A Novel Proposal for Deep Learning-Based Diabetes Prediction: Converting Clinical Data to Image Data

Diabetes, one of the most common diseases worldwide, has become an increasingly global threat to humans in recent years. However, early detection of diabetes greatly inhibits the progression of the disease. This study proposes a new method based on deep learning for the early detection of diabetes....

Full description

Saved in:
Bibliographic Details
Published inDiagnostics (Basel) Vol. 13; no. 4; p. 796
Main Authors Aslan, Muhammet Fatih, Sabanci, Kadir
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.02.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Diabetes, one of the most common diseases worldwide, has become an increasingly global threat to humans in recent years. However, early detection of diabetes greatly inhibits the progression of the disease. This study proposes a new method based on deep learning for the early detection of diabetes. Like many other medical data, the PIMA dataset used in the study contains only numerical values. In this sense, the application of popular convolutional neural network (CNN) models to such data are limited. This study converts numerical data into images based on the feature importance to use the robust representation of CNN models in early diabetes diagnosis. Three different classification strategies are then applied to the resulting diabetes image data. In the first, diabetes images are fed into the ResNet18 and ResNet50 CNN models. In the second, deep features of the ResNet models are fused and classified with support vector machines (SVM). In the last approach, the selected fusion features are classified by SVM. The results demonstrate the robustness of diabetes images in the early diagnosis of diabetes.
AbstractList Diabetes, one of the most common diseases worldwide, has become an increasingly global threat to humans in recent years. However, early detection of diabetes greatly inhibits the progression of the disease. This study proposes a new method based on deep learning for the early detection of diabetes. Like many other medical data, the PIMA dataset used in the study contains only numerical values. In this sense, the application of popular convolutional neural network (CNN) models to such data are limited. This study converts numerical data into images based on the feature importance to use the robust representation of CNN models in early diabetes diagnosis. Three different classification strategies are then applied to the resulting diabetes image data. In the first, diabetes images are fed into the ResNet18 and ResNet50 CNN models. In the second, deep features of the ResNet models are fused and classified with support vector machines (SVM). In the last approach, the selected fusion features are classified by SVM. The results demonstrate the robustness of diabetes images in the early diagnosis of diabetes.Diabetes, one of the most common diseases worldwide, has become an increasingly global threat to humans in recent years. However, early detection of diabetes greatly inhibits the progression of the disease. This study proposes a new method based on deep learning for the early detection of diabetes. Like many other medical data, the PIMA dataset used in the study contains only numerical values. In this sense, the application of popular convolutional neural network (CNN) models to such data are limited. This study converts numerical data into images based on the feature importance to use the robust representation of CNN models in early diabetes diagnosis. Three different classification strategies are then applied to the resulting diabetes image data. In the first, diabetes images are fed into the ResNet18 and ResNet50 CNN models. In the second, deep features of the ResNet models are fused and classified with support vector machines (SVM). In the last approach, the selected fusion features are classified by SVM. The results demonstrate the robustness of diabetes images in the early diagnosis of diabetes.
Diabetes, one of the most common diseases worldwide, has become an increasingly global threat to humans in recent years. However, early detection of diabetes greatly inhibits the progression of the disease. This study proposes a new method based on deep learning for the early detection of diabetes. Like many other medical data, the PIMA dataset used in the study contains only numerical values. In this sense, the application of popular convolutional neural network (CNN) models to such data are limited. This study converts numerical data into images based on the feature importance to use the robust representation of CNN models in early diabetes diagnosis. Three different classification strategies are then applied to the resulting diabetes image data. In the first, diabetes images are fed into the ResNet18 and ResNet50 CNN models. In the second, deep features of the ResNet models are fused and classified with support vector machines (SVM). In the last approach, the selected fusion features are classified by SVM. The results demonstrate the robustness of diabetes images in the early diagnosis of diabetes.
Audience Academic
Author Aslan, Muhammet Fatih
Sabanci, Kadir
AuthorAffiliation Department of Electrical and Electronics Engineering, Karamanoglu Mehmetbey University, Karaman 70100, Turkey
AuthorAffiliation_xml – name: Department of Electrical and Electronics Engineering, Karamanoglu Mehmetbey University, Karaman 70100, Turkey
Author_xml – sequence: 1
  givenname: Muhammet Fatih
  orcidid: 0000-0001-7549-0137
  surname: Aslan
  fullname: Aslan, Muhammet Fatih
– sequence: 2
  givenname: Kadir
  orcidid: 0000-0003-0238-9606
  surname: Sabanci
  fullname: Sabanci, Kadir
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36832284$$D View this record in MEDLINE/PubMed
BookMark eNp9kstuEzEUQEeoiJbSL0BCI7Fhk-LnjM0CKU1aiBQBC1hbHvt6cDSxgz2JxN_jNC00VcV4MX6ce-xr35fVSYgBquo1RpeUSvTeet2HmEdvMqaIoVY2z6ozglo-YQyLkwf90-oi5xUqn8RUEP6iOqWNoIQIdlbZaf0l7mCov6W4iVkPtYupngNs6iXoFHzoJ1c6g63nXncwQi4kWG9GH8OHehbDDtJYqHo2-OBNEcz1qOsx1ou17uF29Kp67vSQ4eLuf179uLn-Pvs8WX79tJhNlxPDm2acOOcEbo0z1FmBpMaNoVyyjoCgSFDdYEk1cEp56yTvLMIIN5bxhlEhnOzoebU4eG3UK7VJfq3TbxW1V7cTMfVKl8OaARQm2ErkOO9IwxxQaQFZgQ3XWIAWtLg-HlybbbcGayCMSQ9H0uOV4H-qPu6UlJxTzIrg3Z0gxV9byKNa-2xgGHSAuM2KtAKhlkhGCvr2EbqK2xTKVRWqlZxIwvg_qtclAR9cLPuavVRNW0ZR2VS0hbp8girNwtqbUkTOl_mjgDcPE_2b4X2NFEAeAJNizgmcMn7U-_cvZj8ojNS-JNUTJVli6aPYe_3_ov4AjJnlVw
CitedBy_id crossref_primary_10_1007_s00521_023_09184_7
crossref_primary_10_1007_s11831_024_10098_3
crossref_primary_10_1016_j_heliyon_2024_e36112
crossref_primary_10_1038_s41598_025_87471_0
crossref_primary_10_1016_j_procs_2025_01_032
crossref_primary_10_3390_bioengineering10121420
crossref_primary_10_1038_s41598_024_51438_4
crossref_primary_10_7717_peerj_cs_1947
crossref_primary_10_1016_j_applthermaleng_2025_125599
crossref_primary_10_1016_j_bspc_2024_106902
crossref_primary_10_3390_electronics13214177
crossref_primary_10_3390_sym15030764
crossref_primary_10_1007_s11042_024_19766_9
crossref_primary_10_1007_s11227_024_06211_9
Cites_doi 10.4239/wjd.v8.i12.489
10.1109/CVPR.2016.308
10.1016/j.jbi.2018.07.014
10.1016/j.ecoinf.2022.101633
10.1109/ACCESS.2020.3042273
10.4258/hir.2016.22.2.95
10.1007/978-981-13-1280-9_6
10.1016/j.diabres.2018.02.023
10.1186/s40537-019-0175-6
10.1016/j.cegh.2018.12.004
10.1016/j.mehy.2020.109577
10.1136/bmj.k1497
10.1109/JBHI.2020.3040225
10.1016/j.cogsys.2019.09.007
10.1007/s40200-020-00520-5
10.3390/app9173532
10.1007/978-3-030-17795-9_10
10.3389/fgene.2018.00515
10.1016/j.knosys.2020.106688
10.1007/s12525-021-00475-2
10.18201/ijisae.2018648455
10.1016/j.bspc.2021.102716
10.35940/ijitee.K2155.0981119
10.1007/978-981-13-1642-5_59
10.1007/s11227-019-03106-y
10.1016/j.compbiomed.2021.104554
10.3390/app12083989
10.1109/CVPR.2015.7298594
10.1186/s13638-020-01765-7
10.1007/s40618-016-0607-5
10.1016/j.compbiomed.2022.105244
10.1016/j.artmed.2019.07.009
10.1155/2022/5849995
10.1007/s13258-019-00859-x
10.1016/j.chemolab.2020.104054
10.1016/j.measurement.2021.110425
10.1109/ACCESS.2019.2942937
10.1016/j.dcan.2020.12.002
10.3389/fpubh.2022.829519
10.3390/app9214604
10.1007/s00521-021-06431-7
10.1109/CVPR.2017.195
10.1016/j.compbiolchem.2020.107329
10.1109/ICSESS.2017.8342938
10.1007/3-540-57868-4_57
10.1109/CVPR.2016.90
10.1016/j.compbiomed.2020.103795
10.1007/s12553-021-00555-5
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
3V.
7XB
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
GNUQQ
GUQSH
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3390/diagnostics13040796
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

Publicly Available Content Database
PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2075-4418
ExternalDocumentID oai_doaj_org_article_121d90f55b264fe39de0d81c5a18ea83
PMC9955314
A743031487
36832284
10_3390_diagnostics13040796
Genre Journal Article
GeographicLocations Turkey
GeographicLocations_xml – name: Turkey
GroupedDBID 53G
5VS
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BCNDV
BENPR
BPHCQ
CCPQU
CITATION
DWQXO
EBD
ESX
GNUQQ
GROUPED_DOAJ
GUQSH
HYE
IAO
IHR
ITC
KQ8
M2O
M48
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
3V.
NPM
PMFND
7XB
8FK
COVID
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c566t-fff817cfc3fd809a16c3594b2e83083a6193ae53357f95bd01016d4564388f9b3
IEDL.DBID M48
ISSN 2075-4418
IngestDate Wed Aug 27 01:29:13 EDT 2025
Thu Aug 21 18:38:00 EDT 2025
Thu Jul 10 17:46:07 EDT 2025
Sun Jun 29 16:48:48 EDT 2025
Tue Jun 17 22:24:01 EDT 2025
Tue Jun 10 21:17:31 EDT 2025
Thu Jan 02 22:53:37 EST 2025
Tue Jul 01 02:36:18 EDT 2025
Thu Apr 24 23:04:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords PIMA dataset
diabetes prediction
support vector machines
numeric-to-image
convolutional neural network
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c566t-fff817cfc3fd809a16c3594b2e83083a6193ae53357f95bd01016d4564388f9b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7549-0137
0000-0003-0238-9606
OpenAccessLink https://doaj.org/article/121d90f55b264fe39de0d81c5a18ea83
PMID 36832284
PQID 2779529245
PQPubID 2032410
ParticipantIDs doaj_primary_oai_doaj_org_article_121d90f55b264fe39de0d81c5a18ea83
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9955314
proquest_miscellaneous_2780072942
proquest_journals_2779529245
gale_infotracmisc_A743031487
gale_infotracacademiconefile_A743031487
pubmed_primary_36832284
crossref_citationtrail_10_3390_diagnostics13040796
crossref_primary_10_3390_diagnostics13040796
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Diagnostics (Basel)
PublicationTitleAlternate Diagnostics (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Pippitt (ref_4) 2016; 93
Ayon (ref_14) 2019; 11
Janiesch (ref_25) 2021; 31
Venkataramana (ref_57) 2019; 41
ref_58
ref_12
ref_55
ref_52
Aslan (ref_26) 2021; 68
Sneha (ref_34) 2019; 6
Sarwar (ref_8) 2020; 12
(ref_32) 2022; 69
Kalagotla (ref_62) 2021; 135
Naz (ref_15) 2020; 19
Dadgar (ref_37) 2017; 7
ref_61
Saba (ref_20) 2020; 59
Zhu (ref_46) 2021; 25
Bhoi (ref_1) 2021; 12
Aslan (ref_16) 2018; 6
Rajeswari (ref_40) 2019; 5
Mirbabaie (ref_23) 2021; 11
Azrar (ref_11) 2018; 9
ref_29
ref_28
ref_27
(ref_56) 2020; 76
Kilicarslan (ref_54) 2020; 137
Abuhmed (ref_21) 2021; 213
Alex (ref_45) 2022; 34
Zhou (ref_9) 2020; 2020
Kannadasan (ref_43) 2019; 7
ref_36
ref_31
ref_30
Asiri (ref_17) 2019; 99
Sun (ref_24) 2019; 7
Kaur (ref_22) 2020; 8
ref_39
Jahani (ref_13) 2016; 22
Ardakani (ref_59) 2020; 121
Zolfaghari (ref_33) 2012; 15
Jakka (ref_63) 2019; 8
Mellitus (ref_2) 2005; 28
Chiefari (ref_6) 2017; 40
Noguez (ref_47) 2021; 13
Zou (ref_38) 2018; 9
Doupis (ref_7) 2017; 8
Rahman (ref_44) 2020; 88
Xu (ref_5) 2018; 362
Urbanowicz (ref_51) 2018; 85
ref_42
ref_41
ref_3
Cho (ref_10) 2018; 138
Aslan (ref_18) 2022; 142
Tuncer (ref_53) 2020; 203
Koklu (ref_60) 2022; 188
ref_49
Edeh (ref_35) 2022; 10
Saleem (ref_48) 2021; 7
Baashar (ref_19) 2022; 2022
References_xml – volume: 8
  start-page: 489
  year: 2017
  ident: ref_7
  article-title: Gestational diabetes from A to Z
  publication-title: World J. Diabetes
  doi: 10.4239/wjd.v8.i12.489
– ident: ref_29
  doi: 10.1109/CVPR.2016.308
– volume: 85
  start-page: 189
  year: 2018
  ident: ref_51
  article-title: Relief-based feature selection: Introduction and review
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2018.07.014
– volume: 69
  start-page: 101633
  year: 2022
  ident: ref_32
  article-title: An effective and fast solution for classification of wood species: A deep transfer learning approach
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2022.101633
– volume: 8
  start-page: 228049
  year: 2020
  ident: ref_22
  article-title: Medical Diagnostic Systems Using Artificial Intelligence (AI) Algorithms: Principles and Perspectives
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3042273
– volume: 22
  start-page: 95
  year: 2016
  ident: ref_13
  article-title: Comparison of predictive models for the early diagnosis of diabetes
  publication-title: Healthc. Inform. Res.
  doi: 10.4258/hir.2016.22.2.95
– ident: ref_39
  doi: 10.1007/978-981-13-1280-9_6
– volume: 138
  start-page: 271
  year: 2018
  ident: ref_10
  article-title: IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/j.diabres.2018.02.023
– volume: 6
  start-page: 13
  year: 2019
  ident: ref_34
  article-title: Analysis of diabetes mellitus for early prediction using optimal features selection
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0175-6
– volume: 7
  start-page: 530
  year: 2019
  ident: ref_43
  article-title: Type 2 diabetes data classification using stacked autoencoders in deep neural networks
  publication-title: Clin. Epidemiol. Glob. Health
  doi: 10.1016/j.cegh.2018.12.004
– volume: 137
  start-page: 109577
  year: 2020
  ident: ref_54
  article-title: Diagnosis and classification of cancer using hybrid model based on ReliefF and convolutional neural network
  publication-title: Med. Hypotheses
  doi: 10.1016/j.mehy.2020.109577
– volume: 362
  start-page: k1497
  year: 2018
  ident: ref_5
  article-title: Prevalence of diagnosed type 1 and type 2 diabetes among US adults in 2016 and 2017: Population based study
  publication-title: BMJ
  doi: 10.1136/bmj.k1497
– volume: 25
  start-page: 2744
  year: 2021
  ident: ref_46
  article-title: Deep Learning for Diabetes: A Systematic Review
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.3040225
– volume: 59
  start-page: 221
  year: 2020
  ident: ref_20
  article-title: Brain tumor detection using fusion of hand crafted and deep learning features
  publication-title: Cogn. Syst. Res.
  doi: 10.1016/j.cogsys.2019.09.007
– volume: 19
  start-page: 391
  year: 2020
  ident: ref_15
  article-title: Deep learning approach for diabetes prediction using PIMA Indian dataset
  publication-title: J. Diabetes Metab. Disord.
  doi: 10.1007/s40200-020-00520-5
– ident: ref_42
  doi: 10.3390/app9173532
– volume: 7
  start-page: 3397
  year: 2017
  ident: ref_37
  article-title: A Hybrid Method of Feature Selection and Neural Network with Genetic Algorithm to Predict Diabetes
  publication-title: Int. J. Mechatron. Electr. Comput. Technol. (IJMEC)
– volume: 11
  start-page: 21
  year: 2019
  ident: ref_14
  article-title: Diabetes Prediction: A Deep Learning Approach
  publication-title: Int. J. Inf. Eng. Electron. Bus.
– ident: ref_58
– ident: ref_49
  doi: 10.1007/978-3-030-17795-9_10
– volume: 13
  start-page: 1
  year: 2021
  ident: ref_47
  article-title: Machine learning and deep learning predictive models for type 2 diabetes: A systematic review
  publication-title: Diabetol. Metab. Syndr.
– volume: 12
  start-page: 3074
  year: 2021
  ident: ref_1
  article-title: Prediction of diabetes in females of pima Indian heritage: A complete supervised learning approach
  publication-title: Turk. J. Comput. Math. Educ. (TURCOMAT)
– ident: ref_31
– ident: ref_52
– volume: 9
  start-page: 515
  year: 2018
  ident: ref_38
  article-title: Predicting Diabetes Mellitus With Machine Learning Techniques
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2018.00515
– volume: 213
  start-page: 106688
  year: 2021
  ident: ref_21
  article-title: Robust hybrid deep learning models for Alzheimer’s progression detection
  publication-title: Knowl. -Based Syst.
  doi: 10.1016/j.knosys.2020.106688
– volume: 31
  start-page: 685
  year: 2021
  ident: ref_25
  article-title: Machine learning and deep learning
  publication-title: Electron. Mark.
  doi: 10.1007/s12525-021-00475-2
– volume: 6
  start-page: 289
  year: 2018
  ident: ref_16
  article-title: Breast Cancer Diagnosis by Different Machine Learning Methods Using Blood Analysis Data
  publication-title: Int. J. Intell. Syst. Appl. Eng.
  doi: 10.18201/ijisae.2018648455
– ident: ref_41
– volume: 68
  start-page: 102716
  year: 2021
  ident: ref_26
  article-title: A CNN-based novel solution for determining the survival status of heart failure patients with clinical record data: Numeric to image
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102716
– volume: 8
  start-page: 1976
  year: 2019
  ident: ref_63
  article-title: Performance evaluation of machine learning models for diabetes prediction
  publication-title: Int. J. Innov. Technol. Explor. Eng. (IJITEE)
  doi: 10.35940/ijitee.K2155.0981119
– ident: ref_61
  doi: 10.1007/978-981-13-1642-5_59
– volume: 76
  start-page: 8413
  year: 2020
  ident: ref_56
  article-title: Efficient deep feature selection for remote sensing image recognition with fused deep learning architectures
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-019-03106-y
– volume: 135
  start-page: 104554
  year: 2021
  ident: ref_62
  article-title: A novel stacking technique for prediction of diabetes
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104554
– ident: ref_3
  doi: 10.3390/app12083989
– ident: ref_28
  doi: 10.1109/CVPR.2015.7298594
– volume: 2020
  start-page: 148
  year: 2020
  ident: ref_9
  article-title: Diabetes prediction model based on an enhanced deep neural network
  publication-title: EURASIP J. Wirel. Commun. Netw.
  doi: 10.1186/s13638-020-01765-7
– volume: 40
  start-page: 899
  year: 2017
  ident: ref_6
  article-title: Gestational diabetes mellitus: An updated overview
  publication-title: J. Endocrinol. Investig.
  doi: 10.1007/s40618-016-0607-5
– volume: 142
  start-page: 105244
  year: 2022
  ident: ref_18
  article-title: COVID-19 diagnosis using state-of-the-art CNN architecture features and Bayesian Optimization
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105244
– volume: 99
  start-page: 101701
  year: 2019
  ident: ref_17
  article-title: Deep learning based computer-aided diagnosis systems for diabetic retinopathy: A survey
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2019.07.009
– volume: 9
  start-page: 320
  year: 2018
  ident: ref_11
  article-title: Data mining models comparison for diabetes prediction
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 28
  start-page: S5
  year: 2005
  ident: ref_2
  article-title: Diagnosis and classification of diabetes mellitus
  publication-title: Diabetes Care
– volume: 2022
  start-page: 5849995
  year: 2022
  ident: ref_19
  article-title: Effectiveness of artificial intelligence models for cardiovascular disease prediction: Network meta-analysis
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2022/5849995
– volume: 41
  start-page: 1301
  year: 2019
  ident: ref_57
  article-title: Improving classification accuracy of cancer types using parallel hybrid feature selection on microarray gene expression data
  publication-title: Genes Genom.
  doi: 10.1007/s13258-019-00859-x
– volume: 15
  start-page: 2230
  year: 2012
  ident: ref_33
  article-title: Diagnosis of diabetes in female population of pima indian heritage with ensemble of bp neural network and svm
  publication-title: Int. J. Comput. Eng. Manag/
– volume: 203
  start-page: 104054
  year: 2020
  ident: ref_53
  article-title: An automated residual exemplar local binary pattern and iterative ReliefF based COVID-19 detection method using chest X-ray image
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2020.104054
– volume: 188
  start-page: 110425
  year: 2022
  ident: ref_60
  article-title: A CNN-SVM study based on selected deep features for grapevine leaves classification
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110425
– volume: 7
  start-page: 142022
  year: 2019
  ident: ref_24
  article-title: Intelligent Analysis of Medical Big Data Based on Deep Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2942937
– volume: 7
  start-page: 526
  year: 2021
  ident: ref_48
  article-title: Deep learning for the internet of things: Potential benefits and use-cases
  publication-title: Digit. Commun. Netw.
  doi: 10.1016/j.dcan.2020.12.002
– volume: 10
  start-page: 829519
  year: 2022
  ident: ref_35
  article-title: A Classification Algorithm-Based Hybrid Diabetes Prediction Model
  publication-title: Front. Public Health
  doi: 10.3389/fpubh.2022.829519
– ident: ref_12
  doi: 10.3390/app9214604
– ident: ref_50
– volume: 5
  start-page: 2395-1303
  year: 2019
  ident: ref_40
  article-title: A review of diabetic prediction using machine learning techniques
  publication-title: Int. J. Eng. Tech.
– volume: 93
  start-page: 103
  year: 2016
  ident: ref_4
  article-title: Diabetes mellitus: Screening and diagnosis
  publication-title: Am. Fam. Physician
– volume: 34
  start-page: 1319
  year: 2022
  ident: ref_45
  article-title: Deep convolutional neural network for diabetes mellitus prediction
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06431-7
– ident: ref_30
  doi: 10.1109/CVPR.2017.195
– volume: 88
  start-page: 107329
  year: 2020
  ident: ref_44
  article-title: A deep learning approach based on convolutional LSTM for detecting diabetes
  publication-title: Comput. Biol. Chem.
  doi: 10.1016/j.compbiolchem.2020.107329
– ident: ref_36
  doi: 10.1109/ICSESS.2017.8342938
– ident: ref_55
  doi: 10.1007/3-540-57868-4_57
– ident: ref_27
  doi: 10.1109/CVPR.2016.90
– volume: 121
  start-page: 103795
  year: 2020
  ident: ref_59
  article-title: Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: Results of 10 convolutional neural networks
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103795
– volume: 11
  start-page: 693
  year: 2021
  ident: ref_23
  article-title: Artificial intelligence in disease diagnostics: A critical review and classification on the current state of research guiding future direction
  publication-title: Health Technol.
  doi: 10.1007/s12553-021-00555-5
– volume: 12
  start-page: 419
  year: 2020
  ident: ref_8
  article-title: Diagnosis of diabetes type-II using hybrid machine learning based ensemble model
  publication-title: Int. J. Inf. Technol.
SSID ssj0000913825
Score 2.3132646
Snippet Diabetes, one of the most common diseases worldwide, has become an increasingly global threat to humans in recent years. However, early detection of diabetes...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 796
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Big Data
Classification
convolutional neural network
Data mining
Datasets
Deep learning
Diabetes
diabetes prediction
Disease
Electronic data processing
Feature selection
Health aspects
Insulin resistance
Machine learning
Medical diagnosis
Medical records
Neural networks
numeric-to-image
Pancreas
PIMA dataset
Support vector machines
Technology application
Womens health
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1Lb9QwEIBHqAfEBfEmUJCRkLgQdRPbic1t21IVpFYcqNSb5fhRkLbZik37-zvjuKtEILhw3PVYij3jeSiTzwDvHReiq60rtXeyFLZDPxg8L11nq8bpJjYtfZx8ctocn4mv5_J8ctUX9YSNeOBx4_aquvJ6EaXsMHTHwLUPC68qJ22lglWJ84kxb1JMJR-sia0nR8wQx7p-z4-da8Q-RreNZQxh-iehKBH7f_fLk8A0b5qcRKGjR_Awp49sOT72Y7gX-idw_yS_IH8KfslO1zdhxb7R7QcbFMWklB2GcMUySfWi3MfA5VluhdmgJM0m_XxiB9SDTlyBC5aBoSt2aAfLhjX7comuJ_16BmdHn78fHJf5IoXSYbY2lDFGVbUuOh69WmjSApcadRQUxxTMYhHFbcDET7ZRy84n7pwn0AxXKuqOP4edft2Hl8C8rq3lXneV90JbYd3CYkrQqChji76hgPpuT43LlHG67GJlsNogRZg_KKKAj9tJVyNk4-_i-6SsrSgRstMfaDcm2435l90U8IFUbegc4wM6mz9HwGUSEcssMbUitL9qC9idSeL5c_PhO2Mx-fxvTN22WtZY2-KGvNsO00zqaevD-ppkVOK2i7qAF6NtbZfEG_K0ShTQzqxutub5SP_zR6KDay3Rr4pX_2OTXsODGpO6sUt9F3aGX9fhDSZhQ_c2nbdb58gwuw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7aBEovpe-4TYsKhV5qsrYsW-ol7OZBWsgSSgO5GVmPbWFjb7NOf39nbK2zpiVHWyOwPNKnb-TxNwAfDc-yKtUmVtaIONMV4qCzPDaVTnKjcp8X9HPy-Tw_u8y-XYmrcOC2DmmVG0zsgNo2hs7ID9KiUCLFaEEcrn7HVDWKvq6GEhoPYRchWGLwtTs7mV98H05ZSPUSY6BebohjfH9g-ww20kBG-MZwhuT6t7akTrn_X3ze2qDGyZNbu9HpU3gSaCSb9n5_Bg9c_RwenYcP5S_ATtm8-eOW7IKqIKzRFMkpO3ZuxYKi6iKe4QZmWUiJWaMl9SY_fWFHlItO-gILFoRDl-xYt5q1Dft6jRDUXb2Ey9OTH0dncSioEBtkbW3svZdJYbzh3sqJIm9wodBXTnKkYhqDKa4dEkBReCUq2-nPWRKc4VJ6VfFXsFM3tdsDZlWqNbeqSqzNlM60mWikBrn0wheIERGkm3damqA2TkUvliVGHeSI8j-OiODz0GnVi23cbz4jZw2mpJTd3WhuFmVYeGWSJlZNvBAVUj_vuLJuYmVihE6k05JH8IlcXdJ6xgc0OvyWgMMkZaxyihSLJP5lEcH-yBLXoRk3byZLGXBgXd7N2gg-DM3Uk3Lbatfcko3s9NuzNILX_dwahsRzQlyZRVCMZt1ozOOW-tfPTiVcKYH4mr25_7HewuMUaVufh74PO-3NrXuHNKut3oe19Bfi1imi
  priority: 102
  providerName: ProQuest
Title A Novel Proposal for Deep Learning-Based Diabetes Prediction: Converting Clinical Data to Image Data
URI https://www.ncbi.nlm.nih.gov/pubmed/36832284
https://www.proquest.com/docview/2779529245
https://www.proquest.com/docview/2780072942
https://pubmed.ncbi.nlm.nih.gov/PMC9955314
https://doaj.org/article/121d90f55b264fe39de0d81c5a18ea83
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEB_OOxBfDr-NnmUFwRejTTab7Aoi7X1wCi2HWLi3sNmPKtTkru2J_vfOJNtywVN8bHY2ze7MzvymnfwG4KXhWVal2sTKGhFnukI_6CyPTaWT3Kjc5wW9nDyZ5qez7NO5ON-BTVfUsIGrG1M76ic1Wy7e_Lz89QEP_HvKODFlf2u7ojSiNUaPjBmKym_BHoamgk7qJOD91jUrotyjssYUQ2WMUEB2TER_u08vWrWk_n-67muxq19XeS1QndyF_YAw2agziXuw4-r7cHsS_kN_AHbEps0Pt2Bn1CBhhaKIW9mRcxcskK3O4zHGNstCtcwKJWk2qfAdO6QydaIemLPAKbpgR3qt2bphH7-jd2o_PYTZyfGXw9M49FqIDQK6dey9l0lhvOHeyqEiRXGhUI1OckRpGvMsrh1iQ1F4JSrbUtNZ4qLhUnpV8UewWze1ewLMqlRrblWVWJspnWkz1IgacumFL9B9RJBu9rQ0gYic-mEsSkxISBHlDYqI4PV20kXHw_Fv8TEpaytKJNrthWY5L8OZLJM0sWrohagQFXrHlXVDKxMjdCKdljyCV6TqkowPH9Do8MYCLpNIs8oRoi9i_5dFBAc9STyipj-8MZZyY-FlWhRKpJj-4oa82A7TTCp7q11zRTKypXbP0gged7a1XRLPyRnLLIKiZ3W9NfdH6m9fWwJxpQS63uzpf3zvM7iTIqzr6tQPYHe9vHLPEYatqwHsjY-nZ58H7c8Yg_ag_QancDQ2
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgJeEN8EBhgJxAvRmjhObCSE2nVTy9ZqQpu0t8zxR0EqbVk7EP8UfyN3SVoagfa2x8TnyM59J-ffAbw2PEmKWJtQWSPCRBdoB53loSl0lBqV-jSjw8nDUdo_TT6dibMt-L06C0NllSubWBpqOzP0jXw3zjIlYswWxMf595C6RtHf1VULjUosDt2vn5iyLT4MesjfN3F8sH-y1w_rrgKhwdBlGXrvZZQZb7i3sq1oSVwoXLCTHOMRjRkF1w6jIJF5JQpbgrBZQl3hUnpVcHzuDdhOOKYyLdju7o-OP6-_6hDKJuZcFbwR56q9a6uKOcJcRneB6RO1B9hwgWWngH_9wYZDbBZrbni_g7twpw5bWaeSs3uw5ab34eaw_jH_AGyHjWY_3IQdU9eFBZJiMMx6zs1ZjeA6DrvoMC2rS3AWSEmzSS7esz2qfSc8gzGrgUonrKeXmi1nbPANTV559RBOr-VVP4LWdDZ1T4BZFWvNrSoiaxOlE23aGkORVHrhM7RJAcSrd5qbGt2cmmxMcsxyiBH5fxgRwLv1pHkF7nE1eZeYtSYlZO7yxuxinNeKnkdxZFXbC1FgqOkdV9a1rYyM0JF0WvIA3hKrc7IfuECj62MQuE1C4so7GNJRSwGZBbDToES9N83hlbDktd1Z5H-1JIBX62GaSbV0Uze7JBpZ4sUncQCPK9lab4mnZOFlEkDWkLrGnpsj069fSlRypQTa8-Tp1ct6Cbf6J8Oj_GgwOnwGt2MMGasa-B1oLS8u3XMM8ZbFi1qvGJxftyr_AbpPZVc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJ028IO4EBhgJxAtRkzhObCSE2nXVylhVISbtLXN8KUilKWsH4q_x6zgncUsj0N72mPg4snPuyfF3CHmpWZqWidKhNJqHqSrBDlrDQl2qONMyc1mOh5NPxtnRafrhjJ_tkN_rszBYVrm2ibWhNpXGb-TdJM8lTyBb4F3nyyImg-H7xfcQO0jhn9Z1O41GRI7tr5-Qvi3fjQbA61dJMjz8fHAU-g4DoYYwZhU650Sca6eZMyKSuDzGJSzeCgaxiYLsgikLERHPneSlqQHZDCKwMCGcLBk89wbZzSErijpkt384nnzafOFBxE3IvxqoI8Zk1DVN9RziL4PrgEnYKmDLHdZdA_71DVvOsV24ueUJh7fJLR_C0l4jc3fIjp3fJXsn_if9PWJ6dFz9sDM6wQ4MSyCFwJgOrF1Qj-Y6DfvgPA315ThLoMTZKCNv6QHWwSO2wZR60NIZHaiVoquKjr6B-auv7pPTa3nVD0hnXs3tI0KNTJRiRpaxMalUqdKRgrAkE467HOxTQJL1Oy20RzrHhhuzAjIeZETxH0YE5M1m0qIB-riavI_M2pAiSnd9o7qYFl7piziJjYwc5yWEnc4yaWxkRKy5ioVVggXkNbK6QFsCC9TKH4mAbSIqV9GD8A7bC4g8IPstSrABuj28FpbC26Bl8VdjAvJiM4wzsa5ubqtLpBE1dnyaBORhI1ubLbEMrb1IA5K3pK615_bI_OuXGqFcSg62PX189bKekz1Q4eLjaHz8hNxMIHpsyuH3SWd1cWmfQrS3Kp95taLk_Lo1-Q9fXmmM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Proposal+for+Deep+Learning-Based+Diabetes+Prediction%3A+Converting+Clinical+Data+to+Image+Data&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Aslan%2C+Muhammet+Fatih&rft.au=Sabanci%2C+Kadir&rft.date=2023-02-01&rft.issn=2075-4418&rft.eissn=2075-4418&rft.volume=13&rft.issue=4&rft_id=info:doi/10.3390%2Fdiagnostics13040796&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon