An Automatic Premature Ventricular Contraction Recognition System Based on Imbalanced Dataset and Pre-Trained Residual Network Using Transfer Learning on ECG Signal
The development of automatic monitoring and diagnosis systems for cardiac patients over the internet has been facilitated by recent advancements in wearable sensor devices from electrocardiographs (ECGs), which need the use of patient-specific approaches. Premature ventricular contraction (PVC) is a...
Saved in:
Published in | Diagnostics (Basel) Vol. 13; no. 1; p. 87 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
28.12.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of automatic monitoring and diagnosis systems for cardiac patients over the internet has been facilitated by recent advancements in wearable sensor devices from electrocardiographs (ECGs), which need the use of patient-specific approaches. Premature ventricular contraction (PVC) is a common chronic cardiovascular disease that can cause conditions that are potentially fatal. Therefore, for the diagnosis of likely heart failure, precise PVC detection from ECGs is crucial. In the clinical settings, cardiologists typically employ long-term ECGs as a tool to identify PVCs, where a cardiologist must put in a lot of time and effort to appropriately assess the long-term ECGs which is time consuming and cumbersome. By addressing these issues, we have investigated a deep learning method with a pre-trained deep residual network, ResNet-18, to identify PVCs automatically using transfer learning mechanism. Herein, features are extracted by the inner layers of the network automatically compared to hand-crafted feature extraction methods. Transfer learning mechanism handles the difficulties of required large volume of training data for a deep model. The pre-trained model is evaluated on the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) Arrhythmia and Institute of Cardiological Technics (INCART) datasets. First, we used the Pan–Tompkins algorithm to segment 44,103 normal and 6423 PVC beats, as well as 106,239 normal and 9987 PVC beats from the MIT-BIH Arrhythmia and IN-CART datasets, respectively. The pre-trained model employed the segmented beats as input after being converted into 2D (two-dimensional) images. The method is optimized with the using of weighted random samples, on-the-fly augmentation, Adam optimizer, and call back feature. The results from the proposed method demonstrate the satisfactory findings without the using of any complex pre-processing and feature extraction technique as well as design complexity of model. Using LOSOCV (leave one subject out cross-validation), the received accuracies on MIT-BIH and INCART are 99.93% and 99.77%, respectively, suppressing the state-of-the-art methods for PVC recognition on unseen data. This demonstrates the efficacy and generalizability of the proposed method on the imbalanced datasets. Due to the absence of device-specific (patient-specific) information at the evaluating stage on the target datasets in this study, the method might be used as a general approach to handle the situations in which ECG signals are obtained from different patients utilizing a variety of smart sensor devices. |
---|---|
AbstractList | The development of automatic monitoring and diagnosis systems for cardiac patients over the internet has been facilitated by recent advancements in wearable sensor devices from electrocardiographs (ECGs), which need the use of patient-specific approaches. Premature ventricular contraction (PVC) is a common chronic cardiovascular disease that can cause conditions that are potentially fatal. Therefore, for the diagnosis of likely heart failure, precise PVC detection from ECGs is crucial. In the clinical settings, cardiologists typically employ long-term ECGs as a tool to identify PVCs, where a cardiologist must put in a lot of time and effort to appropriately assess the long-term ECGs which is time consuming and cumbersome. By addressing these issues, we have investigated a deep learning method with a pre-trained deep residual network, ResNet-18, to identify PVCs automatically using transfer learning mechanism. Herein, features are extracted by the inner layers of the network automatically compared to hand-crafted feature extraction methods. Transfer learning mechanism handles the difficulties of required large volume of training data for a deep model. The pre-trained model is evaluated on the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) Arrhythmia and Institute of Cardiological Technics (INCART) datasets. First, we used the Pan–Tompkins algorithm to segment 44,103 normal and 6423 PVC beats, as well as 106,239 normal and 9987 PVC beats from the MIT-BIH Arrhythmia and IN-CART datasets, respectively. The pre-trained model employed the segmented beats as input after being converted into 2D (two-dimensional) images. The method is optimized with the using of weighted random samples, on-the-fly augmentation, Adam optimizer, and call back feature. The results from the proposed method demonstrate the satisfactory findings without the using of any complex pre-processing and feature extraction technique as well as design complexity of model. Using LOSOCV (leave one subject out cross-validation), the received accuracies on MIT-BIH and INCART are 99.93% and 99.77%, respectively, suppressing the state-of-the-art methods for PVC recognition on unseen data. This demonstrates the efficacy and generalizability of the proposed method on the imbalanced datasets. Due to the absence of device-specific (patient-specific) information at the evaluating stage on the target datasets in this study, the method might be used as a general approach to handle the situations in which ECG signals are obtained from different patients utilizing a variety of smart sensor devices. The development of automatic monitoring and diagnosis systems for cardiac patients over the internet has been facilitated by recent advancements in wearable sensor devices from electrocardiographs (ECGs), which need the use of patient-specific approaches. Premature ventricular contraction (PVC) is a common chronic cardiovascular disease that can cause conditions that are potentially fatal. Therefore, for the diagnosis of likely heart failure, precise PVC detection from ECGs is crucial. In the clinical settings, cardiologists typically employ long-term ECGs as a tool to identify PVCs, where a cardiologist must put in a lot of time and effort to appropriately assess the long-term ECGs which is time consuming and cumbersome. By addressing these issues, we have investigated a deep learning method with a pre-trained deep residual network, ResNet-18, to identify PVCs automatically using transfer learning mechanism. Herein, features are extracted by the inner layers of the network automatically compared to hand-crafted feature extraction methods. Transfer learning mechanism handles the difficulties of required large volume of training data for a deep model. The pre-trained model is evaluated on the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) Arrhythmia and Institute of Cardiological Technics (INCART) datasets. First, we used the Pan-Tompkins algorithm to segment 44,103 normal and 6423 PVC beats, as well as 106,239 normal and 9987 PVC beats from the MIT-BIH Arrhythmia and IN-CART datasets, respectively. The pre-trained model employed the segmented beats as input after being converted into 2D (two-dimensional) images. The method is optimized with the using of weighted random samples, on-the-fly augmentation, Adam optimizer, and call back feature. The results from the proposed method demonstrate the satisfactory findings without the using of any complex pre-processing and feature extraction technique as well as design complexity of model. Using LOSOCV (leave one subject out cross-validation), the received accuracies on MIT-BIH and INCART are 99.93% and 99.77%, respectively, suppressing the state-of-the-art methods for PVC recognition on unseen data. This demonstrates the efficacy and generalizability of the proposed method on the imbalanced datasets. Due to the absence of device-specific (patient-specific) information at the evaluating stage on the target datasets in this study, the method might be used as a general approach to handle the situations in which ECG signals are obtained from different patients utilizing a variety of smart sensor devices.The development of automatic monitoring and diagnosis systems for cardiac patients over the internet has been facilitated by recent advancements in wearable sensor devices from electrocardiographs (ECGs), which need the use of patient-specific approaches. Premature ventricular contraction (PVC) is a common chronic cardiovascular disease that can cause conditions that are potentially fatal. Therefore, for the diagnosis of likely heart failure, precise PVC detection from ECGs is crucial. In the clinical settings, cardiologists typically employ long-term ECGs as a tool to identify PVCs, where a cardiologist must put in a lot of time and effort to appropriately assess the long-term ECGs which is time consuming and cumbersome. By addressing these issues, we have investigated a deep learning method with a pre-trained deep residual network, ResNet-18, to identify PVCs automatically using transfer learning mechanism. Herein, features are extracted by the inner layers of the network automatically compared to hand-crafted feature extraction methods. Transfer learning mechanism handles the difficulties of required large volume of training data for a deep model. The pre-trained model is evaluated on the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) Arrhythmia and Institute of Cardiological Technics (INCART) datasets. First, we used the Pan-Tompkins algorithm to segment 44,103 normal and 6423 PVC beats, as well as 106,239 normal and 9987 PVC beats from the MIT-BIH Arrhythmia and IN-CART datasets, respectively. The pre-trained model employed the segmented beats as input after being converted into 2D (two-dimensional) images. The method is optimized with the using of weighted random samples, on-the-fly augmentation, Adam optimizer, and call back feature. The results from the proposed method demonstrate the satisfactory findings without the using of any complex pre-processing and feature extraction technique as well as design complexity of model. Using LOSOCV (leave one subject out cross-validation), the received accuracies on MIT-BIH and INCART are 99.93% and 99.77%, respectively, suppressing the state-of-the-art methods for PVC recognition on unseen data. This demonstrates the efficacy and generalizability of the proposed method on the imbalanced datasets. Due to the absence of device-specific (patient-specific) information at the evaluating stage on the target datasets in this study, the method might be used as a general approach to handle the situations in which ECG signals are obtained from different patients utilizing a variety of smart sensor devices. |
Audience | Academic |
Author | Muaad, Abdullah Y. Wu, Kaishun Akhtar, Faijan Ukwuoma, Chiagoziem C. Bhuiyan, Mohammad Arif Sobhan Lai, Dakun Pan, Taisong Lin, Yuan Ullah, Hadaate Bilal, Muhammad Damaševičius, Robertas Miraz, Mahdi H. Gao, Min Heyat, Md Belal Bin |
AuthorAffiliation | 5 School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China 1 State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China 8 School of Computing, Glyndŵr University, Wrexham LL11 2AW, UK 10 Medico-Engineering Corporation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu 610054, China 11 Biomedical Imaging and Electrophysiology Laboratory, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China 7 School of Computing and Data Science, Xiamen University Malaysia, Bandar Sunsuria, Sepang 43900, Malaysia 2 IoT Research Center, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China 6 College of Pharmacy, Liaquat University of Medical and Health Sci |
AuthorAffiliation_xml | – name: 3 School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China – name: 10 Medico-Engineering Corporation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu 610054, China – name: 6 College of Pharmacy, Liaquat University of Medical and Health Sciences, Jamshoro 76090, Pakistan – name: 5 School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China – name: 8 School of Computing, Glyndŵr University, Wrexham LL11 2AW, UK – name: 7 School of Computing and Data Science, Xiamen University Malaysia, Bandar Sunsuria, Sepang 43900, Malaysia – name: 9 Department of Software Engineering, Kaunas University of Technology, 44249 Kaunas, Lithuania – name: 1 State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China – name: 11 Biomedical Imaging and Electrophysiology Laboratory, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China – name: 2 IoT Research Center, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China – name: 4 IT Department, Sana’a Community College, Sana’a 5695, Yemen |
Author_xml | – sequence: 1 givenname: Hadaate surname: Ullah fullname: Ullah, Hadaate – sequence: 2 givenname: Md Belal Bin orcidid: 0000-0001-5307-9582 surname: Heyat fullname: Heyat, Md Belal Bin – sequence: 3 givenname: Faijan surname: Akhtar fullname: Akhtar, Faijan – sequence: 4 givenname: Abdullah Y. orcidid: 0000-0001-8304-9261 surname: Muaad fullname: Muaad, Abdullah Y. – sequence: 5 givenname: Chiagoziem C. orcidid: 0000-0002-4532-6026 surname: Ukwuoma fullname: Ukwuoma, Chiagoziem C. – sequence: 6 givenname: Muhammad surname: Bilal fullname: Bilal, Muhammad – sequence: 7 givenname: Mahdi H. surname: Miraz fullname: Miraz, Mahdi H. – sequence: 8 givenname: Mohammad Arif Sobhan orcidid: 0000-0003-0772-0556 surname: Bhuiyan fullname: Bhuiyan, Mohammad Arif Sobhan – sequence: 9 givenname: Kaishun surname: Wu fullname: Wu, Kaishun – sequence: 10 givenname: Robertas orcidid: 0000-0001-9990-1084 surname: Damaševičius fullname: Damaševičius, Robertas – sequence: 11 givenname: Taisong orcidid: 0000-0003-1576-3409 surname: Pan fullname: Pan, Taisong – sequence: 12 givenname: Min orcidid: 0000-0003-3899-2933 surname: Gao fullname: Gao, Min – sequence: 13 givenname: Yuan surname: Lin fullname: Lin, Yuan – sequence: 14 givenname: Dakun orcidid: 0000-0001-9070-1721 surname: Lai fullname: Lai, Dakun |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36611379$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kt1u1DAQhSNUREvpEyAhS9xws8WO4_zcIC1LKZUqQO3CrTVxJsElsYudgPo-PCiTbgvdqiK5yPj4zCfNyTxNdpx3mCTPBT-UsuKvGwud83G0JgrJBedl8SjZS3mhFlkmyp079W5yEOMFp6cSskzVk2RX5rkQsqj2kt9Lx5bT6AcgFPsckIopIPuKbgzWTD0EtvJUgxmtd-wMje-cva7Pr-KIA3sLERtG55Ohhh6codM7GEkdGbhmhi7WAawj_QyjbSbo2Uccf_nwnX2J1nWMrl1sMbBThOBmhXBHq2N2bjsH_bPkcQt9xIOb736yfn-0Xn1YnH46PlktTxdG5fm4aOqiamQLwFG2quU8LWUtwdSyECmCUZzXuQBhaizbXIqylmkus5xLhLJq5X5yssE2Hi70ZbADhCvtweprwYdOQ6CYetQZL6qUQuSqUhnnBRhUyhhlUKomqxtivdmwLqd6wMbMcUK_Bd2-cfab7vxPXZWiTKUkwKsbQPA_JoyjHmw02FPA6Keo0yIXVVEKlZL15T3rhZ8C5bZx8aos8-yfqwMawLrWzz91huplkSkKh0Yh1-EDLnobHKyhHWwt6VsNL-4O-nfC2xUjQ7UxmOBjDNhqY0eYF4jItteC63mj9QMbTb3yXu8t_n9dfwC-P_4H |
CitedBy_id | crossref_primary_10_3390_diagnostics13061104 crossref_primary_10_3389_fchem_2024_1361980 crossref_primary_10_3390_diagnostics14171910 crossref_primary_10_1016_j_bspc_2025_107703 crossref_primary_10_3390_s23062993 crossref_primary_10_1109_ACCESS_2024_3476082 crossref_primary_10_3390_bioengineering10050542 crossref_primary_10_1186_s12938_025_01349_w crossref_primary_10_1016_j_engappai_2024_109782 crossref_primary_10_1016_j_cmpb_2024_108579 crossref_primary_10_3390_s23073371 crossref_primary_10_3390_computers12030068 crossref_primary_10_1002_widm_1552 crossref_primary_10_1109_ACCESS_2024_3402359 crossref_primary_10_1016_j_engappai_2025_110481 crossref_primary_10_1016_j_ijcce_2025_01_007 crossref_primary_10_1016_j_compbiomed_2023_107532 crossref_primary_10_3389_fpubh_2024_1373883 crossref_primary_10_1007_s42600_024_00399_8 crossref_primary_10_3390_s24082655 crossref_primary_10_1109_TIM_2025_3546413 crossref_primary_10_3390_pharmaceutics15020643 crossref_primary_10_1007_s00034_024_02662_w |
Cites_doi | 10.1016/j.bspc.2017.12.004 10.3390/diagnostics12112815 10.55730/1300-0632.3930 10.1016/j.compbiomed.2019.103387 10.7717/peerj-cs.386 10.1016/j.cmpb.2008.12.009 10.1109/BIOCAS.2019.8919049 10.1109/ICM50269.2020.9331503 10.1016/j.compbiomed.2018.03.016 10.1007/978-3-030-81473-1 10.1016/j.cmpb.2018.12.028 10.1186/1475-925X-1-5 10.3390/s20195683 10.3390/electronics9111790 10.1016/j.neunet.2018.08.023 10.5755/j01.itc.50.2.27672 10.3390/bioengineering9110709 10.1109/ACCESS.2022.3212120 10.1155/2022/9475162 10.1109/CVPR.2016.90 10.1109/TBME.1985.325532 10.1016/j.jare.2022.08.021 10.1038/s41598-017-09544-z 10.22489/CinC.2019.138 10.5755/j01.itc.50.1.24145 10.1109/10.918594 10.1109/ACCESS.2019.2924181 10.3390/app10093304 10.1109/PRML52754.2021.9520710 10.1038/s41591-018-0268-3 10.1109/IJCNN.2009.5178626 10.1007/978-3-319-46493-0_38 10.5755/j01.itc.51.1.30083 10.1007/978-0-387-30162-4_478 10.1007/s00521-018-03974-0 10.1038/nature14539 10.1109/EMBC.2019.8856342 10.1007/s13369-022-06617-8 10.3390/app10217410 10.3389/fnins.2021.754058 10.1145/3065386 10.3390/bios12080630 10.21437/Interspeech.2021-1679 10.1016/j.hrthm.2022.07.010 10.1109/TBCAS.2013.2260159 10.3390/bios11030069 10.1016/j.future.2017.08.039 10.1007/s10586-019-02953-x 10.1016/j.bspc.2018.03.003 10.1016/j.bspc.2019.101819 10.1088/1361-6579/ab17f0 10.1109/ICMLA.2016.0154 10.1109/TPAMI.2013.50 10.1088/2057-1976/ab6995 10.1590/2446-4740.01618 10.1007/s13748-016-0094-0 10.1016/j.bspc.2018.08.040 10.1109/TBME.2009.2031243 10.3390/jcm10225450 10.1109/JIOT.2020.3044031 10.3390/life12030374 10.4258/hir.2021.27.1.19 10.18280/ts.390204 10.1155/2022/5641727 10.1109/TBME.2004.827359 10.1155/2022/3408501 10.1007/s00034-019-01306-8 10.1016/j.bbe.2020.08.001 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION NPM 3V. 7XB 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO GNUQQ GUQSH M2O MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3390/diagnostics13010087 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Coronavirus Research Database ProQuest Central Korea ProQuest Central Student ProQuest Research Library ProQuest Research Library (NC LIVE) Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2075-4418 |
ExternalDocumentID | oai_doaj_org_article_4079266105954007ace55cc5ce35d4bd PMC9818233 A745500954 36611379 10_3390_diagnostics13010087 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61825102 – fundername: National Natural Science Foundation of China grantid: 62001083 – fundername: National Natural Science Foundation of China grantid: 61771100 – fundername: Sichuan Science and Technology Program grantid: 2021YFH0093 – fundername: Fundamental Research Funds for the Central Universities grantid: ZYGX2021YGLH002 – fundername: Guangdong NSF grantid: 2017A030312008 – fundername: Guangdong “Pearl River Talent Recruitment Program” grantid: 2019ZT08X603 – fundername: Science and Technology Research Program of Chongqing Municipal Education Commission grantid: KJZD-K202114401 – fundername: National Natural Science Foundation of China grantid: U2001207; 61872248 – fundername: Science and Technology Department of Sichuan Province grantid: 2021YFG0322 – fundername: Shenzhen Science and Technology Foundation grantid: ZDSYS20190902092853047; R2020A045 – fundername: Project of DEGP grantid: 2019KCXTD005 |
GroupedDBID | 53G 5VS 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BCNDV BENPR BPHCQ CCPQU CITATION DWQXO EBD ESX GNUQQ GROUPED_DOAJ GUQSH HYE IAO IHR ITC KQ8 M2O M48 MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM 3V. NPM PMFND 7XB 8FK COVID MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c566t-db79d3faa0e3f5f00283b3acb3712eac500b61a1cbe8f6318b32634603ea89f3 |
IEDL.DBID | M48 |
ISSN | 2075-4418 |
IngestDate | Wed Aug 27 01:31:13 EDT 2025 Thu Aug 21 18:38:07 EDT 2025 Fri Jul 11 04:49:20 EDT 2025 Mon Jun 30 03:25:27 EDT 2025 Tue Jun 17 22:19:36 EDT 2025 Tue Jun 10 21:18:08 EDT 2025 Thu Jan 02 22:53:05 EST 2025 Thu Apr 24 22:54:54 EDT 2025 Tue Jul 01 02:36:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | patient-specific premature ventricular contraction imbalanced datasets transfer learning electrocardiogram pre-trained recognition residual network |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c566t-db79d3faa0e3f5f00283b3acb3712eac500b61a1cbe8f6318b32634603ea89f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8304-9261 0000-0003-0772-0556 0000-0001-5307-9582 0000-0003-1576-3409 0000-0002-4532-6026 0000-0001-9990-1084 0000-0001-9070-1721 0000-0003-3899-2933 |
OpenAccessLink | https://www.proquest.com/docview/2761098864?pq-origsite=%requestingapplication% |
PMID | 36611379 |
PQID | 2761098864 |
PQPubID | 2032410 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4079266105954007ace55cc5ce35d4bd pubmedcentral_primary_oai_pubmedcentral_nih_gov_9818233 proquest_miscellaneous_2761978152 proquest_journals_2761098864 gale_infotracmisc_A745500954 gale_infotracacademiconefile_A745500954 pubmed_primary_36611379 crossref_citationtrail_10_3390_diagnostics13010087 crossref_primary_10_3390_diagnostics13010087 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221228 |
PublicationDateYYYYMMDD | 2022-12-28 |
PublicationDate_xml | – month: 12 year: 2022 text: 20221228 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Diagnostics (Basel) |
PublicationTitleAlternate | Diagnostics (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_50 Uysal (ref_11) 2018; 43 Paszke (ref_58) 2019; 32 Hemanth (ref_23) 2019; 32 ref_14 ref_13 ref_57 Duarte (ref_7) 2019; 169 Naz (ref_24) 2021; 7 ref_55 Sayadi (ref_5) 2010; 57 ref_53 Kuncan (ref_30) 2022; 30 Li (ref_71) 2019; 40 ref_18 Karthikeyan (ref_41) 2022; 51 Pedregosa (ref_64) 2011; 12 Ali (ref_17) 2021; 15 Talbi (ref_66) 2009; 94 ref_59 Jang (ref_43) 2021; 27 Chen (ref_28) 2020; 57 Akhtar (ref_3) 2020; 20 ref_61 ref_60 Akhtar (ref_2) 2020; 22 Zhao (ref_12) 2022; 19 Tayyib (ref_42) 2021; 50 Krawczyk (ref_37) 2016; 5 Lecun (ref_76) 2015; 521 ref_67 ref_21 ref_20 Hannun (ref_25) 2019; 25 ref_62 Acharya (ref_22) 2018; 79 Lai (ref_4) 2019; 7 Kiranyaz (ref_47) 2017; 7 Junior (ref_74) 2018; 34 Khamparia (ref_29) 2020; 39 He (ref_56) 2016; Volume 9908 Ullah (ref_78) 2016; 4 Allami (ref_6) 2019; 47 ref_72 Ullah (ref_1) 2022; 2022 ref_70 Yildirim (ref_26) 2018; 96 Nawabi (ref_15) 2022; 2022 ref_36 Demir (ref_10) 2022; 39 ref_79 ref_34 ref_33 ref_77 ref_32 Hoekema (ref_65) 2001; 48 Somani (ref_75) 2021; 23 Beritelli (ref_39) 2018; 108 ref_73 Ullah (ref_9) 2018; 3 Krizhevsky (ref_54) 2017; 60 Bengio (ref_19) 2012; 35 Reilly (ref_52) 2004; 51 Rajesh (ref_38) 2018; 41 Tripathi (ref_63) 2022; 10 Yildirim (ref_35) 2019; 113 ref_80 Kaya (ref_31) 2022; 47 Mazidi (ref_8) 2019; 23 ref_45 Malek (ref_68) 2020; 6 Kim (ref_44) 2014; 8 ref_49 ref_48 Allam (ref_46) 2020; 40 Pan (ref_51) 1985; BME-32 Ullah (ref_16) 2022; 2022 Ge (ref_69) 2002; 1 Ai (ref_40) 2021; 50 Awais (ref_27) 2021; 8 |
References_xml | – volume: 41 start-page: 242 year: 2018 ident: ref_38 article-title: Classification of Imbalanced ECG Beats Using Re-Sampling Techniques and AdaBoost Ensemble Classifier publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2017.12.004 – ident: ref_55 – ident: ref_62 doi: 10.3390/diagnostics12112815 – volume: 30 start-page: 2145 year: 2022 ident: ref_30 article-title: A New Approach for Congestive Heart Failure and Arrhythmia Classification Using Downsampling Local Binary Patterns with LSTM publication-title: Turkish J. Electr. Eng. Comput. Sci. doi: 10.55730/1300-0632.3930 – volume: 113 start-page: 103387 year: 2019 ident: ref_35 article-title: Automated Detection of Diabetic Subject Using Pre-Trained 2D-CNN Models with Frequency Spectrum Images Extracted from Heart Rate Signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.103387 – volume: 7 start-page: e386 year: 2021 ident: ref_24 article-title: From ECG signals to images: A transformation based approach for deep learning publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.386 – volume: 94 start-page: 223 year: 2009 ident: ref_66 article-title: PVC Discrimination Using the QRS Power Spectrum and Self-Organizing Maps publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2008.12.009 – ident: ref_72 doi: 10.1109/BIOCAS.2019.8919049 – volume: 3 start-page: 8 year: 2018 ident: ref_9 article-title: Computing the Performance of FFNN for Classifying Purposes publication-title: Malays. J. Appl. Sci. – ident: ref_20 doi: 10.1109/ICM50269.2020.9331503 – volume: 96 start-page: 189 year: 2018 ident: ref_26 article-title: A Novel Wavelet Sequences Based on Deep Bidirectional LSTM Network Model for ECG Signal Classification publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.03.016 – ident: ref_80 doi: 10.1007/978-3-030-81473-1 – volume: 169 start-page: 59 year: 2019 ident: ref_7 article-title: Geometrical Features for Premature Ventricular Contraction Recognition with Analytic Hierarchy Process Based Machine Learning Algorithms Selection publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2018.12.028 – volume: 1 start-page: 5 year: 2002 ident: ref_69 article-title: Cardiac Arrhythmia Classification Using Autoregressive Modeling publication-title: Biomed. Eng. Online doi: 10.1186/1475-925X-1-5 – ident: ref_14 doi: 10.3390/s20195683 – ident: ref_33 doi: 10.3390/electronics9111790 – volume: 108 start-page: 331 year: 2018 ident: ref_39 article-title: A novel training method to preserve generalization of RBPNN classifiers applied to ECG signals diagnosis publication-title: Neural Netw. doi: 10.1016/j.neunet.2018.08.023 – volume: 50 start-page: 308 year: 2021 ident: ref_40 article-title: A predictive model for heart disease diagnosis based on multinomial logistic regression publication-title: Inf. Technol. Control doi: 10.5755/j01.itc.50.2.27672 – ident: ref_61 doi: 10.3390/bioengineering9110709 – volume: 10 start-page: 108710 year: 2022 ident: ref_63 article-title: Ensemble Computational Intelligent for Insomnia Sleep Stage Detection via the Sleep ECG Signal publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3212120 – volume: 22 start-page: 672 year: 2020 ident: ref_2 article-title: Progress in Detection of Insomnia Sleep Disorder: A Comprehensive Review publication-title: Curr. Drug Targets – volume: 2022 start-page: 9475162 year: 2022 ident: ref_1 article-title: An End-to-End Cardiac Arrhythmia Recognition Method with an Effective DenseNet Model on Imbalanced Datasets Using ECG Signal publication-title: Comput. Intell. Neurosci. doi: 10.1155/2022/9475162 – ident: ref_36 doi: 10.1109/CVPR.2016.90 – volume: BME-32 start-page: 230 year: 1985 ident: ref_51 article-title: A Real-Time QRS Detection Algorithm publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.1985.325532 – ident: ref_18 doi: 10.1016/j.jare.2022.08.021 – volume: 4 start-page: 568 year: 2016 ident: ref_78 article-title: Identification of Brain disorders by Sub-band Decomposition of EEG signals and Measurement of Signal to Noise Ratio. Indones publication-title: J. Electr. Eng. Comput. Sci. – volume: 7 start-page: 9270 year: 2017 ident: ref_47 article-title: Personalized Monitoring and Advance Warning System for Cardiac Arrhythmias publication-title: Sci. Rep. doi: 10.1038/s41598-017-09544-z – ident: ref_70 doi: 10.22489/CinC.2019.138 – volume: 50 start-page: 123 year: 2021 ident: ref_42 article-title: Modified block compressed sensing for extraction of fetal electrocardiogram from mother electrocardiogram using block compressed sensing based guided focuss and fast-independent component publication-title: Inf. Technol. Control doi: 10.5755/j01.itc.50.1.24145 – volume: 48 start-page: 551 year: 2001 ident: ref_65 article-title: Geometrical Aspects of the Interindividual Variability of Multilead ECG Recordings publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.918594 – volume: 32 start-page: 1 year: 2019 ident: ref_58 article-title: PyTorch: An Imperative Style, High-Performance Deep Learning Library publication-title: Adv. Neural Process. Syst. – volume: 7 start-page: 82553 year: 2019 ident: ref_4 article-title: Prognosis of Sleep Bruxism Using Power Spectral Density Approach Applied on EEG Signal of Both EMG1-EMG2 and ECG1-ECG2 Channels publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2924181 – ident: ref_32 doi: 10.3390/app10093304 – ident: ref_77 doi: 10.1109/PRML52754.2021.9520710 – ident: ref_59 – volume: 25 start-page: 65 year: 2019 ident: ref_25 article-title: Cardiologist-Level Arrhythmia Detection and Classification in Ambulatory Electrocardiograms Using a Deep Neural Network publication-title: Nat. Med. doi: 10.1038/s41591-018-0268-3 – ident: ref_48 doi: 10.1109/IJCNN.2009.5178626 – volume: Volume 9908 start-page: 630 year: 2016 ident: ref_56 article-title: Identity Mappings in Deep Residual Networks publication-title: Computer Vision—ECCV 2016 doi: 10.1007/978-3-319-46493-0_38 – volume: 51 start-page: 158 year: 2022 ident: ref_41 article-title: Dual-layer deep ensemble techniques for classifying heart disease publication-title: Inf. Technol. Control doi: 10.5755/j01.itc.51.1.30083 – ident: ref_49 doi: 10.1007/978-0-387-30162-4_478 – volume: 32 start-page: 707 year: 2019 ident: ref_23 article-title: An Enhanced Diabetic Retinopathy Detection and Classification Approach Using Deep Convolutional Neural Network publication-title: Neural Comput. Appl. doi: 10.1007/s00521-018-03974-0 – volume: 521 start-page: 436 year: 2015 ident: ref_76 article-title: Deep Learning publication-title: Nature doi: 10.1038/nature14539 – ident: ref_21 doi: 10.1109/EMBC.2019.8856342 – volume: 47 start-page: 10497 year: 2022 ident: ref_31 article-title: A New Approach for Congestive Heart Failure and Arrhythmia Classification Using Angle Transformation with LSTM publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-022-06617-8 – ident: ref_60 doi: 10.3390/app10217410 – volume: 15 start-page: 754058 year: 2021 ident: ref_17 article-title: MMDD-Ensemble: A Multimodal Data–Driven Ensemble Approach for Parkinson’s Disease Detection publication-title: Front. Neurosci. doi: 10.3389/fnins.2021.754058 – volume: 60 start-page: 84 year: 2017 ident: ref_54 article-title: ImageNet Classification with Deep Convolutional Neural Networks publication-title: Commun. ACM doi: 10.1145/3065386 – ident: ref_45 doi: 10.3390/bios12080630 – ident: ref_53 doi: 10.21437/Interspeech.2021-1679 – volume: 19 start-page: 1781 year: 2022 ident: ref_12 article-title: Machine Learning for Distinguishing Right from Left Premature Ventricular Contraction Origin Using Surface Electrocardiogram Features publication-title: Heart Rhythm doi: 10.1016/j.hrthm.2022.07.010 – ident: ref_67 – volume: 8 start-page: 257 year: 2014 ident: ref_44 article-title: A Configurable and Low-Power Mixed Signal SoC for Portable ECG Monitoring Applications publication-title: IEEE Trans. Biomed. Circuits Syst. doi: 10.1109/TBCAS.2013.2260159 – ident: ref_34 doi: 10.3390/bios11030069 – volume: 79 start-page: 952 year: 2018 ident: ref_22 article-title: Automated Identification of Shockable and Non-Shockable Life-Threatening Ventricular Arrhythmias Using Convolutional Neural Network publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2017.08.039 – volume: 23 start-page: 759 year: 2019 ident: ref_8 article-title: Detection of Premature Ventricular Contraction (PVC) Using Linear and Nonlinear Techniques: An Experimental Study publication-title: Clust. Comput. doi: 10.1007/s10586-019-02953-x – volume: 43 start-page: 216 year: 2018 ident: ref_11 article-title: A Survey on ECG Analysis publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2018.03.003 – volume: 12 start-page: 2825 year: 2011 ident: ref_64 article-title: Scikit-Learn: Machine Learning in Python publication-title: J. Mach. Learn. Res. – volume: 23 start-page: 1179 year: 2021 ident: ref_75 article-title: Deep Learning and the Electrocardiogram: Review of the Current State-of-the-Art publication-title: EP Eur. – volume: 57 start-page: 101819 year: 2020 ident: ref_28 article-title: Automated Arrhythmia Classification Based on a Combination Network of CNN and LSTM publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2019.101819 – volume: 40 start-page: 055002 year: 2019 ident: ref_71 article-title: Ventricular Ectopic Beat Detection Using a Wavelet Transform and a Convolutional Neural Network publication-title: Physiol. Meas. doi: 10.1088/1361-6579/ab17f0 – ident: ref_73 doi: 10.1109/ICMLA.2016.0154 – ident: ref_50 – volume: 35 start-page: 1798 year: 2012 ident: ref_19 article-title: Representation Learning: A Review and New Perspectives publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.50 – volume: 6 start-page: 015024 year: 2020 ident: ref_68 article-title: Automated Detection of Premature Ventricular Contraction in ECG Signals Using Enhanced Template Matching Algorithm publication-title: Biomed. Phys. Eng. Express doi: 10.1088/2057-1976/ab6995 – volume: 34 start-page: 187 year: 2018 ident: ref_74 article-title: Real-Time Premature Ventricular Contractions Detection Based on Redundant Discrete Wavelet Transform publication-title: Res. Biomed. Eng. doi: 10.1590/2446-4740.01618 – volume: 5 start-page: 221 year: 2016 ident: ref_37 article-title: Learning from Imbalanced Data: Open Challenges and Future Directions publication-title: Prog. Artif. Intell. doi: 10.1007/s13748-016-0094-0 – volume: 47 start-page: 358 year: 2019 ident: ref_6 article-title: Premature Ventricular Contraction Analysis for Real-Time Patient Monitoring publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2018.08.040 – volume: 57 start-page: 353 year: 2010 ident: ref_5 article-title: Robust Detection of Premature Ventricular Contractions Using a Wave-Based Bayesian Framework publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2009.2031243 – ident: ref_13 doi: 10.3390/jcm10225450 – volume: 8 start-page: 16863 year: 2021 ident: ref_27 article-title: LSTM-Based Emotion Detection Using Physiological Signals: IoT Framework for Healthcare and Distance Learning in COVID-19 publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.3044031 – ident: ref_79 doi: 10.3390/life12030374 – volume: 27 start-page: 19 year: 2021 ident: ref_43 article-title: Effectiveness of Transfer Learning for Deep Learning-Based Electrocardiogram Analysis publication-title: Healthc. Inform. Res. doi: 10.4258/hir.2021.27.1.19 – volume: 39 start-page: 431 year: 2022 ident: ref_10 article-title: Multi-Layer Co-Occurrence Matrices for Person Identification from ECG Signals publication-title: Trait. Signal doi: 10.18280/ts.390204 – volume: 2022 start-page: 5641727 year: 2022 ident: ref_15 article-title: Segmentation of Drug-Treated Cell Image and Mitochondrial-Oxidative Stress Using Deep Convolutional Neural Network publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2022/5641727 – volume: 20 start-page: 755 year: 2020 ident: ref_3 article-title: Detection, Treatment Planning, and Genetic Predisposition of Bruxism: A Systematic Mapping Process and Network Visualization Technique publication-title: CNS Neurol. Disord. Drug Targets – volume: 51 start-page: 1196 year: 2004 ident: ref_52 article-title: Automatic Classification of Heartbeats Using ECG Morphology and Heartbeat Interval Features publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.827359 – ident: ref_57 – volume: 2022 start-page: 3408501 year: 2022 ident: ref_16 article-title: An Effective and Lightweight Deep Electrocardiography Arrhythmia Recognition Model Using Novel Special and Native Structural Regularization Techniques on Cardiac Signal publication-title: J. Healthc. Eng. doi: 10.1155/2022/3408501 – volume: 39 start-page: 776 year: 2020 ident: ref_29 article-title: An Integrated Hybrid CNN–RNN Model for Visual Description and Generation of Captions publication-title: Circuits, Syst. Signal Process. doi: 10.1007/s00034-019-01306-8 – volume: 40 start-page: 1446 year: 2020 ident: ref_46 article-title: SpEC: A System for Patient Specific ECG Beat Classification Using Deep Residual Network publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2020.08.001 |
SSID | ssj0000913825 |
Score | 2.3584895 |
Snippet | The development of automatic monitoring and diagnosis systems for cardiac patients over the internet has been facilitated by recent advancements in wearable... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 87 |
SubjectTerms | Algorithms Cardiac arrhythmia Datasets Deep learning Diagnosis Discriminant analysis Electrocardiogram Electrocardiography Health aspects Heart Heart diseases imbalanced datasets Machine learning Morphology Neural networks patient-specific Patients premature ventricular contraction recognition Support vector machines Technology application transfer learning Visual perception Wavelet transforms |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQDxUXxJtAqYyExIWoSRwn9nH7oiC1QmVBvVl-titBFqXZf8QPZcbOrjYqggu3xHYsOzOZGSvffEPI29YEZo0xuW14yGsvfS6Fq3PLjQP1ED5lvZ9fNGdf609X_Gqr1BdiwhI9cHpxB3DgkOhEIAzgWMNbW8-5tdx6xl1tHFpf8Hlbh6logyVy6_FEM8TgXH_gEnINuY_BbCOlTTtxRZGx_65d3nJMU9Dklhc6fUgejOEjnaVlPyL3fPeY7J6PP8ifkF-zjs5WwzISsdLPPTKyrnpPv-F0i4g5pUhI1ad8Bnq5xg_BdSIvp4fg1xyF-48_DOIeLdwd6wFaB6o7h5PmcywsAe2X_jYmc9GLhCanEYFAowMMvqcje-s1Tndy9IF-WVzD8p-S-enJ_OgsHwsxgMiaZsidaaVjQevCs8BDrG9kmLaGtWUFlpsXhWlKXVrjRWjAShgIClndFMxrIQN7Rna6ZedfECoh_qwMRF1MFCA8JnwQWIHdFvh71ouMVGuRKDuSlGOtjO8KDisoR_UHOWbk_eahn4mj4-_DD1HWm6FIsB0bQO3UqHbqX2qXkXeoKQrNAMpMj9kMsE0k1FKzFtPFIX6tM7I3GQmfr512r3VNjebjVlUtsuAL0UD3m003PomQuM4vV2kMEpbxKiPPk2putsRg5SVrZUbaidJO9jzt6RY3kVxcQgRXMfbyf7ykV-R-hdkiJTIA7JGdoV_51xDDDWY_fq6_AbuXR3w priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELaglRAXVN6BUhkJiQtRkzhOnBPabbcUpK6qZUG9RfEjy0qQlGz2H_WHMmN7QyNQb_Ejlq0Zj2fsmW8IeZfLmikpZagyXoepKUxYCJ2GiksN7CGMi3q_mGfn39IvV_zKX7htvFvlTiZaQa1bhXfkx0mOwOBCZOnH698hZo3C11WfQuM-2QcRLMD42p_O5peL4ZYFUS_BBnJwQwzs-2PtPNgQAxnEN0Lb5KMjySL3_yufbx1QY-fJW6fR2QF55NVIOnF0f0zumeYJeXDhH8qfkptJQyfbvrWArPSyQ2TWbWfodxxubX1PKQJTdS6ugS52fkTw7UDM6RTON02h_PmXRP9HBaXTqofanlaNxkHDJSaYgPqF2digLjp3XuXUeiJQexDWpqMexXWFw81OPtGv6xVM_xlZns2WJ-ehT8gApMuyPtQyLzSrqyoyrOa1zXMkWaUky-MEJDiPIpnFVaykEXUG0kKCcsjSLGKmEkXNnpO9pm3MS0IL0EMTCdoXE1EqNROmFpiJXUX4TGtEQJIdSUrlwcoxZ8bPEowWpGP5HzoG5MPw07XD6ri7-xRpPXRFoG1b0Xar0u_bEuzdAnUY0EI5ppCvlOFcKa4M4xpmHpD3yCkligOkWeWjGmCZCKxVTnIMGwc9Ng3I4agnbGM1bt7xWunFyKb8y_QBeTs045_oGteYduv6IHAZTwLywrHmsCQGM49ZXgQkHzHtaM3jlmb9w4KMF6DJJYy9untar8nDBONBYozxPyR7fbc1b0BL6-WR34p_AEtaQSU priority: 102 providerName: ProQuest |
Title | An Automatic Premature Ventricular Contraction Recognition System Based on Imbalanced Dataset and Pre-Trained Residual Network Using Transfer Learning on ECG Signal |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36611379 https://www.proquest.com/docview/2761098864 https://www.proquest.com/docview/2761978152 https://pubmed.ncbi.nlm.nih.gov/PMC9818233 https://doaj.org/article/4079266105954007ace55cc5ce35d4bd |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NTUK8IH4vMCojIfFCIInjxHlAqB0dA6nVVDq0tyh2nFJppFuWSvD_8IdyZ6fVIgYSb03sWHbuzve5ufsO4GWqKq6VUr5OROXHJjN-JsvY10KVqB7SuKz3yTQ5Po0_n4mzHdhURe1e4NWNRzuqJ3XanL_5cfnzPRr8Ozpx4pH9bemC0ojWGHdkYqtJb8EeuqaULHXS4X27NWdEuUdhjRG6Sh-hgHRMRH8bp-etLKn_n1v3Nd_Vj6u85qiO7sHdDmGyoVOJ-7Bj6gdwe9J9Q38Iv4Y1G67bleVqZScNkbauG8O-0nBLG5bKiLOqcSkPbLYJMcLfjt-cjdD1lQyvP31XFBqp8epD0eLdlhV1SYP6c6o9gfdn5srme7GpCzhnNkiBWR9ZmYZ1BK8LGm58-JF9WS5w-o9gfjSeHx77Xa0GlGqStH6p0qzkVVEEhleisiWQFC-04mkY4eYugkAlYRFqZWSV4EaiEDfyOAm4KWRW8cewW69qsw8sQ4gaKQRmXAaxKrk0laQi7TqgL7hGehBtRJLrjsecymmc53ieITnmN8jRg9fbhy4cjce_u49I1tuuxMFtb6yaRd6ZdI5H4YzgDQJUQdXlC22E0Fpow0WJM_fgFWlKTrpLMiu6hAdcJnFu5cOUMsoR4sYeHPR6ooXrfvNG1_KNgeRRSkT5UibY_GLbTE9S1FxtVmvXhzjNROTBE6ea2yVxnHnI08yDtKe0vTX3W-rlN8s_niHIizh_-n_v9BnciSh1JCQ6gAPYbZu1eY6ArlUD2BuNpyezgf1DZGBN9je-7k9B |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiDeGAosE4oJV2-v144BQ0qYktImqEFBvK-96HSKBUxxHiP_Dlf_IjB-hFqi33uzd9XpXM56Hd-YbgJehyrhWStk6EJntm9jYcZT6thYqRfaITJ31PpkGo0_-hzNxtgO_21wYCqtsZWIlqNOVpn_k-15IwOBRFPjvzr_bVDWKTlfbEho1Wxybnz_QZVu_HR8ifV953tFwfjCym6oC-P4gKO1UhXHKsyRxDM9EVhXrUTzRioeuh2JIOI4K3MTVykRZgCyv0MLhfuBwk0RxxnHaa7Drc_RkerA7GE5PZ9ufOgSyiS5XjW7Eeezsp3XAHEEuo7YgJJ2wowGrQgH_qoML-rAbq3lB-R3dhluN1cr6NZvdgR2T34Xrk-Zc_h786uesvylXFf4rOy0ICHZTGPaZpltWoa6McLCKOo2CzdqwJbyuMdPZANVpyvB-_E1RuKXGu8OkxNaSJXlKk9pzqmeB7TOzrnLI2LQOYmdV4AOr9G5mCtaAxi5ouuHBe_ZxucDl34f5VVDqAfTyVW4eAYvR7PUUGns8cnyV8shkERV-1w6dCpvIAq8lidQNNjqV6Pgq0UciOsr_0NGCN9uHzmtokMuHD4jW26GE6101rIqFbMSERPc6JpMJjV5BFesTbYTQWmjDRYort-A1cYok6UM0S5okCtwm4XjJfkhZ6mg2-xbsdUai1NDd7pbXZCO11vLvN2bBi203PUmReLlZbeoxhJMmPAse1qy53RLHlbs8jC0IO0zb2XO3J19-qTDNYzQcPc4fX76s53BjNJ-cyJPx9PgJ3PQoFcUleIE96JXFxjxFA7FUz5rPkoG8YkHwB48MfeY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTpp4QfxfYICRQLwQNY3z9wGhdm1ZGauqUtDerNhxSiVIR5oK8X34Enw77uKkLALtbW-J7Vhn3eXubN_9DuBFKDOupJS2CvzM9nSs7ThKPVv5MkXxiLTJej-bBiefvPfn_vke_G5yYSisstGJlaJO14rOyLtuSMDgURR43awOi5gNx28vvttUQYpuWptyGkZETvXPH7h927yZDJHXL113PFocn9h1hQGkJQhKO5VhnPIsSRzNMz-rCvdInijJw56LKsl3HBn0kp6SOsoCFH-J3g73AofrJIozjtPegP0QN0VOB_YHo-lsvjvgIcBN3H4ZpCPOY6ebmuA5gl9Gy0GoOmHLGlZFA_41DZdsYztu85IhHN-GW7UHy_pG5O7Ans7vwsFZfUd_D371c9bflusKC5bNCgKF3RaafabpVlXYKyNMrMKkVLB5E8KEzwY_nQ3QtKYM3yffJIVeKnwbJiW2lizJU5rUXlBtC2yf602VT8amJqCdVUEQrLLBmS5YDSC7pOlGx-_Yx9USyb8Pi-vg1APo5OtcHwKL0QV2JTp-PHI8mfJIZxEVgVcO3RDryAK3YYlQNU46lev4KnC_RHwU_-GjBa93H10YmJCrhw-I17uhhPFdNayLpahVhkCpisl9QgfYp-r1idK-r5SvNPdTpNyCVyQpgjQR8SypEypwmYTpJfohZayjC-1ZcNQaiRpEtbsbWRO1BtuIv_-bBc933fQlReXler01YwgzzXcteGhEc7ckjpT3eBhbELaEtrXmdk---lLhm8foRLqcP7qarGdwgApAfJhMTx_DTZeyUnqENHAEnbLY6ifoK5byaf1XMhDXrAf-ADGjghs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Automatic+Premature+Ventricular+Contraction+Recognition+System+Based+on+Imbalanced+Dataset+and+Pre-Trained+Residual+Network+Using+Transfer+Learning+on+ECG+Signal&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Ullah%2C+Hadaate&rft.au=Heyat%2C+Md+Belal+Bin&rft.au=Akhtar%2C+Faijan&rft.au=Muaad%2C+Abdullah+Y.&rft.date=2022-12-28&rft.issn=2075-4418&rft.eissn=2075-4418&rft.volume=13&rft.issue=1&rft.spage=87&rft_id=info:doi/10.3390%2Fdiagnostics13010087&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_diagnostics13010087 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon |