What causes the spread of model projections of ocean dynamic sea-level change in response to greenhouse gas forcing?

Sea levels of different atmosphere–ocean general circulation models (AOGCMs) respond to climate change forcing in different ways, representing a crucial uncertainty in climate change research. We isolate the role of the ocean dynamics in setting the spatial pattern of dynamic sea-level ( ζ ) change...

Full description

Saved in:
Bibliographic Details
Published inClimate dynamics Vol. 56; no. 1-2; pp. 155 - 187
Main Authors Couldrey, Matthew P., Gregory, Jonathan M., Boeira Dias, Fabio, Dobrohotoff, Peter, Domingues, Catia M., Garuba, Oluwayemi, Griffies, Stephen M., Haak, Helmuth, Hu, Aixue, Ishii, Masayoshi, Jungclaus, Johann, Köhl, Armin, Marsland, Simon J., Ojha, Sayantani, Saenko, Oleg A., Savita, Abhishek, Shao, Andrew, Stammer, Detlef, Suzuki, Tatsuo, Todd, Alexander, Zanna, Laure
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2021
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sea levels of different atmosphere–ocean general circulation models (AOGCMs) respond to climate change forcing in different ways, representing a crucial uncertainty in climate change research. We isolate the role of the ocean dynamics in setting the spatial pattern of dynamic sea-level ( ζ ) change by forcing several AOGCMs with prescribed identical heat, momentum (wind) and freshwater flux perturbations. This method produces a ζ projection spread comparable in magnitude to the spread that results from greenhouse gas forcing, indicating that the differences in ocean model formulation are the cause, rather than diversity in surface flux change. The heat flux change drives most of the global pattern of ζ change, while the momentum and water flux changes cause locally confined features. North Atlantic heat uptake causes large temperature and salinity driven density changes, altering local ocean transport and ζ . The spread between AOGCMs here is caused largely by differences in their regional transport adjustment, which redistributes heat that was already in the ocean prior to perturbation. The geographic details of the ζ change in the North Atlantic are diverse across models, but the underlying dynamic change is similar. In contrast, the heat absorbed by the Southern Ocean does not strongly alter the vertically coherent circulation. The Arctic ζ change is dissimilar across models, owing to differences in passive heat uptake and circulation change. Only the Arctic is strongly affected by nonlinear interactions between the three air-sea flux changes, and these are model specific.
AbstractList Sea levels of different atmosphere–ocean general circulation models (AOGCMs) respond to climate change forcing in different ways, representing a crucial uncertainty in climate change research. We isolate the role of the ocean dynamics in setting the spatial pattern of dynamic sea-level ( ζ ) change by forcing several AOGCMs with prescribed identical heat, momentum (wind) and freshwater flux perturbations. This method produces a ζ projection spread comparable in magnitude to the spread that results from greenhouse gas forcing, indicating that the differences in ocean model formulation are the cause, rather than diversity in surface flux change. The heat flux change drives most of the global pattern of ζ change, while the momentum and water flux changes cause locally confined features. North Atlantic heat uptake causes large temperature and salinity driven density changes, altering local ocean transport and ζ . The spread between AOGCMs here is caused largely by differences in their regional transport adjustment, which redistributes heat that was already in the ocean prior to perturbation. The geographic details of the ζ change in the North Atlantic are diverse across models, but the underlying dynamic change is similar. In contrast, the heat absorbed by the Southern Ocean does not strongly alter the vertically coherent circulation. The Arctic ζ change is dissimilar across models, owing to differences in passive heat uptake and circulation change. Only the Arctic is strongly affected by nonlinear interactions between the three air-sea flux changes, and these are model specific.
Sea levels of different atmosphere–ocean general circulation models (AOGCMs) respond to climate change forcing in different ways, representing a crucial uncertainty in climate change research. We isolate the role of the ocean dynamics in setting the spatial pattern of dynamic sea-level (ζ) change by forcing several AOGCMs with prescribed identical heat, momentum (wind) and freshwater flux perturbations. This method produces a ζ projection spread comparable in magnitude to the spread that results from greenhouse gas forcing, indicating that the differences in ocean model formulation are the cause, rather than diversity in surface flux change. The heat flux change drives most of the global pattern of ζ change, while the momentum and water flux changes cause locally confined features. North Atlantic heat uptake causes large temperature and salinity driven density changes, altering local ocean transport and ζ. The spread between AOGCMs here is caused largely by differences in their regional transport adjustment, which redistributes heat that was already in the ocean prior to perturbation. The geographic details of the ζ change in the North Atlantic are diverse across models, but the underlying dynamic change is similar. In contrast, the heat absorbed by the Southern Ocean does not strongly alter the vertically coherent circulation. The Arctic ζ change is dissimilar across models, owing to differences in passive heat uptake and circulation change. Only the Arctic is strongly affected by nonlinear interactions between the three air-sea flux changes, and these are model specific.
Sea levels of different atmosphere-ocean general circulation models (AOGCMs) respond to climate change forcing in different ways, representing a crucial uncertainty in climate change research. We isolate the role of the ocean dynamics in setting the spatial pattern of dynamic sea-level (ζ) change by forcing several AOGCMs with prescribed identical heat, momentum (wind) and freshwater flux perturbations. This method produces a ζ projection spread comparable in magnitude to the spread that results from greenhouse gas forcing, indicating that the differences in ocean model formulation are the cause, rather than diversity in surface flux change. The heat flux change drives most of the global pattern of ζ change, while the momentum and water flux changes cause locally confined features. North Atlantic heat uptake causes large temperature and salinity driven density changes, altering local ocean transport and ζ. The spread between AOGCMs here is caused largely by differences in their regional transport adjustment, which redistributes heat that was already in the ocean prior to perturbation. The geographic details of the ζ change in the North Atlantic are diverse across models, but the underlying dynamic change is similar. In contrast, the heat absorbed by the Southern Ocean does not strongly alter the vertically coherent circulation. The Arctic ζ change is dissimilar across models, owing to differences in passive heat uptake and circulation change. Only the Arctic is strongly affected by nonlinear interactions between the three air-sea flux changes, and these are model specific.
Audience Academic
Author Savita, Abhishek
Shao, Andrew
Hu, Aixue
Garuba, Oluwayemi
Gregory, Jonathan M.
Ojha, Sayantani
Suzuki, Tatsuo
Todd, Alexander
Domingues, Catia M.
Köhl, Armin
Zanna, Laure
Jungclaus, Johann
Stammer, Detlef
Griffies, Stephen M.
Marsland, Simon J.
Boeira Dias, Fabio
Dobrohotoff, Peter
Ishii, Masayoshi
Couldrey, Matthew P.
Saenko, Oleg A.
Haak, Helmuth
Author_xml – sequence: 1
  givenname: Matthew P.
  orcidid: 0000-0003-0587-0796
  surname: Couldrey
  fullname: Couldrey, Matthew P.
  email: m.p.couldrey@reading.ac.uk
  organization: National Centre for Atmospheric Science, University of Reading
– sequence: 2
  givenname: Jonathan M.
  orcidid: 0000-0003-1296-8644
  surname: Gregory
  fullname: Gregory, Jonathan M.
  organization: National Centre for Atmospheric Science, University of Reading, Met Office Hadley Centre
– sequence: 3
  givenname: Fabio
  orcidid: 0000-0002-2965-2120
  surname: Boeira Dias
  fullname: Boeira Dias, Fabio
  organization: Institute for Atmospheric and Earth System Research, University of Helsinki, Institute for Marine and Antarctic Studies, University of Tasmania, CSIRO Oceans and Atmosphere, ARC Centre of Excellence for Climate Extremes
– sequence: 4
  givenname: Peter
  orcidid: 0000-0001-7315-042X
  surname: Dobrohotoff
  fullname: Dobrohotoff, Peter
  organization: Institute for Marine and Antarctic Studies, University of Tasmania, CSIRO Oceans and Atmosphere
– sequence: 5
  givenname: Catia M.
  orcidid: 0000-0001-5100-4595
  surname: Domingues
  fullname: Domingues, Catia M.
  organization: Institute for Marine and Antarctic Studies, University of Tasmania, ARC Centre of Excellence for Climate Extremes, National Oceanography Centre
– sequence: 6
  givenname: Oluwayemi
  orcidid: 0000-0001-7931-7788
  surname: Garuba
  fullname: Garuba, Oluwayemi
  organization: Pacific Northwest National Laboratory
– sequence: 7
  givenname: Stephen M.
  orcidid: 0000-0002-3711-236X
  surname: Griffies
  fullname: Griffies, Stephen M.
  organization: NOAA Geophysical Fluid Dynamics Laboratory, Princeton University Program in Atmospheric and Oceanic Sciences
– sequence: 8
  givenname: Helmuth
  orcidid: 0000-0002-9883-5086
  surname: Haak
  fullname: Haak, Helmuth
  organization: Max Planck Institute for Meteorology
– sequence: 9
  givenname: Aixue
  orcidid: 0000-0002-1337-287X
  surname: Hu
  fullname: Hu, Aixue
  organization: National Center for Atmospheric Research
– sequence: 10
  givenname: Masayoshi
  orcidid: 0000-0002-2564-5548
  surname: Ishii
  fullname: Ishii, Masayoshi
  organization: Meteorological Research Institute
– sequence: 11
  givenname: Johann
  orcidid: 0000-0002-3849-4339
  surname: Jungclaus
  fullname: Jungclaus, Johann
  organization: Max Planck Institute for Meteorology
– sequence: 12
  givenname: Armin
  orcidid: 0000-0002-9777-674X
  surname: Köhl
  fullname: Köhl, Armin
  organization: Center für Erdsystemforschung und Nachhaltigkeit, Universität Hamburg
– sequence: 13
  givenname: Simon J.
  orcidid: 0000-0002-5664-5276
  surname: Marsland
  fullname: Marsland, Simon J.
  organization: Institute for Marine and Antarctic Studies, University of Tasmania, CSIRO Oceans and Atmosphere, ARC Centre of Excellence for Climate Extremes
– sequence: 14
  givenname: Sayantani
  surname: Ojha
  fullname: Ojha, Sayantani
  organization: Indian Institute of Space Science and Technology
– sequence: 15
  givenname: Oleg A.
  orcidid: 0000-0002-7168-7159
  surname: Saenko
  fullname: Saenko, Oleg A.
  organization: Canadian Centre for Climate Modelling and Analysis
– sequence: 16
  givenname: Abhishek
  orcidid: 0000-0003-2800-3636
  surname: Savita
  fullname: Savita, Abhishek
  organization: Institute for Marine and Antarctic Studies, University of Tasmania, CSIRO Oceans and Atmosphere, ARC Centre of Excellence for Climate Extremes
– sequence: 17
  givenname: Andrew
  orcidid: 0000-0003-3658-512X
  surname: Shao
  fullname: Shao, Andrew
  organization: Canadian Centre for Climate Modelling and Analysis
– sequence: 18
  givenname: Detlef
  orcidid: 0000-0002-5777-5347
  surname: Stammer
  fullname: Stammer, Detlef
  organization: Center für Erdsystemforschung und Nachhaltigkeit, Universität Hamburg
– sequence: 19
  givenname: Tatsuo
  orcidid: 0000-0002-6259-6466
  surname: Suzuki
  fullname: Suzuki, Tatsuo
  organization: Japan Agency for Marine-Earth Science and Technology
– sequence: 20
  givenname: Alexander
  orcidid: 0000-0001-5438-1011
  surname: Todd
  fullname: Todd, Alexander
  organization: University of Oxford
– sequence: 21
  givenname: Laure
  orcidid: 0000-0002-8472-4828
  surname: Zanna
  fullname: Zanna, Laure
  organization: University of Oxford, New York University Courant Institute
BookMark eNp9kk1r3DAQhk1JoZu0f6AnQaG0B6f6sCX7VEJom0Cg0A96FLI8srV4pa2kDc2_72w20G4OQQfB8LzDzDvvaXUSYoCqes3oOaNUfciUio7XlNOato1idfOsWrFGYKnrm5NqRXtBa9Wq9kV1mvOaUtZIxVdV-TWbQqzZZcikzEDyNoEZSXRkE0dYyDbFNdjiY8j7YrRgAhnvgtl4SzKYeoFbxOxswgTEB5IgbxEGUiKZEkCYIzYnk8nExWR9mD6-rJ47s2R49fCfVT8_f_pxeVXffP1yfXlxU9tWylIPyvZcWNsbaznrwEnlVM9bGKUQrhcdVXKUnPdibAYGgx3YSJWVnA0DH5wTZ9W7Q19c4vcOctEbny0siwmAQ2neqkYIzjhD9M0jdB13KeB0mjcdF5KyniJ1fqAms4D2wcWSjMU3AtqBJ3Ee6xeyRXfbrhUoeH8kQKbAnzKh31lff_92zL79j53BLGXOcdnde38M8gNoU8w5gdPb5Dcm3WlG9T4O-hAHjXHQ93HQDYq6RyLri9n3xhX88rRUHKSYDTwfpH_ePKH6CwI9yjg
CitedBy_id crossref_primary_10_1007_s00382_025_07591_1
crossref_primary_10_1029_2023GL105673
crossref_primary_10_1175_JPO_D_21_0224_1
crossref_primary_10_1016_j_ocemod_2022_102063
crossref_primary_10_1016_j_aosl_2022_100288
crossref_primary_10_1029_2023GL104688
crossref_primary_10_5194_gmd_15_7683_2022
crossref_primary_10_1175_JCLI_D_20_0603_1
crossref_primary_10_5194_gmd_17_1813_2024
crossref_primary_10_1007_s00382_023_06986_2
crossref_primary_10_1016_j_accre_2023_08_005
crossref_primary_10_1029_2022MS002999
crossref_primary_10_1038_s41561_023_01219_x
crossref_primary_10_1038_s41467_022_32540_5
crossref_primary_10_1007_s00382_023_06989_z
crossref_primary_10_1038_s43017_022_00345_1
crossref_primary_10_1007_s00382_023_06659_0
crossref_primary_10_1038_s43247_024_01849_y
crossref_primary_10_3389_fmars_2021_620570
crossref_primary_10_3389_fmars_2021_569992
crossref_primary_10_1175_JCLI_D_21_0827_1
crossref_primary_10_1038_s41558_024_02095_y
crossref_primary_10_1007_s00382_022_06231_2
crossref_primary_10_5194_os_19_499_2023
crossref_primary_10_1175_JCLI_D_21_0161_1
crossref_primary_10_1029_2022JC019105
crossref_primary_10_1007_s00382_022_06386_y
crossref_primary_10_1175_JCLI_D_22_0124_1
Cites_doi 10.5194/esd-4-11-2013
10.5194/gmd-4-723-2011
10.1007/s00382-015-2499-z
10.1038/s41598-017-04623-7
10.1002/qj.3397
10.5194/gmd-9-3231-2016
10.5194/gmd-9-1937-2016
10.1175/JCLI-D-11-00715.1
10.1007/s003820050010
10.1002/2016GL069803
10.5194/gmd-2019-177
10.1175/JCLI-D-14-00235.1
10.2151/jmsj.2019-051
10.1080/16742834.2020.1778419
10.5194/gmd-9-3993-2016
10.1029/2005JC003421
10.1029/2010GL042822
10.1029/2006GL029106
10.1029/2019MS001683
10.1002/2015JC010928
10.1175/2010JCLI3533.1
10.1007/s00376-012-2140-6
10.1175/JCLI-D-11-00695.1
10.1007/s00382-011-1057-6
10.1002/2016GL067679
10.1175/JTECH1864.1
10.5194/gmd-12-2727-2019
10.1175/JCLI-D-11-00560.1
10.1146/annurev-marine-121211-172406
10.1002/grl.50768
10.1134/S000143381004002X
10.1007/s00382-012-1636-1
10.1175/JCLI-D-12-00068.1
10.1007/s00382-011-1259-y
10.1038/s41586-020-2573-5
10.1002/2013GL058998
10.1175/JCLI-D-15-0200.1
10.5194/gmd-9-4521-2016
10.1126/science.aaa0940
10.1175/JCLI-D-18-0895.1
10.1111/j.1365-246X.2011.05090.x
10.1007/s00382-011-1063-8
10.5194/gmd-13-401-2020
10.1002/2013GL058104
10.2151/jmsj.2012-A02
10.1029/2019MS001916
10.1007/s00382-016-3262-9
10.1175/JCLI-D-19-1029.1
10.1175/JCLI3990.1
10.1007/s13351-019-8117-y
10.1007/s00382-013-1973-8
10.5194/gmd-6-687-2013
10.36334/modsim.2011.F5.collier
10.1038/s41586-020-2591-3
10.1126/science.aav7908
10.1016/j.ocemod.2019.101456
10.1029/2019GL085782
10.1175/JCLI-D-19-1016.1
10.1029/2019MS002027
10.1007/s10584-014-1080-9
10.1175/2010JCLI3679.1
10.1038/ngeo462
10.1175/JCLI-D-18-0186.1
10.1029/2019MS002010
10.1029/2018MS001400
10.1002/wcc.465
10.1175/JCLI-D-18-0796.1
10.1002/jame.20038
10.1175/2011JCLI3964.1
10.1002/2016GL071587
10.1126/science.aaa5727
10.1029/2019MS002025
10.1088/1748-9326/9/3/034004
10.1029/2018MS001370
10.1175/JCLI-D-17-0761.1
10.1007/s10712-019-09525-z
10.1175/JCLI-D-12-00296.1
10.1029/2019MS001791
10.1175/JCLI-D-17-0452.1
10.1002/2013MS000265
10.1007/s00382-013-1712-1
10.5194/gmd-4-845-2011
10.1071/ES19040
ContentType Journal Article
Copyright The Author(s) 2020
COPYRIGHT 2021 Springer
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: COPYRIGHT 2021 Springer
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
ISR
3V.
7TG
7TN
7UA
7XB
88F
88I
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
KL.
L.G
M1Q
M2P
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
7S9
L.6
DOI 10.1007/s00382-020-05471-4
DatabaseName Springer Nature OA Free Journals
CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Military Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Agricultural & Environmental Science & Pollution Managment
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Military Database
Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Military Collection
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Military Collection (Alumni Edition)
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional

AGRICOLA


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Oceanography
EISSN 1432-0894
EndPage 187
ExternalDocumentID A651465853
10_1007_s00382_020_05471_4
GeographicLocations United Kingdom
Arctic region
Arctic Ocean
Atlantic Ocean
Antarctic region
GeographicLocations_xml – name: United Kingdom
– name: Arctic region
– name: Atlantic Ocean
– name: Antarctic region
– name: Arctic Ocean
GrantInformation_xml – fundername: Biological and Environmental Research
  funderid: http://dx.doi.org/10.13039/100006206
– fundername: Marine Environmental Observation Prediction and Response Network
  funderid: http://dx.doi.org/10.13039/100012404
– fundername: Natural Environment Research Council
  grantid: NE/R000727/1
  funderid: http://dx.doi.org/10.13039/501100000270
– fundername: National Computational Infrastructure
  grantid: ly62
  funderid: http://dx.doi.org/10.13039/100010582
– fundername: Ministry of Education, Culture, Sports, Science and Technology
  grantid: JPMXD0717935457; JPMXD0717935561
  funderid: http://dx.doi.org/10.13039/501100001700
– fundername: Australian Research Council (AU)
  grantid: FT130101532; DP160103130
– fundername: Tasmanian Graduate Research Scholarship (AU)
– fundername: University of Reading
– fundername: Commonwealth Scientific and Industrial Research Organisation
  funderid: http://dx.doi.org/10.13039/501100000943
– fundername: Deutsche Forschungsgemeinschaft
  grantid: 1889
  funderid: http://dx.doi.org/10.13039/501100001659
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29B
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2XV
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67M
67Z
6NX
78A
7XC
88I
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
D1K
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IEP
IFM
IHE
IHR
IHW
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
KOW
LAS
LK5
LLZTM
M1Q
M2P
M4Y
M7R
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
Z5O
Z7R
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~02
~8M
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AEIIB
PMFND
7TG
7TN
7UA
7XB
8FK
ABRTQ
C1K
F1W
H96
KL.
L.G
PKEHL
PQEST
PQUKI
Q9U
7S9
L.6
ID FETCH-LOGICAL-c566t-b7c923cc9acc218ef67f7925ed633f938076d62293d4b1ebcb1d07c621bb2bff3
IEDL.DBID C6C
ISSN 0930-7575
IngestDate Thu Jul 10 22:11:03 EDT 2025
Sat Jul 26 00:08:46 EDT 2025
Tue Jun 10 20:19:51 EDT 2025
Fri Jun 27 04:22:05 EDT 2025
Thu May 22 21:19:43 EDT 2025
Tue Jul 01 01:29:27 EDT 2025
Thu Apr 24 23:10:32 EDT 2025
Fri Feb 21 02:48:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Climate change
Climate modeling
Ocean heat uptake
Sea-level rise
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c566t-b7c923cc9acc218ef67f7925ed633f938076d62293d4b1ebcb1d07c621bb2bff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7315-042X
0000-0002-2564-5548
0000-0003-3658-512X
0000-0002-3849-4339
0000-0002-6259-6466
0000-0002-3711-236X
0000-0001-5100-4595
0000-0001-5438-1011
0000-0002-8472-4828
0000-0002-7168-7159
0000-0002-1337-287X
0000-0002-9777-674X
0000-0003-0587-0796
0000-0002-2965-2120
0000-0001-7931-7788
0000-0002-5664-5276
0000-0003-1296-8644
0000-0002-9883-5086
0000-0003-2800-3636
0000-0002-5777-5347
OpenAccessLink https://doi.org/10.1007/s00382-020-05471-4
PQID 2482360190
PQPubID 54165
PageCount 33
ParticipantIDs proquest_miscellaneous_2574332121
proquest_journals_2482360190
gale_infotracacademiconefile_A651465853
gale_incontextgauss_ISR_A651465853
gale_healthsolutions_A651465853
crossref_primary_10_1007_s00382_020_05471_4
crossref_citationtrail_10_1007_s00382_020_05471_4
springer_journals_10_1007_s00382_020_05471_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Observational, Theoretical and Computational Research on the Climate System
PublicationTitle Climate dynamics
PublicationTitleAbbrev Clim Dyn
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References Kelley (CR38) 2020; 12
Slangen, Carson, Katsman, Van de Wal, Köhl, Vermeersen, Stammer (CR66) 2014; 124
Church, Stocker (CR11) 2013
Schmidt (CR63) 2014; 6
Saenko, Yang, Gregory, Spence, Myers (CR62) 2018; 31
Zelinka, Myers, McCoy, Po-Chedley, Caldwell, Ceppi, Klein, Taylor (CR89) 2020; 47
Xin, Dai, Li, Rong, Zhang (CR81) 2019; 33
Winton, Griffies, Samuels, Sarmiento, Frölicher (CR78) 2013; 26
Bronselaer, Zanna (CR8) 2020; 584
Kavvada, Ruiz-Barradas, Nigam (CR37) 2013; 41
Slangen, Katsman, Van de Wal, Vermeersen, Riva (CR65) 2012; 38
Wouters, Martin-Español, Helm, Flament, van Wessem, Ligtenberg, Van den Broeke, Bamber (CR79) 2015; 348
Yuan, Oreopoulos, Zelinka, Yu, Norris, Chin, Platnick, Meyer (CR85) 2016; 43
Boucher (CR5) 2020; 12
Séférian (CR64) 2019; 11
Gregory (CR26) 2019; 40
Mitrovica, Gomez, Morrow, Hay, Latychev, Tamisiea (CR53) 2011; 187
Voldoire (CR73) 2013; 40
Danabasoglu (CR13) 2020; 12
Griffies (CR27) 2011; 24
Swart (CR69) 2019
Perrette, Landerer, Riva, Frieler, Meinshausen (CR58) 2013
Tatebe (CR70) 2019; 12
Franzke, Lee, Feldstein (CR19) 2017; 48
Yin, Schlesinger, Stouffer (CR83) 2009; 2
Melet, Meyssignac (CR51) 2015; 28
CR2
He, Soden (CR31) 2016
Landerer, Jungclaus, Marotzke (CR42) 2007
Mauritsen (CR49) 2019; 11
Bouttes, Gregory (CR6) 2014; 9
Frankcombe, Spence, Hogg, England, Griffies (CR18) 2013; 40
Paolo, Fricker, Padman (CR56) 2015; 348
Volodin, Dianskii, Gusev (CR75) 2010; 46
Lowe, Gregory (CR46) 2006; 111
Stewart, Hogg (CR68) 2019; 143
Todd (CR71) 2020; 12
Yukimoto (CR87) 2019; 97
He (CR30) 2020
Larour, Seroussi, Adhikari, Ivins, Caron, Morlighem, Schlegel (CR43) 2019; 364
Liu, Lu, Xie, Fedorov (CR45) 2018; 31
Watanabe (CR77) 2011; 4
Turner, Bracegirdle, Phillips, Marshall, Hosking (CR72) 2013; 26
Exarchou, Kuhlbrodt, Gregory, Smith (CR16) 2015; 28
Bilbao, Gregory, Bouttes (CR3) 2015; 45
Ceppi, Brient, Zelinka, Hartmann (CR9) 2017; 8
Xie, Vallis (CR80) 2012; 38
Watanabe (CR76) 2010; 23
Hu, Taylor, Cai, Yang, Deng, Sejas (CR33) 2017
Yukimoto (CR86) 2012; 90
Jullion, Jones, Naveira Garabato, Meredith (CR35) 2010
Gordon, Cooper, Senior, Banks, Gregory, Johns, Mitchell, Wood (CR24) 2000
CR12
Griffies (CR28) 2016; 9
CR55
CR52
McDougall, Barker (CR50) 2011; 127
Saenko, Yang, Gregory, Spence, Myers (CR61) 2015; 120
Kostov, Armour, Marshall (CR40) 2014; 41
Zanna, Brankart, Huber, Leroux, Penduff, Williams (CR88) 2018; 145
Bouttes, Gregory, Kuhlbrodt, Smith (CR7) 2014; 43
Stammer, Cazenave, Ponte, Tamisiea (CR67) 2013; 5
Ponte (CR59) 2006; 23
Lyu, Zhang, Church (CR47) 2020; 33
Voldoire (CR74) 2019; 11
Huber, Zanna (CR34) 2017; 44
Yang, Saenko (CR82) 2012
Giorgetta (CR23) 2013; 5
Li (CR44) 2013; 30
Martin (CR48) 2011
Nowicki (CR54) 2016; 9
Park, Shin, Kim, Oh, Kim (CR57) 2019; 32
Eyring, Bony, Meehl, Senior, Stevens, Stouffer, Taylor (CR17) 2016
Held, Soden (CR32) 2006; 19
Yin, Griffies, Stouffer (CR84) 2010; 23
Garuba, Klinger (CR21) 2018; 31
Karlsson, Svensson (CR36) 2013; 40
Rugenstein, Winton, Stouffer, Griffies, Hallberg (CR60) 2013; 26
Boeira Dias, Fiedler, Marsland, Domingues, Rintoul, McDonagh, Mata, Savita (CR4) 2020; 33
Bentsen (CR1) 2013; 6
Kiss (CR39) 2020; 13
Chen, Wang, Xie, Liu (CR10) 2019; 32
Frederikse (CR20) 2020; 584
Gettelman (CR22) 2019
Gregory (CR25) 2016; 9
Hawkes (CR29) 2013
Dufresne (CR14) 2013; 40
Dunne (CR15) 2012; 25
Kuhlbrodt (CR41) 2018; 10
J-L Dufresne (5471_CR14) 2013; 40
M Watanabe (5471_CR76) 2010; 23
OA Saenko (5471_CR61) 2015; 120
E Exarchou (5471_CR16) 2015; 28
5471_CR2
MB Huber (5471_CR34) 2017; 44
J Karlsson (5471_CR36) 2013; 40
JA Lowe (5471_CR46) 2006; 111
AE Kiss (5471_CR39) 2020; 13
TJ McDougall (5471_CR50) 2011; 127
P Xie (5471_CR80) 2012; 38
V Eyring (5471_CR17) 2016
A Melet (5471_CR51) 2015; 28
IM Held (5471_CR32) 2006; 19
RAF Bilbao (5471_CR3) 2015; 45
K Lyu (5471_CR47) 2020; 33
S Watanabe (5471_CR77) 2011; 4
S Yukimoto (5471_CR86) 2012; 90
SM Griffies (5471_CR27) 2011; 24
A Voldoire (5471_CR73) 2013; 40
SM Griffies (5471_CR28) 2016; 9
J Turner (5471_CR72) 2013; 26
T Kuhlbrodt (5471_CR41) 2018; 10
GM Martin (5471_CR48) 2011
A Gettelman (5471_CR22) 2019
A Todd (5471_CR71) 2020; 12
PJ Hawkes (5471_CR29) 2013
JX Mitrovica (5471_CR53) 2011; 187
A Voldoire (5471_CR74) 2019; 11
EM Volodin (5471_CR75) 2010; 46
M Winton (5471_CR78) 2013; 26
B He (5471_CR30) 2020
X Hu (5471_CR33) 2017
JA Church (5471_CR11) 2013
NC Swart (5471_CR69) 2019
C Chen (5471_CR10) 2019; 32
J Yin (5471_CR83) 2009; 2
LM Frankcombe (5471_CR18) 2013; 40
N Bouttes (5471_CR6) 2014; 9
MA Giorgetta (5471_CR23) 2013; 5
R Séférian (5471_CR64) 2019; 11
MAA Rugenstein (5471_CR60) 2013; 26
JM Gregory (5471_CR26) 2019; 40
S Yukimoto (5471_CR87) 2019; 97
RM Ponte (5471_CR59) 2006; 23
ABA Slangen (5471_CR65) 2012; 38
5471_CR12
5471_CR55
T Mauritsen (5471_CR49) 2019; 11
5471_CR52
OA Saenko (5471_CR62) 2018; 31
N Bouttes (5471_CR7) 2014; 43
Y Kostov (5471_CR40) 2014; 41
B Bronselaer (5471_CR8) 2020; 584
FW Landerer (5471_CR42) 2007
OA Garuba (5471_CR21) 2018; 31
W Liu (5471_CR45) 2018; 31
B Wouters (5471_CR79) 2015; 348
M Perrette (5471_CR58) 2013
F Boeira Dias (5471_CR4) 2020; 33
GA Schmidt (5471_CR63) 2014; 6
MD Zelinka (5471_CR89) 2020; 47
JP Dunne (5471_CR15) 2012; 25
L Zanna (5471_CR88) 2018; 145
FS Paolo (5471_CR56) 2015; 348
Y Xin (5471_CR81) 2019; 33
S Park (5471_CR57) 2019; 32
T Yuan (5471_CR85) 2016; 43
C Gordon (5471_CR24) 2000
JM Gregory (5471_CR25) 2016; 9
J He (5471_CR31) 2016
P Ceppi (5471_CR9) 2017; 8
T Frederikse (5471_CR20) 2020; 584
H Tatebe (5471_CR70) 2019; 12
CLE Franzke (5471_CR19) 2017; 48
E Larour (5471_CR43) 2019; 364
O Boucher (5471_CR5) 2020; 12
L Jullion (5471_CR35) 2010
SMJ Nowicki (5471_CR54) 2016; 9
A Kavvada (5471_CR37) 2013; 41
ABA Slangen (5471_CR66) 2014; 124
KD Stewart (5471_CR68) 2019; 143
M Bentsen (5471_CR1) 2013; 6
Kelley (5471_CR38) 2020; 12
J Yin (5471_CR84) 2010; 23
L Li (5471_CR44) 2013; 30
G Danabasoglu (5471_CR13) 2020; 12
D Stammer (5471_CR67) 2013; 5
D Yang (5471_CR82) 2012
References_xml – year: 2013
  ident: CR58
  article-title: A scaling approach to project regional sea level rise and its uncertainties
  publication-title: Earth Syst Dyn
  doi: 10.5194/esd-4-11-2013
– volume: 26
  start-page: 2268
  year: 2013
  end-page: 2278
  ident: CR78
  article-title: Connecting changing ocean circulation with changing climate
  publication-title: J Clim
– volume: 13
  start-page: 401
  year: 2020
  end-page: 442
  ident: CR39
  article-title: ACCESS-OM2 v1. 0: a global ocean-sea ice model at three resolutions
  publication-title: Geosci Model Dev
– year: 2011
  ident: CR48
  article-title: The HadGEM2 family of Met Office Unified Model climate configurations
  publication-title: Geosci Model Dev
  doi: 10.5194/gmd-4-723-2011
– ident: CR12
– volume: 187
  start-page: 729
  year: 2011
  end-page: 742
  ident: CR53
  article-title: On the robustness of predictions of sea level fingerprints
  publication-title: Geophys J Int
– volume: 348
  start-page: 327
  year: 2015
  end-page: 331
  ident: CR56
  article-title: Volume loss from Antarctic ice shelves is accelerating
  publication-title: Science
– volume: 43
  start-page: 1349
  year: 2016
  end-page: 1356
  ident: CR85
  article-title: Positive low cloud and dust feedbacks amplify tropical North Atlantic Multidecadal Oscillation
  publication-title: Geophys Res Lett
– volume: 12
  start-page: e2019MS001916
  year: 2020
  ident: CR13
  article-title: The community earth system model version 2 (CESM2)
  publication-title: J Adv Model Earth Syst
– volume: 33
  start-page: 6377
  year: 2020
  end-page: 6398
  ident: CR47
  article-title: Regional dynamic sea level simulated in the CMIP5 and CMIP6 models: mean biases, future projections, and their linkages
  publication-title: J. Clim
– volume: 124
  start-page: 317
  year: 2014
  end-page: 332
  ident: CR66
  article-title: Projecting twenty-first century regional sea-level changes
  publication-title: Clim Change
– volume: 127
  start-page: 1
  year: 2011
  end-page: 28
  ident: CR50
  article-title: Getting started with TEOS-10 and the Gibbs Seawater (GSW) oceanographic toolbox
  publication-title: SCOR/IAPSO WG
– volume: 45
  start-page: 2647
  year: 2015
  end-page: 2666
  ident: CR3
  article-title: Analysis of the regional pattern of sea level change due to ocean dynamics and density change for 1993–2099 in observations and CMIP5 AOGCMs
  publication-title: Clim Dyn
  doi: 10.1007/s00382-015-2499-z
– volume: 40
  start-page: 5710
  year: 2013
  end-page: 5715
  ident: CR18
  article-title: Sea level changes forced by Southern Ocean winds
  publication-title: Geophys Res Lett
– volume: 46
  start-page: 414
  year: 2010
  end-page: 431
  ident: CR75
  article-title: Simulating present-day climate with the INMCM4. 0 coupled model of the atmospheric and oceanic general circulations
  publication-title: Izv Atmos Ocean Phys
– volume: 12
  start-page: 1
  year: 2020
  end-page: 52
  ident: CR5
  article-title: Presentation and evaluation of the IPSL-CM6A-LR climate model
  publication-title: J Adv Model Earth Syst
– volume: 6
  start-page: 687
  year: 2013
  end-page: 720
  ident: CR1
  article-title: The Norwegian earth system model, NorESM1-M—Part 1: description and basic evaluation of the physical climate
  publication-title: Geosci Model Dev
– volume: 23
  start-page: 6312
  year: 2010
  end-page: 6335
  ident: CR76
  article-title: Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity
  publication-title: J Clim
– volume: 38
  start-page: 667
  year: 2012
  end-page: 684
  ident: CR80
  article-title: The passive and active nature of ocean heat uptake in idealized climate change experiments
  publication-title: Clim Dyn
– start-page: 1137
  year: 2013
  end-page: 1216
  ident: CR11
  article-title: Sea Level Change
  publication-title: Climate Change 2013: The Physical Science Basis Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
– volume: 40
  start-page: 2123
  year: 2013
  end-page: 2165
  ident: CR14
  article-title: Climate change projections using the IPSL-CM5 earth system model: from CMIP3 to CMIP5
  publication-title: Clim Dyn
– volume: 9
  start-page: 4521
  year: 2016
  ident: CR54
  article-title: Ice sheet model intercomparison project (ISMIP6) contribution to CMIP6
  publication-title: Geosci Model Dev
– volume: 31
  start-page: 4727
  year: 2018
  end-page: 4743
  ident: CR45
  article-title: Southern Ocean heat uptake, redistribution, and storage in a warming climate: the role of meridional overturning circulation
  publication-title: J Clim
– volume: 26
  start-page: 609
  year: 2013
  end-page: 621
  ident: CR60
  article-title: Northern high-latitude heat budget decomposition and transient warming
  publication-title: J Clim
– year: 2017
  ident: CR33
  article-title: Inter-model warming projection spread: inherited traits from control climate diversity
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-04623-7
– volume: 12
  start-page: e2019MS002027
  year: 2020
  ident: CR71
  article-title: Ocean-only FAFMIP: understanding regional patterns of Ocean Heat Content and dynamic sea level change
  publication-title: J Adv Model Earth Syst
– volume: 26
  start-page: 1473
  year: 2013
  end-page: 1484
  ident: CR72
  article-title: An initial assessment of Antarctic sea ice extent in the CMIP5 models
  publication-title: J Clim
– volume: 25
  start-page: 6646
  year: 2012
  end-page: 6665
  ident: CR15
  article-title: GFDL’s ESM2 global coupled climate–carbon earth system models. Part I: physical formulation and baseline simulation characteristics
  publication-title: J Clim
– volume: 120
  start-page: 5749
  year: 2015
  end-page: 5765
  ident: CR61
  article-title: Separating the influence of projected changes in air temperature and wind on patterns of sea level change and ocean heat content
  publication-title: J Geophys Res Ocean
– volume: 40
  start-page: 1251
  year: 2019
  end-page: 1289
  ident: CR26
  article-title: Concepts and terminology for sea level: mean, variability and change, both local and global
  publication-title: Surv Geophys
– volume: 28
  start-page: 9918
  year: 2015
  end-page: 9940
  ident: CR51
  article-title: Explaining the spread in global mean thermosteric sea level rise in CMIP5 climate models
  publication-title: J Clim
– volume: 584
  start-page: 393
  year: 2020
  end-page: 397
  ident: CR20
  article-title: The causes of sea-level rise since 1900
  publication-title: Nature
– volume: 145
  start-page: 160
  year: 2018
  end-page: 175
  ident: CR88
  article-title: Uncertainty and scale interactions in ocean ensembles: From seasonal forecasts to multidecadal climate predictions
  publication-title: Q J R Meteorol Soc
  doi: 10.1002/qj.3397
– volume: 23
  start-page: 619
  year: 2006
  end-page: 629
  ident: CR59
  article-title: Low-frequency sea level variability and the inverted barometer effect
  publication-title: J Atmos Ocean Technol
– volume: 9
  start-page: 3231
  year: 2016
  end-page: 3296
  ident: CR28
  article-title: OMIP contribution to CMIP6: Experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project
  publication-title: Geosci Model Dev
  doi: 10.5194/gmd-9-3231-2016
– volume: 41
  start-page: 2108
  year: 2014
  end-page: 2116
  ident: CR40
  article-title: Impact of the Atlantic meridional overturning circulation on ocean heat storage and transient climate change
  publication-title: Geophys Res Lett
– volume: 9
  start-page: 34004
  year: 2014
  ident: CR6
  article-title: Attribution of the spatial pattern of CO2-forced sea level change to ocean surface flux changes
  publication-title: Environ Res Lett
– year: 2016
  ident: CR17
  article-title: Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization
  publication-title: Geosci Model Dev
  doi: 10.5194/gmd-9-1937-2016
– year: 2012
  ident: CR82
  article-title: Ocean heat transport and its projected change in CanESM2
  publication-title: J Clim
  doi: 10.1175/JCLI-D-11-00715.1
– year: 2000
  ident: CR24
  article-title: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments
  publication-title: Dyn Clim
  doi: 10.1007/s003820050010
– volume: 40
  start-page: 4374
  year: 2013
  end-page: 4379
  ident: CR36
  article-title: Consequences of poor representation of Arctic sea-ice albedo and cloud-radiation interactions in the CMIP5 model ensemble
  publication-title: Geophys Res Lett
– volume: 12
  start-page: e2019MS002025
  year: 2020
  ident: CR38
  article-title: GISS-E21: configurations and climatology
  publication-title: J Adv Model Earth Syst
– volume: 30
  start-page: 543
  year: 2013
  end-page: 560
  ident: CR44
  article-title: The flexible global ocean-atmosphere-land system model, Grid-point Version 2: FGOALS-g2
  publication-title: Adv Atmos Sci
– volume: 10
  start-page: 2865
  year: 2018
  end-page: 2888
  ident: CR41
  article-title: The low-resolution version of HadGEM3 GC3.1: development and evaluation for global climate
  publication-title: J Adv Model Earth Syst
– volume: 6
  start-page: 141
  year: 2014
  end-page: 184
  ident: CR63
  article-title: Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive
  publication-title: J Adv Model Earth Syst
– volume: 8
  start-page: e465
  year: 2017
  ident: CR9
  article-title: Cloud feedback mechanisms and their representation in global climate models
  publication-title: Wiley Interdiscip Rev Clim Chang
– volume: 348
  start-page: 899
  year: 2015
  end-page: 903
  ident: CR79
  article-title: Dynamic thinning of glaciers on the Southern Antarctic Peninsula
  publication-title: Science
– ident: CR2
– volume: 2
  start-page: 262
  year: 2009
  end-page: 266
  ident: CR83
  article-title: Model projections of rapid sea-level rise on the northeast coast of the United States
  publication-title: Nat Geosci
– year: 2016
  ident: CR31
  article-title: The impact of SST biases on projections of anthropogenic climate change: a greater role for atmosphere-only models?
  publication-title: Geophys Res Lett
  doi: 10.1002/2016GL069803
– year: 2019
  ident: CR22
  publication-title: The Whole Atmosphere Community Climate Model Version 6 (WACCM6)
– volume: 4
  start-page: 845
  year: 2011
  ident: CR77
  article-title: MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments
  publication-title: Geosci Model Dev
– volume: 90
  start-page: 23
  year: 2012
  end-page: 64
  ident: CR86
  article-title: A new global climate model of the Meteorological Research Institute: MRI-CGCM3—model description and basic performance
  publication-title: J Meteorol Soc Japan Ser II
– volume: 19
  start-page: 5686
  year: 2006
  end-page: 5699
  ident: CR32
  article-title: Robust responses of the hydrological cycle to global warming
  publication-title: J Clim
– volume: 143
  start-page: 101456
  year: 2019
  ident: CR68
  article-title: Southern Ocean heat and momentum uptake are sensitive to the vertical resolution at the ocean surface
  publication-title: Ocean Model
– start-page: 895
  year: 2013
  end-page: 900
  ident: CR29
  publication-title: Sea level change
– volume: 32
  start-page: 7437
  year: 2019
  end-page: 7451
  ident: CR10
  article-title: Why does global warming weaken the Gulf stream but intensify the Kuroshio?
  publication-title: J Clim
– volume: 44
  start-page: 1402
  year: 2017
  end-page: 1413
  ident: CR34
  article-title: Drivers of uncertainty in simulated ocean circulation and heat uptake
  publication-title: Geophys Res Lett
– volume: 12
  start-page: 2727
  year: 2019
  end-page: 2765
  ident: CR70
  article-title: Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6
  publication-title: Geosci Model Dev
– year: 2019
  ident: CR69
  article-title: The Canadian Earth System Model version 5 (CanESM5.0.3)
  publication-title: Geosci Model Dev Discuss
  doi: 10.5194/gmd-2019-177
– volume: 23
  start-page: 4585
  year: 2010
  end-page: 4607
  ident: CR84
  article-title: Spatial variability of sea level rise in twenty-first century projections
  publication-title: J Clim
– volume: 11
  start-page: 998
  year: 2019
  end-page: 1038
  ident: CR49
  article-title: Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1. 2) and its response to increasing CO2
  publication-title: J Adv Model Earth Syst
– volume: 33
  start-page: 251
  year: 2019
  end-page: 263
  ident: CR81
  article-title: Coupling the common land model to echam5 atmospheric general circulation model
  publication-title: J Meteorol Res
– volume: 28
  start-page: 887
  year: 2015
  end-page: 908
  ident: CR16
  article-title: Ocean heat uptake processes: a model intercomparison
  publication-title: J Clim
  doi: 10.1175/JCLI-D-14-00235.1
– volume: 48
  start-page: 3247
  year: 2017
  end-page: 3260
  ident: CR19
  article-title: Evaluating Arctic warming mechanisms in CMIP5 models
  publication-title: Clim Dyn
– volume: 97
  start-page: 931
  year: 2019
  end-page: 965
  ident: CR87
  article-title: The Meteorological Research Institute Earth System Model version 2.0, MRI-ESM2.0: description and basic evaluation of the physical component
  publication-title: J Meteorol Soc Japan Ser II
  doi: 10.2151/jmsj.2019-051
– year: 2020
  ident: CR30
  article-title: CAS FGOALS-f3-L model dataset descriptions for CMIP6 DECK experiments
  publication-title: Atmos Ocean Sci Lett
  doi: 10.1080/16742834.2020.1778419
– volume: 38
  start-page: 1191
  year: 2012
  end-page: 1209
  ident: CR65
  article-title: Towards regional projections of twenty-first century sea-level change based on IPCC SRES scenarios
  publication-title: Clim Dyn
– ident: CR52
– volume: 5
  start-page: 572
  year: 2013
  end-page: 597
  ident: CR23
  article-title: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the coupled model intercomparison project phase 5
  publication-title: J Adv Model Earth Syst
– volume: 364
  start-page: eaav7908
  year: 2019
  ident: CR43
  article-title: Slowdown in Antarctic mass loss from solid Earth and sea-level feedbacks
  publication-title: Science
– volume: 9
  start-page: 3993
  year: 2016
  end-page: 4017
  ident: CR25
  article-title: The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) contribution to CMIP6: Investigation of sea-level and ocean climate change in response to CO2 forcing
  publication-title: Geosci Model Dev
  doi: 10.5194/gmd-9-3993-2016
– volume: 111
  start-page: 1
  year: 2006
  end-page: 12
  ident: CR46
  article-title: Understanding projections of sea level rise in a Hadley Centre coupled climate model
  publication-title: J Geophys Res Ocean
  doi: 10.1029/2005JC003421
– volume: 41
  start-page: 1345
  year: 2013
  end-page: 1364
  ident: CR37
  article-title: AMO’s structure and climate footprint in observations and IPCC AR5 climate simulations
  publication-title: Clim Dyn
– volume: 11
  start-page: 4182
  year: 2019
  end-page: 4227
  ident: CR64
  article-title: Evaluation of CNRM earth-system model, CNRM-ESM 2–1: role of earth system processes in present-day and future climate
  publication-title: J Adv Model Earth Syst
– volume: 5
  start-page: 21
  year: 2013
  end-page: 46
  ident: CR67
  article-title: Causes for contemporary regional sea level changes
  publication-title: Ann Rev Mar Sci
– volume: 31
  start-page: 6157
  year: 2018
  end-page: 6173
  ident: CR21
  article-title: The role of individual surface flux components in the passive and active ocean heat uptake
  publication-title: J Clim
– ident: CR55
– year: 2010
  ident: CR35
  article-title: Wind-controlled export of Antarctic Bottom Water from the Weddell Sea
  publication-title: Geophys Res Lett
  doi: 10.1029/2010GL042822
– year: 2007
  ident: CR42
  article-title: Ocean bottom pressure changes lead to a decreasing length-of-day in a warming climate
  publication-title: Geophys Res Lett
  doi: 10.1029/2006GL029106
– volume: 11
  start-page: 2177
  year: 2019
  end-page: 2213
  ident: CR74
  article-title: Evaluation of CMIP6 DECK experiments with CNRM-CM6-1
  publication-title: J Adv Model Earth Syst
  doi: 10.1029/2019MS001683
– volume: 33
  start-page: 9065
  year: 2020
  end-page: 9082
  ident: CR4
  article-title: Ocean heat storage in response to changing ocean circulation processes
  publication-title: J. Clim
– volume: 32
  start-page: 2917
  year: 2019
  end-page: 2949
  ident: CR57
  article-title: Global Climate Simulated by the Seoul National University Atmosphere Model Version 0 with a Unified Convection Scheme (SAM0-UNICON)
  publication-title: J Clim
– volume: 43
  start-page: 1531
  year: 2014
  end-page: 1544
  ident: CR7
  article-title: The drivers of projected North Atlantic sea level change
  publication-title: Clim Dyn
– volume: 31
  start-page: 8589
  year: 2018
  end-page: 8606
  ident: CR62
  article-title: Impact of mesoscale Eddy transfer on heat uptake in an Eddy-parameterizing ocean model
  publication-title: J Clim
– volume: 40
  start-page: 2091
  year: 2013
  end-page: 2121
  ident: CR73
  article-title: The CNRM-CM5. 1 global climate model: description and basic evaluation
  publication-title: Clim Dyn
– volume: 24
  start-page: 3520
  year: 2011
  end-page: 3544
  ident: CR27
  article-title: The GFDL CM3 coupled climate model: characteristics of the ocean and sea ice simulations
  publication-title: J Clim
– volume: 584
  start-page: 227
  year: 2020
  end-page: 233
  ident: CR8
  article-title: Heat and carbon coupling reveals ocean warming due to circulation changes
  publication-title: Nature
– volume: 47
  start-page: e2019GL085782
  year: 2020
  ident: CR89
  article-title: Causes of higher climate sensitivity in CMIP6 models
  publication-title: Geophys Res Lett
– volume: 120
  start-page: 5749
  year: 2015
  ident: 5471_CR61
  publication-title: J Geophys Res Ocean
  doi: 10.1002/2015JC010928
– volume: 23
  start-page: 4585
  year: 2010
  ident: 5471_CR84
  publication-title: J Clim
  doi: 10.1175/2010JCLI3533.1
– volume: 30
  start-page: 543
  year: 2013
  ident: 5471_CR44
  publication-title: Adv Atmos Sci
  doi: 10.1007/s00376-012-2140-6
– volume: 26
  start-page: 609
  year: 2013
  ident: 5471_CR60
  publication-title: J Clim
  doi: 10.1175/JCLI-D-11-00695.1
– volume: 38
  start-page: 1191
  year: 2012
  ident: 5471_CR65
  publication-title: Clim Dyn
  doi: 10.1007/s00382-011-1057-6
– volume: 43
  start-page: 1349
  year: 2016
  ident: 5471_CR85
  publication-title: Geophys Res Lett
  doi: 10.1002/2016GL067679
– volume: 23
  start-page: 619
  year: 2006
  ident: 5471_CR59
  publication-title: J Atmos Ocean Technol
  doi: 10.1175/JTECH1864.1
– volume: 12
  start-page: 2727
  year: 2019
  ident: 5471_CR70
  publication-title: Geosci Model Dev
  doi: 10.5194/gmd-12-2727-2019
– volume: 25
  start-page: 6646
  year: 2012
  ident: 5471_CR15
  publication-title: J Clim
  doi: 10.1175/JCLI-D-11-00560.1
– year: 2019
  ident: 5471_CR69
  publication-title: Geosci Model Dev Discuss
  doi: 10.5194/gmd-2019-177
– volume: 5
  start-page: 21
  year: 2013
  ident: 5471_CR67
  publication-title: Ann Rev Mar Sci
  doi: 10.1146/annurev-marine-121211-172406
– volume: 40
  start-page: 4374
  year: 2013
  ident: 5471_CR36
  publication-title: Geophys Res Lett
  doi: 10.1002/grl.50768
– volume: 46
  start-page: 414
  year: 2010
  ident: 5471_CR75
  publication-title: Izv Atmos Ocean Phys
  doi: 10.1134/S000143381004002X
– volume: 40
  start-page: 2123
  year: 2013
  ident: 5471_CR14
  publication-title: Clim Dyn
  doi: 10.1007/s00382-012-1636-1
– volume: 26
  start-page: 1473
  year: 2013
  ident: 5471_CR72
  publication-title: J Clim
  doi: 10.1175/JCLI-D-12-00068.1
– year: 2012
  ident: 5471_CR82
  publication-title: J Clim
  doi: 10.1175/JCLI-D-11-00715.1
– volume: 40
  start-page: 2091
  year: 2013
  ident: 5471_CR73
  publication-title: Clim Dyn
  doi: 10.1007/s00382-011-1259-y
– volume: 9
  start-page: 3993
  year: 2016
  ident: 5471_CR25
  publication-title: Geosci Model Dev
  doi: 10.5194/gmd-9-3993-2016
– volume: 584
  start-page: 227
  year: 2020
  ident: 5471_CR8
  publication-title: Nature
  doi: 10.1038/s41586-020-2573-5
– volume: 145
  start-page: 160
  year: 2018
  ident: 5471_CR88
  publication-title: Q J R Meteorol Soc
  doi: 10.1002/qj.3397
– volume: 41
  start-page: 2108
  year: 2014
  ident: 5471_CR40
  publication-title: Geophys Res Lett
  doi: 10.1002/2013GL058998
– volume: 28
  start-page: 9918
  year: 2015
  ident: 5471_CR51
  publication-title: J Clim
  doi: 10.1175/JCLI-D-15-0200.1
– volume: 9
  start-page: 4521
  year: 2016
  ident: 5471_CR54
  publication-title: Geosci Model Dev
  doi: 10.5194/gmd-9-4521-2016
– volume: 348
  start-page: 327
  year: 2015
  ident: 5471_CR56
  publication-title: Science
  doi: 10.1126/science.aaa0940
– volume: 32
  start-page: 7437
  year: 2019
  ident: 5471_CR10
  publication-title: J Clim
  doi: 10.1175/JCLI-D-18-0895.1
– year: 2007
  ident: 5471_CR42
  publication-title: Geophys Res Lett
  doi: 10.1029/2006GL029106
– volume: 187
  start-page: 729
  year: 2011
  ident: 5471_CR53
  publication-title: Geophys J Int
  doi: 10.1111/j.1365-246X.2011.05090.x
– ident: 5471_CR55
– volume: 38
  start-page: 667
  year: 2012
  ident: 5471_CR80
  publication-title: Clim Dyn
  doi: 10.1007/s00382-011-1063-8
– year: 2020
  ident: 5471_CR30
  publication-title: Atmos Ocean Sci Lett
  doi: 10.1080/16742834.2020.1778419
– volume: 45
  start-page: 2647
  year: 2015
  ident: 5471_CR3
  publication-title: Clim Dyn
  doi: 10.1007/s00382-015-2499-z
– volume: 28
  start-page: 887
  year: 2015
  ident: 5471_CR16
  publication-title: J Clim
  doi: 10.1175/JCLI-D-14-00235.1
– volume: 13
  start-page: 401
  year: 2020
  ident: 5471_CR39
  publication-title: Geosci Model Dev
  doi: 10.5194/gmd-13-401-2020
– volume: 40
  start-page: 5710
  year: 2013
  ident: 5471_CR18
  publication-title: Geophys Res Lett
  doi: 10.1002/2013GL058104
– volume: 90
  start-page: 23
  year: 2012
  ident: 5471_CR86
  publication-title: J Meteorol Soc Japan Ser II
  doi: 10.2151/jmsj.2012-A02
– year: 2017
  ident: 5471_CR33
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-04623-7
– volume: 12
  start-page: e2019MS001916
  year: 2020
  ident: 5471_CR13
  publication-title: J Adv Model Earth Syst
  doi: 10.1029/2019MS001916
– volume: 48
  start-page: 3247
  year: 2017
  ident: 5471_CR19
  publication-title: Clim Dyn
  doi: 10.1007/s00382-016-3262-9
– volume: 111
  start-page: 1
  year: 2006
  ident: 5471_CR46
  publication-title: J Geophys Res Ocean
  doi: 10.1029/2005JC003421
– volume: 33
  start-page: 6377
  year: 2020
  ident: 5471_CR47
  publication-title: J. Clim
  doi: 10.1175/JCLI-D-19-1029.1
– volume: 19
  start-page: 5686
  year: 2006
  ident: 5471_CR32
  publication-title: J Clim
  doi: 10.1175/JCLI3990.1
– volume: 33
  start-page: 251
  year: 2019
  ident: 5471_CR81
  publication-title: J Meteorol Res
  doi: 10.1007/s13351-019-8117-y
– volume: 43
  start-page: 1531
  year: 2014
  ident: 5471_CR7
  publication-title: Clim Dyn
  doi: 10.1007/s00382-013-1973-8
– year: 2011
  ident: 5471_CR48
  publication-title: Geosci Model Dev
  doi: 10.5194/gmd-4-723-2011
– volume: 6
  start-page: 687
  year: 2013
  ident: 5471_CR1
  publication-title: Geosci Model Dev
  doi: 10.5194/gmd-6-687-2013
– ident: 5471_CR12
  doi: 10.36334/modsim.2011.F5.collier
– volume: 584
  start-page: 393
  year: 2020
  ident: 5471_CR20
  publication-title: Nature
  doi: 10.1038/s41586-020-2591-3
– volume: 364
  start-page: eaav7908
  year: 2019
  ident: 5471_CR43
  publication-title: Science
  doi: 10.1126/science.aav7908
– ident: 5471_CR52
– volume: 143
  start-page: 101456
  year: 2019
  ident: 5471_CR68
  publication-title: Ocean Model
  doi: 10.1016/j.ocemod.2019.101456
– volume: 47
  start-page: e2019GL085782
  year: 2020
  ident: 5471_CR89
  publication-title: Geophys Res Lett
  doi: 10.1029/2019GL085782
– volume: 33
  start-page: 9065
  year: 2020
  ident: 5471_CR4
  publication-title: J. Clim
  doi: 10.1175/JCLI-D-19-1016.1
– year: 2013
  ident: 5471_CR58
  publication-title: Earth Syst Dyn
  doi: 10.5194/esd-4-11-2013
– volume: 12
  start-page: e2019MS002027
  year: 2020
  ident: 5471_CR71
  publication-title: J Adv Model Earth Syst
  doi: 10.1029/2019MS002027
– volume: 124
  start-page: 317
  year: 2014
  ident: 5471_CR66
  publication-title: Clim Change
  doi: 10.1007/s10584-014-1080-9
– start-page: 1137
  volume-title: Climate Change 2013: The Physical Science Basis Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2013
  ident: 5471_CR11
– volume: 23
  start-page: 6312
  year: 2010
  ident: 5471_CR76
  publication-title: J Clim
  doi: 10.1175/2010JCLI3679.1
– volume: 2
  start-page: 262
  year: 2009
  ident: 5471_CR83
  publication-title: Nat Geosci
  doi: 10.1038/ngeo462
– volume: 31
  start-page: 8589
  year: 2018
  ident: 5471_CR62
  publication-title: J Clim
  doi: 10.1175/JCLI-D-18-0186.1
– volume: 12
  start-page: 1
  year: 2020
  ident: 5471_CR5
  publication-title: J Adv Model Earth Syst
  doi: 10.1029/2019MS002010
– volume: 11
  start-page: 998
  year: 2019
  ident: 5471_CR49
  publication-title: J Adv Model Earth Syst
  doi: 10.1029/2018MS001400
– volume: 8
  start-page: e465
  year: 2017
  ident: 5471_CR9
  publication-title: Wiley Interdiscip Rev Clim Chang
  doi: 10.1002/wcc.465
– year: 2016
  ident: 5471_CR31
  publication-title: Geophys Res Lett
  doi: 10.1002/2016GL069803
– volume: 32
  start-page: 2917
  year: 2019
  ident: 5471_CR57
  publication-title: J Clim
  doi: 10.1175/JCLI-D-18-0796.1
– volume: 127
  start-page: 1
  year: 2011
  ident: 5471_CR50
  publication-title: SCOR/IAPSO WG
– volume: 5
  start-page: 572
  year: 2013
  ident: 5471_CR23
  publication-title: J Adv Model Earth Syst
  doi: 10.1002/jame.20038
– year: 2010
  ident: 5471_CR35
  publication-title: Geophys Res Lett
  doi: 10.1029/2010GL042822
– volume: 24
  start-page: 3520
  year: 2011
  ident: 5471_CR27
  publication-title: J Clim
  doi: 10.1175/2011JCLI3964.1
– volume: 44
  start-page: 1402
  year: 2017
  ident: 5471_CR34
  publication-title: Geophys Res Lett
  doi: 10.1002/2016GL071587
– volume: 348
  start-page: 899
  year: 2015
  ident: 5471_CR79
  publication-title: Science
  doi: 10.1126/science.aaa5727
– volume: 12
  start-page: e2019MS002025
  year: 2020
  ident: 5471_CR38
  publication-title: J Adv Model Earth Syst
  doi: 10.1029/2019MS002025
– volume: 9
  start-page: 34004
  year: 2014
  ident: 5471_CR6
  publication-title: Environ Res Lett
  doi: 10.1088/1748-9326/9/3/034004
– start-page: 895
  volume-title: Sea level change
  year: 2013
  ident: 5471_CR29
– volume: 10
  start-page: 2865
  year: 2018
  ident: 5471_CR41
  publication-title: J Adv Model Earth Syst
  doi: 10.1029/2018MS001370
– volume: 31
  start-page: 4727
  year: 2018
  ident: 5471_CR45
  publication-title: J Clim
  doi: 10.1175/JCLI-D-17-0761.1
– year: 2000
  ident: 5471_CR24
  publication-title: Dyn Clim
  doi: 10.1007/s003820050010
– volume: 40
  start-page: 1251
  year: 2019
  ident: 5471_CR26
  publication-title: Surv Geophys
  doi: 10.1007/s10712-019-09525-z
– volume: 97
  start-page: 931
  year: 2019
  ident: 5471_CR87
  publication-title: J Meteorol Soc Japan Ser II
  doi: 10.2151/jmsj.2019-051
– year: 2016
  ident: 5471_CR17
  publication-title: Geosci Model Dev
  doi: 10.5194/gmd-9-1937-2016
– volume: 26
  start-page: 2268
  year: 2013
  ident: 5471_CR78
  publication-title: J Clim
  doi: 10.1175/JCLI-D-12-00296.1
– volume: 11
  start-page: 4182
  year: 2019
  ident: 5471_CR64
  publication-title: J Adv Model Earth Syst
  doi: 10.1029/2019MS001791
– volume: 31
  start-page: 6157
  year: 2018
  ident: 5471_CR21
  publication-title: J Clim
  doi: 10.1175/JCLI-D-17-0452.1
– volume: 6
  start-page: 141
  year: 2014
  ident: 5471_CR63
  publication-title: J Adv Model Earth Syst
  doi: 10.1002/2013MS000265
– volume-title: The Whole Atmosphere Community Climate Model Version 6 (WACCM6)
  year: 2019
  ident: 5471_CR22
– volume: 41
  start-page: 1345
  year: 2013
  ident: 5471_CR37
  publication-title: Clim Dyn
  doi: 10.1007/s00382-013-1712-1
– volume: 9
  start-page: 3231
  year: 2016
  ident: 5471_CR28
  publication-title: Geosci Model Dev
  doi: 10.5194/gmd-9-3231-2016
– volume: 11
  start-page: 2177
  year: 2019
  ident: 5471_CR74
  publication-title: J Adv Model Earth Syst
  doi: 10.1029/2019MS001683
– volume: 4
  start-page: 845
  year: 2011
  ident: 5471_CR77
  publication-title: Geosci Model Dev
  doi: 10.5194/gmd-4-845-2011
– ident: 5471_CR2
  doi: 10.1071/ES19040
SSID ssj0014672
Score 2.5234575
Snippet Sea levels of different atmosphere–ocean general circulation models (AOGCMs) respond to climate change forcing in different ways, representing a crucial...
Sea levels of different atmosphere-ocean general circulation models (AOGCMs) respond to climate change forcing in different ways, representing a crucial...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 155
SubjectTerms Air-sea flux
Air-sea interaction
Antarctic region
Arctic circulation
Arctic Ocean
Atlantic Ocean
Atmospheric circulation
Atmospheric models
Climate change
Climate change research
Climate models
Climatic changes
Climatology
Earth and Environmental Science
Earth Sciences
Environmental aspects
Fluctuations
Forecasts and trends
Freshwater
General Circulation Models
Geophysics/Geodesy
Greenhouse gases
Heat
heat flow
Heat flux
Heat transfer
Inland water environment
Meteorological research
Momentum
Observations
Ocean dynamics
Ocean models
Ocean-atmosphere interaction
Oceanic general circulation model
Oceanography
Oceans
Perturbation
Sea level
Sea level changes
surface water temperature
Transport
Uptake
water flow
water salinity
wind
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge-GCeIpAAYMQHMAifsRJTlWpWhWkVqhQqTcrduyl0iopm_T_M-N4Uy2IHpNMnMd4xp_nSci7UImGO52zWuQFU4XwzKIL0RdSNKoVqgqYO3xyqo_P1beL4iIZ3IYUVrnRiVFRt71DG_lnuEtIjZnPe1e_GXaNQu9qaqFxl-yACq6qBdn5cnj6_Wz2I4AaiH6EWuasBGSS0mZi8hw6xQTD7RPAlhJ2UltL098K-h9PaVyAjh6Q-wk50v2J1Q_JHd89ItkJgN5-HW3j9D09WF0CAo1Hj8mIZbmpa64HP1DAeRRGBo7SPtDY_4YmKwxOPDwJK1nT0XZqUU9BBNgKI4rolBtMLzu6ngJqPR17usSAnV89DE6XzUAB-zp47b0n5Pzo8OfBMUtNFpgDJDcyWzrAeM7VjXOw3Pugy1DWovCtljLUWI9et1oAKmiV5d46y9u8dFpwa4UNQT4li67v_DNCpbBKKt_Cjk-rNi8aW3Gvg-aWB-VtmRG--b_GpQrk2AhjZebayZEnBnhiIk-MysjH-Z6rqf7GrdSvkW1myiGdhdfsa8CFgLUKmZG3kQJLX3QYW7MELgzm64-zLaIPiSj08IKuSakK8JlYLWuLcnczQUwS_sHcTNWMvJkvg9iiL6bpPLDGgKbEynFc8Ix82kysmyH-_4nPb3_iC3JPYNRNNBLtksW4vvYvATaN9lWSjT9TXxKL
  priority: 102
  providerName: ProQuest
Title What causes the spread of model projections of ocean dynamic sea-level change in response to greenhouse gas forcing?
URI https://link.springer.com/article/10.1007/s00382-020-05471-4
https://www.proquest.com/docview/2482360190
https://www.proquest.com/docview/2574332121
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdge0FICAaIwBgGIXiASPFHnOYJtaVlgDbQoNJ4smLHLpOqBDXZ_8-d4xZ1fEi8NGpzcercXfyzz_c7Qp77Ea-YVVla8ixPZc5dajCE6HLBK1lzOfKYO3xyqo4X8sN5fh5pcjAX5kr8Hsk-BWBAnOQAuChgvnOd7OdMFFimYaqm24gBOHyIGJQiSwvAIDFB5s9t7AxCV1_Fv8VEw1Azv01uRYxIx4NS75BrrjkgyQnA23YdVsHpCzpdXQDWDN8OyM1P1lVNJJ--S3rk46a2uuxcRwHgUbgRqJK2nobCNzQuv6DF4Y8tXk3roTY9BdtPV7iViA5JwfSioethJ62jfUuXuFPnewuN02XVUQC9Fnrx5h5ZzGdfp8dprK6QWoBwfWoKC-DO2rKyFsZ551Xhi5LnrlZC-BKJ6FWtOMCBWhrmjDWszgqrODOGG-_FfbLXtI17QKjgRgrpapjqKVlneWVGzCmvmGFeOlMkhG0et7aRehwrYKz0ljQ5qEiDinRQkZYJebW95sdAvPFP6SeoRT0kj269Vo8VAEIAWblIyLMggZwXDW6qWYIWOv3-y9mO0Mso5Fv4g7aKOQrQTaTJ2pE83NiLjl7fabBsLhRm5yfk6fY0-CsGYarGgWo0vCKRMo5xlpDXGzv71cTfu_jw_8QfkRsct9-E1aJDstevL91jwE-9OSL748nbyRyP7759nMFxMjv9fHYUHAo-F3z8E4Q3FHA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7gFeEJ8ibDCD-HiAiMZxnPYBTWNsatlaobFJezOxY3eVSjKaTmj_FH8jd07SqSD2tse2F9fxne9-9n0BvHI9nkVGdsM-7yahSLgNNbkQbRLzTORc9BzlDo_GcnAivpwmp2vwu82FobDKVid6RZ2Xhu7IP-BTPJaU-bx9_jOkrlHkXW1baNRicWAvf-GRrfo4_Iz8fc35_t7x7iBsugqEBqHLItSpQVBjTD8zBu2bdTJ1aZ8nNpdx7PpUgF3mkqMZzIWOrDY6yrupkTzSmmvnYhz3FqwLnAzvwPqnvfHXo6XfAtWO91v0426YIhJq0nR8sh454XhIxzWESSme3FZM4d8G4R_PrDd4-_fgboNU2U4tWvdhzRYPIBghyC7n_i6evWG7sykiXv_pISyoDDgz2UVlK4a4kuHIKEGsdMz322HNrQ8JOn2JljMrWH5ZZD-mhuHahjOKYGJ1LjKbFmxeB_BatijZhAKEzkocnE2yiiHWNjjt7UdwciPL_xg6RVnYJ8BirkUsbI4nTCnybpLpXmSlk5GOnLA6DSBq11eZpuI5Nd6YqWWtZs8ThTxRnidKBPBu-cx5Xe_jWuotYpuqc1aXykLtSMShiO2SOICXnoJKbRQUyzNBLlRq-O1ohehtQ-RKnKDJmtQIfE2qzrVCudkKiGqUTaWutkYAL5Y_o5og309WWGSNQs1MleoiHgXwvhWsqyH-_4pPr__HLbg9OB4dqsPh-GAD7nCK-PEXVJvQWcwv7DOEbAv9vNknDL7f9Nb8A5-CUGA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkK8ID5F2GAG8fEA0RoncdoHNI1t1cpYNQ0m7c2LHburVJLRZEL71_jruHM-poLY2x6bXpzEd777ne_DAG_sgKeBFn1_yPuxH8Xc-IpCiCYOeRplPBpYqh0-nIj9k-jLaXy6Ar_bWhhKq2x1olPUWaFpj3wT7-KhoMrnTdukRRztjrYufvp0ghRFWtvjNGoROTBXv9B9Kz-Nd5HXbzkf7X3f2febEwZ8jTCm8lWiEeBoPUy1RltnrEhsMuSxyUQY2iE1YxeZ4GgSs0gFRmkVZP1ECx4oxZW1IY57B1YT8op6sPp5b3J03MUwUAW5GMYw7PsJoqKmZMcV7lFAjvvkuiFkStCLWzKLfxuHf6K0zviNHsD9BrWy7VrMHsKKyR-Bd4iAu1i4fXn2ju3MZ4h-3a_HUFFLcKbTy9KUDDEmw5FRmlhhmTt7hzU7QCT0dBGtaJqz7CpPf8w0w7n155TNxOq6ZDbL2aJO5jWsKtiUkoXOCxycTdOSIe7W-NpbT-DkVqb_KfTyIjfPgIVcRWFkMvQ2RZT141QNAiOsCFRgI6MSD4J2fqVuup_TIRxz2fVtdjyRyBPpeCIjDz5091zUvT9upN4gtsm6frVTHHJbICZFnBeHHrx2FNR2IycBniIXSjn-drxE9L4hsgW-oE6bMgn8TOrUtUS53gqIbBRPKa-XiQevur9RZVAcKM0NskailqaudQEPPPjYCtb1EP__xOc3P3ED7uKSlF_Hk4M1uMcp-cftVa1Dr1pcmheI3ir1slkmDM5ue2X-AXBKVJU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=What+causes+the+spread+of+model+projections+of+ocean+dynamic+sea-level+change+in+response+to+greenhouse+gas+forcing%3F&rft.jtitle=Climate+dynamics&rft.au=Couldrey%2C+Matthew+P.&rft.au=Gregory%2C+Jonathan+M.&rft.au=Boeira+Dias%2C+Fabio&rft.au=Dobrohotoff%2C+Peter&rft.date=2021-01-01&rft.issn=0930-7575&rft.eissn=1432-0894&rft.volume=56&rft.issue=1-2&rft.spage=155&rft.epage=187&rft_id=info:doi/10.1007%2Fs00382-020-05471-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00382_020_05471_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0930-7575&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0930-7575&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0930-7575&client=summon