Enhanced protein degradation by intracellular delivery of pre-fused PROTACs using lipid-like nanoparticles
Proteolysis-targeting chimaera (PROTAC) technology is an emerging approach for achieving targeted degradation of a protein of interest (POI) intracellularly. However, the cell permeability of PROTACs is limited by their high molecular weight and total polar surface area. Moreover, the activation of...
Saved in:
Published in | Journal of controlled release Vol. 330; pp. 1244 - 1249 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
10.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Proteolysis-targeting chimaera (PROTAC) technology is an emerging approach for achieving targeted degradation of a protein of interest (POI) intracellularly. However, the cell permeability of PROTACs is limited by their high molecular weight and total polar surface area. Moreover, the activation of the proteasome-mediated degradation by PROTAC requires the formation of a ternary (three-component) complex, composed of the PROTAC, the POIs, and E3-ligases related proteins (E3Ps). Simplifying the three-component system to two-component system could theoretically increase the efficiency of the formation of ternary complex and enhance the protein degradation efficiency. Herein, we demonstrate that pre-fusion of PROTACs with E3Ps (called “pre-fused PROTACs”) before administration could transform the original PROTAC system to two-component system. After delivery by lipid nanoparticles, the degradation of POI by pre-fused PROTACs was dramatically increased and accelerated compared with standard PROTACs. Moreover, we demonstrated that this approach could be generalized to another hydrophobic tag (HyT) degrader by demonstrating the improved targeted protein degradation after pre-fusion the HyT degrader with heat shock protein 70 (HSP70).
[Display omitted]
•Pre-fused PROTACs conveted three component PROTACs to two component systems•Pre-fused ARV-771 delivered by 80-O14B enhanced the degradation of BRD4•Pre-fusion was proved to be a general method for enhancment of protein degradation |
---|---|
AbstractList | Proteolysis-targeting chimaera (PROTAC) technology is an emerging approach for achieving targeted degradation of a protein of interest (POI) intracellularly. However, the cell permeability of PROTACs is limited by their high molecular weight and total polar surface area. Moreover, the activation of the proteasome-mediated degradation by PROTAC requires the formation of a ternary (three-component) complex, composed of the PROTAC, the POIs, and E3-ligases related proteins (E3Ps). Simplifying the three-component system to two-component system could theoretically increase the efficiency of the formation of ternary complex and enhance the protein degradation efficiency. Herein, we demonstrate that pre-fusion of PROTACs with E3Ps (called "pre-fused PROTACs") before administration could transform the original PROTAC system to two-component system. After delivery by lipid nanoparticles, the degradation of POI by pre-fused PROTACs was dramatically increased and accelerated compared with standard PROTACs. Moreover, we demonstrated that this approach could be generalized to another hydrophobic tag (HyT) degrader by demonstrating the improved targeted protein degradation after pre-fusion the HyT degrader with heat shock protein 70 (HSP70).Proteolysis-targeting chimaera (PROTAC) technology is an emerging approach for achieving targeted degradation of a protein of interest (POI) intracellularly. However, the cell permeability of PROTACs is limited by their high molecular weight and total polar surface area. Moreover, the activation of the proteasome-mediated degradation by PROTAC requires the formation of a ternary (three-component) complex, composed of the PROTAC, the POIs, and E3-ligases related proteins (E3Ps). Simplifying the three-component system to two-component system could theoretically increase the efficiency of the formation of ternary complex and enhance the protein degradation efficiency. Herein, we demonstrate that pre-fusion of PROTACs with E3Ps (called "pre-fused PROTACs") before administration could transform the original PROTAC system to two-component system. After delivery by lipid nanoparticles, the degradation of POI by pre-fused PROTACs was dramatically increased and accelerated compared with standard PROTACs. Moreover, we demonstrated that this approach could be generalized to another hydrophobic tag (HyT) degrader by demonstrating the improved targeted protein degradation after pre-fusion the HyT degrader with heat shock protein 70 (HSP70). Proteolysis-targeting chimaera (PROTAC) technology is an emerging approach for achieving targeted degradation of a protein of interest (POI) intracellularly. However, the cell permeability of PROTACs is limited by their high molecular weight and total polar surface area. Moreover, the activation of the proteasome-mediated degradation by PROTAC requires the formation of a ternary (three-component) complex, composed of the PROTAC, the POIs, and E3-ligases related proteins (E3Ps). Simplifying the three-component system to two-component system could theoretically increase the efficiency of the formation of ternary complex and enhance the protein degradation efficiency. Herein, we demonstrate that pre-fusion of PROTACs with E3Ps (called “pre-fused PROTACs”) before administration could transform the original PROTAC system to two-component system. After delivery by lipid nanoparticles, the degradation of POI by pre-fused PROTACs is dramatically increased and accelerated compared with standard PROTACs. Moreover, we demonstrate that this approach can be generalized to another hydrophobic tag (HyT) degrader by demonstrating the improved targeted protein degradation after pre-fusion the HyT degrader with heat shock protein 70 (HSP70). Proteolysis-targeting chimaera (PROTAC) technology is an emerging approach for achieving targeted degradation of a protein of interest (POI) intracellularly. However, the cell permeability of PROTACs is limited by their high molecular weight and total polar surface area. Moreover, the activation of the proteasome-mediated degradation by PROTAC requires the formation of a ternary (three-component) complex, composed of the PROTAC, the POIs, and E3-ligases related proteins (E3Ps). Simplifying the three-component system to two-component system could theoretically increase the efficiency of the formation of ternary complex and enhance the protein degradation efficiency. Herein, we demonstrate that pre-fusion of PROTACs with E3Ps (called "pre-fused PROTACs") before administration could transform the original PROTAC system to two-component system. After delivery by lipid nanoparticles, the degradation of POI by pre-fused PROTACs was dramatically increased and accelerated compared with standard PROTACs. Moreover, we demonstrated that this approach could be generalized to another hydrophobic tag (HyT) degrader by demonstrating the improved targeted protein degradation after pre-fusion the HyT degrader with heat shock protein 70 (HSP70). Proteolysis-targeting chimaera (PROTAC) technology is an emerging approach for achieving targeted degradation of a protein of interest (POI) intracellularly. However, the cell permeability of PROTACs is limited by their high molecular weight and total polar surface area. Moreover, the activation of the proteasome-mediated degradation by PROTAC requires the formation of a ternary (three-component) complex, composed of the PROTAC, the POIs, and E3-ligases related proteins (E3Ps). Simplifying the three-component system to two-component system could theoretically increase the efficiency of the formation of ternary complex and enhance the protein degradation efficiency. Herein, we demonstrate that pre-fusion of PROTACs with E3Ps (called “pre-fused PROTACs”) before administration could transform the original PROTAC system to two-component system. After delivery by lipid nanoparticles, the degradation of POI by pre-fused PROTACs was dramatically increased and accelerated compared with standard PROTACs. Moreover, we demonstrated that this approach could be generalized to another hydrophobic tag (HyT) degrader by demonstrating the improved targeted protein degradation after pre-fusion the HyT degrader with heat shock protein 70 (HSP70). [Display omitted] •Pre-fused PROTACs conveted three component PROTACs to two component systems•Pre-fused ARV-771 delivered by 80-O14B enhanced the degradation of BRD4•Pre-fusion was proved to be a general method for enhancment of protein degradation |
Author | Qiu, Min Ma, Feihe Glass, Zachary Yang, Liu Xu, Qiaobing Chen, Jinjin |
Author_xml | – sequence: 1 givenname: Jinjin surname: Chen fullname: Chen, Jinjin – sequence: 2 givenname: Min surname: Qiu fullname: Qiu, Min – sequence: 3 givenname: Feihe surname: Ma fullname: Ma, Feihe – sequence: 4 givenname: Liu surname: Yang fullname: Yang, Liu – sequence: 5 givenname: Zachary surname: Glass fullname: Glass, Zachary – sequence: 6 givenname: Qiaobing surname: Xu fullname: Xu, Qiaobing email: qiaobing.xu@tufts.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33234362$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl2L1DAUhoOsuLOrP0HppTcd89GkDYKyDOsHLKzIeh3S9HQ2NZPUpB2Yf2_qjIt6s94kkPO-L-ecJxfozAcPCL0keE0wEW-G9WCCj-DWFNP8RtaY0SdoRZqalZWU_Aytsq4pmeDyHF2kNGCMOavqZ-icMcoqJugKDdf-XnsDXTHGMIH1RQfbqDs92eCL9lBYP0VtwLnZ6ZiLzu4hHorQZwOU_Zyy9cvX27urTSrmZP22cHa0Xensdyi89mHUcbLGQXqOnvbaJXhxui_Rtw_Xd5tP5c3tx8-bq5vScCGmsm1rSkhbm77RvGVUmw43shZtPrRmxtRdx42mlABpJa5bDrIXudI30HBdsUv07pg7zu0OOgPLBE6N0e50PKigrfq74u292oa9qiUWkooc8PoUEMOPGdKkdjYtK9AewpwUrWRDZdVw-R9SURFZSb609erPth76-c0iC_hRYGJIKUL_ICFYLczVoE7M1cJcEaIy8-x7-4_P2OkXvzyddY-63x_dkJHsLUSVjIXlR9gIZlJdsI8k_AT4a85K |
CitedBy_id | crossref_primary_10_1002_cmdc_202400326 crossref_primary_10_3390_molecules27175439 crossref_primary_10_1016_j_cclet_2022_107927 crossref_primary_10_1021_acsnano_4c09800 crossref_primary_10_1016_j_ijbiomac_2024_133680 crossref_primary_10_1039_D3NR06059D crossref_primary_10_1177_15330338221095950 crossref_primary_10_3390_ph17040494 crossref_primary_10_1039_D1CS00762A crossref_primary_10_1016_j_ejmech_2023_115447 crossref_primary_10_1016_j_jconrel_2021_09_026 crossref_primary_10_4103_aja202494 crossref_primary_10_1016_j_apsb_2025_03_018 crossref_primary_10_1038_s41392_022_00999_9 crossref_primary_10_1002_wnan_2020 crossref_primary_10_1002_adfm_202420004 crossref_primary_10_1016_j_biopha_2024_117108 crossref_primary_10_3389_fgene_2024_1434002 crossref_primary_10_1002_advs_202207439 crossref_primary_10_1016_j_jmb_2021_167276 crossref_primary_10_1016_j_apsb_2022_04_013 crossref_primary_10_1002_cbdv_202200828 crossref_primary_10_1016_j_jcis_2024_08_185 crossref_primary_10_1021_acs_jmedchem_4c01652 crossref_primary_10_1016_j_drudis_2022_103387 crossref_primary_10_1016_j_pharmthera_2024_108725 crossref_primary_10_1039_D4TA06644H crossref_primary_10_1016_j_ejmech_2023_115497 crossref_primary_10_1016_j_ejmech_2024_116168 crossref_primary_10_1080_1061186X_2023_2185247 crossref_primary_10_1002_bmc_5629 crossref_primary_10_3390_pharmaceutics15020411 |
Cites_doi | 10.1021/acschembio.5b00216 10.1021/acschembio.9b00972 10.1038/nchembio.1858 10.1021/acschembio.6b01068 10.1021/ja311795d 10.1038/nchembio.597 10.1073/pnas.1521738113 10.1016/j.jconrel.2020.04.053 10.1021/acsmedchemlett.0c00194 10.1038/nchembio.2329 10.1073/pnas.1520244113 10.1002/anie.201507978 10.1021/acscentsci.6b00280 10.1016/j.jconrel.2020.06.030 10.1158/1538-7445.AM2017-5637 10.1002/anie.201503720 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.jconrel.2020.11.032 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1873-4995 |
EndPage | 1249 |
ExternalDocumentID | PMC7906926 33234362 10_1016_j_jconrel_2020_11_032 S0168365920306829 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R01 EB027170 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AABXZ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATCM AAXUO ABFNM ABFRF ABJNI ABMAC ABOCM ABYKQ ABZDS ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC C45 CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMT IHE J1W KOM M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSM SSP SSZ T5K TEORI ~G- .GJ 29K 3O- AAHBH AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION D-I EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEW SPT SSH WUQ CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM EFKBS |
ID | FETCH-LOGICAL-c566t-bb7211b7cf8a5b32acd08976b897aa3cc7dd5ca221e1b907b5e9f6aa3f8e85a43 |
IEDL.DBID | .~1 |
ISSN | 0168-3659 1873-4995 |
IngestDate | Thu Aug 21 14:12:42 EDT 2025 Fri Jul 11 09:50:27 EDT 2025 Fri Jul 11 06:51:15 EDT 2025 Wed Feb 19 02:27:24 EST 2025 Thu Apr 24 22:59:12 EDT 2025 Tue Jul 01 04:10:00 EDT 2025 Fri Feb 23 02:44:16 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Protein degradation Drug delivery PROTAC Lipid-like nanoparticle (LNP) |
Language | English |
License | Copyright © 2020 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c566t-bb7211b7cf8a5b32acd08976b897aa3cc7dd5ca221e1b907b5e9f6aa3f8e85a43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Jinjin Chen: Experimental design and conduction; Data analysis; Writing original draft. Zachary Glass: Revising the manuscript Min Qiu.: Lipid synthesis Feihe Ma: Experimental design Liu yang: Experimental design Qiaobing Xu: Supervision, Generating the idea, Revising the manuscript. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7906926 |
PMID | 33234362 |
PQID | 2464194954 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7906926 proquest_miscellaneous_2498294859 proquest_miscellaneous_2464194954 pubmed_primary_33234362 crossref_primary_10_1016_j_jconrel_2020_11_032 crossref_citationtrail_10_1016_j_jconrel_2020_11_032 elsevier_sciencedirect_doi_10_1016_j_jconrel_2020_11_032 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-10 |
PublicationDateYYYYMMDD | 2021-02-10 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of controlled release |
PublicationTitleAlternate | J Control Release |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Neklesa, Snyder, Bookbinder, Chen, Crew, Crews, Dong, Gordon, Macaluso, Raina (bb0025) 2017; 77 Lebraud, Wright, Johnson, Heightman (bb0085) 2016; 2 Neklesa, Tae, Schneekloth, Stulberg, Corson, Sundberg, Raina, Holley, Crews (bb0090) 2011; 7 Toure, Crews (bb0015) 2016; 55 Raina, Lu, Qian, Altieri, Gordon, Rossi, Wang, Chen, Dong, Siu (bb0065) 2016; 113 Gustafson, Neklesa, Cox, Roth, Buckley, Tae, Sundberg, Stagg, Hines, McDonnell, Norris, Crews (bb0055) 2015; 54 Zengerle, Chan, Ciulli (bb0080) 2015; 10 Gadd, Testa, Lucas, Chan, Chen, Lamont, Zengerle, Ciulli (bb0020) 2017; 13 Arellano (bb0075) 2014 Ottis, Crews (bb0010) 2017; 12 Bondeson, Mares, Smith, Ko, Campos, Miah, Mulholland, Routly, Buckley, Gustafson, Zinn, Grandi, Shimamura, Bergamini, Faelth-Savitski, Bantscheff, Cox, Gordon, Willard, Flanagan, Casillas, Votta, den Besten, Famm, Kruidenier, Carter, Harling, Churcher, Crews (bb0040) 2015; 11 Wang, Zuris, Meng, Rees, Sun, Deng, Han, Gao, Pouli, Wu, Georgakoudi, Liu, Xu (bb0060) 2016; 113 Toure, Crews (bb0005) 2016; 55 Scott, Rooney, Bayle, Mirza, Willems, Clarke, Andrews, Skidmore (bb0035) 2020; 11 Xiong, Liu, Wei, Cheng, Siegwart (bb0050) 2020; 325 Douglass, Miller, Sparer, Shapiro, Spiegel (bb0045) 2013; 135 Wang, Kumar, Lin, Sethi, Coulter, McGuire, Mahato (bb0070) 2020; 323 Foley, Potjewyd, Lamb, James, Frye (bb0030) 2020; 15 Scott (10.1016/j.jconrel.2020.11.032_bb0035) 2020; 11 Wang (10.1016/j.jconrel.2020.11.032_bb0060) 2016; 113 Douglass (10.1016/j.jconrel.2020.11.032_bb0045) 2013; 135 Xiong (10.1016/j.jconrel.2020.11.032_bb0050) 2020; 325 Lebraud (10.1016/j.jconrel.2020.11.032_bb0085) 2016; 2 Zengerle (10.1016/j.jconrel.2020.11.032_bb0080) 2015; 10 Toure (10.1016/j.jconrel.2020.11.032_bb0015) 2016; 55 Bondeson (10.1016/j.jconrel.2020.11.032_bb0040) 2015; 11 Gadd (10.1016/j.jconrel.2020.11.032_bb0020) 2017; 13 Neklesa (10.1016/j.jconrel.2020.11.032_bb0025) 2017; 77 Neklesa (10.1016/j.jconrel.2020.11.032_bb0090) 2011; 7 Ottis (10.1016/j.jconrel.2020.11.032_bb0010) 2017; 12 Toure (10.1016/j.jconrel.2020.11.032_bb0005) 2016; 55 Raina (10.1016/j.jconrel.2020.11.032_bb0065) 2016; 113 Gustafson (10.1016/j.jconrel.2020.11.032_bb0055) 2015; 54 Arellano (10.1016/j.jconrel.2020.11.032_bb0075) 2014 Foley (10.1016/j.jconrel.2020.11.032_bb0030) 2020; 15 Wang (10.1016/j.jconrel.2020.11.032_bb0070) 2020; 323 |
References_xml | – volume: 325 start-page: 198 year: 2020 end-page: 205 ident: bb0050 article-title: Theranostic dendrimer-based lipid nanoparticles containing PEGylated BODIPY dyes for tumor imaging and systemic mRNA delivery in vivo publication-title: J. Control. Release – volume: 12 start-page: 892 year: 2017 end-page: 898 ident: bb0010 article-title: Proteolysis-targeting chimeras: induced protein degradation as a therapeutic strategy publication-title: ACS Chem. Biol. – volume: 15 start-page: 290 year: 2020 end-page: 295 ident: bb0030 article-title: Assessing the cell permeability of bivalent chemical degraders using the Chloroalkane penetration assay publication-title: ACS Chem. Biol. – volume: 7 start-page: 538 year: 2011 ident: bb0090 article-title: Small-molecule hydrophobic tagging–induced degradation of HaloTag fusion proteins publication-title: Nat. Chem. Biol. – volume: 323 start-page: 463 year: 2020 end-page: 474 ident: bb0070 article-title: ApoE mimetic peptide targeted nanoparticles carrying a BRD4 inhibitor for treating Medulloblastoma in mice publication-title: J. Control. Release – volume: 77 start-page: 5637 year: 2017 ident: bb0025 article-title: An oral androgen receptor PROTAC degrader for prostate cancer publication-title: Cancer Res. – volume: 55 start-page: 1966 year: 2016 end-page: 1973 ident: bb0005 article-title: Small-molecule PROTACS: New approaches to protein degradation publication-title: Angew. Chem. Int. Ed. – volume: 13 start-page: 514 year: 2017 ident: bb0020 article-title: Structural basis of PROTAC cooperative recognition for selective protein degradation publication-title: Nat. Chem. Biol. – volume: 113 start-page: 7124 year: 2016 end-page: 7129 ident: bb0065 article-title: PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer publication-title: Proc. Natl. Acad. Sci. – year: 2014 ident: bb0075 article-title: Bioreducible Lipid-Like Nanoparticles for Intracellular Protein Delivery – volume: 55 start-page: 1966 year: 2016 end-page: 1973 ident: bb0015 article-title: Small-molecule PROTACs, new approaches to protein degradation publication-title: Angew. Chem. Int. Ed. – volume: 113 start-page: 2868 year: 2016 end-page: 2873 ident: bb0060 article-title: Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles publication-title: Proc. Natl. Acad. Sci. – volume: 11 start-page: 1539 year: 2020 end-page: 1547 ident: bb0035 article-title: Systematic investigation of the permeability of androgen receptor PROTACs publication-title: ACS Med. Chem. Lett. – volume: 54 start-page: 9659 year: 2015 end-page: 9662 ident: bb0055 article-title: Small-molecule-mediated degradation of the androgen receptor through hydrophobic tagging publication-title: Angew. Chem. Int. Ed. – volume: 11 start-page: 611 year: 2015 ident: bb0040 article-title: Catalytic in vivo protein knockdown by small-molecule PROTACs publication-title: Nat. Chem. Biol. – volume: 135 start-page: 6092 year: 2013 end-page: 6099 ident: bb0045 article-title: A comprehensive mathematical model for three-body binding equilibria publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 927 year: 2016 end-page: 934 ident: bb0085 article-title: Protein degradation by in-cell self-assembly of proteolysis targeting chimeras publication-title: ACS Central Sci. – volume: 10 start-page: 1770 year: 2015 end-page: 1777 ident: bb0080 article-title: Selective small molecule induced degradation of the BET bromodomain protein BRD4 publication-title: ACS Chem. Biol. – volume: 10 start-page: 1770 year: 2015 ident: 10.1016/j.jconrel.2020.11.032_bb0080 article-title: Selective small molecule induced degradation of the BET bromodomain protein BRD4 publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.5b00216 – volume: 15 start-page: 290 year: 2020 ident: 10.1016/j.jconrel.2020.11.032_bb0030 article-title: Assessing the cell permeability of bivalent chemical degraders using the Chloroalkane penetration assay publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.9b00972 – volume: 11 start-page: 611 year: 2015 ident: 10.1016/j.jconrel.2020.11.032_bb0040 article-title: Catalytic in vivo protein knockdown by small-molecule PROTACs publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1858 – volume: 12 start-page: 892 year: 2017 ident: 10.1016/j.jconrel.2020.11.032_bb0010 article-title: Proteolysis-targeting chimeras: induced protein degradation as a therapeutic strategy publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.6b01068 – volume: 135 start-page: 6092 year: 2013 ident: 10.1016/j.jconrel.2020.11.032_bb0045 article-title: A comprehensive mathematical model for three-body binding equilibria publication-title: J. Am. Chem. Soc. doi: 10.1021/ja311795d – volume: 7 start-page: 538 year: 2011 ident: 10.1016/j.jconrel.2020.11.032_bb0090 article-title: Small-molecule hydrophobic tagging–induced degradation of HaloTag fusion proteins publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.597 – volume: 113 start-page: 7124 year: 2016 ident: 10.1016/j.jconrel.2020.11.032_bb0065 article-title: PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1521738113 – volume: 323 start-page: 463 year: 2020 ident: 10.1016/j.jconrel.2020.11.032_bb0070 article-title: ApoE mimetic peptide targeted nanoparticles carrying a BRD4 inhibitor for treating Medulloblastoma in mice publication-title: J. Control. Release doi: 10.1016/j.jconrel.2020.04.053 – volume: 11 start-page: 1539 year: 2020 ident: 10.1016/j.jconrel.2020.11.032_bb0035 article-title: Systematic investigation of the permeability of androgen receptor PROTACs publication-title: ACS Med. Chem. Lett. doi: 10.1021/acsmedchemlett.0c00194 – volume: 13 start-page: 514 year: 2017 ident: 10.1016/j.jconrel.2020.11.032_bb0020 article-title: Structural basis of PROTAC cooperative recognition for selective protein degradation publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2329 – volume: 113 start-page: 2868 year: 2016 ident: 10.1016/j.jconrel.2020.11.032_bb0060 article-title: Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1520244113 – volume: 55 start-page: 1966 year: 2016 ident: 10.1016/j.jconrel.2020.11.032_bb0005 article-title: Small-molecule PROTACS: New approaches to protein degradation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201507978 – volume: 2 start-page: 927 year: 2016 ident: 10.1016/j.jconrel.2020.11.032_bb0085 article-title: Protein degradation by in-cell self-assembly of proteolysis targeting chimeras publication-title: ACS Central Sci. doi: 10.1021/acscentsci.6b00280 – volume: 325 start-page: 198 year: 2020 ident: 10.1016/j.jconrel.2020.11.032_bb0050 article-title: Theranostic dendrimer-based lipid nanoparticles containing PEGylated BODIPY dyes for tumor imaging and systemic mRNA delivery in vivo publication-title: J. Control. Release doi: 10.1016/j.jconrel.2020.06.030 – year: 2014 ident: 10.1016/j.jconrel.2020.11.032_bb0075 – volume: 55 start-page: 1966 year: 2016 ident: 10.1016/j.jconrel.2020.11.032_bb0015 article-title: Small-molecule PROTACs, new approaches to protein degradation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201507978 – volume: 77 start-page: 5637 year: 2017 ident: 10.1016/j.jconrel.2020.11.032_bb0025 article-title: An oral androgen receptor PROTAC degrader for prostate cancer publication-title: Cancer Res. doi: 10.1158/1538-7445.AM2017-5637 – volume: 54 start-page: 9659 year: 2015 ident: 10.1016/j.jconrel.2020.11.032_bb0055 article-title: Small-molecule-mediated degradation of the androgen receptor through hydrophobic tagging publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201503720 |
SSID | ssj0005347 |
Score | 2.508568 |
Snippet | Proteolysis-targeting chimaera (PROTAC) technology is an emerging approach for achieving targeted degradation of a protein of interest (POI) intracellularly.... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1244 |
SubjectTerms | Drug delivery heat-shock protein 70 hydrophobicity Intercellular Signaling Peptides and Proteins Lipid-like nanoparticle (LNP) Lipids molecular weight Nanoparticles permeability PROTAC Protein degradation Proteolysis surface area |
Title | Enhanced protein degradation by intracellular delivery of pre-fused PROTACs using lipid-like nanoparticles |
URI | https://dx.doi.org/10.1016/j.jconrel.2020.11.032 https://www.ncbi.nlm.nih.gov/pubmed/33234362 https://www.proquest.com/docview/2464194954 https://www.proquest.com/docview/2498294859 https://pubmed.ncbi.nlm.nih.gov/PMC7906926 |
Volume | 330 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECaCZOlStE0f7iNggSJTZEt86DEaRgInRVOjdYBsBCmRjRyDNmJ78JLfnjs97LhFG6CLBpGEpLsj-Z343R0hX8BJjgrjZBC5wgWikDbIbAjT3biQ5TCheI7RyN8u4-GVuLiW13tk0MbCIK2yWfvrNb1arZs7vUaavXlZ9n4CWEk5ngoi7E0ZBvEJkaCVd-8f0Ty4qEOm4zTA3tsont6kOwGf887iCQTDxaMbcva3_elP_Pk7jfLRvnT2gjxvACXt1-_8kuxZ_4ocj-qM1OsTOt4GWC1O6DEdbXNVrw_J5NTfVBwAWiVsKD0tMHtEXWiJmjUt8aH4dx_pqtA4RR7Hms4cRf6IWy1g6OjH93F_sKDIof9Fp-W8LIJpeWup1x588oZ695pcnZ2OB8OgKb8Q5IDxloEx6B2aJHeploYznRdhCujFwEVrnudJUchcMxbZyICPbaTNXAwtLrWp1IK_Ift-5u07Qp2OQ50wyTTjwjLAZGFkuCsymenYha5DRCt0lTe5ybFExlS1JLSJanSlUFfgtyjQVYd0N8PmdXKOpwakrUbVjpUp2ECeGvq5tQAFMxAFr72drRaKiVhEGTia4l99MrBQkcqsQ97WVrN5Y85BKIAjOiTZsadNB8wAvtviy5sqE3iShXHG4vf__1kfyDOGLB0scRN-JPvLu5X9BDBraY6qeXREDvrnX4eXDyLGLOs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9owFLc6etgu077HPj1p6qmBxB9JfESoFV1bhjYq9WbZid2GoYAKHPjv9x5JYGzaKu2SQ-ynJPaz_Xvx7_1MyGcIkqPcehlEPveByKULlAthuFsfsgwGFM8wG_lyGA-uxJdreX1A-k0uDNIq67m_mtM3s3V9p1u3ZndeFN3vAFZSjruCCHtTph6QQ1Snki1y2Ds7Hwx3TA8uqqzpOA3QYJfI0510JhB23jnchGA4f3RCzv62RP0JQX9nUv6yNJ0-IY9rTEl71Ws_JQeufEaORpUo9fqYjnc5VotjekRHO7nq9XMyOSlvNzQAutFsKEqao4BEddYStWta4EPxBz8yVqFwilSONZ15ihQSv1qA6ejb13Gvv6BIo7-h02Je5MG0-OFoaUoIy2v23QtydXoy7g-C-gSGIAOYtwysxQDRJplPjbScmSwPUwAwFi7G8CxL8lxmhrHIRRbCbCud8jGU-NSl0gj-krTKWeleE-pNHJqESWYYF44BLAsjy32upDKxD32biKbRdVbLk-MpGVPd8NAmuu4rjX0FoYuGvmqTztZsXulz3GeQNj2q9xxNwxpyn-mnxgM0DEJseFO62WqhmYhFpCDWFP-qo8BJRSpVm7yqvGb7xpxDowCUaJNkz5-2FVAEfL-kLG43YuCJCmPF4jf__1kfycPB-PJCX5wNz9-SRwxJO3jiTfiOtJZ3K_ceUNfSfqhH1U9OCy-c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Protein+Degradation+by+Intracellular+Delivery+of+Pre-Fused+PROTACs+Using+Lipid-like+Nanoparticles&rft.jtitle=Journal+of+controlled+release&rft.au=Chen%2C+Jinjin&rft.au=Qiu%2C+Min&rft.au=Ma%2C+Feihe&rft.au=Yang%2C+Liu&rft.date=2021-02-10&rft.issn=0168-3659&rft.eissn=1873-4995&rft.volume=330&rft.spage=1244&rft.epage=1249&rft_id=info:doi/10.1016%2Fj.jconrel.2020.11.032&rft_id=info%3Apmid%2F33234362&rft.externalDocID=PMC7906926 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-3659&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-3659&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-3659&client=summon |