Contribution of macrophages to enhanced regenerative capacity of dorsal root ganglia sensory neurons by conditioning injury

Although the central branches of the dorsal root ganglion (DRG) sensory neurons do not spontaneously regenerate, a conditioning peripheral injury can promote their regeneration. A potential role of macrophages in axonal regeneration was proposed, but it has not been critically addressed whether macr...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 33; no. 38; pp. 15095 - 15108
Main Authors Kwon, Min Jung, Kim, Jinha, Shin, Haeyoung, Jeong, Soo Ryeong, Kang, Young Mi, Choi, Jun Young, Hwang, Dong Hoon, Kim, Byung Gon
Format Journal Article
LanguageEnglish
Published United States Society for Neuroscience 18.09.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although the central branches of the dorsal root ganglion (DRG) sensory neurons do not spontaneously regenerate, a conditioning peripheral injury can promote their regeneration. A potential role of macrophages in axonal regeneration was proposed, but it has not been critically addressed whether macrophages play an essential role in the conditioning injury model. After sciatic nerve injury (SNI) in rats, the number of macrophages in DRGs gradually increased by day 7. The increase persisted up to 28 d and was accompanied by upregulation of inflammatory mediators, including oncomodulin. A macrophage deactivator, minocycline, reduced the macrophage number and expressions of the inflammatory mediators. Molecular signatures of conditioning effects were abrogated by minocycline, and enhanced regenerative capacity was substantially attenuated both in vitro and in vivo. Delayed minocycline infusion abrogated the SNI-induced long-lasting heightened neurite outgrowth potential, indicating a role for macrophages in the maintenance of regenerative capacity. Intraganglionic cAMP injection also resulted in an increase in macrophages, and minocycline abolished the cAMP effect on neurite outgrowth. However, conditioned media (CM) from macrophages treated with cAMP did not exhibit neurite growth-promoting activity. In contrast, CM from neuron-macrophage cocultures treated with cAMP promoted neurite outgrowth greatly, highlighting a requirement for neuron-macrophage interactions for the induction of a proregenerative macrophage phenotype. The growth-promoting activity in the CM was profoundly attenuated by an oncomodulin neutralizing antibody. These results suggest that the neuron-macrophage interactions involved in eliciting a proregenerative phenotype in macrophages may be a novel target to induce long-lasting regenerative processes after axonal injuries in the CNS.
AbstractList Although the central branches of the dorsal root ganglion (DRG) sensory neurons do not spontaneously regenerate, a conditioning peripheral injury can promote their regeneration. A potential role of macrophages in axonal regeneration was proposed, but it has not been critically addressed whether macrophages play an essential role in the conditioning injury model. After sciatic nerve injury (SNI) in rats, the number of macrophages in DRGs gradually increased by day 7. The increase persisted up to 28 d and was accompanied by upregulation of inflammatory mediators, including oncomodulin. A macrophage deactivator, minocycline, reduced the macrophage number and expressions of the inflammatory mediators. Molecular signatures of conditioning effects were abrogated by minocycline, and enhanced regenerative capacity was substantially attenuated both in vitro and in vivo . Delayed minocycline infusion abrogated the SNI-induced long-lasting heightened neurite outgrowth potential, indicating a role for macrophages in the maintenance of regenerative capacity. Intraganglionic cAMP injection also resulted in an increase in macrophages, and minocycline abolished the cAMP effect on neurite outgrowth. However, conditioned media (CM) from macrophages treated with cAMP did not exhibit neurite growth-promoting activity. In contrast, CM from neuron–macrophage cocultures treated with cAMP promoted neurite outgrowth greatly, highlighting a requirement for neuron–macrophage interactions for the induction of a proregenerative macrophage phenotype. The growth-promoting activity in the CM was profoundly attenuated by an oncomodulin neutralizing antibody. These results suggest that the neuron–macrophage interactions involved in eliciting a proregenerative phenotype in macrophages may be a novel target to induce long-lasting regenerative processes after axonal injuries in the CNS.
Although the central branches of the dorsal root ganglion (DRG) sensory neurons do not spontaneously regenerate, a conditioning peripheral injury can promote their regeneration. A potential role of macrophages in axonal regeneration was proposed, but it has not been critically addressed whether macrophages play an essential role in the conditioning injury model. After sciatic nerve injury (SNI) in rats, the number of macrophages in DRGs gradually increased by day 7. The increase persisted up to 28 d and was accompanied by upregulation of inflammatory mediators, including oncomodulin. A macrophage deactivator, minocycline, reduced the macrophage number and expressions of the inflammatory mediators. Molecular signatures of conditioning effects were abrogated by minocycline, and enhanced regenerative capacity was substantially attenuated both in vitro and in vivo. Delayed minocycline infusion abrogated the SNI-induced long-lasting heightened neurite outgrowth potential, indicating a role for macrophages in the maintenance of regenerative capacity. Intraganglionic cAMP injection also resulted in an increase in macrophages, and minocycline abolished the cAMP effect on neurite outgrowth. However, conditioned media (CM) from macrophages treated with cAMP did not exhibit neurite growth-promoting activity. In contrast, CM from neuron-macrophage cocultures treated with cAMP promoted neurite outgrowth greatly, highlighting a requirement for neuron-macrophage interactions for the induction of a proregenerative macrophage phenotype. The growth-promoting activity in the CM was profoundly attenuated by an oncomodulin neutralizing antibody. These results suggest that the neuron-macrophage interactions involved in eliciting a proregenerative phenotype in macrophages may be a novel target to induce long-lasting regenerative processes after axonal injuries in the CNS.
Author Jeong, Soo Ryeong
Kang, Young Mi
Kim, Jinha
Shin, Haeyoung
Hwang, Dong Hoon
Choi, Jun Young
Kwon, Min Jung
Kim, Byung Gon
Author_xml – sequence: 1
  givenname: Min Jung
  surname: Kwon
  fullname: Kwon, Min Jung
  organization: Brain Disease Research Center, Institute for Medical Sciences and Department of Neurology, Ajou University School of Medicine, Suwon, 443-721, Republic of Korea and Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 443-721, Republic of Korea
– sequence: 2
  givenname: Jinha
  surname: Kim
  fullname: Kim, Jinha
– sequence: 3
  givenname: Haeyoung
  surname: Shin
  fullname: Shin, Haeyoung
– sequence: 4
  givenname: Soo Ryeong
  surname: Jeong
  fullname: Jeong, Soo Ryeong
– sequence: 5
  givenname: Young Mi
  surname: Kang
  fullname: Kang, Young Mi
– sequence: 6
  givenname: Jun Young
  surname: Choi
  fullname: Choi, Jun Young
– sequence: 7
  givenname: Dong Hoon
  surname: Hwang
  fullname: Hwang, Dong Hoon
– sequence: 8
  givenname: Byung Gon
  surname: Kim
  fullname: Kim, Byung Gon
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24048840$$D View this record in MEDLINE/PubMed
BookMark eNpVUU1v1DAQtVAR3Rb-QuUjlyz-Suy9IKFVgaKqlWh7tibJJOtV1l7spFLEn8ehpaKXmcOb9-bNvDNy4oNHQi44W_NSyE97j1MMqXFrJrQpuFwLxuUbssrophCK8ROyyhArKqXVKTlLac8Y04zrd-Q048oYxVbk9zb4Mbp6Gl3wNHT0AE0Mxx30mOgYKPod-AZbGrFHjxFG94i0gSM0bpwXQhtigoHGEEbag-8HBzShTyHO9K9Jn2g90yb41i1LnO-p8_spzu_J2w6GhB-e-zl5-Hp5v_1eXN9-u9p-uS6asqrGopOi4xuj-UYbA6XhUrUgNigMIjOmNkqyynSt7nIBjWUtgBsJQuhKdYrLc_L5Sfc41QdsG8wXw2CP0R0gzjaAs68R73a2D4-2qrhRXGeBj88CMfyaMI324FKDwwAew5QsL0teCa2VyqPV02j-YkoRu5c1nNklOfvj5vLh5-3d9souyVku7ZJcJl78b_KF9i8q-Qduh5xo
CitedBy_id crossref_primary_10_7554_eLife_78515
crossref_primary_10_3390_ijms20246360
crossref_primary_10_1002_glia_24482
crossref_primary_10_1016_j_biopha_2023_115632
crossref_primary_10_1016_j_jneumeth_2020_108981
crossref_primary_10_1186_s12974_021_02283_z
crossref_primary_10_1097_j_pain_0000000000001879
crossref_primary_10_1172_JCI164472
crossref_primary_10_1016_j_biocel_2014_04_018
crossref_primary_10_2139_ssrn_4109527
crossref_primary_10_3390_cells10081881
crossref_primary_10_1097_j_pain_0000000000002321
crossref_primary_10_3233_RNN_190960
crossref_primary_10_3390_ijms242015359
crossref_primary_10_4103_1673_5374_250566
crossref_primary_10_5385_nm_2019_26_1_1
crossref_primary_10_1002_glia_23947
crossref_primary_10_1002_glia_23828
crossref_primary_10_1051_jbio_20140011
crossref_primary_10_1523_JNEUROSCI_1745_20_2020
crossref_primary_10_3389_fphar_2022_861799
crossref_primary_10_1111_jnc_13751
crossref_primary_10_3892_etm_2016_3130
crossref_primary_10_1016_j_brainresbull_2021_03_010
crossref_primary_10_3389_fphar_2023_1297931
crossref_primary_10_1523_JNEUROSCI_4827_13_2014
crossref_primary_10_1007_s12035_022_02853_z
crossref_primary_10_1186_s12974_017_1022_3
crossref_primary_10_1155_2021_6648004
crossref_primary_10_3389_fnmol_2015_00043
crossref_primary_10_1097_j_pain_0000000000001982
crossref_primary_10_1111_jcmm_13185
crossref_primary_10_1016_j_expneurol_2019_03_005
crossref_primary_10_1186_s12974_024_03132_5
crossref_primary_10_1016_j_expneurol_2015_09_018
crossref_primary_10_1523_JNEUROSCI_3249_15_2016
crossref_primary_10_1016_j_molimm_2024_03_006
crossref_primary_10_1186_s12974_022_02497_9
crossref_primary_10_1016_j_stem_2014_06_009
crossref_primary_10_1007_s10571_018_0633_2
crossref_primary_10_1016_j_expneurol_2014_10_012
crossref_primary_10_1016_j_pneurobio_2020_101970
crossref_primary_10_1016_j_bbih_2021_100371
crossref_primary_10_1038_nrneurol_2014_207
crossref_primary_10_21769_BioProtoc_2012
crossref_primary_10_1186_s12974_018_1222_5
crossref_primary_10_3389_fcell_2021_624201
crossref_primary_10_1074_jbc_M114_582460
crossref_primary_10_1172_jci_insight_164579
crossref_primary_10_1186_s12868_020_00559_3
crossref_primary_10_1111_neup_12802
crossref_primary_10_1016_j_neures_2021_11_001
crossref_primary_10_1016_j_nbd_2017_06_001
crossref_primary_10_1038_s41583_018_0001_8
crossref_primary_10_1523_ENEURO_0477_21_2022
crossref_primary_10_1007_s11011_015_9714_9
crossref_primary_10_3390_biom14020183
crossref_primary_10_1007_s12035_023_03590_7
crossref_primary_10_1038_s41598_017_00553_6
crossref_primary_10_1186_s12974_019_1660_8
crossref_primary_10_1074_jbc_M115_699215
crossref_primary_10_1016_j_biomaterials_2021_121068
crossref_primary_10_1177_1744806918765808
crossref_primary_10_3389_fnmol_2018_00024
crossref_primary_10_1016_j_brainres_2019_06_012
crossref_primary_10_1016_j_conb_2016_04_005
crossref_primary_10_1152_ajpgi_00323_2020
crossref_primary_10_3389_fnmol_2016_00049
crossref_primary_10_1016_j_celrep_2022_111130
crossref_primary_10_1016_j_nbd_2024_106528
crossref_primary_10_3390_ijms242115831
crossref_primary_10_1007_s11481_016_9700_y
crossref_primary_10_1016_j_expneurol_2014_12_004
crossref_primary_10_1073_pnas_2113751119
crossref_primary_10_1096_fj_201901921R
crossref_primary_10_1093_pm_pnw144
crossref_primary_10_1002_dneu_22771
crossref_primary_10_1073_pnas_2215906120
crossref_primary_10_1152_ajpcell_00163_2015
crossref_primary_10_1111_cns_13077
crossref_primary_10_1016_j_expneurol_2021_113909
crossref_primary_10_1016_j_semcdb_2018_04_002
crossref_primary_10_4103_1673_5374_286954
crossref_primary_10_1016_j_neuroscience_2014_09_027
crossref_primary_10_1016_j_pneurobio_2014_06_002
crossref_primary_10_1016_j_intimp_2023_110674
crossref_primary_10_1016_j_expneurol_2017_12_013
crossref_primary_10_1177_0192623319854326
crossref_primary_10_1016_j_bbrc_2020_06_142
crossref_primary_10_1111_jcmm_14756
crossref_primary_10_1002_ar_23845
crossref_primary_10_1016_j_expneurol_2019_02_001
crossref_primary_10_1007_s12017_020_08611_5
crossref_primary_10_1016_j_pain_2014_08_013
crossref_primary_10_1016_j_cej_2021_133356
crossref_primary_10_7554_eLife_68457
crossref_primary_10_4103_1673_5374_191194
crossref_primary_10_1097_j_pain_0000000000001383
crossref_primary_10_1523_ENEURO_0168_19_2019
crossref_primary_10_1186_s12974_021_02269_x
crossref_primary_10_3390_cells9071740
crossref_primary_10_1007_s11064_019_02861_x
crossref_primary_10_3390_cells10061499
crossref_primary_10_1007_s10571_018_0635_0
crossref_primary_10_1016_j_neulet_2024_137879
crossref_primary_10_1016_j_neuron_2020_07_026
crossref_primary_10_1038_s41598_020_73984_3
crossref_primary_10_1126_scitranslmed_adg6241
crossref_primary_10_1177_1744806917703112
crossref_primary_10_3390_ijms232012389
crossref_primary_10_1002_ana_25207
crossref_primary_10_3390_ijms222312801
crossref_primary_10_1002_JLB_3MR0520_695R
crossref_primary_10_3389_fphar_2019_00613
crossref_primary_10_1002_dneu_22601
crossref_primary_10_1016_j_heliyon_2024_e31481
crossref_primary_10_1016_j_intimp_2023_110330
crossref_primary_10_1016_j_jphs_2016_02_008
crossref_primary_10_1097_PR9_0000000000000873
crossref_primary_10_3389_fnmol_2022_967472
crossref_primary_10_1084_jem_20230675
crossref_primary_10_1186_1744_8069_9_61
crossref_primary_10_1523_JNEUROSCI_1924_15_2015
crossref_primary_10_1016_j_pneurobio_2018_12_001
crossref_primary_10_1177_1721727X17706855
Cites_doi 10.1016/S0896-6273(02)00730-4
10.1523/JNEUROSCI.5397-08.2009
10.1006/exnr.1998.6964
10.1186/1744-8069-8-49
10.1002/neu.480240709
10.1186/1471-2202-7-8
10.1007/BF01195557
10.1523/JNEUROSCI.1447-08.2008
10.1038/nn0606-715
10.1523/JNEUROSCI.2488-08.2008
10.1093/brain/aws072
10.1073/pnas.0912942107
10.1111/j.1471-4159.2006.04089.x
10.1089/neu.2011.1888
10.1038/309791a0
10.1523/JNEUROSCI.2245-02.2004
10.1016/S0896-6273(02)00702-X
10.1126/science.1067840
10.1523/JNEUROSCI.21-18-07161.2001
10.1523/JNEUROSCI.3992-08.2009
10.1523/JNEUROSCI.3269-04.2005
10.1073/pnas.0306239101
10.1523/JNEUROSCI.11-04-00972.1991
10.1016/S1474-4422(04)00937-8
10.1124/jpet.103.052407
10.1523/JNEUROSCI.5275-03.2004
10.1016/j.expneurol.2007.06.009
10.1002/(SICI)1096-9861(19991129)414:4<495::AID-CNE6>3.0.CO;2-S
10.1007/s00441-012-1425-5
10.1016/j.expneurol.2007.09.020
10.1016/S0896-6273(03)00770-0
10.1073/pnas.0907085106
10.1016/S0165-5728(00)00408-2
10.1016/j.tins.2008.02.004
10.1016/j.cub.2009.04.017
10.1016/S0166-2236(96)10072-2
10.1016/S0896-6273(00)80755-2
10.1523/JNEUROSCI.23-06-02284.2003
10.1016/j.neuron.2004.06.005
10.1016/j.expneurol.2009.09.006
10.1523/JNEUROSCI.2840-11.2011
10.1073/pnas.1206218109
10.1523/JNEUROSCI.14-07-04375.1994
10.1523/JNEUROSCI.2111-05.2005
10.1038/nn1701
10.1016/S0896-6273(02)00826-7
10.1523/JNEUROSCI.0815-06.2006
10.1523/JNEUROSCI.20-12-04615.2000
ContentType Journal Article
Copyright Copyright © 2013 the authors 0270-6474/13/3315095-14$15.00/0 2013
Copyright_xml – notice: Copyright © 2013 the authors 0270-6474/13/3315095-14$15.00/0 2013
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
5PM
DOI 10.1523/jneurosci.0278-13.2013
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Neurosciences Abstracts
DatabaseTitleList
MEDLINE
Neurosciences Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 15108
ExternalDocumentID 10_1523_JNEUROSCI_0278_13_2013
24048840
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
18M
2WC
34G
39C
53G
5GY
5RE
5VS
AAFWJ
ABBAR
ABIVO
ACGUR
ACNCT
ADBBV
ADCOW
AENEX
AFCFT
AFHIN
AFOSN
AHWXS
AIZTS
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
GX1
H13
HYE
H~9
KQ8
L7B
MVM
NPM
OK1
P0W
P2P
QZG
R.V
RHF
RHI
RPM
TFN
TR2
W8F
WH7
WOQ
X7M
XJT
YBU
YHG
YKV
YNH
YSK
AAYXX
CITATION
7TK
AETEA
5PM
ID FETCH-LOGICAL-c566t-f32f198719788a58134da29e28ee088b843068fd7f8fda7e5b2a183a22764f413
IEDL.DBID RPM
ISSN 0270-6474
1529-2401
IngestDate Tue Sep 17 21:14:54 EDT 2024
Fri Aug 16 22:47:14 EDT 2024
Thu Sep 26 18:06:15 EDT 2024
Sat Sep 28 08:37:27 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 38
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c566t-f32f198719788a58134da29e28ee088b843068fd7f8fda7e5b2a183a22764f413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: M.J.K. and B.G.K. designed research; M.J.K., J.K., H.S., S.R.J., Y.M.K., J.Y.C., and D.H.H. performed research; M.J.K. and B.G.K. analyzed data; M.J.K. and B.G.K. wrote the paper.
OpenAccessLink https://www.jneurosci.org/content/jneuro/33/38/15095.full.pdf
PMID 24048840
PQID 1551627744
PQPubID 23462
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6618417
proquest_miscellaneous_1551627744
crossref_primary_10_1523_JNEUROSCI_0278_13_2013
pubmed_primary_24048840
PublicationCentury 2000
PublicationDate 2013-09-18
PublicationDateYYYYMMDD 2013-09-18
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-18
  day: 18
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2013
Publisher Society for Neuroscience
Publisher_xml – name: Society for Neuroscience
References 2023041304064395000_33.38.15095.14
2023041304064395000_33.38.15095.36
2023041304064395000_33.38.15095.13
2023041304064395000_33.38.15095.35
2023041304064395000_33.38.15095.16
2023041304064395000_33.38.15095.38
2023041304064395000_33.38.15095.15
2023041304064395000_33.38.15095.37
2023041304064395000_33.38.15095.10
2023041304064395000_33.38.15095.32
2023041304064395000_33.38.15095.31
2023041304064395000_33.38.15095.34
2023041304064395000_33.38.15095.11
2023041304064395000_33.38.15095.33
2023041304064395000_33.38.15095.30
Leon (2023041304064395000_33.38.15095.27) 2000; 20
Chong (2023041304064395000_33.38.15095.12) 1994; 14
Yin (2023041304064395000_33.38.15095.43) 2003; 23
2023041304064395000_33.38.15095.29
2023041304064395000_33.38.15095.25
2023041304064395000_33.38.15095.47
2023041304064395000_33.38.15095.24
2023041304064395000_33.38.15095.46
2023041304064395000_33.38.15095.26
2023041304064395000_33.38.15095.48
2023041304064395000_33.38.15095.21
2023041304064395000_33.38.15095.20
2023041304064395000_33.38.15095.42
2023041304064395000_33.38.15095.23
2023041304064395000_33.38.15095.45
2023041304064395000_33.38.15095.22
2023041304064395000_33.38.15095.44
2023041304064395000_33.38.15095.41
2023041304064395000_33.38.15095.40
2023041304064395000_33.38.15095.7
2023041304064395000_33.38.15095.9
2023041304064395000_33.38.15095.8
2023041304064395000_33.38.15095.3
2023041304064395000_33.38.15095.2
2023041304064395000_33.38.15095.5
2023041304064395000_33.38.15095.4
Cafferty (2023041304064395000_33.38.15095.6) 2001; 21
Lu (2023041304064395000_33.38.15095.28) 1991; 11
2023041304064395000_33.38.15095.1
2023041304064395000_33.38.15095.18
2023041304064395000_33.38.15095.17
2023041304064395000_33.38.15095.39
2023041304064395000_33.38.15095.19
References_xml – ident: 2023041304064395000_33.38.15095.33
  doi: 10.1016/S0896-6273(02)00730-4
– ident: 2023041304064395000_33.38.15095.48
  doi: 10.1523/JNEUROSCI.5397-08.2009
– ident: 2023041304064395000_33.38.15095.5
  doi: 10.1006/exnr.1998.6964
– ident: 2023041304064395000_33.38.15095.19
  doi: 10.1186/1744-8069-8-49
– ident: 2023041304064395000_33.38.15095.38
  doi: 10.1002/neu.480240709
– ident: 2023041304064395000_33.38.15095.26
  doi: 10.1186/1471-2202-7-8
– ident: 2023041304064395000_33.38.15095.29
  doi: 10.1007/BF01195557
– ident: 2023041304064395000_33.38.15095.3
  doi: 10.1523/JNEUROSCI.1447-08.2008
– ident: 2023041304064395000_33.38.15095.15
  doi: 10.1038/nn0606-715
– ident: 2023041304064395000_33.38.15095.25
  doi: 10.1523/JNEUROSCI.2488-08.2008
– ident: 2023041304064395000_33.38.15095.11
  doi: 10.1093/brain/aws072
– ident: 2023041304064395000_33.38.15095.16
  doi: 10.1073/pnas.0912942107
– ident: 2023041304064395000_33.38.15095.20
  doi: 10.1111/j.1471-4159.2006.04089.x
– ident: 2023041304064395000_33.38.15095.1
  doi: 10.1089/neu.2011.1888
– ident: 2023041304064395000_33.38.15095.37
  doi: 10.1038/309791a0
– ident: 2023041304064395000_33.38.15095.7
  doi: 10.1523/JNEUROSCI.2245-02.2004
– ident: 2023041304064395000_33.38.15095.32
  doi: 10.1016/S0896-6273(02)00702-X
– ident: 2023041304064395000_33.38.15095.39
  doi: 10.1126/science.1067840
– volume: 21
  start-page: 7161
  year: 2001
  ident: 2023041304064395000_33.38.15095.6
  article-title: Leukemia inhibitory factor determines the growth status of injured adult sensory neurons
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.21-18-07161.2001
  contributor:
    fullname: Cafferty
– ident: 2023041304064395000_33.38.15095.17
  doi: 10.1523/JNEUROSCI.3992-08.2009
– ident: 2023041304064395000_33.38.15095.34
  doi: 10.1523/JNEUROSCI.3269-04.2005
– ident: 2023041304064395000_33.38.15095.42
  doi: 10.1073/pnas.0306239101
– volume: 11
  start-page: 972
  year: 1991
  ident: 2023041304064395000_33.38.15095.28
  article-title: Inflammation near the nerve cell body enhances axonal regeneration
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.11-04-00972.1991
  contributor:
    fullname: Lu
– ident: 2023041304064395000_33.38.15095.47
  doi: 10.1016/S1474-4422(04)00937-8
– ident: 2023041304064395000_33.38.15095.35
  doi: 10.1124/jpet.103.052407
– ident: 2023041304064395000_33.38.15095.41
  doi: 10.1523/JNEUROSCI.5275-03.2004
– ident: 2023041304064395000_33.38.15095.13
  doi: 10.1016/j.expneurol.2007.06.009
– ident: 2023041304064395000_33.38.15095.14
  doi: 10.1002/(SICI)1096-9861(19991129)414:4<495::AID-CNE6>3.0.CO;2-S
– ident: 2023041304064395000_33.38.15095.18
  doi: 10.1007/s00441-012-1425-5
– ident: 2023041304064395000_33.38.15095.22
  doi: 10.1016/j.expneurol.2007.09.020
– ident: 2023041304064395000_33.38.15095.21
  doi: 10.1016/S0896-6273(03)00770-0
– ident: 2023041304064395000_33.38.15095.45
  doi: 10.1073/pnas.0907085106
– ident: 2023041304064395000_33.38.15095.2
  doi: 10.1016/S0165-5728(00)00408-2
– ident: 2023041304064395000_33.38.15095.8
  doi: 10.1016/j.tins.2008.02.004
– ident: 2023041304064395000_33.38.15095.46
  doi: 10.1016/j.cub.2009.04.017
– ident: 2023041304064395000_33.38.15095.4
  doi: 10.1016/S0166-2236(96)10072-2
– ident: 2023041304064395000_33.38.15095.31
  doi: 10.1016/S0896-6273(00)80755-2
– volume: 23
  start-page: 2284
  year: 2003
  ident: 2023041304064395000_33.38.15095.43
  article-title: Macrophage-derived factors stimulate optic nerve regeneration
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-06-02284.2003
  contributor:
    fullname: Yin
– ident: 2023041304064395000_33.38.15095.36
  doi: 10.1016/j.neuron.2004.06.005
– ident: 2023041304064395000_33.38.15095.23
  doi: 10.1016/j.expneurol.2009.09.006
– ident: 2023041304064395000_33.38.15095.30
  doi: 10.1523/JNEUROSCI.2840-11.2011
– ident: 2023041304064395000_33.38.15095.24
  doi: 10.1073/pnas.1206218109
– volume: 14
  start-page: 4375
  year: 1994
  ident: 2023041304064395000_33.38.15095.12
  article-title: GAP-43 expression in primary sensory neurons following central axotomy
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.14-07-04375.1994
  contributor:
    fullname: Chong
– ident: 2023041304064395000_33.38.15095.40
  doi: 10.1523/JNEUROSCI.2111-05.2005
– ident: 2023041304064395000_33.38.15095.44
  doi: 10.1038/nn1701
– ident: 2023041304064395000_33.38.15095.9
  doi: 10.1016/S0896-6273(02)00826-7
– ident: 2023041304064395000_33.38.15095.10
  doi: 10.1523/JNEUROSCI.0815-06.2006
– volume: 20
  start-page: 4615
  year: 2000
  ident: 2023041304064395000_33.38.15095.27
  article-title: Lens injury stimulates axon regeneration in the mature rat optic nerve
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.20-12-04615.2000
  contributor:
    fullname: Leon
SSID ssj0007017
Score 2.5233066
Snippet Although the central branches of the dorsal root ganglion (DRG) sensory neurons do not spontaneously regenerate, a conditioning peripheral injury can promote...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 15095
SubjectTerms Analysis of Variance
Animals
Axons - physiology
Calcium-Binding Proteins - metabolism
Cell Separation
Cells, Cultured
Cholera Toxin - metabolism
Coculture Techniques
Cyclic AMP - pharmacology
Cytokines - metabolism
Disease Models, Animal
Dose-Response Relationship, Drug
Enzyme-Linked Immunosorbent Assay
Female
Flow Cytometry
Ganglia, Spinal - pathology
GAP-43 Protein - genetics
GAP-43 Protein - metabolism
Gene Expression Regulation - drug effects
Gene Expression Regulation - physiology
Glial Fibrillary Acidic Protein
Macrophages - drug effects
Macrophages - physiology
Microfilament Proteins - metabolism
Minocycline - pharmacology
Nerve Growth Factors - genetics
Nerve Growth Factors - metabolism
Nerve Regeneration - physiology
Rats
Rats, Sprague-Dawley
Sciatic Neuropathy - pathology
Sciatic Neuropathy - physiopathology
Sensory Receptor Cells - drug effects
Sensory Receptor Cells - physiology
Title Contribution of macrophages to enhanced regenerative capacity of dorsal root ganglia sensory neurons by conditioning injury
URI https://www.ncbi.nlm.nih.gov/pubmed/24048840
https://search.proquest.com/docview/1551627744
https://pubmed.ncbi.nlm.nih.gov/PMC6618417
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swED7EmboEbdOmTtuABYJsskyKMuUxcPOGgzQPIJtASmTtIqYCWxmM_vne0ZKRx9ZFi0RJ0Efdfd_xeAewb0pepEm_jEpHW3IGWkXDop9E0iAd5dKqNJQvHl8OTu_k-X16vwFpuxcmJO0XZtrzD7Oen05CbuXjrIjbPLH4ajwaUJcSruIOdFSStBK9Mb-qH9rsotxCXSSVbLYFo-CKzy8pPe5mdNaj9baIJ5TaRZ100K3hRKYAyHPn9IZxvk6cfOaJjt_DVkMh2eHqVT_AhvUfYfvQo3yeLdkBC0mdIVq-DX-p-lTb04pVjo019eyaoBVZsLpiR34SUgDYtf0dClCT9WMj9KAF0nMa8LOaL_Bp11VVsxNNm341u0HtW82XLFT28AtmlgyfU06b4C47838Qqk9wd3x0OzqNmn4LUYGkro5cIhzFIDgqy0ynGU9kqcXQisxaNEYmk6gvMlcqhwetbGqERoughVAD6dAbfoZNX3n7BZgSRihRCiSfTpbIMjXShtRxPUTKZmTahbj90PnjqqxGTnIEUcrXKOWEUs6TnFDqwo8Wjxz_AFrW0N5WT4s8rPUJpLGyCzsrfNb3bIHtgnqB3PoCqq798gxOulBlu5lku_898iu8E6F3xjDi2TfYrOdP9jsymNrsQefiV7YX5u0_s3HwTw
link.rule.ids 230,315,733,786,790,891,27957,27958,53827,53829
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nc9MwEN0p5QAXvgolfIoZhpvtSJYj59gJLUlpMkw_mN40ki2RAJE7iXMI_HlWip1pywkuuTi2x_Ok3fekp12A97qkRZZ2y6i0_khOT4moX3TTiGuko5QbkYXyxeNJb3jBjy-zyx3I2rMwwbRf6Fnsfs5jN5sGb-XVvEhan1jyZTzo-S4lVCR34C7OVyZakd4EYNENjXZRcKEy4oI3B4NRciXHE2-QOxuMYr_jFtHUm7t8Lx1MbDiU_RLI9fT0F-e8bZ28louOHsLX9is2FpQf8arWcfHrVoHHf_7MR_CgYafkYHP5MewY9wT2Dhwq8_mafCDBLxoW4vfgty9s1bbLIpUlY-XbgU0xQC1JXZFDNw3uAnJqvoXa1j6wkgEm5wKZv7_hY7VY4ttOq6omn5Q_T6zIGcrqarEmoWiIWxK9JviectasG5OR-46j4ClcHB2eD4ZR08ohKpAv1pFNmfXLGxRFa66ynKa8VKxvWG4Mxjmdc5QuuS2FxR8lTKaZwmCjGBM9bjHRPoNdVznzHIhgmglWMuS1lpdIYBUyksxS1Uc2qHnWgaRFUF5tKnZIr3QQfrmFX3r4JU2lh78D71qgJU4uv2OinKlWSxm2ERkyZN6B_Q3w22e2I6YD4saQ2P7BF-6-eQWBDgW8G2Bf_Pedb-He8Hx8Ik9Gk88v4T4LLTr6Ec1fwW69WJnXSJRq_SZMiz9pShFi
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECbaFCi69JU-3CcLFN0kmRRlSmPgxI3T2giSBgi6EKRI1k5qyrDlwe2f75GWDCfdsmiRKEG44933kR_vEPqsNCmztKsjbf2RnJ7kUVF204gpgKOEGZ6F8sWjce_4gp1cZpc7rb6CaL9U09j9nsVuOgnayvmsTFqdWHI66vd8lxLCk7m2yX30AOYsLVqi3gRh3g3NdoF0ATtinDWHg4F2JSdjL5I77w9jv-sWkdQLvHw_HUhu4M5-GWQ3Rf2HO2_LJ3fy0eAJ-tn-yUaGch2vahWXf24VebzTrz5FjxuUig82jzxD94x7jvYPHDD02Rp_wUE3Ghbk99FfX-CqbZuFK4tH0rcFm0CgWuK6wkduElQG-Mz8CjWufYDFfUjSJTAAP-CwWizha2dVVeOv0p8rlvgc6HW1WONQPMQtsVpj-I6eNuvHeOiuwBteoIvB0Y_-cdS0dIhKwI11ZFNq_TIHAfKayywnKdOSFobmxkC8UzkDCpNbzS1cJDeZohKCjqSU95iFhPsS7bnKmdcIc6oop5oCvrVMA5CVgEwyS2QBqFCxrIOS1opivqncITzjARcQWxcQ3gUESYV3gQ761BpbwCTzOyfSmWq1FGE7kQJSZh30amP87Ttbr-kgfsMttg_4At4374CxQyHvxrhv7jzyI3p4ejgQ34fjb2_RIxo6dRQRyd-hvXqxMu8BL9XqQ5gZ_wD9XBPi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contribution+of+macrophages+to+enhanced+regenerative+capacity+of+dorsal+root+ganglia+sensory+neurons+by+conditioning+injury&rft.jtitle=The+Journal+of+neuroscience&rft.au=Kwon%2C+Min+Jung&rft.au=Kim%2C+Jinha&rft.au=Shin%2C+Haeyoung&rft.au=Jeong%2C+Soo+Ryeong&rft.date=2013-09-18&rft.eissn=1529-2401&rft.volume=33&rft.issue=38&rft.spage=15095&rft_id=info:doi/10.1523%2Fjneurosci.0278-13.2013&rft_id=info%3Apmid%2F24048840&rft.externalDocID=24048840
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon