Self-Inducible Bacillus subtilis Expression System for Reliable and Inexpensive Protein Production by High-Cell-Density Fermentation

Classifications Services AEM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue AEM About AEM Subscribers Authors Reviewers Advertisers Inquiries from the...

Full description

Saved in:
Bibliographic Details
Published inApplied and Environmental Microbiology Vol. 77; no. 18; pp. 6419 - 6425
Main Authors WENZEL, Marian, MÜLLER, Alexander, SIEMANN-HERZBERG, Martin, ALTENBUCHNER, Josef
Format Journal Article
LanguageEnglish
Published Washington, DC American Society for Microbiology 01.09.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Classifications Services AEM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue AEM About AEM Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy AEM RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0099-2240 Online ISSN: 1098-5336 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to AEM .asm.org, visit: AEM       
AbstractList A novel technically compliant expression system was developed for heterologous protein production in Bacillus subtilis with the aim of increasing product yields at the same time as decreasing production costs. Standard systems involve the positively regulated manP promoter of the mannose operon, which led to relatively high product yields of 5.3% (5.3 g enhanced green fluorescent protein [eGFP] per 100 g cell dry weight [CDW]) but required large quantities of mannose to induce the reactions, thus rendering the system's technical application rather expensive. To improve this situation, mutant B. subtilis strains were used: the ΔmanA (mannose metabolism) strain TQ281 and the ΔmanP (mannose uptake) strain TQ356. The total amount of inducer could be reduced with TQ281, which, however, displayed sensitivity to mannose. An inducer-independent self-induction system was developed with TQ356 to further improve the cost efficiency and product yield of the system, in which glucose prevents induction by carbon catabolite repression. To create optimal self-induction conditions, a glucose-limited process strategy, namely, a fed-batch process, was utilized as follows. The initiation of self-induction at the beginning of the glucose-restricted transition phase between the batch and fed-batch phase of fermentation and its maintenance throughout the glucose-limiting fed-batch phase led to a nearly 3-fold increase of product yield, to 14.6%. The novel B. subtilis self-induction system thus makes a considerable contribution to improving product yield and reducing the costs associated with its technical application.A novel technically compliant expression system was developed for heterologous protein production in Bacillus subtilis with the aim of increasing product yields at the same time as decreasing production costs. Standard systems involve the positively regulated manP promoter of the mannose operon, which led to relatively high product yields of 5.3% (5.3 g enhanced green fluorescent protein [eGFP] per 100 g cell dry weight [CDW]) but required large quantities of mannose to induce the reactions, thus rendering the system's technical application rather expensive. To improve this situation, mutant B. subtilis strains were used: the ΔmanA (mannose metabolism) strain TQ281 and the ΔmanP (mannose uptake) strain TQ356. The total amount of inducer could be reduced with TQ281, which, however, displayed sensitivity to mannose. An inducer-independent self-induction system was developed with TQ356 to further improve the cost efficiency and product yield of the system, in which glucose prevents induction by carbon catabolite repression. To create optimal self-induction conditions, a glucose-limited process strategy, namely, a fed-batch process, was utilized as follows. The initiation of self-induction at the beginning of the glucose-restricted transition phase between the batch and fed-batch phase of fermentation and its maintenance throughout the glucose-limiting fed-batch phase led to a nearly 3-fold increase of product yield, to 14.6%. The novel B. subtilis self-induction system thus makes a considerable contribution to improving product yield and reducing the costs associated with its technical application.
A novel technically compliant expression system was developed for heterologous protein production in Bacillus subtilis with the aim of increasing product yields at the same time as decreasing production costs. Standard systems involve the positively regulated manP promoter of the mannose operon, which led to relatively high product yields of 5.3% (5.3 g enhanced green fluorescent protein [eGFP] per 100 g cell dry weight [CDW]) but required large quantities of mannose to induce the reactions, thus rendering the system's technical application rather expensive. To improve this situation, mutant B. subtilis strains were used: the Δ manA (mannose metabolism) strain TQ281 and the Δ manP (mannose uptake) strain TQ356. The total amount of inducer could be reduced with TQ281, which, however, displayed sensitivity to mannose. An inducer-independent self-induction system was developed with TQ356 to further improve the cost efficiency and product yield of the system, in which glucose prevents induction by carbon catabolite repression. To create optimal self-induction conditions, a glucose-limited process strategy, namely, a fed-batch process, was utilized as follows. The initiation of self-induction at the beginning of the glucose-restricted transition phase between the batch and fed-batch phase of fermentation and its maintenance throughout the glucose-limiting fed-batch phase led to a nearly 3-fold increase of product yield, to 14.6%. The novel B. subtilis self-induction system thus makes a considerable contribution to improving product yield and reducing the costs associated with its technical application.
Classifications Services AEM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue AEM About AEM Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy AEM RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0099-2240 Online ISSN: 1098-5336 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to AEM .asm.org, visit: AEM       
A novel technically compliant expression system was developed for heterologous protein production in Bacillus subtilis with the aim of increasing product yields at the same time as decreasing production costs. Standard systems involve the positively regulated manP promoter of the mannose operon, which led to relatively high product yields of 5.3% (5.3 g enhanced green fluorescent protein [eGFP] per 100 g cell dry weight [CDW]) but required large quantities of mannose to induce the reactions, thus rendering the system's technical application rather expensive. To improve this situation, mutant B. subtilis strains were used: the ΔmanA (mannose metabolism) strain TQ281 and the ΔmanP (mannose uptake) strain TQ356. The total amount of inducer could be reduced with TQ281, which, however, displayed sensitivity to mannose. An inducer-independent self-induction system was developed with TQ356 to further improve the cost efficiency and product yield of the system, in which glucose prevents induction by carbon catabolite repression. To create optimal self-induction conditions, a glucose-limited process strategy, namely, a fed-batch process, was utilized as follows. The initiation of self-induction at the beginning of the glucose-restricted transition phase between the batch and fed-batch phase of fermentation and its maintenance throughout the glucose-limiting fed-batch phase led to a nearly 3-fold increase of product yield, to 14.6%. The novel B. subtilis self-induction system thus makes a considerable contribution to improving product yield and reducing the costs associated with its technical application.
A novel technically compliant expression system was developed for heterologous protein production in Bacillus subtilis with the aim of increasing product yields at the same time as decreasing production costs. Standard systems involve the positively regulated manP promoter of the mannose operon, which led to relatively high product yields of 5.3% (5.3 g enhanced green fluorescent protein [eGFP] per 100 g cell dry weight [CDW]) but required large quantities of mannose to induce the reactions, thus rendering the system's technical application rather expensive. To improve this situation, mutant B. subtilis strains were used: the ...manA (mannose metabolism) strain TQ281 and the ...manP (mannose uptake) strain TQ356. The total amount of inducer could be reduced with TQ281, which, however, displayed sensitivity to mannose. An inducer-independent self-induction system was developed with TQ356 to further improve the cost efficiency and product yield of the system, in which glucose prevents induction by carbon catabolite repression. To create optimal self-induction conditions, a glucose-limited process strategy, namely, a fed-batch process, was utilized as follows. The initiation of self-induction at the beginning of the glucose-restricted transition phase between the batch and fed-batch phase of fermentation and its maintenance throughout the glucose-limiting fed-batch phase led to a nearly 3-fold increase of product yield, to 14.6%. The novel B. subtilis self-induction system thus makes a considerable contribution to improving product yield and reducing the costs associated with its technical application. (ProQuest: ... denotes formulae/symbols omitted.)
Author Martin Siemann-Herzberg
Alexander Müller
Marian Wenzel
Josef Altenbuchner
Author_xml – sequence: 1
  givenname: Marian
  surname: WENZEL
  fullname: WENZEL, Marian
  organization: Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
– sequence: 2
  givenname: Alexander
  surname: MÜLLER
  fullname: MÜLLER, Alexander
  organization: Institut für Bioverfahrenstechnik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
– sequence: 3
  givenname: Martin
  surname: SIEMANN-HERZBERG
  fullname: SIEMANN-HERZBERG, Martin
  organization: Institut für Bioverfahrenstechnik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
– sequence: 4
  givenname: Josef
  surname: ALTENBUCHNER
  fullname: ALTENBUCHNER, Josef
  organization: Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24524199$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21803899$$D View this record in MEDLINE/PubMed
BookMark eNp90s1vFCEUAHBiauy2evNsJiZGD07lY2DgYlLXrd2kRmP1TBgGujQMs4WZ2r37h8t016pN9EQIv_d48N4B2At9MAA8RfAIIczfHC8-HkGKkSgRegBmCApeUkLYHphBKESJcQX3wUFKlxDCCjL-COxjxCHhQszAj3PjbbkM7ahd403xTmnn_ZiKNDaD8y4Vi5t1NCm5PhTnmzSYrrB9LL4Y79QUoEJbLIO5WZuQ3LUpPsd-MC5Ma845TGHNpjh1F6tybrwv309u2BQnJnYmDGoSj8FDq3wyT3brIfh2svg6Py3PPn1Yzo_PSk0ZG8oWM0uNhVjQtrGt5riuWoKsZkSTRrMaUyps21bWEtJChURjaaakonWjeU0Owdtt3vXYdKbV-f6ovFxH16m4kb1y8u-T4Fbyor-WBPEa4SnBy12C2F-NJg2yc0nnZ6lg-jFJzjmpMIYoy1f_lYgwTjnjNcv0-T162Y8x5I-QXFQ1gZiTjJ79Wfpdzb86mcGLHVBJK2-jCtql366iuEK37vXW6dinFI29IwjKaaBkHih5O1B5mzm-x7XbNi1_kPP_Ctq9aJXb_t1FI1XqpDKdrGuJuGS5EvITHsfbGg
CODEN AEMIDF
CitedBy_id crossref_primary_10_1007_s00253_013_5246_6
crossref_primary_10_1016_j_ymben_2019_07_009
crossref_primary_10_1016_j_ymben_2020_03_005
crossref_primary_10_1099_acmi_0_000876_v5
crossref_primary_10_1186_s12934_021_01679_z
crossref_primary_10_1016_j_enzmictec_2018_08_002
crossref_primary_10_1073_pnas_2119980119
crossref_primary_10_1016_j_ijbiomac_2024_137781
crossref_primary_10_1134_S0026893314060132
crossref_primary_10_15171_ijb_1175
crossref_primary_10_1016_j_pep_2016_07_008
crossref_primary_10_1016_j_procbio_2017_06_005
crossref_primary_10_1007_s00253_013_4960_4
crossref_primary_10_1021_acssynbio_1c00130
crossref_primary_10_1186_s12896_018_0490_6
crossref_primary_10_1016_j_tibtech_2015_12_008
crossref_primary_10_1111_mmi_12209
crossref_primary_10_1080_21645515_2021_1927412
crossref_primary_10_1016_j_biortech_2012_09_130
crossref_primary_10_1016_j_enzmictec_2023_110267
crossref_primary_10_1007_s00449_019_02268_6
crossref_primary_10_1016_j_plasmid_2015_10_002
crossref_primary_10_1128_JB_00732_18
crossref_primary_10_4014_jmb_2101_01039
crossref_primary_10_1128_AEM_01096_20
crossref_primary_10_1186_s12934_024_02531_w
crossref_primary_10_1021_acssynbio_4c00688
crossref_primary_10_1186_s12934_016_0464_0
crossref_primary_10_1016_j_jbiotec_2020_10_009
crossref_primary_10_1186_s13568_023_01542_x
crossref_primary_10_1111_1758_2229_12607
crossref_primary_10_1007_s00284_019_01783_9
crossref_primary_10_1128_genomeA_00084_15
crossref_primary_10_1007_s00253_015_7197_6
crossref_primary_10_1007_s10295_016_1758_2
crossref_primary_10_1016_j_enzmictec_2015_04_009
crossref_primary_10_1186_s12934_019_1151_8
crossref_primary_10_1186_s12934_019_1159_0
crossref_primary_10_3390_ijms21228722
crossref_primary_10_3389_fbioe_2020_00038
crossref_primary_10_1186_s13568_022_01497_5
crossref_primary_10_1128_AEM_01453_16
crossref_primary_10_1186_s12934_017_0649_1
crossref_primary_10_1007_s11274_024_03957_5
crossref_primary_10_1016_j_procbio_2017_06_024
crossref_primary_10_1186_s40643_022_00540_4
crossref_primary_10_1007_s00253_021_11533_2
crossref_primary_10_1016_j_ijbiomac_2019_07_175
crossref_primary_10_1016_j_ijbiomac_2019_09_144
crossref_primary_10_1155_sci5_8968295
crossref_primary_10_1038_srep18405
crossref_primary_10_1099_mic_0_000150
crossref_primary_10_1021_acsnano_2c06239
crossref_primary_10_1128_msystems_00221_24
crossref_primary_10_1186_s12934_015_0341_2
crossref_primary_10_3390_ijms22168712
crossref_primary_10_1177_15353702211030189
crossref_primary_10_3389_frfst_2023_1111571
crossref_primary_10_1186_1475_2859_11_143
crossref_primary_10_1007_s13213_013_0719_5
crossref_primary_10_1016_j_jbiosc_2020_04_011
crossref_primary_10_1016_j_jtice_2022_104218
crossref_primary_10_3389_fbioe_2019_00476
crossref_primary_10_1007_s00253_018_8965_x
crossref_primary_10_3390_fermentation10060323
crossref_primary_10_1007_s11356_024_32217_0
crossref_primary_10_1016_j_jbiotec_2013_09_016
crossref_primary_10_1021_acssynbio_3c00444
crossref_primary_10_3390_microorganisms13010060
crossref_primary_10_1186_1475_2859_12_40
crossref_primary_10_2174_0929866529666220803163335
crossref_primary_10_1007_s00253_021_11330_x
crossref_primary_10_1007_s11814_017_0211_1
crossref_primary_10_1186_s12934_018_1037_1
crossref_primary_10_1016_j_procbio_2019_03_008
crossref_primary_10_1002_jctb_4864
crossref_primary_10_1007_s11274_018_2531_7
crossref_primary_10_1007_s00253_016_7514_8
crossref_primary_10_1186_s13568_019_0884_4
Cites_doi 10.1099/00221287-145-12-3419
10.1128/AEM.00431-10
10.1073/pnas.95.4.1823
10.1016/S0065-2164(07)62006-1
10.1016/0378-1119(85)90120-9
10.1007/s004380050765
10.1073/pnas.87.16.6238
10.1128/MR.57.3.543-594.1993
10.1038/227680a0
10.1139/w03-076
10.1111/j.1365-2958.2010.07175.x
10.1007/s10059-000-0102-9
10.1099/00221287-148-6-1805
10.1128/AEM.01327-08
10.1016/j.plasmid.2005.05.001
10.1016/j.pep.2005.07.005
10.1186/1475-2859-9-55
10.1073/pnas.44.10.1072
10.1038/36786
10.1128/JB.62.3.293-300.1951
10.1073/pnas.86.7.2172
10.1111/j.1365-2958.1995.tb02280.x
10.1074/jbc.275.10.7037
10.1128/JB.181.22.6996-7004.1999
10.1186/1472-6750-8-2
10.1016/S0147-619X(02)00109-9
10.1128/MMBR.67.4.475-490.2003
10.1128/JB.01673-09
10.1016/S0923-2508(02)01362-1
10.1111/j.1574-6968.1996.tb07959.x
10.1128/JB.187.22.7826-7839.2005
10.1074/jbc.274.8.4754
10.1128/AAC.35.9.1804
10.1111/j.1365-2958.1995.mmi_17050953.x
10.1111/j.1365-2672.1970.tb05246.x
10.1016/0923-2508(96)84000-9
10.1016/0147-619X(88)90041-8
10.1002/bit.1041
10.1128/MMBR.68.2.207-233.2004
10.1016/0168-1656(94)00143-Z
10.1016/j.mib.2008.02.007
10.1073/pnas.75.3.1423
10.1128/MMBR.00024-06
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright American Society for Microbiology Sep 2011
Copyright © 2011, American Society for Microbiology. All Rights Reserved. 2011 American Society for Microbiology
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright American Society for Microbiology Sep 2011
– notice: Copyright © 2011, American Society for Microbiology. All Rights Reserved. 2011 American Society for Microbiology
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7S9
L.6
7X8
5PM
DOI 10.1128/AEM.05219-11
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

MEDLINE
AGRICOLA

Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Biology
EISSN 1098-5336
EndPage 6425
ExternalDocumentID PMC3187127
2471455501
21803899
24524199
10_1128_AEM_05219_11
aem_77_18_6419
Genre Journal Article
Feature
GroupedDBID ---
-~X
0R~
23M
2WC
39C
4.4
53G
5GY
5RE
5VS
6J9
85S
AAGFI
AAYXX
AAZTW
ABOGM
ABPPZ
ACBTR
ACGFO
ACIWK
ACNCT
ACPRK
ADBBV
ADUKH
AENEX
AFRAH
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
CITATION
CS3
D0L
DIK
E.-
E3Z
EBS
EJD
F5P
GX1
H13
HYE
HZ~
K-O
KQ8
L7B
O9-
P2P
PQQKQ
RHI
RNS
RPM
RSF
RXW
TAE
TAF
TN5
TR2
TWZ
UHB
W8F
WH7
WOQ
X6Y
ZY4
~02
~KM
.55
.GJ
3O-
ADXHL
AFFNX
AGCDD
AI.
C1A
H~9
IQODW
MVM
NEJ
OHT
VH1
WHG
X7M
XJT
YV5
ZCG
ZGI
ZXP
ABTAH
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c566t-d26f5ef0295dbfdc8274d31fc63c3bc672559fdd4ff33d0a19bf55db3457bc873
ISSN 0099-2240
1098-5336
IngestDate Thu Aug 21 14:05:14 EDT 2025
Fri Jul 11 12:22:14 EDT 2025
Thu Jul 10 21:31:34 EDT 2025
Mon Jun 30 10:20:53 EDT 2025
Thu Apr 03 06:50:21 EDT 2025
Mon Jul 21 09:15:28 EDT 2025
Tue Jul 01 02:19:20 EDT 2025
Thu Apr 24 23:07:40 EDT 2025
Wed May 18 15:29:08 EDT 2016
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords Bacillales
Bacillus subtilis
High density
Production
Bacteria
Bacillaceae
Gene expression
Fermentation
Protein
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c566t-d26f5ef0295dbfdc8274d31fc63c3bc672559fdd4ff33d0a19bf55db3457bc873
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://aem.asm.org/content/aem/77/18/6419.full.pdf
PMID 21803899
PQID 894730283
PQPubID 42251
PageCount 7
ParticipantIDs proquest_miscellaneous_1368586876
proquest_journals_894730283
pubmed_primary_21803899
pascalfrancis_primary_24524199
crossref_citationtrail_10_1128_AEM_05219_11
highwire_asm_aem_77_18_6419
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3187127
crossref_primary_10_1128_AEM_05219_11
proquest_miscellaneous_888342201
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-09-01
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: 2011-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Washington
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Applied and Environmental Microbiology
PublicationTitleAlternate Appl Environ Microbiol
PublicationYear 2011
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References Lee S. J. (e_1_3_3_24_2) 2010; 149
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_47_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_44_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
17158705 - Microbiol Mol Biol Rev. 2006 Dec;70(4):939-1031
15187182 - Microbiol Mol Biol Rev. 2004 Jun;68(2):207-33
18806003 - Appl Environ Microbiol. 2008 Nov;74(22):7002-15
2985470 - Gene. 1985;33(1):103-19
16125412 - Protein Expr Purif. 2006 Apr;46(2):189-95
18359269 - Curr Opin Microbiol. 2008 Apr;11(2):87-93
16005967 - Plasmid. 2005 Nov;54(3):241-8
10627040 - Microbiology. 1999 Dec;145 ( Pt 12):3419-29
9988713 - J Biol Chem. 1999 Feb 19;274(8):4754-63
17869605 - Adv Appl Microbiol. 2007;62:137-89
10702268 - J Biol Chem. 2000 Mar 10;275(10):7037-44
14888646 - J Bacteriol. 1951 Sep;62(3):293-300
2117276 - Proc Natl Acad Sci U S A. 1990 Aug;87(16):6238-42
9384377 - Nature. 1997 Nov 20;390(6657):249-56
8598282 - FEMS Microbiol Lett. 1996 Jan 1;135(1):9-15
418411 - Proc Natl Acad Sci U S A. 1978 Mar;75(3):1423-7
11255157 - Biotechnol Bioeng. 2001 Apr 20;73(2):95-103
16267306 - J Bacteriol. 2005 Nov;187(22):7826-39
12584001 - Plasmid. 2003 Jan;49(1):53-62
20600378 - J Biotechnol. 2010 Aug 20;149(1-2):16-20
18194555 - BMC Biotechnol. 2008;8:2
9669336 - Mol Gen Genet. 1998 Jun;258(5):538-45
7766011 - J Biotechnol. 1995 Feb 21;39(1):59-65
7623661 - Mol Microbiol. 1995 Mar;15(6):1049-53
14665673 - Microbiol Mol Biol Rev. 2003 Dec;67(4):475-90
20139185 - J Bacteriol. 2010 Apr;192(8):2128-39
12437213 - Res Microbiol. 2002 Oct;153(8):519-26
1659306 - Antimicrob Agents Chemother. 1991 Sep;35(9):1804-10
5432063 - Nature. 1970 Aug 15;227(5259):680-5
2852818 - Plasmid. 1988 May;19(3):231-41
8246840 - Microbiol Rev. 1993 Sep;57(3):543-94
20444094 - Mol Microbiol. 2010 Jun 1;76(5):1279-94
9092011 - Res Microbiol. 1996 Jul-Sep;147(6-7):458-71
16590310 - Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072-8
4986704 - J Appl Bacteriol. 1970 Mar;33(1):220-7
2648393 - Proc Natl Acad Sci U S A. 1989 Apr;86(7):2172-5
12055300 - Microbiology. 2002 Jun;148(Pt 6):1805-11
10559165 - J Bacteriol. 1999 Nov;181(22):6996-7004
20618987 - Microb Cell Fact. 2010;9:55
8596444 - Mol Microbiol. 1995 Sep;17(5):953-60
9465101 - Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1823-8
10774755 - Mol Cells. 2000 Feb 29;10(1):102-7
15052317 - Can J Microbiol. 2004 Jan;50(1):1-17
20435764 - Appl Environ Microbiol. 2010 Jun;76(12):4037-46
References_xml – ident: e_1_3_3_32_2
  doi: 10.1099/00221287-145-12-3419
– ident: e_1_3_3_38_2
  doi: 10.1128/AEM.00431-10
– ident: e_1_3_3_9_2
  doi: 10.1073/pnas.95.4.1823
– ident: e_1_3_3_36_2
  doi: 10.1016/S0065-2164(07)62006-1
– ident: e_1_3_3_47_2
  doi: 10.1016/0378-1119(85)90120-9
– ident: e_1_3_3_12_2
– ident: e_1_3_3_17_2
  doi: 10.1007/s004380050765
– ident: e_1_3_3_45_2
  doi: 10.1073/pnas.87.16.6238
– ident: e_1_3_3_31_2
  doi: 10.1128/MR.57.3.543-594.1993
– ident: e_1_3_3_22_2
  doi: 10.1038/227680a0
– ident: e_1_3_3_35_2
  doi: 10.1139/w03-076
– ident: e_1_3_3_16_2
  doi: 10.1111/j.1365-2958.2010.07175.x
– ident: e_1_3_3_19_2
  doi: 10.1007/s10059-000-0102-9
– ident: e_1_3_3_34_2
– ident: e_1_3_3_11_2
  doi: 10.1099/00221287-148-6-1805
– volume: 149
  start-page: 16
  year: 2010
  ident: e_1_3_3_24_2
  article-title: Development of a stationary phase-specific autoinducible expression system in Bacillus subtilis
  publication-title: J. Bacteriol.
– ident: e_1_3_3_25_2
  doi: 10.1128/AEM.01327-08
– ident: e_1_3_3_29_2
  doi: 10.1016/j.plasmid.2005.05.001
– ident: e_1_3_3_30_2
  doi: 10.1016/j.pep.2005.07.005
– ident: e_1_3_3_28_2
  doi: 10.1186/1475-2859-9-55
– ident: e_1_3_3_37_2
  doi: 10.1073/pnas.44.10.1072
– ident: e_1_3_3_21_2
  doi: 10.1038/36786
– ident: e_1_3_3_2_2
  doi: 10.1128/JB.62.3.293-300.1951
– ident: e_1_3_3_4_2
  doi: 10.1073/pnas.86.7.2172
– ident: e_1_3_3_7_2
  doi: 10.1111/j.1365-2958.1995.tb02280.x
– ident: e_1_3_3_14_2
  doi: 10.1074/jbc.275.10.7037
– ident: e_1_3_3_42_2
  doi: 10.1128/JB.181.22.6996-7004.1999
– ident: e_1_3_3_44_2
  doi: 10.1186/1472-6750-8-2
– ident: e_1_3_3_40_2
  doi: 10.1016/S0147-619X(02)00109-9
– ident: e_1_3_3_43_2
  doi: 10.1128/MMBR.67.4.475-490.2003
– ident: e_1_3_3_39_2
  doi: 10.1128/JB.01673-09
– ident: e_1_3_3_10_2
  doi: 10.1016/S0923-2508(02)01362-1
– ident: e_1_3_3_13_2
  doi: 10.1111/j.1574-6968.1996.tb07959.x
– ident: e_1_3_3_26_2
  doi: 10.1128/JB.187.22.7826-7839.2005
– ident: e_1_3_3_15_2
  doi: 10.1074/jbc.274.8.4754
– ident: e_1_3_3_23_2
  doi: 10.1128/AAC.35.9.1804
– ident: e_1_3_3_8_2
  doi: 10.1111/j.1365-2958.1995.mmi_17050953.x
– ident: e_1_3_3_27_2
  doi: 10.1111/j.1365-2672.1970.tb05246.x
– ident: e_1_3_3_33_2
  doi: 10.1016/0923-2508(96)84000-9
– ident: e_1_3_3_3_2
  doi: 10.1016/0147-619X(88)90041-8
– ident: e_1_3_3_46_2
  doi: 10.1002/bit.1041
– ident: e_1_3_3_41_2
  doi: 10.1128/MMBR.68.2.207-233.2004
– ident: e_1_3_3_20_2
  doi: 10.1016/0168-1656(94)00143-Z
– ident: e_1_3_3_5_2
  doi: 10.1016/j.mib.2008.02.007
– ident: e_1_3_3_18_2
  doi: 10.1073/pnas.75.3.1423
– ident: e_1_3_3_6_2
  doi: 10.1128/MMBR.00024-06
– reference: 20618987 - Microb Cell Fact. 2010;9:55
– reference: 418411 - Proc Natl Acad Sci U S A. 1978 Mar;75(3):1423-7
– reference: 16005967 - Plasmid. 2005 Nov;54(3):241-8
– reference: 2117276 - Proc Natl Acad Sci U S A. 1990 Aug;87(16):6238-42
– reference: 14665673 - Microbiol Mol Biol Rev. 2003 Dec;67(4):475-90
– reference: 12437213 - Res Microbiol. 2002 Oct;153(8):519-26
– reference: 18359269 - Curr Opin Microbiol. 2008 Apr;11(2):87-93
– reference: 9092011 - Res Microbiol. 1996 Jul-Sep;147(6-7):458-71
– reference: 10559165 - J Bacteriol. 1999 Nov;181(22):6996-7004
– reference: 10774755 - Mol Cells. 2000 Feb 29;10(1):102-7
– reference: 16267306 - J Bacteriol. 2005 Nov;187(22):7826-39
– reference: 5432063 - Nature. 1970 Aug 15;227(5259):680-5
– reference: 9384377 - Nature. 1997 Nov 20;390(6657):249-56
– reference: 9465101 - Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1823-8
– reference: 17158705 - Microbiol Mol Biol Rev. 2006 Dec;70(4):939-1031
– reference: 18806003 - Appl Environ Microbiol. 2008 Nov;74(22):7002-15
– reference: 16590310 - Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072-8
– reference: 20600378 - J Biotechnol. 2010 Aug 20;149(1-2):16-20
– reference: 2985470 - Gene. 1985;33(1):103-19
– reference: 18194555 - BMC Biotechnol. 2008;8:2
– reference: 20435764 - Appl Environ Microbiol. 2010 Jun;76(12):4037-46
– reference: 2648393 - Proc Natl Acad Sci U S A. 1989 Apr;86(7):2172-5
– reference: 8598282 - FEMS Microbiol Lett. 1996 Jan 1;135(1):9-15
– reference: 7623661 - Mol Microbiol. 1995 Mar;15(6):1049-53
– reference: 8596444 - Mol Microbiol. 1995 Sep;17(5):953-60
– reference: 2852818 - Plasmid. 1988 May;19(3):231-41
– reference: 10627040 - Microbiology. 1999 Dec;145 ( Pt 12):3419-29
– reference: 12055300 - Microbiology. 2002 Jun;148(Pt 6):1805-11
– reference: 14888646 - J Bacteriol. 1951 Sep;62(3):293-300
– reference: 4986704 - J Appl Bacteriol. 1970 Mar;33(1):220-7
– reference: 20444094 - Mol Microbiol. 2010 Jun 1;76(5):1279-94
– reference: 10702268 - J Biol Chem. 2000 Mar 10;275(10):7037-44
– reference: 16125412 - Protein Expr Purif. 2006 Apr;46(2):189-95
– reference: 20139185 - J Bacteriol. 2010 Apr;192(8):2128-39
– reference: 9988713 - J Biol Chem. 1999 Feb 19;274(8):4754-63
– reference: 17869605 - Adv Appl Microbiol. 2007;62:137-89
– reference: 1659306 - Antimicrob Agents Chemother. 1991 Sep;35(9):1804-10
– reference: 8246840 - Microbiol Rev. 1993 Sep;57(3):543-94
– reference: 7766011 - J Biotechnol. 1995 Feb 21;39(1):59-65
– reference: 11255157 - Biotechnol Bioeng. 2001 Apr 20;73(2):95-103
– reference: 15187182 - Microbiol Mol Biol Rev. 2004 Jun;68(2):207-33
– reference: 12584001 - Plasmid. 2003 Jan;49(1):53-62
– reference: 15052317 - Can J Microbiol. 2004 Jan;50(1):1-17
– reference: 9669336 - Mol Gen Genet. 1998 Jun;258(5):538-45
SSID ssj0004068
Score 2.3338463
Snippet Classifications Services AEM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit...
A novel technically compliant expression system was developed for heterologous protein production in Bacillus subtilis with the aim of increasing product...
A novel technically compliant expression system was developed for heterologous protein production in Bacillus subtilis with the aim of increasing product...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6419
SubjectTerms Bacillus subtilis
Bacillus subtilis - genetics
Bacillus subtilis - metabolism
Bacteria
Bacterial proteins
Biological and medical sciences
Biotechnology
Biotechnology - economics
Biotechnology - methods
carbon
Fermentation
Fundamental and applied biological sciences. Psychology
Gene Deletion
Gene expression
Gene Expression Regulation, Bacterial
Genetic Vectors
glucose
Glucose - metabolism
green fluorescent protein
mannose
Mannose - metabolism
Methods. Procedures. Technologies
Microbial engineering. Fermentation and microbial culture technology
Microbiology
operon
phase transition
Production costs
Recombinant Proteins - biosynthesis
Recombinant Proteins - genetics
Sugar
Transcriptional Activation
Title Self-Inducible Bacillus subtilis Expression System for Reliable and Inexpensive Protein Production by High-Cell-Density Fermentation
URI http://aem.asm.org/content/77/18/6419.abstract
https://www.ncbi.nlm.nih.gov/pubmed/21803899
https://www.proquest.com/docview/894730283
https://www.proquest.com/docview/1368586876
https://www.proquest.com/docview/888342201
https://pubmed.ncbi.nlm.nih.gov/PMC3187127
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIgQcEJSXKVSLBKfKJX7E9h7T4JJCEqHSSlUvlu3dFZZcF-HkUM78T_4KM_aus-5DPC6JH5u1o_m8M-Od71tC3oy4zzPuOzaKpdu-DGBLpI7tyCCVocg4d5A7PF8E02P_48noZDD4ZVQtrZbZbv7jWl7J_1gVjoFdkSX7D5btOoUDsA32hU-wMHz-lY2_iFLauPhGXiABai_Ni7Jc1Tv1KlsWZVGjkHFb51opafKmqhDLkBvGVFsLjCL_bRX7ZxRtKCr85q2qLEanWApiT0RZ2u-xHUTt-zCcK85SZUa3OqTFfg0GHRJUirXgU-cH4sVpPFOEIQOlc5y8Z5PZrC3S6Cg43cugg3g-XizsaXx4uhcfflA9aA1xRO_sKF5A9D1dtF3gNIc032_gC1vWqxXRE1dmFev88k2r0Z0xG0MUc3RXi8QoFEfGWB34arAWardlYF_1KS7yJFJxtotEZ2Yr59CT7r7kUrtCR5zXhsuwW-S2C3lMk_MffFoTd4dBpGVS8cY1M8ON3pnX68dMWscay3jTGp5k2S7Bcl2OdLnU14idjh6SByrpoeMWwY_IQFSb5E67DOrFJrmr2fH1JrlvCGQ-Jj_7CKca4VQjnK4RTluEU7Ac1QinABxqIJwqhNM1wml2Qa8gnJoIf0KO9-OjydRW64bYOSQnS5u7gRwJOXTZiGeS55Eb-txzZB54uZflQYhptOTcl9Lz-DB1WCZH0NTzR2GWR6H3lGxU55V4Tih4J84Dx-HCd30mOMsz8Mgikn7AMjb0LLKjLZPkSlQf13Ypkya5dqNkHM-Txo6wa5G3XetvrZjMDe22tJGTtD5LAAtJGCZOlCBmLbLds3vXlQYb_FwDIVGjVZ1EzAdnDsmERV53Z8GV4PxgWonzVZ04zWIUAcRHFqE3tImiyPNdeE4t8qxF1vryTtSodVok7GGua4BK9v0zVfG1UbSHwCJ03PDFn_7ZFrm3HiJeko3l95V4BUnBMttuHqzftlwUVg
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Inducible+Bacillus+subtilis+Expression+System+for+Reliable+and+Inexpensive+Protein+Production+by+High-Cell-Density+Fermentation&rft.jtitle=Applied+and+environmental+microbiology&rft.au=WENZEL%2C+Marian&rft.au=M%C3%9CLLER%2C+Alexander&rft.au=SIEMANN-HERZBERG%2C+Martin&rft.au=ALTENBUCHNER%2C+Josef&rft.date=2011-09-01&rft.pub=American+Society+for+Microbiology&rft.issn=0099-2240&rft.volume=77&rft.issue=18&rft.spage=6419&rft.epage=6425&rft_id=info:doi/10.1128%2Faem.05219-11&rft.externalDBID=n%2Fa&rft.externalDocID=24524199
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon