An Automatic Premature Ventricular Contraction Recognition System Based on Imbalanced Dataset and Pre-Trained Residual Network Using Transfer Learning on ECG Signal

The development of automatic monitoring and diagnosis systems for cardiac patients over the internet has been facilitated by recent advancements in wearable sensor devices from electrocardiographs (ECGs), which need the use of patient-specific approaches. Premature ventricular contraction (PVC) is a...

Full description

Saved in:
Bibliographic Details
Published inDiagnostics (Basel) Vol. 13; no. 1; p. 87
Main Authors Ullah, Hadaate, Heyat, Md Belal Bin, Akhtar, Faijan, Muaad, Abdullah Y., Ukwuoma, Chiagoziem C., Bilal, Muhammad, Miraz, Mahdi H., Bhuiyan, Mohammad Arif Sobhan, Wu, Kaishun, Damaševičius, Robertas, Pan, Taisong, Gao, Min, Lin, Yuan, Lai, Dakun
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 28.12.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of automatic monitoring and diagnosis systems for cardiac patients over the internet has been facilitated by recent advancements in wearable sensor devices from electrocardiographs (ECGs), which need the use of patient-specific approaches. Premature ventricular contraction (PVC) is a common chronic cardiovascular disease that can cause conditions that are potentially fatal. Therefore, for the diagnosis of likely heart failure, precise PVC detection from ECGs is crucial. In the clinical settings, cardiologists typically employ long-term ECGs as a tool to identify PVCs, where a cardiologist must put in a lot of time and effort to appropriately assess the long-term ECGs which is time consuming and cumbersome. By addressing these issues, we have investigated a deep learning method with a pre-trained deep residual network, ResNet-18, to identify PVCs automatically using transfer learning mechanism. Herein, features are extracted by the inner layers of the network automatically compared to hand-crafted feature extraction methods. Transfer learning mechanism handles the difficulties of required large volume of training data for a deep model. The pre-trained model is evaluated on the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) Arrhythmia and Institute of Cardiological Technics (INCART) datasets. First, we used the Pan–Tompkins algorithm to segment 44,103 normal and 6423 PVC beats, as well as 106,239 normal and 9987 PVC beats from the MIT-BIH Arrhythmia and IN-CART datasets, respectively. The pre-trained model employed the segmented beats as input after being converted into 2D (two-dimensional) images. The method is optimized with the using of weighted random samples, on-the-fly augmentation, Adam optimizer, and call back feature. The results from the proposed method demonstrate the satisfactory findings without the using of any complex pre-processing and feature extraction technique as well as design complexity of model. Using LOSOCV (leave one subject out cross-validation), the received accuracies on MIT-BIH and INCART are 99.93% and 99.77%, respectively, suppressing the state-of-the-art methods for PVC recognition on unseen data. This demonstrates the efficacy and generalizability of the proposed method on the imbalanced datasets. Due to the absence of device-specific (patient-specific) information at the evaluating stage on the target datasets in this study, the method might be used as a general approach to handle the situations in which ECG signals are obtained from different patients utilizing a variety of smart sensor devices.
AbstractList The development of automatic monitoring and diagnosis systems for cardiac patients over the internet has been facilitated by recent advancements in wearable sensor devices from electrocardiographs (ECGs), which need the use of patient-specific approaches. Premature ventricular contraction (PVC) is a common chronic cardiovascular disease that can cause conditions that are potentially fatal. Therefore, for the diagnosis of likely heart failure, precise PVC detection from ECGs is crucial. In the clinical settings, cardiologists typically employ long-term ECGs as a tool to identify PVCs, where a cardiologist must put in a lot of time and effort to appropriately assess the long-term ECGs which is time consuming and cumbersome. By addressing these issues, we have investigated a deep learning method with a pre-trained deep residual network, ResNet-18, to identify PVCs automatically using transfer learning mechanism. Herein, features are extracted by the inner layers of the network automatically compared to hand-crafted feature extraction methods. Transfer learning mechanism handles the difficulties of required large volume of training data for a deep model. The pre-trained model is evaluated on the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) Arrhythmia and Institute of Cardiological Technics (INCART) datasets. First, we used the Pan–Tompkins algorithm to segment 44,103 normal and 6423 PVC beats, as well as 106,239 normal and 9987 PVC beats from the MIT-BIH Arrhythmia and IN-CART datasets, respectively. The pre-trained model employed the segmented beats as input after being converted into 2D (two-dimensional) images. The method is optimized with the using of weighted random samples, on-the-fly augmentation, Adam optimizer, and call back feature. The results from the proposed method demonstrate the satisfactory findings without the using of any complex pre-processing and feature extraction technique as well as design complexity of model. Using LOSOCV (leave one subject out cross-validation), the received accuracies on MIT-BIH and INCART are 99.93% and 99.77%, respectively, suppressing the state-of-the-art methods for PVC recognition on unseen data. This demonstrates the efficacy and generalizability of the proposed method on the imbalanced datasets. Due to the absence of device-specific (patient-specific) information at the evaluating stage on the target datasets in this study, the method might be used as a general approach to handle the situations in which ECG signals are obtained from different patients utilizing a variety of smart sensor devices.
The development of automatic monitoring and diagnosis systems for cardiac patients over the internet has been facilitated by recent advancements in wearable sensor devices from electrocardiographs (ECGs), which need the use of patient-specific approaches. Premature ventricular contraction (PVC) is a common chronic cardiovascular disease that can cause conditions that are potentially fatal. Therefore, for the diagnosis of likely heart failure, precise PVC detection from ECGs is crucial. In the clinical settings, cardiologists typically employ long-term ECGs as a tool to identify PVCs, where a cardiologist must put in a lot of time and effort to appropriately assess the long-term ECGs which is time consuming and cumbersome. By addressing these issues, we have investigated a deep learning method with a pre-trained deep residual network, ResNet-18, to identify PVCs automatically using transfer learning mechanism. Herein, features are extracted by the inner layers of the network automatically compared to hand-crafted feature extraction methods. Transfer learning mechanism handles the difficulties of required large volume of training data for a deep model. The pre-trained model is evaluated on the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) Arrhythmia and Institute of Cardiological Technics (INCART) datasets. First, we used the Pan-Tompkins algorithm to segment 44,103 normal and 6423 PVC beats, as well as 106,239 normal and 9987 PVC beats from the MIT-BIH Arrhythmia and IN-CART datasets, respectively. The pre-trained model employed the segmented beats as input after being converted into 2D (two-dimensional) images. The method is optimized with the using of weighted random samples, on-the-fly augmentation, Adam optimizer, and call back feature. The results from the proposed method demonstrate the satisfactory findings without the using of any complex pre-processing and feature extraction technique as well as design complexity of model. Using LOSOCV (leave one subject out cross-validation), the received accuracies on MIT-BIH and INCART are 99.93% and 99.77%, respectively, suppressing the state-of-the-art methods for PVC recognition on unseen data. This demonstrates the efficacy and generalizability of the proposed method on the imbalanced datasets. Due to the absence of device-specific (patient-specific) information at the evaluating stage on the target datasets in this study, the method might be used as a general approach to handle the situations in which ECG signals are obtained from different patients utilizing a variety of smart sensor devices.The development of automatic monitoring and diagnosis systems for cardiac patients over the internet has been facilitated by recent advancements in wearable sensor devices from electrocardiographs (ECGs), which need the use of patient-specific approaches. Premature ventricular contraction (PVC) is a common chronic cardiovascular disease that can cause conditions that are potentially fatal. Therefore, for the diagnosis of likely heart failure, precise PVC detection from ECGs is crucial. In the clinical settings, cardiologists typically employ long-term ECGs as a tool to identify PVCs, where a cardiologist must put in a lot of time and effort to appropriately assess the long-term ECGs which is time consuming and cumbersome. By addressing these issues, we have investigated a deep learning method with a pre-trained deep residual network, ResNet-18, to identify PVCs automatically using transfer learning mechanism. Herein, features are extracted by the inner layers of the network automatically compared to hand-crafted feature extraction methods. Transfer learning mechanism handles the difficulties of required large volume of training data for a deep model. The pre-trained model is evaluated on the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) Arrhythmia and Institute of Cardiological Technics (INCART) datasets. First, we used the Pan-Tompkins algorithm to segment 44,103 normal and 6423 PVC beats, as well as 106,239 normal and 9987 PVC beats from the MIT-BIH Arrhythmia and IN-CART datasets, respectively. The pre-trained model employed the segmented beats as input after being converted into 2D (two-dimensional) images. The method is optimized with the using of weighted random samples, on-the-fly augmentation, Adam optimizer, and call back feature. The results from the proposed method demonstrate the satisfactory findings without the using of any complex pre-processing and feature extraction technique as well as design complexity of model. Using LOSOCV (leave one subject out cross-validation), the received accuracies on MIT-BIH and INCART are 99.93% and 99.77%, respectively, suppressing the state-of-the-art methods for PVC recognition on unseen data. This demonstrates the efficacy and generalizability of the proposed method on the imbalanced datasets. Due to the absence of device-specific (patient-specific) information at the evaluating stage on the target datasets in this study, the method might be used as a general approach to handle the situations in which ECG signals are obtained from different patients utilizing a variety of smart sensor devices.
Audience Academic
Author Muaad, Abdullah Y.
Wu, Kaishun
Akhtar, Faijan
Ukwuoma, Chiagoziem C.
Bhuiyan, Mohammad Arif Sobhan
Lai, Dakun
Pan, Taisong
Lin, Yuan
Ullah, Hadaate
Bilal, Muhammad
Damaševičius, Robertas
Miraz, Mahdi H.
Gao, Min
Heyat, Md Belal Bin
AuthorAffiliation 5 School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
1 State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
8 School of Computing, Glyndŵr University, Wrexham LL11 2AW, UK
10 Medico-Engineering Corporation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu 610054, China
11 Biomedical Imaging and Electrophysiology Laboratory, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
7 School of Computing and Data Science, Xiamen University Malaysia, Bandar Sunsuria, Sepang 43900, Malaysia
2 IoT Research Center, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China
6 College of Pharmacy, Liaquat University of Medical and Health Sci
AuthorAffiliation_xml – name: 3 School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
– name: 10 Medico-Engineering Corporation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu 610054, China
– name: 6 College of Pharmacy, Liaquat University of Medical and Health Sciences, Jamshoro 76090, Pakistan
– name: 5 School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
– name: 8 School of Computing, Glyndŵr University, Wrexham LL11 2AW, UK
– name: 7 School of Computing and Data Science, Xiamen University Malaysia, Bandar Sunsuria, Sepang 43900, Malaysia
– name: 9 Department of Software Engineering, Kaunas University of Technology, 44249 Kaunas, Lithuania
– name: 1 State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
– name: 11 Biomedical Imaging and Electrophysiology Laboratory, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
– name: 2 IoT Research Center, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China
– name: 4 IT Department, Sana’a Community College, Sana’a 5695, Yemen
Author_xml – sequence: 1
  givenname: Hadaate
  surname: Ullah
  fullname: Ullah, Hadaate
– sequence: 2
  givenname: Md Belal Bin
  orcidid: 0000-0001-5307-9582
  surname: Heyat
  fullname: Heyat, Md Belal Bin
– sequence: 3
  givenname: Faijan
  surname: Akhtar
  fullname: Akhtar, Faijan
– sequence: 4
  givenname: Abdullah Y.
  orcidid: 0000-0001-8304-9261
  surname: Muaad
  fullname: Muaad, Abdullah Y.
– sequence: 5
  givenname: Chiagoziem C.
  orcidid: 0000-0002-4532-6026
  surname: Ukwuoma
  fullname: Ukwuoma, Chiagoziem C.
– sequence: 6
  givenname: Muhammad
  surname: Bilal
  fullname: Bilal, Muhammad
– sequence: 7
  givenname: Mahdi H.
  surname: Miraz
  fullname: Miraz, Mahdi H.
– sequence: 8
  givenname: Mohammad Arif Sobhan
  orcidid: 0000-0003-0772-0556
  surname: Bhuiyan
  fullname: Bhuiyan, Mohammad Arif Sobhan
– sequence: 9
  givenname: Kaishun
  surname: Wu
  fullname: Wu, Kaishun
– sequence: 10
  givenname: Robertas
  orcidid: 0000-0001-9990-1084
  surname: Damaševičius
  fullname: Damaševičius, Robertas
– sequence: 11
  givenname: Taisong
  orcidid: 0000-0003-1576-3409
  surname: Pan
  fullname: Pan, Taisong
– sequence: 12
  givenname: Min
  orcidid: 0000-0003-3899-2933
  surname: Gao
  fullname: Gao, Min
– sequence: 13
  givenname: Yuan
  surname: Lin
  fullname: Lin, Yuan
– sequence: 14
  givenname: Dakun
  orcidid: 0000-0001-9070-1721
  surname: Lai
  fullname: Lai, Dakun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36611379$$D View this record in MEDLINE/PubMed
BookMark eNp9kt1u1DAQhSNUREvpEyAhS9xws8WO4_zcIC1LKZUqQO3CrTVxJsElsYudgPo-PCiTbgvdqiK5yPj4zCfNyTxNdpx3mCTPBT-UsuKvGwud83G0JgrJBedl8SjZS3mhFlkmyp079W5yEOMFp6cSskzVk2RX5rkQsqj2kt9Lx5bT6AcgFPsckIopIPuKbgzWTD0EtvJUgxmtd-wMje-cva7Pr-KIA3sLERtG55Ohhh6codM7GEkdGbhmhi7WAawj_QyjbSbo2Uccf_nwnX2J1nWMrl1sMbBThOBmhXBHq2N2bjsH_bPkcQt9xIOb736yfn-0Xn1YnH46PlktTxdG5fm4aOqiamQLwFG2quU8LWUtwdSyECmCUZzXuQBhaizbXIqylmkus5xLhLJq5X5yssE2Hi70ZbADhCvtweprwYdOQ6CYetQZL6qUQuSqUhnnBRhUyhhlUKomqxtivdmwLqd6wMbMcUK_Bd2-cfab7vxPXZWiTKUkwKsbQPA_JoyjHmw02FPA6Keo0yIXVVEKlZL15T3rhZ8C5bZx8aos8-yfqwMawLrWzz91huplkSkKh0Yh1-EDLnobHKyhHWwt6VsNL-4O-nfC2xUjQ7UxmOBjDNhqY0eYF4jItteC63mj9QMbTb3yXu8t_n9dfwC-P_4H
CitedBy_id crossref_primary_10_3390_diagnostics13061104
crossref_primary_10_3389_fchem_2024_1361980
crossref_primary_10_3390_diagnostics14171910
crossref_primary_10_1016_j_bspc_2025_107703
crossref_primary_10_3390_s23062993
crossref_primary_10_1109_ACCESS_2024_3476082
crossref_primary_10_3390_bioengineering10050542
crossref_primary_10_1186_s12938_025_01349_w
crossref_primary_10_1016_j_engappai_2024_109782
crossref_primary_10_1016_j_cmpb_2024_108579
crossref_primary_10_3390_s23073371
crossref_primary_10_3390_computers12030068
crossref_primary_10_1002_widm_1552
crossref_primary_10_1109_ACCESS_2024_3402359
crossref_primary_10_1016_j_engappai_2025_110481
crossref_primary_10_1016_j_ijcce_2025_01_007
crossref_primary_10_1016_j_compbiomed_2023_107532
crossref_primary_10_3389_fpubh_2024_1373883
crossref_primary_10_1007_s42600_024_00399_8
crossref_primary_10_3390_s24082655
crossref_primary_10_1109_TIM_2025_3546413
crossref_primary_10_3390_pharmaceutics15020643
crossref_primary_10_1007_s00034_024_02662_w
Cites_doi 10.1016/j.bspc.2017.12.004
10.3390/diagnostics12112815
10.55730/1300-0632.3930
10.1016/j.compbiomed.2019.103387
10.7717/peerj-cs.386
10.1016/j.cmpb.2008.12.009
10.1109/BIOCAS.2019.8919049
10.1109/ICM50269.2020.9331503
10.1016/j.compbiomed.2018.03.016
10.1007/978-3-030-81473-1
10.1016/j.cmpb.2018.12.028
10.1186/1475-925X-1-5
10.3390/s20195683
10.3390/electronics9111790
10.1016/j.neunet.2018.08.023
10.5755/j01.itc.50.2.27672
10.3390/bioengineering9110709
10.1109/ACCESS.2022.3212120
10.1155/2022/9475162
10.1109/CVPR.2016.90
10.1109/TBME.1985.325532
10.1016/j.jare.2022.08.021
10.1038/s41598-017-09544-z
10.22489/CinC.2019.138
10.5755/j01.itc.50.1.24145
10.1109/10.918594
10.1109/ACCESS.2019.2924181
10.3390/app10093304
10.1109/PRML52754.2021.9520710
10.1038/s41591-018-0268-3
10.1109/IJCNN.2009.5178626
10.1007/978-3-319-46493-0_38
10.5755/j01.itc.51.1.30083
10.1007/978-0-387-30162-4_478
10.1007/s00521-018-03974-0
10.1038/nature14539
10.1109/EMBC.2019.8856342
10.1007/s13369-022-06617-8
10.3390/app10217410
10.3389/fnins.2021.754058
10.1145/3065386
10.3390/bios12080630
10.21437/Interspeech.2021-1679
10.1016/j.hrthm.2022.07.010
10.1109/TBCAS.2013.2260159
10.3390/bios11030069
10.1016/j.future.2017.08.039
10.1007/s10586-019-02953-x
10.1016/j.bspc.2018.03.003
10.1016/j.bspc.2019.101819
10.1088/1361-6579/ab17f0
10.1109/ICMLA.2016.0154
10.1109/TPAMI.2013.50
10.1088/2057-1976/ab6995
10.1590/2446-4740.01618
10.1007/s13748-016-0094-0
10.1016/j.bspc.2018.08.040
10.1109/TBME.2009.2031243
10.3390/jcm10225450
10.1109/JIOT.2020.3044031
10.3390/life12030374
10.4258/hir.2021.27.1.19
10.18280/ts.390204
10.1155/2022/5641727
10.1109/TBME.2004.827359
10.1155/2022/3408501
10.1007/s00034-019-01306-8
10.1016/j.bbe.2020.08.001
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
3V.
7XB
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
GNUQQ
GUQSH
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3390/diagnostics13010087
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
ProQuest Research Library (NC LIVE)
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database

MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2075-4418
ExternalDocumentID oai_doaj_org_article_4079266105954007ace55cc5ce35d4bd
PMC9818233
A745500954
36611379
10_3390_diagnostics13010087
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61825102
– fundername: National Natural Science Foundation of China
  grantid: 62001083
– fundername: National Natural Science Foundation of China
  grantid: 61771100
– fundername: Sichuan Science and Technology Program
  grantid: 2021YFH0093
– fundername: Fundamental Research Funds for the Central Universities
  grantid: ZYGX2021YGLH002
– fundername: Guangdong NSF
  grantid: 2017A030312008
– fundername: Guangdong “Pearl River Talent Recruitment Program”
  grantid: 2019ZT08X603
– fundername: Science and Technology Research Program of Chongqing Municipal Education Commission
  grantid: KJZD-K202114401
– fundername: National Natural Science Foundation of China
  grantid: U2001207; 61872248
– fundername: Science and Technology Department of Sichuan Province
  grantid: 2021YFG0322
– fundername: Shenzhen Science and Technology Foundation
  grantid: ZDSYS20190902092853047; R2020A045
– fundername: Project of DEGP
  grantid: 2019KCXTD005
GroupedDBID 53G
5VS
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BCNDV
BENPR
BPHCQ
CCPQU
CITATION
DWQXO
EBD
ESX
GNUQQ
GROUPED_DOAJ
GUQSH
HYE
IAO
IHR
ITC
KQ8
M2O
M48
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
3V.
NPM
PMFND
7XB
8FK
COVID
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c566t-db79d3faa0e3f5f00283b3acb3712eac500b61a1cbe8f6318b32634603ea89f3
IEDL.DBID M48
ISSN 2075-4418
IngestDate Wed Aug 27 01:31:13 EDT 2025
Thu Aug 21 18:38:07 EDT 2025
Fri Jul 11 04:49:20 EDT 2025
Mon Jun 30 03:25:27 EDT 2025
Tue Jun 17 22:19:36 EDT 2025
Tue Jun 10 21:18:08 EDT 2025
Thu Jan 02 22:53:05 EST 2025
Thu Apr 24 22:54:54 EDT 2025
Tue Jul 01 02:36:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords patient-specific
premature ventricular contraction
imbalanced datasets
transfer learning
electrocardiogram
pre-trained
recognition
residual network
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c566t-db79d3faa0e3f5f00283b3acb3712eac500b61a1cbe8f6318b32634603ea89f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8304-9261
0000-0003-0772-0556
0000-0001-5307-9582
0000-0003-1576-3409
0000-0002-4532-6026
0000-0001-9990-1084
0000-0001-9070-1721
0000-0003-3899-2933
OpenAccessLink https://www.proquest.com/docview/2761098864?pq-origsite=%requestingapplication%
PMID 36611379
PQID 2761098864
PQPubID 2032410
ParticipantIDs doaj_primary_oai_doaj_org_article_4079266105954007ace55cc5ce35d4bd
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9818233
proquest_miscellaneous_2761978152
proquest_journals_2761098864
gale_infotracmisc_A745500954
gale_infotracacademiconefile_A745500954
pubmed_primary_36611379
crossref_citationtrail_10_3390_diagnostics13010087
crossref_primary_10_3390_diagnostics13010087
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221228
PublicationDateYYYYMMDD 2022-12-28
PublicationDate_xml – month: 12
  year: 2022
  text: 20221228
  day: 28
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Diagnostics (Basel)
PublicationTitleAlternate Diagnostics (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Uysal (ref_11) 2018; 43
Paszke (ref_58) 2019; 32
Hemanth (ref_23) 2019; 32
ref_14
ref_13
ref_57
Duarte (ref_7) 2019; 169
Naz (ref_24) 2021; 7
ref_55
Sayadi (ref_5) 2010; 57
ref_53
Kuncan (ref_30) 2022; 30
Li (ref_71) 2019; 40
ref_18
Karthikeyan (ref_41) 2022; 51
Pedregosa (ref_64) 2011; 12
Ali (ref_17) 2021; 15
Talbi (ref_66) 2009; 94
ref_59
Jang (ref_43) 2021; 27
Chen (ref_28) 2020; 57
Akhtar (ref_3) 2020; 20
ref_61
ref_60
Akhtar (ref_2) 2020; 22
Zhao (ref_12) 2022; 19
Tayyib (ref_42) 2021; 50
Krawczyk (ref_37) 2016; 5
Lecun (ref_76) 2015; 521
ref_67
ref_21
ref_20
Hannun (ref_25) 2019; 25
ref_62
Acharya (ref_22) 2018; 79
Lai (ref_4) 2019; 7
Kiranyaz (ref_47) 2017; 7
Junior (ref_74) 2018; 34
Khamparia (ref_29) 2020; 39
He (ref_56) 2016; Volume 9908
Ullah (ref_78) 2016; 4
Allami (ref_6) 2019; 47
ref_72
Ullah (ref_1) 2022; 2022
ref_70
Yildirim (ref_26) 2018; 96
Nawabi (ref_15) 2022; 2022
ref_36
Demir (ref_10) 2022; 39
ref_79
ref_34
ref_33
ref_77
ref_32
Hoekema (ref_65) 2001; 48
Somani (ref_75) 2021; 23
Beritelli (ref_39) 2018; 108
ref_73
Ullah (ref_9) 2018; 3
Krizhevsky (ref_54) 2017; 60
Bengio (ref_19) 2012; 35
Reilly (ref_52) 2004; 51
Rajesh (ref_38) 2018; 41
Tripathi (ref_63) 2022; 10
Yildirim (ref_35) 2019; 113
ref_80
Kaya (ref_31) 2022; 47
Mazidi (ref_8) 2019; 23
ref_45
Malek (ref_68) 2020; 6
Kim (ref_44) 2014; 8
ref_49
ref_48
Allam (ref_46) 2020; 40
Pan (ref_51) 1985; BME-32
Ullah (ref_16) 2022; 2022
Ge (ref_69) 2002; 1
Ai (ref_40) 2021; 50
Awais (ref_27) 2021; 8
References_xml – volume: 41
  start-page: 242
  year: 2018
  ident: ref_38
  article-title: Classification of Imbalanced ECG Beats Using Re-Sampling Techniques and AdaBoost Ensemble Classifier
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2017.12.004
– ident: ref_55
– ident: ref_62
  doi: 10.3390/diagnostics12112815
– volume: 30
  start-page: 2145
  year: 2022
  ident: ref_30
  article-title: A New Approach for Congestive Heart Failure and Arrhythmia Classification Using Downsampling Local Binary Patterns with LSTM
  publication-title: Turkish J. Electr. Eng. Comput. Sci.
  doi: 10.55730/1300-0632.3930
– volume: 113
  start-page: 103387
  year: 2019
  ident: ref_35
  article-title: Automated Detection of Diabetic Subject Using Pre-Trained 2D-CNN Models with Frequency Spectrum Images Extracted from Heart Rate Signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.103387
– volume: 7
  start-page: e386
  year: 2021
  ident: ref_24
  article-title: From ECG signals to images: A transformation based approach for deep learning
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.386
– volume: 94
  start-page: 223
  year: 2009
  ident: ref_66
  article-title: PVC Discrimination Using the QRS Power Spectrum and Self-Organizing Maps
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2008.12.009
– ident: ref_72
  doi: 10.1109/BIOCAS.2019.8919049
– volume: 3
  start-page: 8
  year: 2018
  ident: ref_9
  article-title: Computing the Performance of FFNN for Classifying Purposes
  publication-title: Malays. J. Appl. Sci.
– ident: ref_20
  doi: 10.1109/ICM50269.2020.9331503
– volume: 96
  start-page: 189
  year: 2018
  ident: ref_26
  article-title: A Novel Wavelet Sequences Based on Deep Bidirectional LSTM Network Model for ECG Signal Classification
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.03.016
– ident: ref_80
  doi: 10.1007/978-3-030-81473-1
– volume: 169
  start-page: 59
  year: 2019
  ident: ref_7
  article-title: Geometrical Features for Premature Ventricular Contraction Recognition with Analytic Hierarchy Process Based Machine Learning Algorithms Selection
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.12.028
– volume: 1
  start-page: 5
  year: 2002
  ident: ref_69
  article-title: Cardiac Arrhythmia Classification Using Autoregressive Modeling
  publication-title: Biomed. Eng. Online
  doi: 10.1186/1475-925X-1-5
– ident: ref_14
  doi: 10.3390/s20195683
– ident: ref_33
  doi: 10.3390/electronics9111790
– volume: 108
  start-page: 331
  year: 2018
  ident: ref_39
  article-title: A novel training method to preserve generalization of RBPNN classifiers applied to ECG signals diagnosis
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2018.08.023
– volume: 50
  start-page: 308
  year: 2021
  ident: ref_40
  article-title: A predictive model for heart disease diagnosis based on multinomial logistic regression
  publication-title: Inf. Technol. Control
  doi: 10.5755/j01.itc.50.2.27672
– ident: ref_61
  doi: 10.3390/bioengineering9110709
– volume: 10
  start-page: 108710
  year: 2022
  ident: ref_63
  article-title: Ensemble Computational Intelligent for Insomnia Sleep Stage Detection via the Sleep ECG Signal
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3212120
– volume: 22
  start-page: 672
  year: 2020
  ident: ref_2
  article-title: Progress in Detection of Insomnia Sleep Disorder: A Comprehensive Review
  publication-title: Curr. Drug Targets
– volume: 2022
  start-page: 9475162
  year: 2022
  ident: ref_1
  article-title: An End-to-End Cardiac Arrhythmia Recognition Method with an Effective DenseNet Model on Imbalanced Datasets Using ECG Signal
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2022/9475162
– ident: ref_36
  doi: 10.1109/CVPR.2016.90
– volume: BME-32
  start-page: 230
  year: 1985
  ident: ref_51
  article-title: A Real-Time QRS Detection Algorithm
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.1985.325532
– ident: ref_18
  doi: 10.1016/j.jare.2022.08.021
– volume: 4
  start-page: 568
  year: 2016
  ident: ref_78
  article-title: Identification of Brain disorders by Sub-band Decomposition of EEG signals and Measurement of Signal to Noise Ratio. Indones
  publication-title: J. Electr. Eng. Comput. Sci.
– volume: 7
  start-page: 9270
  year: 2017
  ident: ref_47
  article-title: Personalized Monitoring and Advance Warning System for Cardiac Arrhythmias
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-09544-z
– ident: ref_70
  doi: 10.22489/CinC.2019.138
– volume: 50
  start-page: 123
  year: 2021
  ident: ref_42
  article-title: Modified block compressed sensing for extraction of fetal electrocardiogram from mother electrocardiogram using block compressed sensing based guided focuss and fast-independent component
  publication-title: Inf. Technol. Control
  doi: 10.5755/j01.itc.50.1.24145
– volume: 48
  start-page: 551
  year: 2001
  ident: ref_65
  article-title: Geometrical Aspects of the Interindividual Variability of Multilead ECG Recordings
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.918594
– volume: 32
  start-page: 1
  year: 2019
  ident: ref_58
  article-title: PyTorch: An Imperative Style, High-Performance Deep Learning Library
  publication-title: Adv. Neural Process. Syst.
– volume: 7
  start-page: 82553
  year: 2019
  ident: ref_4
  article-title: Prognosis of Sleep Bruxism Using Power Spectral Density Approach Applied on EEG Signal of Both EMG1-EMG2 and ECG1-ECG2 Channels
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2924181
– ident: ref_32
  doi: 10.3390/app10093304
– ident: ref_77
  doi: 10.1109/PRML52754.2021.9520710
– ident: ref_59
– volume: 25
  start-page: 65
  year: 2019
  ident: ref_25
  article-title: Cardiologist-Level Arrhythmia Detection and Classification in Ambulatory Electrocardiograms Using a Deep Neural Network
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0268-3
– ident: ref_48
  doi: 10.1109/IJCNN.2009.5178626
– volume: Volume 9908
  start-page: 630
  year: 2016
  ident: ref_56
  article-title: Identity Mappings in Deep Residual Networks
  publication-title: Computer Vision—ECCV 2016
  doi: 10.1007/978-3-319-46493-0_38
– volume: 51
  start-page: 158
  year: 2022
  ident: ref_41
  article-title: Dual-layer deep ensemble techniques for classifying heart disease
  publication-title: Inf. Technol. Control
  doi: 10.5755/j01.itc.51.1.30083
– ident: ref_49
  doi: 10.1007/978-0-387-30162-4_478
– volume: 32
  start-page: 707
  year: 2019
  ident: ref_23
  article-title: An Enhanced Diabetic Retinopathy Detection and Classification Approach Using Deep Convolutional Neural Network
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-03974-0
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_76
  article-title: Deep Learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref_21
  doi: 10.1109/EMBC.2019.8856342
– volume: 47
  start-page: 10497
  year: 2022
  ident: ref_31
  article-title: A New Approach for Congestive Heart Failure and Arrhythmia Classification Using Angle Transformation with LSTM
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-022-06617-8
– ident: ref_60
  doi: 10.3390/app10217410
– volume: 15
  start-page: 754058
  year: 2021
  ident: ref_17
  article-title: MMDD-Ensemble: A Multimodal Data–Driven Ensemble Approach for Parkinson’s Disease Detection
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2021.754058
– volume: 60
  start-page: 84
  year: 2017
  ident: ref_54
  article-title: ImageNet Classification with Deep Convolutional Neural Networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– ident: ref_45
  doi: 10.3390/bios12080630
– ident: ref_53
  doi: 10.21437/Interspeech.2021-1679
– volume: 19
  start-page: 1781
  year: 2022
  ident: ref_12
  article-title: Machine Learning for Distinguishing Right from Left Premature Ventricular Contraction Origin Using Surface Electrocardiogram Features
  publication-title: Heart Rhythm
  doi: 10.1016/j.hrthm.2022.07.010
– ident: ref_67
– volume: 8
  start-page: 257
  year: 2014
  ident: ref_44
  article-title: A Configurable and Low-Power Mixed Signal SoC for Portable ECG Monitoring Applications
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/TBCAS.2013.2260159
– ident: ref_34
  doi: 10.3390/bios11030069
– volume: 79
  start-page: 952
  year: 2018
  ident: ref_22
  article-title: Automated Identification of Shockable and Non-Shockable Life-Threatening Ventricular Arrhythmias Using Convolutional Neural Network
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2017.08.039
– volume: 23
  start-page: 759
  year: 2019
  ident: ref_8
  article-title: Detection of Premature Ventricular Contraction (PVC) Using Linear and Nonlinear Techniques: An Experimental Study
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-019-02953-x
– volume: 43
  start-page: 216
  year: 2018
  ident: ref_11
  article-title: A Survey on ECG Analysis
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2018.03.003
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref_64
  article-title: Scikit-Learn: Machine Learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 23
  start-page: 1179
  year: 2021
  ident: ref_75
  article-title: Deep Learning and the Electrocardiogram: Review of the Current State-of-the-Art
  publication-title: EP Eur.
– volume: 57
  start-page: 101819
  year: 2020
  ident: ref_28
  article-title: Automated Arrhythmia Classification Based on a Combination Network of CNN and LSTM
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2019.101819
– volume: 40
  start-page: 055002
  year: 2019
  ident: ref_71
  article-title: Ventricular Ectopic Beat Detection Using a Wavelet Transform and a Convolutional Neural Network
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/ab17f0
– ident: ref_73
  doi: 10.1109/ICMLA.2016.0154
– ident: ref_50
– volume: 35
  start-page: 1798
  year: 2012
  ident: ref_19
  article-title: Representation Learning: A Review and New Perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.50
– volume: 6
  start-page: 015024
  year: 2020
  ident: ref_68
  article-title: Automated Detection of Premature Ventricular Contraction in ECG Signals Using Enhanced Template Matching Algorithm
  publication-title: Biomed. Phys. Eng. Express
  doi: 10.1088/2057-1976/ab6995
– volume: 34
  start-page: 187
  year: 2018
  ident: ref_74
  article-title: Real-Time Premature Ventricular Contractions Detection Based on Redundant Discrete Wavelet Transform
  publication-title: Res. Biomed. Eng.
  doi: 10.1590/2446-4740.01618
– volume: 5
  start-page: 221
  year: 2016
  ident: ref_37
  article-title: Learning from Imbalanced Data: Open Challenges and Future Directions
  publication-title: Prog. Artif. Intell.
  doi: 10.1007/s13748-016-0094-0
– volume: 47
  start-page: 358
  year: 2019
  ident: ref_6
  article-title: Premature Ventricular Contraction Analysis for Real-Time Patient Monitoring
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2018.08.040
– volume: 57
  start-page: 353
  year: 2010
  ident: ref_5
  article-title: Robust Detection of Premature Ventricular Contractions Using a Wave-Based Bayesian Framework
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2009.2031243
– ident: ref_13
  doi: 10.3390/jcm10225450
– volume: 8
  start-page: 16863
  year: 2021
  ident: ref_27
  article-title: LSTM-Based Emotion Detection Using Physiological Signals: IoT Framework for Healthcare and Distance Learning in COVID-19
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3044031
– ident: ref_79
  doi: 10.3390/life12030374
– volume: 27
  start-page: 19
  year: 2021
  ident: ref_43
  article-title: Effectiveness of Transfer Learning for Deep Learning-Based Electrocardiogram Analysis
  publication-title: Healthc. Inform. Res.
  doi: 10.4258/hir.2021.27.1.19
– volume: 39
  start-page: 431
  year: 2022
  ident: ref_10
  article-title: Multi-Layer Co-Occurrence Matrices for Person Identification from ECG Signals
  publication-title: Trait. Signal
  doi: 10.18280/ts.390204
– volume: 2022
  start-page: 5641727
  year: 2022
  ident: ref_15
  article-title: Segmentation of Drug-Treated Cell Image and Mitochondrial-Oxidative Stress Using Deep Convolutional Neural Network
  publication-title: Oxid. Med. Cell. Longev.
  doi: 10.1155/2022/5641727
– volume: 20
  start-page: 755
  year: 2020
  ident: ref_3
  article-title: Detection, Treatment Planning, and Genetic Predisposition of Bruxism: A Systematic Mapping Process and Network Visualization Technique
  publication-title: CNS Neurol. Disord. Drug Targets
– volume: 51
  start-page: 1196
  year: 2004
  ident: ref_52
  article-title: Automatic Classification of Heartbeats Using ECG Morphology and Heartbeat Interval Features
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.827359
– ident: ref_57
– volume: 2022
  start-page: 3408501
  year: 2022
  ident: ref_16
  article-title: An Effective and Lightweight Deep Electrocardiography Arrhythmia Recognition Model Using Novel Special and Native Structural Regularization Techniques on Cardiac Signal
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2022/3408501
– volume: 39
  start-page: 776
  year: 2020
  ident: ref_29
  article-title: An Integrated Hybrid CNN–RNN Model for Visual Description and Generation of Captions
  publication-title: Circuits, Syst. Signal Process.
  doi: 10.1007/s00034-019-01306-8
– volume: 40
  start-page: 1446
  year: 2020
  ident: ref_46
  article-title: SpEC: A System for Patient Specific ECG Beat Classification Using Deep Residual Network
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2020.08.001
SSID ssj0000913825
Score 2.3584895
Snippet The development of automatic monitoring and diagnosis systems for cardiac patients over the internet has been facilitated by recent advancements in wearable...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 87
SubjectTerms Algorithms
Cardiac arrhythmia
Datasets
Deep learning
Diagnosis
Discriminant analysis
Electrocardiogram
Electrocardiography
Health aspects
Heart
Heart diseases
imbalanced datasets
Machine learning
Morphology
Neural networks
patient-specific
Patients
premature ventricular contraction
recognition
Support vector machines
Technology application
transfer learning
Visual perception
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQDxUXxJtAqYyExIWoSRwn9nH7oiC1QmVBvVl-titBFqXZf8QPZcbOrjYqggu3xHYsOzOZGSvffEPI29YEZo0xuW14yGsvfS6Fq3PLjQP1ED5lvZ9fNGdf609X_Gqr1BdiwhI9cHpxB3DgkOhEIAzgWMNbW8-5tdx6xl1tHFpf8Hlbh6logyVy6_FEM8TgXH_gEnINuY_BbCOlTTtxRZGx_65d3nJMU9Dklhc6fUgejOEjnaVlPyL3fPeY7J6PP8ifkF-zjs5WwzISsdLPPTKyrnpPv-F0i4g5pUhI1ad8Bnq5xg_BdSIvp4fg1xyF-48_DOIeLdwd6wFaB6o7h5PmcywsAe2X_jYmc9GLhCanEYFAowMMvqcje-s1Tndy9IF-WVzD8p-S-enJ_OgsHwsxgMiaZsidaaVjQevCs8BDrG9kmLaGtWUFlpsXhWlKXVrjRWjAShgIClndFMxrIQN7Rna6ZedfECoh_qwMRF1MFCA8JnwQWIHdFvh71ouMVGuRKDuSlGOtjO8KDisoR_UHOWbk_eahn4mj4-_DD1HWm6FIsB0bQO3UqHbqX2qXkXeoKQrNAMpMj9kMsE0k1FKzFtPFIX6tM7I3GQmfr512r3VNjebjVlUtsuAL0UD3m003PomQuM4vV2kMEpbxKiPPk2putsRg5SVrZUbaidJO9jzt6RY3kVxcQgRXMfbyf7ykV-R-hdkiJTIA7JGdoV_51xDDDWY_fq6_AbuXR3w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELaglRAXVN6BUhkJiQtRkzhOnBPabbcUpK6qZUG9RfEjy0qQlGz2H_WHMmN7QyNQb_Ejlq0Zj2fsmW8IeZfLmikpZagyXoepKUxYCJ2GiksN7CGMi3q_mGfn39IvV_zKX7htvFvlTiZaQa1bhXfkx0mOwOBCZOnH698hZo3C11WfQuM-2QcRLMD42p_O5peL4ZYFUS_BBnJwQwzs-2PtPNgQAxnEN0Lb5KMjySL3_yufbx1QY-fJW6fR2QF55NVIOnF0f0zumeYJeXDhH8qfkptJQyfbvrWArPSyQ2TWbWfodxxubX1PKQJTdS6ugS52fkTw7UDM6RTON02h_PmXRP9HBaXTqofanlaNxkHDJSaYgPqF2digLjp3XuXUeiJQexDWpqMexXWFw81OPtGv6xVM_xlZns2WJ-ehT8gApMuyPtQyLzSrqyoyrOa1zXMkWaUky-MEJDiPIpnFVaykEXUG0kKCcsjSLGKmEkXNnpO9pm3MS0IL0EMTCdoXE1EqNROmFpiJXUX4TGtEQJIdSUrlwcoxZ8bPEowWpGP5HzoG5MPw07XD6ri7-xRpPXRFoG1b0Xar0u_bEuzdAnUY0EI5ppCvlOFcKa4M4xpmHpD3yCkligOkWeWjGmCZCKxVTnIMGwc9Ng3I4agnbGM1bt7xWunFyKb8y_QBeTs045_oGteYduv6IHAZTwLywrHmsCQGM49ZXgQkHzHtaM3jlmb9w4KMF6DJJYy9untar8nDBONBYozxPyR7fbc1b0BL6-WR34p_AEtaQSU
  priority: 102
  providerName: ProQuest
Title An Automatic Premature Ventricular Contraction Recognition System Based on Imbalanced Dataset and Pre-Trained Residual Network Using Transfer Learning on ECG Signal
URI https://www.ncbi.nlm.nih.gov/pubmed/36611379
https://www.proquest.com/docview/2761098864
https://www.proquest.com/docview/2761978152
https://pubmed.ncbi.nlm.nih.gov/PMC9818233
https://doaj.org/article/4079266105954007ace55cc5ce35d4bd
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NTUK8IH4vMCojIfFCIInjxHlAqB0dA6nVVDq0tyh2nFJppFuWSvD_8IdyZ6fVIgYSb03sWHbuzve5ufsO4GWqKq6VUr5OROXHJjN-JsvY10KVqB7SuKz3yTQ5Po0_n4mzHdhURe1e4NWNRzuqJ3XanL_5cfnzPRr8Ozpx4pH9bemC0ojWGHdkYqtJb8EeuqaULHXS4X27NWdEuUdhjRG6Sh-hgHRMRH8bp-etLKn_n1v3Nd_Vj6u85qiO7sHdDmGyoVOJ-7Bj6gdwe9J9Q38Iv4Y1G67bleVqZScNkbauG8O-0nBLG5bKiLOqcSkPbLYJMcLfjt-cjdD1lQyvP31XFBqp8epD0eLdlhV1SYP6c6o9gfdn5srme7GpCzhnNkiBWR9ZmYZ1BK8LGm58-JF9WS5w-o9gfjSeHx77Xa0GlGqStH6p0qzkVVEEhleisiWQFC-04mkY4eYugkAlYRFqZWSV4EaiEDfyOAm4KWRW8cewW69qsw8sQ4gaKQRmXAaxKrk0laQi7TqgL7hGehBtRJLrjsecymmc53ieITnmN8jRg9fbhy4cjce_u49I1tuuxMFtb6yaRd6ZdI5H4YzgDQJUQdXlC22E0Fpow0WJM_fgFWlKTrpLMiu6hAdcJnFu5cOUMsoR4sYeHPR6ooXrfvNG1_KNgeRRSkT5UibY_GLbTE9S1FxtVmvXhzjNROTBE6ea2yVxnHnI08yDtKe0vTX3W-rlN8s_niHIizh_-n_v9BnciSh1JCQ6gAPYbZu1eY6ArlUD2BuNpyezgf1DZGBN9je-7k9B
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiDeGAosE4oJV2-v144BQ0qYktImqEFBvK-96HSKBUxxHiP_Dlf_IjB-hFqi33uzd9XpXM56Hd-YbgJehyrhWStk6EJntm9jYcZT6thYqRfaITJ31PpkGo0_-hzNxtgO_21wYCqtsZWIlqNOVpn_k-15IwOBRFPjvzr_bVDWKTlfbEho1Wxybnz_QZVu_HR8ifV953tFwfjCym6oC-P4gKO1UhXHKsyRxDM9EVhXrUTzRioeuh2JIOI4K3MTVykRZgCyv0MLhfuBwk0RxxnHaa7Drc_RkerA7GE5PZ9ufOgSyiS5XjW7Eeezsp3XAHEEuo7YgJJ2wowGrQgH_qoML-rAbq3lB-R3dhluN1cr6NZvdgR2T34Xrk-Zc_h786uesvylXFf4rOy0ICHZTGPaZpltWoa6McLCKOo2CzdqwJbyuMdPZANVpyvB-_E1RuKXGu8OkxNaSJXlKk9pzqmeB7TOzrnLI2LQOYmdV4AOr9G5mCtaAxi5ouuHBe_ZxucDl34f5VVDqAfTyVW4eAYvR7PUUGns8cnyV8shkERV-1w6dCpvIAq8lidQNNjqV6Pgq0UciOsr_0NGCN9uHzmtokMuHD4jW26GE6101rIqFbMSERPc6JpMJjV5BFesTbYTQWmjDRYort-A1cYok6UM0S5okCtwm4XjJfkhZ6mg2-xbsdUai1NDd7pbXZCO11vLvN2bBi203PUmReLlZbeoxhJMmPAse1qy53RLHlbs8jC0IO0zb2XO3J19-qTDNYzQcPc4fX76s53BjNJ-cyJPx9PgJ3PQoFcUleIE96JXFxjxFA7FUz5rPkoG8YkHwB48MfeY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTpp4QfxfYICRQLwQNY3z9wGhdm1ZGauqUtDerNhxSiVIR5oK8X34Enw77uKkLALtbW-J7Vhn3eXubN_9DuBFKDOupJS2CvzM9nSs7ThKPVv5MkXxiLTJej-bBiefvPfn_vke_G5yYSisstGJlaJO14rOyLtuSMDgURR43awOi5gNx28vvttUQYpuWptyGkZETvXPH7h927yZDJHXL113PFocn9h1hQGkJQhKO5VhnPIsSRzNMz-rCvdInijJw56LKsl3HBn0kp6SOsoCFH-J3g73AofrJIozjtPegP0QN0VOB_YHo-lsvjvgIcBN3H4ZpCPOY6ebmuA5gl9Gy0GoOmHLGlZFA_41DZdsYztu85IhHN-GW7UHy_pG5O7Ans7vwsFZfUd_D371c9bflusKC5bNCgKF3RaafabpVlXYKyNMrMKkVLB5E8KEzwY_nQ3QtKYM3yffJIVeKnwbJiW2lizJU5rUXlBtC2yf602VT8amJqCdVUEQrLLBmS5YDSC7pOlGx-_Yx9USyb8Pi-vg1APo5OtcHwKL0QV2JTp-PHI8mfJIZxEVgVcO3RDryAK3YYlQNU46lev4KnC_RHwU_-GjBa93H10YmJCrhw-I17uhhPFdNayLpahVhkCpisl9QgfYp-r1idK-r5SvNPdTpNyCVyQpgjQR8SypEypwmYTpJfohZayjC-1ZcNQaiRpEtbsbWRO1BtuIv_-bBc933fQlReXler01YwgzzXcteGhEc7ckjpT3eBhbELaEtrXmdk---lLhm8foRLqcP7qarGdwgApAfJhMTx_DTZeyUnqENHAEnbLY6ifoK5byaf1XMhDXrAf-ADGjghs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Automatic+Premature+Ventricular+Contraction+Recognition+System+Based+on+Imbalanced+Dataset+and+Pre-Trained+Residual+Network+Using+Transfer+Learning+on+ECG+Signal&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Ullah%2C+Hadaate&rft.au=Heyat%2C+Md+Belal+Bin&rft.au=Akhtar%2C+Faijan&rft.au=Muaad%2C+Abdullah+Y.&rft.date=2022-12-28&rft.issn=2075-4418&rft.eissn=2075-4418&rft.volume=13&rft.issue=1&rft.spage=87&rft_id=info:doi/10.3390%2Fdiagnostics13010087&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_diagnostics13010087
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon