jhn9Z1O41GRI7tr5-Qvi3fjQbA61dJMjz8fHAU-g4DoYYwZhU650Sca6eZMyKSuDzGJSzeCgaxiYLsgikLERHPneSlqQHZDCKwMCGcLBk89wbZzSErijpkt384nnzafOFBxE3IvxqoI8Zk1DVN9RziL4PrgEnYKmDLHdZdA_71DVvOsV24ueUJh7fJLR_C0l4jc3fIjp3fJXsn_if9PWJ6dFz9sDM6wQ4MSyCFwJgOrF1Qj-Y6DfvgPA315ThLoMTZKCNv6QHWwSO2wZR60NIZHaiVoquKjr6B-auv7pPTa3nVD0hnXs3tI0KNTJRiRpaxMalUqdKRgrAkE467HOxTQJL1Oy20RzrHhhuzAjIeZETxH0YE5M1m0qIB-riavI_M2pAiSnd9o7qYFl7piziJjYwc5yWEnc4yaWxkRKy5ioVVggXkNbK6QFsCC9TKH4mAbSIqV9GD8A7bC4g8IPstSrABuj28FpbC26Bl8VdjAvJiM4wzsa5ubqtLpBE1dnyaBORhI1ubLbEMrb1IA5K3pK615_bI_OuXGqFcSg62PX189bKekz1Q4eLjaHz8hNxMIHpsyuH3SWd1cWmfQrS3Kp95taLk_Lo1-Q9fXmmM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Proposal+for+Deep+Learning-Based+Diabetes+Prediction%3A+Converting+Clinical+Data+to+Image+Data&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Aslan%2C+Muhammet+Fatih&rft.au=Sabanci%2C+Kadir&rft.date=2023-02-01&rft.issn=2075-4418&rft.eissn=2075-4418&rft.volume=13&rft.issue=4&rft_id=info:doi/10.3390%2Fdiagnostics13040796&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon |