Enhanced protein degradation by intracellular delivery of pre-fused PROTACs using lipid-like nanoparticles

Proteolysis-targeting chimaera (PROTAC) technology is an emerging approach for achieving targeted degradation of a protein of interest (POI) intracellularly. However, the cell permeability of PROTACs is limited by their high molecular weight and total polar surface area. Moreover, the activation of...

Full description

Saved in:
Bibliographic Details
Published inJournal of controlled release Vol. 330; pp. 1244 - 1249
Main Authors Chen, Jinjin, Qiu, Min, Ma, Feihe, Yang, Liu, Glass, Zachary, Xu, Qiaobing
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 10.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Proteolysis-targeting chimaera (PROTAC) technology is an emerging approach for achieving targeted degradation of a protein of interest (POI) intracellularly. However, the cell permeability of PROTACs is limited by their high molecular weight and total polar surface area. Moreover, the activation of the proteasome-mediated degradation by PROTAC requires the formation of a ternary (three-component) complex, composed of the PROTAC, the POIs, and E3-ligases related proteins (E3Ps). Simplifying the three-component system to two-component system could theoretically increase the efficiency of the formation of ternary complex and enhance the protein degradation efficiency. Herein, we demonstrate that pre-fusion of PROTACs with E3Ps (called “pre-fused PROTACs”) before administration could transform the original PROTAC system to two-component system. After delivery by lipid nanoparticles, the degradation of POI by pre-fused PROTACs was dramatically increased and accelerated compared with standard PROTACs. Moreover, we demonstrated that this approach could be generalized to another hydrophobic tag (HyT) degrader by demonstrating the improved targeted protein degradation after pre-fusion the HyT degrader with heat shock protein 70 (HSP70). [Display omitted] •Pre-fused PROTACs conveted three component PROTACs to two component systems•Pre-fused ARV-771 delivered by 80-O14B enhanced the degradation of BRD4•Pre-fusion was proved to be a general method for enhancment of protein degradation
AbstractList Proteolysis-targeting chimaera (PROTAC) technology is an emerging approach for achieving targeted degradation of a protein of interest (POI) intracellularly. However, the cell permeability of PROTACs is limited by their high molecular weight and total polar surface area. Moreover, the activation of the proteasome-mediated degradation by PROTAC requires the formation of a ternary (three-component) complex, composed of the PROTAC, the POIs, and E3-ligases related proteins (E3Ps). Simplifying the three-component system to two-component system could theoretically increase the efficiency of the formation of ternary complex and enhance the protein degradation efficiency. Herein, we demonstrate that pre-fusion of PROTACs with E3Ps (called "pre-fused PROTACs") before administration could transform the original PROTAC system to two-component system. After delivery by lipid nanoparticles, the degradation of POI by pre-fused PROTACs was dramatically increased and accelerated compared with standard PROTACs. Moreover, we demonstrated that this approach could be generalized to another hydrophobic tag (HyT) degrader by demonstrating the improved targeted protein degradation after pre-fusion the HyT degrader with heat shock protein 70 (HSP70).Proteolysis-targeting chimaera (PROTAC) technology is an emerging approach for achieving targeted degradation of a protein of interest (POI) intracellularly. However, the cell permeability of PROTACs is limited by their high molecular weight and total polar surface area. Moreover, the activation of the proteasome-mediated degradation by PROTAC requires the formation of a ternary (three-component) complex, composed of the PROTAC, the POIs, and E3-ligases related proteins (E3Ps). Simplifying the three-component system to two-component system could theoretically increase the efficiency of the formation of ternary complex and enhance the protein degradation efficiency. Herein, we demonstrate that pre-fusion of PROTACs with E3Ps (called "pre-fused PROTACs") before administration could transform the original PROTAC system to two-component system. After delivery by lipid nanoparticles, the degradation of POI by pre-fused PROTACs was dramatically increased and accelerated compared with standard PROTACs. Moreover, we demonstrated that this approach could be generalized to another hydrophobic tag (HyT) degrader by demonstrating the improved targeted protein degradation after pre-fusion the HyT degrader with heat shock protein 70 (HSP70).
Proteolysis-targeting chimaera (PROTAC) technology is an emerging approach for achieving targeted degradation of a protein of interest (POI) intracellularly. However, the cell permeability of PROTACs is limited by their high molecular weight and total polar surface area. Moreover, the activation of the proteasome-mediated degradation by PROTAC requires the formation of a ternary (three-component) complex, composed of the PROTAC, the POIs, and E3-ligases related proteins (E3Ps). Simplifying the three-component system to two-component system could theoretically increase the efficiency of the formation of ternary complex and enhance the protein degradation efficiency. Herein, we demonstrate that pre-fusion of PROTACs with E3Ps (called “pre-fused PROTACs”) before administration could transform the original PROTAC system to two-component system. After delivery by lipid nanoparticles, the degradation of POI by pre-fused PROTACs is dramatically increased and accelerated compared with standard PROTACs. Moreover, we demonstrate that this approach can be generalized to another hydrophobic tag (HyT) degrader by demonstrating the improved targeted protein degradation after pre-fusion the HyT degrader with heat shock protein 70 (HSP70).
Proteolysis-targeting chimaera (PROTAC) technology is an emerging approach for achieving targeted degradation of a protein of interest (POI) intracellularly. However, the cell permeability of PROTACs is limited by their high molecular weight and total polar surface area. Moreover, the activation of the proteasome-mediated degradation by PROTAC requires the formation of a ternary (three-component) complex, composed of the PROTAC, the POIs, and E3-ligases related proteins (E3Ps). Simplifying the three-component system to two-component system could theoretically increase the efficiency of the formation of ternary complex and enhance the protein degradation efficiency. Herein, we demonstrate that pre-fusion of PROTACs with E3Ps (called "pre-fused PROTACs") before administration could transform the original PROTAC system to two-component system. After delivery by lipid nanoparticles, the degradation of POI by pre-fused PROTACs was dramatically increased and accelerated compared with standard PROTACs. Moreover, we demonstrated that this approach could be generalized to another hydrophobic tag (HyT) degrader by demonstrating the improved targeted protein degradation after pre-fusion the HyT degrader with heat shock protein 70 (HSP70).
Proteolysis-targeting chimaera (PROTAC) technology is an emerging approach for achieving targeted degradation of a protein of interest (POI) intracellularly. However, the cell permeability of PROTACs is limited by their high molecular weight and total polar surface area. Moreover, the activation of the proteasome-mediated degradation by PROTAC requires the formation of a ternary (three-component) complex, composed of the PROTAC, the POIs, and E3-ligases related proteins (E3Ps). Simplifying the three-component system to two-component system could theoretically increase the efficiency of the formation of ternary complex and enhance the protein degradation efficiency. Herein, we demonstrate that pre-fusion of PROTACs with E3Ps (called “pre-fused PROTACs”) before administration could transform the original PROTAC system to two-component system. After delivery by lipid nanoparticles, the degradation of POI by pre-fused PROTACs was dramatically increased and accelerated compared with standard PROTACs. Moreover, we demonstrated that this approach could be generalized to another hydrophobic tag (HyT) degrader by demonstrating the improved targeted protein degradation after pre-fusion the HyT degrader with heat shock protein 70 (HSP70). [Display omitted] •Pre-fused PROTACs conveted three component PROTACs to two component systems•Pre-fused ARV-771 delivered by 80-O14B enhanced the degradation of BRD4•Pre-fusion was proved to be a general method for enhancment of protein degradation
Author Qiu, Min
Ma, Feihe
Glass, Zachary
Yang, Liu
Xu, Qiaobing
Chen, Jinjin
Author_xml – sequence: 1
  givenname: Jinjin
  surname: Chen
  fullname: Chen, Jinjin
– sequence: 2
  givenname: Min
  surname: Qiu
  fullname: Qiu, Min
– sequence: 3
  givenname: Feihe
  surname: Ma
  fullname: Ma, Feihe
– sequence: 4
  givenname: Liu
  surname: Yang
  fullname: Yang, Liu
– sequence: 5
  givenname: Zachary
  surname: Glass
  fullname: Glass, Zachary
– sequence: 6
  givenname: Qiaobing
  surname: Xu
  fullname: Xu, Qiaobing
  email: qiaobing.xu@tufts.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33234362$$D View this record in MEDLINE/PubMed
BookMark eNqNkl2L1DAUhoOsuLOrP0HppTcd89GkDYKyDOsHLKzIeh3S9HQ2NZPUpB2Yf2_qjIt6s94kkPO-L-ecJxfozAcPCL0keE0wEW-G9WCCj-DWFNP8RtaY0SdoRZqalZWU_Aytsq4pmeDyHF2kNGCMOavqZ-icMcoqJugKDdf-XnsDXTHGMIH1RQfbqDs92eCL9lBYP0VtwLnZ6ZiLzu4hHorQZwOU_Zyy9cvX27urTSrmZP22cHa0Xensdyi89mHUcbLGQXqOnvbaJXhxui_Rtw_Xd5tP5c3tx8-bq5vScCGmsm1rSkhbm77RvGVUmw43shZtPrRmxtRdx42mlABpJa5bDrIXudI30HBdsUv07pg7zu0OOgPLBE6N0e50PKigrfq74u292oa9qiUWkooc8PoUEMOPGdKkdjYtK9AewpwUrWRDZdVw-R9SURFZSb609erPth76-c0iC_hRYGJIKUL_ICFYLczVoE7M1cJcEaIy8-x7-4_P2OkXvzyddY-63x_dkJHsLUSVjIXlR9gIZlJdsI8k_AT4a85K
CitedBy_id crossref_primary_10_1002_cmdc_202400326
crossref_primary_10_3390_molecules27175439
crossref_primary_10_1016_j_cclet_2022_107927
crossref_primary_10_1021_acsnano_4c09800
crossref_primary_10_1016_j_ijbiomac_2024_133680
crossref_primary_10_1039_D3NR06059D
crossref_primary_10_1177_15330338221095950
crossref_primary_10_3390_ph17040494
crossref_primary_10_1039_D1CS00762A
crossref_primary_10_1016_j_ejmech_2023_115447
crossref_primary_10_1016_j_jconrel_2021_09_026
crossref_primary_10_4103_aja202494
crossref_primary_10_1016_j_apsb_2025_03_018
crossref_primary_10_1038_s41392_022_00999_9
crossref_primary_10_1002_wnan_2020
crossref_primary_10_1002_adfm_202420004
crossref_primary_10_1016_j_biopha_2024_117108
crossref_primary_10_3389_fgene_2024_1434002
crossref_primary_10_1002_advs_202207439
crossref_primary_10_1016_j_jmb_2021_167276
crossref_primary_10_1016_j_apsb_2022_04_013
crossref_primary_10_1002_cbdv_202200828
crossref_primary_10_1016_j_jcis_2024_08_185
crossref_primary_10_1021_acs_jmedchem_4c01652
crossref_primary_10_1016_j_drudis_2022_103387
crossref_primary_10_1016_j_pharmthera_2024_108725
crossref_primary_10_1039_D4TA06644H
crossref_primary_10_1016_j_ejmech_2023_115497
crossref_primary_10_1016_j_ejmech_2024_116168
crossref_primary_10_1080_1061186X_2023_2185247
crossref_primary_10_1002_bmc_5629
crossref_primary_10_3390_pharmaceutics15020411
Cites_doi 10.1021/acschembio.5b00216
10.1021/acschembio.9b00972
10.1038/nchembio.1858
10.1021/acschembio.6b01068
10.1021/ja311795d
10.1038/nchembio.597
10.1073/pnas.1521738113
10.1016/j.jconrel.2020.04.053
10.1021/acsmedchemlett.0c00194
10.1038/nchembio.2329
10.1073/pnas.1520244113
10.1002/anie.201507978
10.1021/acscentsci.6b00280
10.1016/j.jconrel.2020.06.030
10.1158/1538-7445.AM2017-5637
10.1002/anie.201503720
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.jconrel.2020.11.032
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1873-4995
EndPage 1249
ExternalDocumentID PMC7906926
33234362
10_1016_j_jconrel_2020_11_032
S0168365920306829
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01 EB027170
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATCM
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABOCM
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
C45
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMT
IHE
J1W
KOM
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSM
SSP
SSZ
T5K
TEORI
~G-
.GJ
29K
3O-
AAHBH
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
D-I
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SEW
SPT
SSH
WUQ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
EFKBS
ID FETCH-LOGICAL-c566t-bb7211b7cf8a5b32acd08976b897aa3cc7dd5ca221e1b907b5e9f6aa3f8e85a43
IEDL.DBID .~1
ISSN 0168-3659
1873-4995
IngestDate Thu Aug 21 14:12:42 EDT 2025
Fri Jul 11 09:50:27 EDT 2025
Fri Jul 11 06:51:15 EDT 2025
Wed Feb 19 02:27:24 EST 2025
Thu Apr 24 22:59:12 EDT 2025
Tue Jul 01 04:10:00 EDT 2025
Fri Feb 23 02:44:16 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Protein degradation
Drug delivery
PROTAC
Lipid-like nanoparticle (LNP)
Language English
License Copyright © 2020 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c566t-bb7211b7cf8a5b32acd08976b897aa3cc7dd5ca221e1b907b5e9f6aa3f8e85a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Jinjin Chen: Experimental design and conduction; Data analysis; Writing original draft.
Zachary Glass: Revising the manuscript
Min Qiu.: Lipid synthesis
Feihe Ma: Experimental design
Liu yang: Experimental design
Qiaobing Xu: Supervision, Generating the idea, Revising the manuscript.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7906926
PMID 33234362
PQID 2464194954
PQPubID 23479
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7906926
proquest_miscellaneous_2498294859
proquest_miscellaneous_2464194954
pubmed_primary_33234362
crossref_primary_10_1016_j_jconrel_2020_11_032
crossref_citationtrail_10_1016_j_jconrel_2020_11_032
elsevier_sciencedirect_doi_10_1016_j_jconrel_2020_11_032
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-10
PublicationDateYYYYMMDD 2021-02-10
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-10
  day: 10
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of controlled release
PublicationTitleAlternate J Control Release
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Neklesa, Snyder, Bookbinder, Chen, Crew, Crews, Dong, Gordon, Macaluso, Raina (bb0025) 2017; 77
Lebraud, Wright, Johnson, Heightman (bb0085) 2016; 2
Neklesa, Tae, Schneekloth, Stulberg, Corson, Sundberg, Raina, Holley, Crews (bb0090) 2011; 7
Toure, Crews (bb0015) 2016; 55
Raina, Lu, Qian, Altieri, Gordon, Rossi, Wang, Chen, Dong, Siu (bb0065) 2016; 113
Gustafson, Neklesa, Cox, Roth, Buckley, Tae, Sundberg, Stagg, Hines, McDonnell, Norris, Crews (bb0055) 2015; 54
Zengerle, Chan, Ciulli (bb0080) 2015; 10
Gadd, Testa, Lucas, Chan, Chen, Lamont, Zengerle, Ciulli (bb0020) 2017; 13
Arellano (bb0075) 2014
Ottis, Crews (bb0010) 2017; 12
Bondeson, Mares, Smith, Ko, Campos, Miah, Mulholland, Routly, Buckley, Gustafson, Zinn, Grandi, Shimamura, Bergamini, Faelth-Savitski, Bantscheff, Cox, Gordon, Willard, Flanagan, Casillas, Votta, den Besten, Famm, Kruidenier, Carter, Harling, Churcher, Crews (bb0040) 2015; 11
Wang, Zuris, Meng, Rees, Sun, Deng, Han, Gao, Pouli, Wu, Georgakoudi, Liu, Xu (bb0060) 2016; 113
Toure, Crews (bb0005) 2016; 55
Scott, Rooney, Bayle, Mirza, Willems, Clarke, Andrews, Skidmore (bb0035) 2020; 11
Xiong, Liu, Wei, Cheng, Siegwart (bb0050) 2020; 325
Douglass, Miller, Sparer, Shapiro, Spiegel (bb0045) 2013; 135
Wang, Kumar, Lin, Sethi, Coulter, McGuire, Mahato (bb0070) 2020; 323
Foley, Potjewyd, Lamb, James, Frye (bb0030) 2020; 15
Scott (10.1016/j.jconrel.2020.11.032_bb0035) 2020; 11
Wang (10.1016/j.jconrel.2020.11.032_bb0060) 2016; 113
Douglass (10.1016/j.jconrel.2020.11.032_bb0045) 2013; 135
Xiong (10.1016/j.jconrel.2020.11.032_bb0050) 2020; 325
Lebraud (10.1016/j.jconrel.2020.11.032_bb0085) 2016; 2
Zengerle (10.1016/j.jconrel.2020.11.032_bb0080) 2015; 10
Toure (10.1016/j.jconrel.2020.11.032_bb0015) 2016; 55
Bondeson (10.1016/j.jconrel.2020.11.032_bb0040) 2015; 11
Gadd (10.1016/j.jconrel.2020.11.032_bb0020) 2017; 13
Neklesa (10.1016/j.jconrel.2020.11.032_bb0025) 2017; 77
Neklesa (10.1016/j.jconrel.2020.11.032_bb0090) 2011; 7
Ottis (10.1016/j.jconrel.2020.11.032_bb0010) 2017; 12
Toure (10.1016/j.jconrel.2020.11.032_bb0005) 2016; 55
Raina (10.1016/j.jconrel.2020.11.032_bb0065) 2016; 113
Gustafson (10.1016/j.jconrel.2020.11.032_bb0055) 2015; 54
Arellano (10.1016/j.jconrel.2020.11.032_bb0075) 2014
Foley (10.1016/j.jconrel.2020.11.032_bb0030) 2020; 15
Wang (10.1016/j.jconrel.2020.11.032_bb0070) 2020; 323
References_xml – volume: 325
  start-page: 198
  year: 2020
  end-page: 205
  ident: bb0050
  article-title: Theranostic dendrimer-based lipid nanoparticles containing PEGylated BODIPY dyes for tumor imaging and systemic mRNA delivery in vivo
  publication-title: J. Control. Release
– volume: 12
  start-page: 892
  year: 2017
  end-page: 898
  ident: bb0010
  article-title: Proteolysis-targeting chimeras: induced protein degradation as a therapeutic strategy
  publication-title: ACS Chem. Biol.
– volume: 15
  start-page: 290
  year: 2020
  end-page: 295
  ident: bb0030
  article-title: Assessing the cell permeability of bivalent chemical degraders using the Chloroalkane penetration assay
  publication-title: ACS Chem. Biol.
– volume: 7
  start-page: 538
  year: 2011
  ident: bb0090
  article-title: Small-molecule hydrophobic tagging–induced degradation of HaloTag fusion proteins
  publication-title: Nat. Chem. Biol.
– volume: 323
  start-page: 463
  year: 2020
  end-page: 474
  ident: bb0070
  article-title: ApoE mimetic peptide targeted nanoparticles carrying a BRD4 inhibitor for treating Medulloblastoma in mice
  publication-title: J. Control. Release
– volume: 77
  start-page: 5637
  year: 2017
  ident: bb0025
  article-title: An oral androgen receptor PROTAC degrader for prostate cancer
  publication-title: Cancer Res.
– volume: 55
  start-page: 1966
  year: 2016
  end-page: 1973
  ident: bb0005
  article-title: Small-molecule PROTACS: New approaches to protein degradation
  publication-title: Angew. Chem. Int. Ed.
– volume: 13
  start-page: 514
  year: 2017
  ident: bb0020
  article-title: Structural basis of PROTAC cooperative recognition for selective protein degradation
  publication-title: Nat. Chem. Biol.
– volume: 113
  start-page: 7124
  year: 2016
  end-page: 7129
  ident: bb0065
  article-title: PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer
  publication-title: Proc. Natl. Acad. Sci.
– year: 2014
  ident: bb0075
  article-title: Bioreducible Lipid-Like Nanoparticles for Intracellular Protein Delivery
– volume: 55
  start-page: 1966
  year: 2016
  end-page: 1973
  ident: bb0015
  article-title: Small-molecule PROTACs, new approaches to protein degradation
  publication-title: Angew. Chem. Int. Ed.
– volume: 113
  start-page: 2868
  year: 2016
  end-page: 2873
  ident: bb0060
  article-title: Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles
  publication-title: Proc. Natl. Acad. Sci.
– volume: 11
  start-page: 1539
  year: 2020
  end-page: 1547
  ident: bb0035
  article-title: Systematic investigation of the permeability of androgen receptor PROTACs
  publication-title: ACS Med. Chem. Lett.
– volume: 54
  start-page: 9659
  year: 2015
  end-page: 9662
  ident: bb0055
  article-title: Small-molecule-mediated degradation of the androgen receptor through hydrophobic tagging
  publication-title: Angew. Chem. Int. Ed.
– volume: 11
  start-page: 611
  year: 2015
  ident: bb0040
  article-title: Catalytic in vivo protein knockdown by small-molecule PROTACs
  publication-title: Nat. Chem. Biol.
– volume: 135
  start-page: 6092
  year: 2013
  end-page: 6099
  ident: bb0045
  article-title: A comprehensive mathematical model for three-body binding equilibria
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 927
  year: 2016
  end-page: 934
  ident: bb0085
  article-title: Protein degradation by in-cell self-assembly of proteolysis targeting chimeras
  publication-title: ACS Central Sci.
– volume: 10
  start-page: 1770
  year: 2015
  end-page: 1777
  ident: bb0080
  article-title: Selective small molecule induced degradation of the BET bromodomain protein BRD4
  publication-title: ACS Chem. Biol.
– volume: 10
  start-page: 1770
  year: 2015
  ident: 10.1016/j.jconrel.2020.11.032_bb0080
  article-title: Selective small molecule induced degradation of the BET bromodomain protein BRD4
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.5b00216
– volume: 15
  start-page: 290
  year: 2020
  ident: 10.1016/j.jconrel.2020.11.032_bb0030
  article-title: Assessing the cell permeability of bivalent chemical degraders using the Chloroalkane penetration assay
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.9b00972
– volume: 11
  start-page: 611
  year: 2015
  ident: 10.1016/j.jconrel.2020.11.032_bb0040
  article-title: Catalytic in vivo protein knockdown by small-molecule PROTACs
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1858
– volume: 12
  start-page: 892
  year: 2017
  ident: 10.1016/j.jconrel.2020.11.032_bb0010
  article-title: Proteolysis-targeting chimeras: induced protein degradation as a therapeutic strategy
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.6b01068
– volume: 135
  start-page: 6092
  year: 2013
  ident: 10.1016/j.jconrel.2020.11.032_bb0045
  article-title: A comprehensive mathematical model for three-body binding equilibria
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja311795d
– volume: 7
  start-page: 538
  year: 2011
  ident: 10.1016/j.jconrel.2020.11.032_bb0090
  article-title: Small-molecule hydrophobic tagging–induced degradation of HaloTag fusion proteins
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.597
– volume: 113
  start-page: 7124
  year: 2016
  ident: 10.1016/j.jconrel.2020.11.032_bb0065
  article-title: PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1521738113
– volume: 323
  start-page: 463
  year: 2020
  ident: 10.1016/j.jconrel.2020.11.032_bb0070
  article-title: ApoE mimetic peptide targeted nanoparticles carrying a BRD4 inhibitor for treating Medulloblastoma in mice
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2020.04.053
– volume: 11
  start-page: 1539
  year: 2020
  ident: 10.1016/j.jconrel.2020.11.032_bb0035
  article-title: Systematic investigation of the permeability of androgen receptor PROTACs
  publication-title: ACS Med. Chem. Lett.
  doi: 10.1021/acsmedchemlett.0c00194
– volume: 13
  start-page: 514
  year: 2017
  ident: 10.1016/j.jconrel.2020.11.032_bb0020
  article-title: Structural basis of PROTAC cooperative recognition for selective protein degradation
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2329
– volume: 113
  start-page: 2868
  year: 2016
  ident: 10.1016/j.jconrel.2020.11.032_bb0060
  article-title: Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1520244113
– volume: 55
  start-page: 1966
  year: 2016
  ident: 10.1016/j.jconrel.2020.11.032_bb0005
  article-title: Small-molecule PROTACS: New approaches to protein degradation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201507978
– volume: 2
  start-page: 927
  year: 2016
  ident: 10.1016/j.jconrel.2020.11.032_bb0085
  article-title: Protein degradation by in-cell self-assembly of proteolysis targeting chimeras
  publication-title: ACS Central Sci.
  doi: 10.1021/acscentsci.6b00280
– volume: 325
  start-page: 198
  year: 2020
  ident: 10.1016/j.jconrel.2020.11.032_bb0050
  article-title: Theranostic dendrimer-based lipid nanoparticles containing PEGylated BODIPY dyes for tumor imaging and systemic mRNA delivery in vivo
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2020.06.030
– year: 2014
  ident: 10.1016/j.jconrel.2020.11.032_bb0075
– volume: 55
  start-page: 1966
  year: 2016
  ident: 10.1016/j.jconrel.2020.11.032_bb0015
  article-title: Small-molecule PROTACs, new approaches to protein degradation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201507978
– volume: 77
  start-page: 5637
  year: 2017
  ident: 10.1016/j.jconrel.2020.11.032_bb0025
  article-title: An oral androgen receptor PROTAC degrader for prostate cancer
  publication-title: Cancer Res.
  doi: 10.1158/1538-7445.AM2017-5637
– volume: 54
  start-page: 9659
  year: 2015
  ident: 10.1016/j.jconrel.2020.11.032_bb0055
  article-title: Small-molecule-mediated degradation of the androgen receptor through hydrophobic tagging
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201503720
SSID ssj0005347
Score 2.508568
Snippet Proteolysis-targeting chimaera (PROTAC) technology is an emerging approach for achieving targeted degradation of a protein of interest (POI) intracellularly....
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1244
SubjectTerms Drug delivery
heat-shock protein 70
hydrophobicity
Intercellular Signaling Peptides and Proteins
Lipid-like nanoparticle (LNP)
Lipids
molecular weight
Nanoparticles
permeability
PROTAC
Protein degradation
Proteolysis
surface area
Title Enhanced protein degradation by intracellular delivery of pre-fused PROTACs using lipid-like nanoparticles
URI https://dx.doi.org/10.1016/j.jconrel.2020.11.032
https://www.ncbi.nlm.nih.gov/pubmed/33234362
https://www.proquest.com/docview/2464194954
https://www.proquest.com/docview/2498294859
https://pubmed.ncbi.nlm.nih.gov/PMC7906926
Volume 330
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECaCZOlStE0f7iNggSJTZEt86DEaRgInRVOjdYBsBCmRjRyDNmJ78JLfnjs97LhFG6CLBpGEpLsj-Z343R0hX8BJjgrjZBC5wgWikDbIbAjT3biQ5TCheI7RyN8u4-GVuLiW13tk0MbCIK2yWfvrNb1arZs7vUaavXlZ9n4CWEk5ngoi7E0ZBvEJkaCVd-8f0Ty4qEOm4zTA3tsont6kOwGf887iCQTDxaMbcva3_elP_Pk7jfLRvnT2gjxvACXt1-_8kuxZ_4ocj-qM1OsTOt4GWC1O6DEdbXNVrw_J5NTfVBwAWiVsKD0tMHtEXWiJmjUt8aH4dx_pqtA4RR7Hms4cRf6IWy1g6OjH93F_sKDIof9Fp-W8LIJpeWup1x588oZ695pcnZ2OB8OgKb8Q5IDxloEx6B2aJHeploYznRdhCujFwEVrnudJUchcMxbZyICPbaTNXAwtLrWp1IK_Ift-5u07Qp2OQ50wyTTjwjLAZGFkuCsymenYha5DRCt0lTe5ybFExlS1JLSJanSlUFfgtyjQVYd0N8PmdXKOpwakrUbVjpUp2ECeGvq5tQAFMxAFr72drRaKiVhEGTia4l99MrBQkcqsQ97WVrN5Y85BKIAjOiTZsadNB8wAvtviy5sqE3iShXHG4vf__1kfyDOGLB0scRN-JPvLu5X9BDBraY6qeXREDvrnX4eXDyLGLOs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9owFLc6etgu077HPj1p6qmBxB9JfESoFV1bhjYq9WbZid2GoYAKHPjv9x5JYGzaKu2SQ-ynJPaz_Xvx7_1MyGcIkqPcehlEPveByKULlAthuFsfsgwGFM8wG_lyGA-uxJdreX1A-k0uDNIq67m_mtM3s3V9p1u3ZndeFN3vAFZSjruCCHtTph6QQ1Snki1y2Ds7Hwx3TA8uqqzpOA3QYJfI0510JhB23jnchGA4f3RCzv62RP0JQX9nUv6yNJ0-IY9rTEl71Ws_JQeufEaORpUo9fqYjnc5VotjekRHO7nq9XMyOSlvNzQAutFsKEqao4BEddYStWta4EPxBz8yVqFwilSONZ15ihQSv1qA6ejb13Gvv6BIo7-h02Je5MG0-OFoaUoIy2v23QtydXoy7g-C-gSGIAOYtwysxQDRJplPjbScmSwPUwAwFi7G8CxL8lxmhrHIRRbCbCud8jGU-NSl0gj-krTKWeleE-pNHJqESWYYF44BLAsjy32upDKxD32biKbRdVbLk-MpGVPd8NAmuu4rjX0FoYuGvmqTztZsXulz3GeQNj2q9xxNwxpyn-mnxgM0DEJseFO62WqhmYhFpCDWFP-qo8BJRSpVm7yqvGb7xpxDowCUaJNkz5-2FVAEfL-kLG43YuCJCmPF4jf__1kfycPB-PJCX5wNz9-SRwxJO3jiTfiOtJZ3K_ceUNfSfqhH1U9OCy-c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Protein+Degradation+by+Intracellular+Delivery+of+Pre-Fused+PROTACs+Using+Lipid-like+Nanoparticles&rft.jtitle=Journal+of+controlled+release&rft.au=Chen%2C+Jinjin&rft.au=Qiu%2C+Min&rft.au=Ma%2C+Feihe&rft.au=Yang%2C+Liu&rft.date=2021-02-10&rft.issn=0168-3659&rft.eissn=1873-4995&rft.volume=330&rft.spage=1244&rft.epage=1249&rft_id=info:doi/10.1016%2Fj.jconrel.2020.11.032&rft_id=info%3Apmid%2F33234362&rft.externalDocID=PMC7906926
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-3659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-3659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-3659&client=summon