Self-Inducible Bacillus subtilis Expression System for Reliable and Inexpensive Protein Production by High-Cell-Density Fermentation
Classifications Services AEM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue AEM About AEM Subscribers Authors Reviewers Advertisers Inquiries from the...
Saved in:
Published in | Applied and Environmental Microbiology Vol. 77; no. 18; pp. 6419 - 6425 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Society for Microbiology
01.09.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Classifications
Services
AEM
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit
StumbleUpon
Twitter
current issue
Spotlights in the Current Issue
AEM
About
AEM
Subscribers
Authors
Reviewers
Advertisers
Inquiries from the Press
Permissions & Commercial Reprints
ASM Journals Public Access Policy
AEM
RSS Feeds
1752 N Street N.W. • Washington DC 20036
202.737.3600 • 202.942.9355 fax • journals@asmusa.org
Print ISSN:
0099-2240
Online ISSN:
1098-5336
Copyright © 2014
by the
American Society for Microbiology.
For an alternate route to
AEM
.asm.org, visit:
AEM
|
---|---|
AbstractList | A novel technically compliant expression system was developed for heterologous protein production in Bacillus subtilis with the aim of increasing product yields at the same time as decreasing production costs. Standard systems involve the positively regulated manP promoter of the mannose operon, which led to relatively high product yields of 5.3% (5.3 g enhanced green fluorescent protein [eGFP] per 100 g cell dry weight [CDW]) but required large quantities of mannose to induce the reactions, thus rendering the system's technical application rather expensive. To improve this situation, mutant B. subtilis strains were used: the ΔmanA (mannose metabolism) strain TQ281 and the ΔmanP (mannose uptake) strain TQ356. The total amount of inducer could be reduced with TQ281, which, however, displayed sensitivity to mannose. An inducer-independent self-induction system was developed with TQ356 to further improve the cost efficiency and product yield of the system, in which glucose prevents induction by carbon catabolite repression. To create optimal self-induction conditions, a glucose-limited process strategy, namely, a fed-batch process, was utilized as follows. The initiation of self-induction at the beginning of the glucose-restricted transition phase between the batch and fed-batch phase of fermentation and its maintenance throughout the glucose-limiting fed-batch phase led to a nearly 3-fold increase of product yield, to 14.6%. The novel B. subtilis self-induction system thus makes a considerable contribution to improving product yield and reducing the costs associated with its technical application.A novel technically compliant expression system was developed for heterologous protein production in Bacillus subtilis with the aim of increasing product yields at the same time as decreasing production costs. Standard systems involve the positively regulated manP promoter of the mannose operon, which led to relatively high product yields of 5.3% (5.3 g enhanced green fluorescent protein [eGFP] per 100 g cell dry weight [CDW]) but required large quantities of mannose to induce the reactions, thus rendering the system's technical application rather expensive. To improve this situation, mutant B. subtilis strains were used: the ΔmanA (mannose metabolism) strain TQ281 and the ΔmanP (mannose uptake) strain TQ356. The total amount of inducer could be reduced with TQ281, which, however, displayed sensitivity to mannose. An inducer-independent self-induction system was developed with TQ356 to further improve the cost efficiency and product yield of the system, in which glucose prevents induction by carbon catabolite repression. To create optimal self-induction conditions, a glucose-limited process strategy, namely, a fed-batch process, was utilized as follows. The initiation of self-induction at the beginning of the glucose-restricted transition phase between the batch and fed-batch phase of fermentation and its maintenance throughout the glucose-limiting fed-batch phase led to a nearly 3-fold increase of product yield, to 14.6%. The novel B. subtilis self-induction system thus makes a considerable contribution to improving product yield and reducing the costs associated with its technical application. A novel technically compliant expression system was developed for heterologous protein production in Bacillus subtilis with the aim of increasing product yields at the same time as decreasing production costs. Standard systems involve the positively regulated manP promoter of the mannose operon, which led to relatively high product yields of 5.3% (5.3 g enhanced green fluorescent protein [eGFP] per 100 g cell dry weight [CDW]) but required large quantities of mannose to induce the reactions, thus rendering the system's technical application rather expensive. To improve this situation, mutant B. subtilis strains were used: the Δ manA (mannose metabolism) strain TQ281 and the Δ manP (mannose uptake) strain TQ356. The total amount of inducer could be reduced with TQ281, which, however, displayed sensitivity to mannose. An inducer-independent self-induction system was developed with TQ356 to further improve the cost efficiency and product yield of the system, in which glucose prevents induction by carbon catabolite repression. To create optimal self-induction conditions, a glucose-limited process strategy, namely, a fed-batch process, was utilized as follows. The initiation of self-induction at the beginning of the glucose-restricted transition phase between the batch and fed-batch phase of fermentation and its maintenance throughout the glucose-limiting fed-batch phase led to a nearly 3-fold increase of product yield, to 14.6%. The novel B. subtilis self-induction system thus makes a considerable contribution to improving product yield and reducing the costs associated with its technical application. Classifications Services AEM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue AEM About AEM Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy AEM RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0099-2240 Online ISSN: 1098-5336 Copyright © 2014 by the American Society for Microbiology. For an alternate route to AEM .asm.org, visit: AEM A novel technically compliant expression system was developed for heterologous protein production in Bacillus subtilis with the aim of increasing product yields at the same time as decreasing production costs. Standard systems involve the positively regulated manP promoter of the mannose operon, which led to relatively high product yields of 5.3% (5.3 g enhanced green fluorescent protein [eGFP] per 100 g cell dry weight [CDW]) but required large quantities of mannose to induce the reactions, thus rendering the system's technical application rather expensive. To improve this situation, mutant B. subtilis strains were used: the ΔmanA (mannose metabolism) strain TQ281 and the ΔmanP (mannose uptake) strain TQ356. The total amount of inducer could be reduced with TQ281, which, however, displayed sensitivity to mannose. An inducer-independent self-induction system was developed with TQ356 to further improve the cost efficiency and product yield of the system, in which glucose prevents induction by carbon catabolite repression. To create optimal self-induction conditions, a glucose-limited process strategy, namely, a fed-batch process, was utilized as follows. The initiation of self-induction at the beginning of the glucose-restricted transition phase between the batch and fed-batch phase of fermentation and its maintenance throughout the glucose-limiting fed-batch phase led to a nearly 3-fold increase of product yield, to 14.6%. The novel B. subtilis self-induction system thus makes a considerable contribution to improving product yield and reducing the costs associated with its technical application. A novel technically compliant expression system was developed for heterologous protein production in Bacillus subtilis with the aim of increasing product yields at the same time as decreasing production costs. Standard systems involve the positively regulated manP promoter of the mannose operon, which led to relatively high product yields of 5.3% (5.3 g enhanced green fluorescent protein [eGFP] per 100 g cell dry weight [CDW]) but required large quantities of mannose to induce the reactions, thus rendering the system's technical application rather expensive. To improve this situation, mutant B. subtilis strains were used: the ...manA (mannose metabolism) strain TQ281 and the ...manP (mannose uptake) strain TQ356. The total amount of inducer could be reduced with TQ281, which, however, displayed sensitivity to mannose. An inducer-independent self-induction system was developed with TQ356 to further improve the cost efficiency and product yield of the system, in which glucose prevents induction by carbon catabolite repression. To create optimal self-induction conditions, a glucose-limited process strategy, namely, a fed-batch process, was utilized as follows. The initiation of self-induction at the beginning of the glucose-restricted transition phase between the batch and fed-batch phase of fermentation and its maintenance throughout the glucose-limiting fed-batch phase led to a nearly 3-fold increase of product yield, to 14.6%. The novel B. subtilis self-induction system thus makes a considerable contribution to improving product yield and reducing the costs associated with its technical application. (ProQuest: ... denotes formulae/symbols omitted.) |
Author | Martin Siemann-Herzberg Alexander Müller Marian Wenzel Josef Altenbuchner |
Author_xml | – sequence: 1 givenname: Marian surname: WENZEL fullname: WENZEL, Marian organization: Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany – sequence: 2 givenname: Alexander surname: MÜLLER fullname: MÜLLER, Alexander organization: Institut für Bioverfahrenstechnik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany – sequence: 3 givenname: Martin surname: SIEMANN-HERZBERG fullname: SIEMANN-HERZBERG, Martin organization: Institut für Bioverfahrenstechnik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany – sequence: 4 givenname: Josef surname: ALTENBUCHNER fullname: ALTENBUCHNER, Josef organization: Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24524199$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21803899$$D View this record in MEDLINE/PubMed |
BookMark | eNp90s1vFCEUAHBiauy2evNsJiZGD07lY2DgYlLXrd2kRmP1TBgGujQMs4WZ2r37h8t016pN9EQIv_d48N4B2At9MAA8RfAIIczfHC8-HkGKkSgRegBmCApeUkLYHphBKESJcQX3wUFKlxDCCjL-COxjxCHhQszAj3PjbbkM7ahd403xTmnn_ZiKNDaD8y4Vi5t1NCm5PhTnmzSYrrB9LL4Y79QUoEJbLIO5WZuQ3LUpPsd-MC5Ma845TGHNpjh1F6tybrwv309u2BQnJnYmDGoSj8FDq3wyT3brIfh2svg6Py3PPn1Yzo_PSk0ZG8oWM0uNhVjQtrGt5riuWoKsZkSTRrMaUyps21bWEtJChURjaaakonWjeU0Owdtt3vXYdKbV-f6ovFxH16m4kb1y8u-T4Fbyor-WBPEa4SnBy12C2F-NJg2yc0nnZ6lg-jFJzjmpMIYoy1f_lYgwTjnjNcv0-T162Y8x5I-QXFQ1gZiTjJ79Wfpdzb86mcGLHVBJK2-jCtql366iuEK37vXW6dinFI29IwjKaaBkHih5O1B5mzm-x7XbNi1_kPP_Ctq9aJXb_t1FI1XqpDKdrGuJuGS5EvITHsfbGg |
CODEN | AEMIDF |
CitedBy_id | crossref_primary_10_1007_s00253_013_5246_6 crossref_primary_10_1016_j_ymben_2019_07_009 crossref_primary_10_1016_j_ymben_2020_03_005 crossref_primary_10_1099_acmi_0_000876_v5 crossref_primary_10_1186_s12934_021_01679_z crossref_primary_10_1016_j_enzmictec_2018_08_002 crossref_primary_10_1073_pnas_2119980119 crossref_primary_10_1016_j_ijbiomac_2024_137781 crossref_primary_10_1134_S0026893314060132 crossref_primary_10_15171_ijb_1175 crossref_primary_10_1016_j_pep_2016_07_008 crossref_primary_10_1016_j_procbio_2017_06_005 crossref_primary_10_1007_s00253_013_4960_4 crossref_primary_10_1021_acssynbio_1c00130 crossref_primary_10_1186_s12896_018_0490_6 crossref_primary_10_1016_j_tibtech_2015_12_008 crossref_primary_10_1111_mmi_12209 crossref_primary_10_1080_21645515_2021_1927412 crossref_primary_10_1016_j_biortech_2012_09_130 crossref_primary_10_1016_j_enzmictec_2023_110267 crossref_primary_10_1007_s00449_019_02268_6 crossref_primary_10_1016_j_plasmid_2015_10_002 crossref_primary_10_1128_JB_00732_18 crossref_primary_10_4014_jmb_2101_01039 crossref_primary_10_1128_AEM_01096_20 crossref_primary_10_1186_s12934_024_02531_w crossref_primary_10_1021_acssynbio_4c00688 crossref_primary_10_1186_s12934_016_0464_0 crossref_primary_10_1016_j_jbiotec_2020_10_009 crossref_primary_10_1186_s13568_023_01542_x crossref_primary_10_1111_1758_2229_12607 crossref_primary_10_1007_s00284_019_01783_9 crossref_primary_10_1128_genomeA_00084_15 crossref_primary_10_1007_s00253_015_7197_6 crossref_primary_10_1007_s10295_016_1758_2 crossref_primary_10_1016_j_enzmictec_2015_04_009 crossref_primary_10_1186_s12934_019_1151_8 crossref_primary_10_1186_s12934_019_1159_0 crossref_primary_10_3390_ijms21228722 crossref_primary_10_3389_fbioe_2020_00038 crossref_primary_10_1186_s13568_022_01497_5 crossref_primary_10_1128_AEM_01453_16 crossref_primary_10_1186_s12934_017_0649_1 crossref_primary_10_1007_s11274_024_03957_5 crossref_primary_10_1016_j_procbio_2017_06_024 crossref_primary_10_1186_s40643_022_00540_4 crossref_primary_10_1007_s00253_021_11533_2 crossref_primary_10_1016_j_ijbiomac_2019_07_175 crossref_primary_10_1016_j_ijbiomac_2019_09_144 crossref_primary_10_1155_sci5_8968295 crossref_primary_10_1038_srep18405 crossref_primary_10_1099_mic_0_000150 crossref_primary_10_1021_acsnano_2c06239 crossref_primary_10_1128_msystems_00221_24 crossref_primary_10_1186_s12934_015_0341_2 crossref_primary_10_3390_ijms22168712 crossref_primary_10_1177_15353702211030189 crossref_primary_10_3389_frfst_2023_1111571 crossref_primary_10_1186_1475_2859_11_143 crossref_primary_10_1007_s13213_013_0719_5 crossref_primary_10_1016_j_jbiosc_2020_04_011 crossref_primary_10_1016_j_jtice_2022_104218 crossref_primary_10_3389_fbioe_2019_00476 crossref_primary_10_1007_s00253_018_8965_x crossref_primary_10_3390_fermentation10060323 crossref_primary_10_1007_s11356_024_32217_0 crossref_primary_10_1016_j_jbiotec_2013_09_016 crossref_primary_10_1021_acssynbio_3c00444 crossref_primary_10_3390_microorganisms13010060 crossref_primary_10_1186_1475_2859_12_40 crossref_primary_10_2174_0929866529666220803163335 crossref_primary_10_1007_s00253_021_11330_x crossref_primary_10_1007_s11814_017_0211_1 crossref_primary_10_1186_s12934_018_1037_1 crossref_primary_10_1016_j_procbio_2019_03_008 crossref_primary_10_1002_jctb_4864 crossref_primary_10_1007_s11274_018_2531_7 crossref_primary_10_1007_s00253_016_7514_8 crossref_primary_10_1186_s13568_019_0884_4 |
Cites_doi | 10.1099/00221287-145-12-3419 10.1128/AEM.00431-10 10.1073/pnas.95.4.1823 10.1016/S0065-2164(07)62006-1 10.1016/0378-1119(85)90120-9 10.1007/s004380050765 10.1073/pnas.87.16.6238 10.1128/MR.57.3.543-594.1993 10.1038/227680a0 10.1139/w03-076 10.1111/j.1365-2958.2010.07175.x 10.1007/s10059-000-0102-9 10.1099/00221287-148-6-1805 10.1128/AEM.01327-08 10.1016/j.plasmid.2005.05.001 10.1016/j.pep.2005.07.005 10.1186/1475-2859-9-55 10.1073/pnas.44.10.1072 10.1038/36786 10.1128/JB.62.3.293-300.1951 10.1073/pnas.86.7.2172 10.1111/j.1365-2958.1995.tb02280.x 10.1074/jbc.275.10.7037 10.1128/JB.181.22.6996-7004.1999 10.1186/1472-6750-8-2 10.1016/S0147-619X(02)00109-9 10.1128/MMBR.67.4.475-490.2003 10.1128/JB.01673-09 10.1016/S0923-2508(02)01362-1 10.1111/j.1574-6968.1996.tb07959.x 10.1128/JB.187.22.7826-7839.2005 10.1074/jbc.274.8.4754 10.1128/AAC.35.9.1804 10.1111/j.1365-2958.1995.mmi_17050953.x 10.1111/j.1365-2672.1970.tb05246.x 10.1016/0923-2508(96)84000-9 10.1016/0147-619X(88)90041-8 10.1002/bit.1041 10.1128/MMBR.68.2.207-233.2004 10.1016/0168-1656(94)00143-Z 10.1016/j.mib.2008.02.007 10.1073/pnas.75.3.1423 10.1128/MMBR.00024-06 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright American Society for Microbiology Sep 2011 Copyright © 2011, American Society for Microbiology. All Rights Reserved. 2011 American Society for Microbiology |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright American Society for Microbiology Sep 2011 – notice: Copyright © 2011, American Society for Microbiology. All Rights Reserved. 2011 American Society for Microbiology |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 7S9 L.6 7X8 5PM |
DOI | 10.1128/AEM.05219-11 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE AGRICOLA Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering Biology |
EISSN | 1098-5336 |
EndPage | 6425 |
ExternalDocumentID | PMC3187127 2471455501 21803899 24524199 10_1128_AEM_05219_11 aem_77_18_6419 |
Genre | Journal Article Feature |
GroupedDBID | --- -~X 0R~ 23M 2WC 39C 4.4 53G 5GY 5RE 5VS 6J9 85S AAGFI AAYXX AAZTW ABOGM ABPPZ ACBTR ACGFO ACIWK ACNCT ACPRK ADBBV ADUKH AENEX AFRAH AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW CITATION CS3 D0L DIK E.- E3Z EBS EJD F5P GX1 H13 HYE HZ~ K-O KQ8 L7B O9- P2P PQQKQ RHI RNS RPM RSF RXW TAE TAF TN5 TR2 TWZ UHB W8F WH7 WOQ X6Y ZY4 ~02 ~KM .55 .GJ 3O- ADXHL AFFNX AGCDD AI. C1A H~9 IQODW MVM NEJ OHT VH1 WHG X7M XJT YV5 ZCG ZGI ZXP ABTAH CGR CUY CVF ECM EIF NPM 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c566t-d26f5ef0295dbfdc8274d31fc63c3bc672559fdd4ff33d0a19bf55db3457bc873 |
ISSN | 0099-2240 1098-5336 |
IngestDate | Thu Aug 21 14:05:14 EDT 2025 Fri Jul 11 12:22:14 EDT 2025 Thu Jul 10 21:31:34 EDT 2025 Mon Jun 30 10:20:53 EDT 2025 Thu Apr 03 06:50:21 EDT 2025 Mon Jul 21 09:15:28 EDT 2025 Tue Jul 01 02:19:20 EDT 2025 Thu Apr 24 23:07:40 EDT 2025 Wed May 18 15:29:08 EDT 2016 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | Bacillales Bacillus subtilis High density Production Bacteria Bacillaceae Gene expression Fermentation Protein |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c566t-d26f5ef0295dbfdc8274d31fc63c3bc672559fdd4ff33d0a19bf55db3457bc873 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://aem.asm.org/content/aem/77/18/6419.full.pdf |
PMID | 21803899 |
PQID | 894730283 |
PQPubID | 42251 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1368586876 proquest_journals_894730283 pubmed_primary_21803899 pascalfrancis_primary_24524199 crossref_citationtrail_10_1128_AEM_05219_11 highwire_asm_aem_77_18_6419 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3187127 crossref_primary_10_1128_AEM_05219_11 proquest_miscellaneous_888342201 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-09-01 |
PublicationDateYYYYMMDD | 2011-09-01 |
PublicationDate_xml | – month: 09 year: 2011 text: 2011-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Washington – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Applied and Environmental Microbiology |
PublicationTitleAlternate | Appl Environ Microbiol |
PublicationYear | 2011 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | Lee S. J. (e_1_3_3_24_2) 2010; 149 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_47_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_44_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 17158705 - Microbiol Mol Biol Rev. 2006 Dec;70(4):939-1031 15187182 - Microbiol Mol Biol Rev. 2004 Jun;68(2):207-33 18806003 - Appl Environ Microbiol. 2008 Nov;74(22):7002-15 2985470 - Gene. 1985;33(1):103-19 16125412 - Protein Expr Purif. 2006 Apr;46(2):189-95 18359269 - Curr Opin Microbiol. 2008 Apr;11(2):87-93 16005967 - Plasmid. 2005 Nov;54(3):241-8 10627040 - Microbiology. 1999 Dec;145 ( Pt 12):3419-29 9988713 - J Biol Chem. 1999 Feb 19;274(8):4754-63 17869605 - Adv Appl Microbiol. 2007;62:137-89 10702268 - J Biol Chem. 2000 Mar 10;275(10):7037-44 14888646 - J Bacteriol. 1951 Sep;62(3):293-300 2117276 - Proc Natl Acad Sci U S A. 1990 Aug;87(16):6238-42 9384377 - Nature. 1997 Nov 20;390(6657):249-56 8598282 - FEMS Microbiol Lett. 1996 Jan 1;135(1):9-15 418411 - Proc Natl Acad Sci U S A. 1978 Mar;75(3):1423-7 11255157 - Biotechnol Bioeng. 2001 Apr 20;73(2):95-103 16267306 - J Bacteriol. 2005 Nov;187(22):7826-39 12584001 - Plasmid. 2003 Jan;49(1):53-62 20600378 - J Biotechnol. 2010 Aug 20;149(1-2):16-20 18194555 - BMC Biotechnol. 2008;8:2 9669336 - Mol Gen Genet. 1998 Jun;258(5):538-45 7766011 - J Biotechnol. 1995 Feb 21;39(1):59-65 7623661 - Mol Microbiol. 1995 Mar;15(6):1049-53 14665673 - Microbiol Mol Biol Rev. 2003 Dec;67(4):475-90 20139185 - J Bacteriol. 2010 Apr;192(8):2128-39 12437213 - Res Microbiol. 2002 Oct;153(8):519-26 1659306 - Antimicrob Agents Chemother. 1991 Sep;35(9):1804-10 5432063 - Nature. 1970 Aug 15;227(5259):680-5 2852818 - Plasmid. 1988 May;19(3):231-41 8246840 - Microbiol Rev. 1993 Sep;57(3):543-94 20444094 - Mol Microbiol. 2010 Jun 1;76(5):1279-94 9092011 - Res Microbiol. 1996 Jul-Sep;147(6-7):458-71 16590310 - Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072-8 4986704 - J Appl Bacteriol. 1970 Mar;33(1):220-7 2648393 - Proc Natl Acad Sci U S A. 1989 Apr;86(7):2172-5 12055300 - Microbiology. 2002 Jun;148(Pt 6):1805-11 10559165 - J Bacteriol. 1999 Nov;181(22):6996-7004 20618987 - Microb Cell Fact. 2010;9:55 8596444 - Mol Microbiol. 1995 Sep;17(5):953-60 9465101 - Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1823-8 10774755 - Mol Cells. 2000 Feb 29;10(1):102-7 15052317 - Can J Microbiol. 2004 Jan;50(1):1-17 20435764 - Appl Environ Microbiol. 2010 Jun;76(12):4037-46 |
References_xml | – ident: e_1_3_3_32_2 doi: 10.1099/00221287-145-12-3419 – ident: e_1_3_3_38_2 doi: 10.1128/AEM.00431-10 – ident: e_1_3_3_9_2 doi: 10.1073/pnas.95.4.1823 – ident: e_1_3_3_36_2 doi: 10.1016/S0065-2164(07)62006-1 – ident: e_1_3_3_47_2 doi: 10.1016/0378-1119(85)90120-9 – ident: e_1_3_3_12_2 – ident: e_1_3_3_17_2 doi: 10.1007/s004380050765 – ident: e_1_3_3_45_2 doi: 10.1073/pnas.87.16.6238 – ident: e_1_3_3_31_2 doi: 10.1128/MR.57.3.543-594.1993 – ident: e_1_3_3_22_2 doi: 10.1038/227680a0 – ident: e_1_3_3_35_2 doi: 10.1139/w03-076 – ident: e_1_3_3_16_2 doi: 10.1111/j.1365-2958.2010.07175.x – ident: e_1_3_3_19_2 doi: 10.1007/s10059-000-0102-9 – ident: e_1_3_3_34_2 – ident: e_1_3_3_11_2 doi: 10.1099/00221287-148-6-1805 – volume: 149 start-page: 16 year: 2010 ident: e_1_3_3_24_2 article-title: Development of a stationary phase-specific autoinducible expression system in Bacillus subtilis publication-title: J. Bacteriol. – ident: e_1_3_3_25_2 doi: 10.1128/AEM.01327-08 – ident: e_1_3_3_29_2 doi: 10.1016/j.plasmid.2005.05.001 – ident: e_1_3_3_30_2 doi: 10.1016/j.pep.2005.07.005 – ident: e_1_3_3_28_2 doi: 10.1186/1475-2859-9-55 – ident: e_1_3_3_37_2 doi: 10.1073/pnas.44.10.1072 – ident: e_1_3_3_21_2 doi: 10.1038/36786 – ident: e_1_3_3_2_2 doi: 10.1128/JB.62.3.293-300.1951 – ident: e_1_3_3_4_2 doi: 10.1073/pnas.86.7.2172 – ident: e_1_3_3_7_2 doi: 10.1111/j.1365-2958.1995.tb02280.x – ident: e_1_3_3_14_2 doi: 10.1074/jbc.275.10.7037 – ident: e_1_3_3_42_2 doi: 10.1128/JB.181.22.6996-7004.1999 – ident: e_1_3_3_44_2 doi: 10.1186/1472-6750-8-2 – ident: e_1_3_3_40_2 doi: 10.1016/S0147-619X(02)00109-9 – ident: e_1_3_3_43_2 doi: 10.1128/MMBR.67.4.475-490.2003 – ident: e_1_3_3_39_2 doi: 10.1128/JB.01673-09 – ident: e_1_3_3_10_2 doi: 10.1016/S0923-2508(02)01362-1 – ident: e_1_3_3_13_2 doi: 10.1111/j.1574-6968.1996.tb07959.x – ident: e_1_3_3_26_2 doi: 10.1128/JB.187.22.7826-7839.2005 – ident: e_1_3_3_15_2 doi: 10.1074/jbc.274.8.4754 – ident: e_1_3_3_23_2 doi: 10.1128/AAC.35.9.1804 – ident: e_1_3_3_8_2 doi: 10.1111/j.1365-2958.1995.mmi_17050953.x – ident: e_1_3_3_27_2 doi: 10.1111/j.1365-2672.1970.tb05246.x – ident: e_1_3_3_33_2 doi: 10.1016/0923-2508(96)84000-9 – ident: e_1_3_3_3_2 doi: 10.1016/0147-619X(88)90041-8 – ident: e_1_3_3_46_2 doi: 10.1002/bit.1041 – ident: e_1_3_3_41_2 doi: 10.1128/MMBR.68.2.207-233.2004 – ident: e_1_3_3_20_2 doi: 10.1016/0168-1656(94)00143-Z – ident: e_1_3_3_5_2 doi: 10.1016/j.mib.2008.02.007 – ident: e_1_3_3_18_2 doi: 10.1073/pnas.75.3.1423 – ident: e_1_3_3_6_2 doi: 10.1128/MMBR.00024-06 – reference: 20618987 - Microb Cell Fact. 2010;9:55 – reference: 418411 - Proc Natl Acad Sci U S A. 1978 Mar;75(3):1423-7 – reference: 16005967 - Plasmid. 2005 Nov;54(3):241-8 – reference: 2117276 - Proc Natl Acad Sci U S A. 1990 Aug;87(16):6238-42 – reference: 14665673 - Microbiol Mol Biol Rev. 2003 Dec;67(4):475-90 – reference: 12437213 - Res Microbiol. 2002 Oct;153(8):519-26 – reference: 18359269 - Curr Opin Microbiol. 2008 Apr;11(2):87-93 – reference: 9092011 - Res Microbiol. 1996 Jul-Sep;147(6-7):458-71 – reference: 10559165 - J Bacteriol. 1999 Nov;181(22):6996-7004 – reference: 10774755 - Mol Cells. 2000 Feb 29;10(1):102-7 – reference: 16267306 - J Bacteriol. 2005 Nov;187(22):7826-39 – reference: 5432063 - Nature. 1970 Aug 15;227(5259):680-5 – reference: 9384377 - Nature. 1997 Nov 20;390(6657):249-56 – reference: 9465101 - Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1823-8 – reference: 17158705 - Microbiol Mol Biol Rev. 2006 Dec;70(4):939-1031 – reference: 18806003 - Appl Environ Microbiol. 2008 Nov;74(22):7002-15 – reference: 16590310 - Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072-8 – reference: 20600378 - J Biotechnol. 2010 Aug 20;149(1-2):16-20 – reference: 2985470 - Gene. 1985;33(1):103-19 – reference: 18194555 - BMC Biotechnol. 2008;8:2 – reference: 20435764 - Appl Environ Microbiol. 2010 Jun;76(12):4037-46 – reference: 2648393 - Proc Natl Acad Sci U S A. 1989 Apr;86(7):2172-5 – reference: 8598282 - FEMS Microbiol Lett. 1996 Jan 1;135(1):9-15 – reference: 7623661 - Mol Microbiol. 1995 Mar;15(6):1049-53 – reference: 8596444 - Mol Microbiol. 1995 Sep;17(5):953-60 – reference: 2852818 - Plasmid. 1988 May;19(3):231-41 – reference: 10627040 - Microbiology. 1999 Dec;145 ( Pt 12):3419-29 – reference: 12055300 - Microbiology. 2002 Jun;148(Pt 6):1805-11 – reference: 14888646 - J Bacteriol. 1951 Sep;62(3):293-300 – reference: 4986704 - J Appl Bacteriol. 1970 Mar;33(1):220-7 – reference: 20444094 - Mol Microbiol. 2010 Jun 1;76(5):1279-94 – reference: 10702268 - J Biol Chem. 2000 Mar 10;275(10):7037-44 – reference: 16125412 - Protein Expr Purif. 2006 Apr;46(2):189-95 – reference: 20139185 - J Bacteriol. 2010 Apr;192(8):2128-39 – reference: 9988713 - J Biol Chem. 1999 Feb 19;274(8):4754-63 – reference: 17869605 - Adv Appl Microbiol. 2007;62:137-89 – reference: 1659306 - Antimicrob Agents Chemother. 1991 Sep;35(9):1804-10 – reference: 8246840 - Microbiol Rev. 1993 Sep;57(3):543-94 – reference: 7766011 - J Biotechnol. 1995 Feb 21;39(1):59-65 – reference: 11255157 - Biotechnol Bioeng. 2001 Apr 20;73(2):95-103 – reference: 15187182 - Microbiol Mol Biol Rev. 2004 Jun;68(2):207-33 – reference: 12584001 - Plasmid. 2003 Jan;49(1):53-62 – reference: 15052317 - Can J Microbiol. 2004 Jan;50(1):1-17 – reference: 9669336 - Mol Gen Genet. 1998 Jun;258(5):538-45 |
SSID | ssj0004068 |
Score | 2.3338463 |
Snippet | Classifications
Services
AEM
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit... A novel technically compliant expression system was developed for heterologous protein production in Bacillus subtilis with the aim of increasing product... A novel technically compliant expression system was developed for heterologous protein production in Bacillus subtilis with the aim of increasing product... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6419 |
SubjectTerms | Bacillus subtilis Bacillus subtilis - genetics Bacillus subtilis - metabolism Bacteria Bacterial proteins Biological and medical sciences Biotechnology Biotechnology - economics Biotechnology - methods carbon Fermentation Fundamental and applied biological sciences. Psychology Gene Deletion Gene expression Gene Expression Regulation, Bacterial Genetic Vectors glucose Glucose - metabolism green fluorescent protein mannose Mannose - metabolism Methods. Procedures. Technologies Microbial engineering. Fermentation and microbial culture technology Microbiology operon phase transition Production costs Recombinant Proteins - biosynthesis Recombinant Proteins - genetics Sugar Transcriptional Activation |
Title | Self-Inducible Bacillus subtilis Expression System for Reliable and Inexpensive Protein Production by High-Cell-Density Fermentation |
URI | http://aem.asm.org/content/77/18/6419.abstract https://www.ncbi.nlm.nih.gov/pubmed/21803899 https://www.proquest.com/docview/894730283 https://www.proquest.com/docview/1368586876 https://www.proquest.com/docview/888342201 https://pubmed.ncbi.nlm.nih.gov/PMC3187127 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIgQcEJSXKVSLBKfKJX7E9h7T4JJCEqHSSlUvlu3dFZZcF-HkUM78T_4KM_aus-5DPC6JH5u1o_m8M-Od71tC3oy4zzPuOzaKpdu-DGBLpI7tyCCVocg4d5A7PF8E02P_48noZDD4ZVQtrZbZbv7jWl7J_1gVjoFdkSX7D5btOoUDsA32hU-wMHz-lY2_iFLauPhGXiABai_Ni7Jc1Tv1KlsWZVGjkHFb51opafKmqhDLkBvGVFsLjCL_bRX7ZxRtKCr85q2qLEanWApiT0RZ2u-xHUTt-zCcK85SZUa3OqTFfg0GHRJUirXgU-cH4sVpPFOEIQOlc5y8Z5PZrC3S6Cg43cugg3g-XizsaXx4uhcfflA9aA1xRO_sKF5A9D1dtF3gNIc032_gC1vWqxXRE1dmFev88k2r0Z0xG0MUc3RXi8QoFEfGWB34arAWardlYF_1KS7yJFJxtotEZ2Yr59CT7r7kUrtCR5zXhsuwW-S2C3lMk_MffFoTd4dBpGVS8cY1M8ON3pnX68dMWscay3jTGp5k2S7Bcl2OdLnU14idjh6SByrpoeMWwY_IQFSb5E67DOrFJrmr2fH1JrlvCGQ-Jj_7CKca4VQjnK4RTluEU7Ac1QinABxqIJwqhNM1wml2Qa8gnJoIf0KO9-OjydRW64bYOSQnS5u7gRwJOXTZiGeS55Eb-txzZB54uZflQYhptOTcl9Lz-DB1WCZH0NTzR2GWR6H3lGxU55V4Tih4J84Dx-HCd30mOMsz8Mgikn7AMjb0LLKjLZPkSlQf13Ypkya5dqNkHM-Txo6wa5G3XetvrZjMDe22tJGTtD5LAAtJGCZOlCBmLbLds3vXlQYb_FwDIVGjVZ1EzAdnDsmERV53Z8GV4PxgWonzVZ04zWIUAcRHFqE3tImiyPNdeE4t8qxF1vryTtSodVok7GGua4BK9v0zVfG1UbSHwCJ03PDFn_7ZFrm3HiJeko3l95V4BUnBMttuHqzftlwUVg |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Inducible+Bacillus+subtilis+Expression+System+for+Reliable+and+Inexpensive+Protein+Production+by+High-Cell-Density+Fermentation&rft.jtitle=Applied+and+environmental+microbiology&rft.au=WENZEL%2C+Marian&rft.au=M%C3%9CLLER%2C+Alexander&rft.au=SIEMANN-HERZBERG%2C+Martin&rft.au=ALTENBUCHNER%2C+Josef&rft.date=2011-09-01&rft.pub=American+Society+for+Microbiology&rft.issn=0099-2240&rft.volume=77&rft.issue=18&rft.spage=6419&rft.epage=6425&rft_id=info:doi/10.1128%2Faem.05219-11&rft.externalDBID=n%2Fa&rft.externalDocID=24524199 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon |