What causes the spread of model projections of ocean dynamic sea-level change in response to greenhouse gas forcing?
Sea levels of different atmosphere–ocean general circulation models (AOGCMs) respond to climate change forcing in different ways, representing a crucial uncertainty in climate change research. We isolate the role of the ocean dynamics in setting the spatial pattern of dynamic sea-level ( ζ ) change...
Saved in:
Published in | Climate dynamics Vol. 56; no. 1-2; pp. 155 - 187 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.01.2021
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sea levels of different atmosphere–ocean general circulation models (AOGCMs) respond to climate change forcing in different ways, representing a crucial uncertainty in climate change research. We isolate the role of the ocean dynamics in setting the spatial pattern of dynamic sea-level (
ζ
) change by forcing several AOGCMs with prescribed identical heat, momentum (wind) and freshwater flux perturbations. This method produces a
ζ
projection spread comparable in magnitude to the spread that results from greenhouse gas forcing, indicating that the differences in ocean model formulation are the cause, rather than diversity in surface flux change. The heat flux change drives most of the global pattern of
ζ
change, while the momentum and water flux changes cause locally confined features. North Atlantic heat uptake causes large temperature and salinity driven density changes, altering local ocean transport and
ζ
. The spread between AOGCMs here is caused largely by differences in their regional transport adjustment, which redistributes heat that was already in the ocean prior to perturbation. The geographic details of the
ζ
change in the North Atlantic are diverse across models, but the underlying dynamic change is similar. In contrast, the heat absorbed by the Southern Ocean does not strongly alter the vertically coherent circulation. The Arctic
ζ
change is dissimilar across models, owing to differences in passive heat uptake and circulation change. Only the Arctic is strongly affected by nonlinear interactions between the three air-sea flux changes, and these are model specific. |
---|---|
AbstractList | Sea levels of different atmosphere–ocean general circulation models (AOGCMs) respond to climate change forcing in different ways, representing a crucial uncertainty in climate change research. We isolate the role of the ocean dynamics in setting the spatial pattern of dynamic sea-level (
ζ
) change by forcing several AOGCMs with prescribed identical heat, momentum (wind) and freshwater flux perturbations. This method produces a
ζ
projection spread comparable in magnitude to the spread that results from greenhouse gas forcing, indicating that the differences in ocean model formulation are the cause, rather than diversity in surface flux change. The heat flux change drives most of the global pattern of
ζ
change, while the momentum and water flux changes cause locally confined features. North Atlantic heat uptake causes large temperature and salinity driven density changes, altering local ocean transport and
ζ
. The spread between AOGCMs here is caused largely by differences in their regional transport adjustment, which redistributes heat that was already in the ocean prior to perturbation. The geographic details of the
ζ
change in the North Atlantic are diverse across models, but the underlying dynamic change is similar. In contrast, the heat absorbed by the Southern Ocean does not strongly alter the vertically coherent circulation. The Arctic
ζ
change is dissimilar across models, owing to differences in passive heat uptake and circulation change. Only the Arctic is strongly affected by nonlinear interactions between the three air-sea flux changes, and these are model specific. Sea levels of different atmosphere–ocean general circulation models (AOGCMs) respond to climate change forcing in different ways, representing a crucial uncertainty in climate change research. We isolate the role of the ocean dynamics in setting the spatial pattern of dynamic sea-level (ζ) change by forcing several AOGCMs with prescribed identical heat, momentum (wind) and freshwater flux perturbations. This method produces a ζ projection spread comparable in magnitude to the spread that results from greenhouse gas forcing, indicating that the differences in ocean model formulation are the cause, rather than diversity in surface flux change. The heat flux change drives most of the global pattern of ζ change, while the momentum and water flux changes cause locally confined features. North Atlantic heat uptake causes large temperature and salinity driven density changes, altering local ocean transport and ζ. The spread between AOGCMs here is caused largely by differences in their regional transport adjustment, which redistributes heat that was already in the ocean prior to perturbation. The geographic details of the ζ change in the North Atlantic are diverse across models, but the underlying dynamic change is similar. In contrast, the heat absorbed by the Southern Ocean does not strongly alter the vertically coherent circulation. The Arctic ζ change is dissimilar across models, owing to differences in passive heat uptake and circulation change. Only the Arctic is strongly affected by nonlinear interactions between the three air-sea flux changes, and these are model specific. Sea levels of different atmosphere-ocean general circulation models (AOGCMs) respond to climate change forcing in different ways, representing a crucial uncertainty in climate change research. We isolate the role of the ocean dynamics in setting the spatial pattern of dynamic sea-level (ζ) change by forcing several AOGCMs with prescribed identical heat, momentum (wind) and freshwater flux perturbations. This method produces a ζ projection spread comparable in magnitude to the spread that results from greenhouse gas forcing, indicating that the differences in ocean model formulation are the cause, rather than diversity in surface flux change. The heat flux change drives most of the global pattern of ζ change, while the momentum and water flux changes cause locally confined features. North Atlantic heat uptake causes large temperature and salinity driven density changes, altering local ocean transport and ζ. The spread between AOGCMs here is caused largely by differences in their regional transport adjustment, which redistributes heat that was already in the ocean prior to perturbation. The geographic details of the ζ change in the North Atlantic are diverse across models, but the underlying dynamic change is similar. In contrast, the heat absorbed by the Southern Ocean does not strongly alter the vertically coherent circulation. The Arctic ζ change is dissimilar across models, owing to differences in passive heat uptake and circulation change. Only the Arctic is strongly affected by nonlinear interactions between the three air-sea flux changes, and these are model specific. |
Audience | Academic |
Author | Savita, Abhishek Shao, Andrew Hu, Aixue Garuba, Oluwayemi Gregory, Jonathan M. Ojha, Sayantani Suzuki, Tatsuo Todd, Alexander Domingues, Catia M. Köhl, Armin Zanna, Laure Jungclaus, Johann Stammer, Detlef Griffies, Stephen M. Marsland, Simon J. Boeira Dias, Fabio Dobrohotoff, Peter Ishii, Masayoshi Couldrey, Matthew P. Saenko, Oleg A. Haak, Helmuth |
Author_xml | – sequence: 1 givenname: Matthew P. orcidid: 0000-0003-0587-0796 surname: Couldrey fullname: Couldrey, Matthew P. email: m.p.couldrey@reading.ac.uk organization: National Centre for Atmospheric Science, University of Reading – sequence: 2 givenname: Jonathan M. orcidid: 0000-0003-1296-8644 surname: Gregory fullname: Gregory, Jonathan M. organization: National Centre for Atmospheric Science, University of Reading, Met Office Hadley Centre – sequence: 3 givenname: Fabio orcidid: 0000-0002-2965-2120 surname: Boeira Dias fullname: Boeira Dias, Fabio organization: Institute for Atmospheric and Earth System Research, University of Helsinki, Institute for Marine and Antarctic Studies, University of Tasmania, CSIRO Oceans and Atmosphere, ARC Centre of Excellence for Climate Extremes – sequence: 4 givenname: Peter orcidid: 0000-0001-7315-042X surname: Dobrohotoff fullname: Dobrohotoff, Peter organization: Institute for Marine and Antarctic Studies, University of Tasmania, CSIRO Oceans and Atmosphere – sequence: 5 givenname: Catia M. orcidid: 0000-0001-5100-4595 surname: Domingues fullname: Domingues, Catia M. organization: Institute for Marine and Antarctic Studies, University of Tasmania, ARC Centre of Excellence for Climate Extremes, National Oceanography Centre – sequence: 6 givenname: Oluwayemi orcidid: 0000-0001-7931-7788 surname: Garuba fullname: Garuba, Oluwayemi organization: Pacific Northwest National Laboratory – sequence: 7 givenname: Stephen M. orcidid: 0000-0002-3711-236X surname: Griffies fullname: Griffies, Stephen M. organization: NOAA Geophysical Fluid Dynamics Laboratory, Princeton University Program in Atmospheric and Oceanic Sciences – sequence: 8 givenname: Helmuth orcidid: 0000-0002-9883-5086 surname: Haak fullname: Haak, Helmuth organization: Max Planck Institute for Meteorology – sequence: 9 givenname: Aixue orcidid: 0000-0002-1337-287X surname: Hu fullname: Hu, Aixue organization: National Center for Atmospheric Research – sequence: 10 givenname: Masayoshi orcidid: 0000-0002-2564-5548 surname: Ishii fullname: Ishii, Masayoshi organization: Meteorological Research Institute – sequence: 11 givenname: Johann orcidid: 0000-0002-3849-4339 surname: Jungclaus fullname: Jungclaus, Johann organization: Max Planck Institute for Meteorology – sequence: 12 givenname: Armin orcidid: 0000-0002-9777-674X surname: Köhl fullname: Köhl, Armin organization: Center für Erdsystemforschung und Nachhaltigkeit, Universität Hamburg – sequence: 13 givenname: Simon J. orcidid: 0000-0002-5664-5276 surname: Marsland fullname: Marsland, Simon J. organization: Institute for Marine and Antarctic Studies, University of Tasmania, CSIRO Oceans and Atmosphere, ARC Centre of Excellence for Climate Extremes – sequence: 14 givenname: Sayantani surname: Ojha fullname: Ojha, Sayantani organization: Indian Institute of Space Science and Technology – sequence: 15 givenname: Oleg A. orcidid: 0000-0002-7168-7159 surname: Saenko fullname: Saenko, Oleg A. organization: Canadian Centre for Climate Modelling and Analysis – sequence: 16 givenname: Abhishek orcidid: 0000-0003-2800-3636 surname: Savita fullname: Savita, Abhishek organization: Institute for Marine and Antarctic Studies, University of Tasmania, CSIRO Oceans and Atmosphere, ARC Centre of Excellence for Climate Extremes – sequence: 17 givenname: Andrew orcidid: 0000-0003-3658-512X surname: Shao fullname: Shao, Andrew organization: Canadian Centre for Climate Modelling and Analysis – sequence: 18 givenname: Detlef orcidid: 0000-0002-5777-5347 surname: Stammer fullname: Stammer, Detlef organization: Center für Erdsystemforschung und Nachhaltigkeit, Universität Hamburg – sequence: 19 givenname: Tatsuo orcidid: 0000-0002-6259-6466 surname: Suzuki fullname: Suzuki, Tatsuo organization: Japan Agency for Marine-Earth Science and Technology – sequence: 20 givenname: Alexander orcidid: 0000-0001-5438-1011 surname: Todd fullname: Todd, Alexander organization: University of Oxford – sequence: 21 givenname: Laure orcidid: 0000-0002-8472-4828 surname: Zanna fullname: Zanna, Laure organization: University of Oxford, New York University Courant Institute |
BookMark | eNp9kk1r3DAQhk1JoZu0f6AnQaG0B6f6sCX7VEJom0Cg0A96FLI8srV4pa2kDc2_72w20G4OQQfB8LzDzDvvaXUSYoCqes3oOaNUfciUio7XlNOato1idfOsWrFGYKnrm5NqRXtBa9Wq9kV1mvOaUtZIxVdV-TWbQqzZZcikzEDyNoEZSXRkE0dYyDbFNdjiY8j7YrRgAhnvgtl4SzKYeoFbxOxswgTEB5IgbxEGUiKZEkCYIzYnk8nExWR9mD6-rJ47s2R49fCfVT8_f_pxeVXffP1yfXlxU9tWylIPyvZcWNsbaznrwEnlVM9bGKUQrhcdVXKUnPdibAYGgx3YSJWVnA0DH5wTZ9W7Q19c4vcOctEbny0siwmAQ2neqkYIzjhD9M0jdB13KeB0mjcdF5KyniJ1fqAms4D2wcWSjMU3AtqBJ3Ee6xeyRXfbrhUoeH8kQKbAnzKh31lff_92zL79j53BLGXOcdnde38M8gNoU8w5gdPb5Dcm3WlG9T4O-hAHjXHQ93HQDYq6RyLri9n3xhX88rRUHKSYDTwfpH_ePKH6CwI9yjg |
CitedBy_id | crossref_primary_10_1007_s00382_025_07591_1 crossref_primary_10_1029_2023GL105673 crossref_primary_10_1175_JPO_D_21_0224_1 crossref_primary_10_1016_j_ocemod_2022_102063 crossref_primary_10_1016_j_aosl_2022_100288 crossref_primary_10_1029_2023GL104688 crossref_primary_10_5194_gmd_15_7683_2022 crossref_primary_10_1175_JCLI_D_20_0603_1 crossref_primary_10_5194_gmd_17_1813_2024 crossref_primary_10_1007_s00382_023_06986_2 crossref_primary_10_1016_j_accre_2023_08_005 crossref_primary_10_1029_2022MS002999 crossref_primary_10_1038_s41561_023_01219_x crossref_primary_10_1038_s41467_022_32540_5 crossref_primary_10_1007_s00382_023_06989_z crossref_primary_10_1038_s43017_022_00345_1 crossref_primary_10_1007_s00382_023_06659_0 crossref_primary_10_1038_s43247_024_01849_y crossref_primary_10_3389_fmars_2021_620570 crossref_primary_10_3389_fmars_2021_569992 crossref_primary_10_1175_JCLI_D_21_0827_1 crossref_primary_10_1038_s41558_024_02095_y crossref_primary_10_1007_s00382_022_06231_2 crossref_primary_10_5194_os_19_499_2023 crossref_primary_10_1175_JCLI_D_21_0161_1 crossref_primary_10_1029_2022JC019105 crossref_primary_10_1007_s00382_022_06386_y crossref_primary_10_1175_JCLI_D_22_0124_1 |
Cites_doi | 10.5194/esd-4-11-2013 10.5194/gmd-4-723-2011 10.1007/s00382-015-2499-z 10.1038/s41598-017-04623-7 10.1002/qj.3397 10.5194/gmd-9-3231-2016 10.5194/gmd-9-1937-2016 10.1175/JCLI-D-11-00715.1 10.1007/s003820050010 10.1002/2016GL069803 10.5194/gmd-2019-177 10.1175/JCLI-D-14-00235.1 10.2151/jmsj.2019-051 10.1080/16742834.2020.1778419 10.5194/gmd-9-3993-2016 10.1029/2005JC003421 10.1029/2010GL042822 10.1029/2006GL029106 10.1029/2019MS001683 10.1002/2015JC010928 10.1175/2010JCLI3533.1 10.1007/s00376-012-2140-6 10.1175/JCLI-D-11-00695.1 10.1007/s00382-011-1057-6 10.1002/2016GL067679 10.1175/JTECH1864.1 10.5194/gmd-12-2727-2019 10.1175/JCLI-D-11-00560.1 10.1146/annurev-marine-121211-172406 10.1002/grl.50768 10.1134/S000143381004002X 10.1007/s00382-012-1636-1 10.1175/JCLI-D-12-00068.1 10.1007/s00382-011-1259-y 10.1038/s41586-020-2573-5 10.1002/2013GL058998 10.1175/JCLI-D-15-0200.1 10.5194/gmd-9-4521-2016 10.1126/science.aaa0940 10.1175/JCLI-D-18-0895.1 10.1111/j.1365-246X.2011.05090.x 10.1007/s00382-011-1063-8 10.5194/gmd-13-401-2020 10.1002/2013GL058104 10.2151/jmsj.2012-A02 10.1029/2019MS001916 10.1007/s00382-016-3262-9 10.1175/JCLI-D-19-1029.1 10.1175/JCLI3990.1 10.1007/s13351-019-8117-y 10.1007/s00382-013-1973-8 10.5194/gmd-6-687-2013 10.36334/modsim.2011.F5.collier 10.1038/s41586-020-2591-3 10.1126/science.aav7908 10.1016/j.ocemod.2019.101456 10.1029/2019GL085782 10.1175/JCLI-D-19-1016.1 10.1029/2019MS002027 10.1007/s10584-014-1080-9 10.1175/2010JCLI3679.1 10.1038/ngeo462 10.1175/JCLI-D-18-0186.1 10.1029/2019MS002010 10.1029/2018MS001400 10.1002/wcc.465 10.1175/JCLI-D-18-0796.1 10.1002/jame.20038 10.1175/2011JCLI3964.1 10.1002/2016GL071587 10.1126/science.aaa5727 10.1029/2019MS002025 10.1088/1748-9326/9/3/034004 10.1029/2018MS001370 10.1175/JCLI-D-17-0761.1 10.1007/s10712-019-09525-z 10.1175/JCLI-D-12-00296.1 10.1029/2019MS001791 10.1175/JCLI-D-17-0452.1 10.1002/2013MS000265 10.1007/s00382-013-1712-1 10.5194/gmd-4-845-2011 10.1071/ES19040 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 COPYRIGHT 2021 Springer The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: COPYRIGHT 2021 Springer – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION ISR 3V. 7TG 7TN 7UA 7XB 88F 88I 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ KL. L.G M1Q M2P PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PYCSY Q9U 7S9 L.6 |
DOI | 10.1007/s00382-020-05471-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef Gale In Context: Science ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Military Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Agricultural & Environmental Science & Pollution Managment ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Military Database Science Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Military Collection Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Military Collection (Alumni Edition) Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Oceanography |
EISSN | 1432-0894 |
EndPage | 187 |
ExternalDocumentID | A651465853 10_1007_s00382_020_05471_4 |
GeographicLocations | United Kingdom Arctic region Arctic Ocean Atlantic Ocean Antarctic region |
GeographicLocations_xml | – name: United Kingdom – name: Arctic region – name: Atlantic Ocean – name: Antarctic region – name: Arctic Ocean |
GrantInformation_xml | – fundername: Biological and Environmental Research funderid: http://dx.doi.org/10.13039/100006206 – fundername: Marine Environmental Observation Prediction and Response Network funderid: http://dx.doi.org/10.13039/100012404 – fundername: Natural Environment Research Council grantid: NE/R000727/1 funderid: http://dx.doi.org/10.13039/501100000270 – fundername: National Computational Infrastructure grantid: ly62 funderid: http://dx.doi.org/10.13039/100010582 – fundername: Ministry of Education, Culture, Sports, Science and Technology grantid: JPMXD0717935457; JPMXD0717935561 funderid: http://dx.doi.org/10.13039/501100001700 – fundername: Australian Research Council (AU) grantid: FT130101532; DP160103130 – fundername: Tasmanian Graduate Research Scholarship (AU) – fundername: University of Reading – fundername: Commonwealth Scientific and Industrial Research Organisation funderid: http://dx.doi.org/10.13039/501100000943 – fundername: Deutsche Forschungsgemeinschaft grantid: 1889 funderid: http://dx.doi.org/10.13039/501100001659 |
GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29B 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2XV 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67M 67Z 6NX 78A 7XC 88I 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP D1K DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IEP IFM IHE IHR IHW IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV KOW LAS LK5 LLZTM M1Q M2P M4Y M7R MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 PATMY PCBAR PF0 PQQKQ PROAC PT4 PT5 PYCSY Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z5O Z7R Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8S Z8T Z8U Z8W Z92 ZMTXR ~02 ~8M ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT AEIIB PMFND 7TG 7TN 7UA 7XB 8FK ABRTQ C1K F1W H96 KL. L.G PKEHL PQEST PQUKI Q9U 7S9 L.6 |
ID | FETCH-LOGICAL-c566t-b7c923cc9acc218ef67f7925ed633f938076d62293d4b1ebcb1d07c621bb2bff3 |
IEDL.DBID | C6C |
ISSN | 0930-7575 |
IngestDate | Thu Jul 10 22:11:03 EDT 2025 Sat Jul 26 00:08:46 EDT 2025 Tue Jun 10 20:19:51 EDT 2025 Fri Jun 27 04:22:05 EDT 2025 Thu May 22 21:19:43 EDT 2025 Tue Jul 01 01:29:27 EDT 2025 Thu Apr 24 23:10:32 EDT 2025 Fri Feb 21 02:48:47 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | Climate change Climate modeling Ocean heat uptake Sea-level rise |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c566t-b7c923cc9acc218ef67f7925ed633f938076d62293d4b1ebcb1d07c621bb2bff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7315-042X 0000-0002-2564-5548 0000-0003-3658-512X 0000-0002-3849-4339 0000-0002-6259-6466 0000-0002-3711-236X 0000-0001-5100-4595 0000-0001-5438-1011 0000-0002-8472-4828 0000-0002-7168-7159 0000-0002-1337-287X 0000-0002-9777-674X 0000-0003-0587-0796 0000-0002-2965-2120 0000-0001-7931-7788 0000-0002-5664-5276 0000-0003-1296-8644 0000-0002-9883-5086 0000-0003-2800-3636 0000-0002-5777-5347 |
OpenAccessLink | https://doi.org/10.1007/s00382-020-05471-4 |
PQID | 2482360190 |
PQPubID | 54165 |
PageCount | 33 |
ParticipantIDs | proquest_miscellaneous_2574332121 proquest_journals_2482360190 gale_infotracacademiconefile_A651465853 gale_incontextgauss_ISR_A651465853 gale_healthsolutions_A651465853 crossref_primary_10_1007_s00382_020_05471_4 crossref_citationtrail_10_1007_s00382_020_05471_4 springer_journals_10_1007_s00382_020_05471_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | Observational, Theoretical and Computational Research on the Climate System |
PublicationTitle | Climate dynamics |
PublicationTitleAbbrev | Clim Dyn |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V |
References | Kelley (CR38) 2020; 12 Slangen, Carson, Katsman, Van de Wal, Köhl, Vermeersen, Stammer (CR66) 2014; 124 Church, Stocker (CR11) 2013 Schmidt (CR63) 2014; 6 Saenko, Yang, Gregory, Spence, Myers (CR62) 2018; 31 Zelinka, Myers, McCoy, Po-Chedley, Caldwell, Ceppi, Klein, Taylor (CR89) 2020; 47 Xin, Dai, Li, Rong, Zhang (CR81) 2019; 33 Winton, Griffies, Samuels, Sarmiento, Frölicher (CR78) 2013; 26 Bronselaer, Zanna (CR8) 2020; 584 Kavvada, Ruiz-Barradas, Nigam (CR37) 2013; 41 Slangen, Katsman, Van de Wal, Vermeersen, Riva (CR65) 2012; 38 Wouters, Martin-Español, Helm, Flament, van Wessem, Ligtenberg, Van den Broeke, Bamber (CR79) 2015; 348 Yuan, Oreopoulos, Zelinka, Yu, Norris, Chin, Platnick, Meyer (CR85) 2016; 43 Boucher (CR5) 2020; 12 Séférian (CR64) 2019; 11 Gregory (CR26) 2019; 40 Mitrovica, Gomez, Morrow, Hay, Latychev, Tamisiea (CR53) 2011; 187 Voldoire (CR73) 2013; 40 Danabasoglu (CR13) 2020; 12 Griffies (CR27) 2011; 24 Swart (CR69) 2019 Perrette, Landerer, Riva, Frieler, Meinshausen (CR58) 2013 Tatebe (CR70) 2019; 12 Franzke, Lee, Feldstein (CR19) 2017; 48 Yin, Schlesinger, Stouffer (CR83) 2009; 2 Melet, Meyssignac (CR51) 2015; 28 CR2 He, Soden (CR31) 2016 Landerer, Jungclaus, Marotzke (CR42) 2007 Mauritsen (CR49) 2019; 11 Bouttes, Gregory (CR6) 2014; 9 Frankcombe, Spence, Hogg, England, Griffies (CR18) 2013; 40 Paolo, Fricker, Padman (CR56) 2015; 348 Volodin, Dianskii, Gusev (CR75) 2010; 46 Lowe, Gregory (CR46) 2006; 111 Stewart, Hogg (CR68) 2019; 143 Todd (CR71) 2020; 12 Yukimoto (CR87) 2019; 97 He (CR30) 2020 Larour, Seroussi, Adhikari, Ivins, Caron, Morlighem, Schlegel (CR43) 2019; 364 Liu, Lu, Xie, Fedorov (CR45) 2018; 31 Watanabe (CR77) 2011; 4 Turner, Bracegirdle, Phillips, Marshall, Hosking (CR72) 2013; 26 Exarchou, Kuhlbrodt, Gregory, Smith (CR16) 2015; 28 Bilbao, Gregory, Bouttes (CR3) 2015; 45 Ceppi, Brient, Zelinka, Hartmann (CR9) 2017; 8 Xie, Vallis (CR80) 2012; 38 Watanabe (CR76) 2010; 23 Hu, Taylor, Cai, Yang, Deng, Sejas (CR33) 2017 Yukimoto (CR86) 2012; 90 Jullion, Jones, Naveira Garabato, Meredith (CR35) 2010 Gordon, Cooper, Senior, Banks, Gregory, Johns, Mitchell, Wood (CR24) 2000 CR12 Griffies (CR28) 2016; 9 CR55 CR52 McDougall, Barker (CR50) 2011; 127 Saenko, Yang, Gregory, Spence, Myers (CR61) 2015; 120 Kostov, Armour, Marshall (CR40) 2014; 41 Zanna, Brankart, Huber, Leroux, Penduff, Williams (CR88) 2018; 145 Bouttes, Gregory, Kuhlbrodt, Smith (CR7) 2014; 43 Stammer, Cazenave, Ponte, Tamisiea (CR67) 2013; 5 Ponte (CR59) 2006; 23 Lyu, Zhang, Church (CR47) 2020; 33 Voldoire (CR74) 2019; 11 Huber, Zanna (CR34) 2017; 44 Yang, Saenko (CR82) 2012 Giorgetta (CR23) 2013; 5 Li (CR44) 2013; 30 Martin (CR48) 2011 Nowicki (CR54) 2016; 9 Park, Shin, Kim, Oh, Kim (CR57) 2019; 32 Eyring, Bony, Meehl, Senior, Stevens, Stouffer, Taylor (CR17) 2016 Held, Soden (CR32) 2006; 19 Yin, Griffies, Stouffer (CR84) 2010; 23 Garuba, Klinger (CR21) 2018; 31 Karlsson, Svensson (CR36) 2013; 40 Rugenstein, Winton, Stouffer, Griffies, Hallberg (CR60) 2013; 26 Boeira Dias, Fiedler, Marsland, Domingues, Rintoul, McDonagh, Mata, Savita (CR4) 2020; 33 Bentsen (CR1) 2013; 6 Kiss (CR39) 2020; 13 Chen, Wang, Xie, Liu (CR10) 2019; 32 Frederikse (CR20) 2020; 584 Gettelman (CR22) 2019 Gregory (CR25) 2016; 9 Hawkes (CR29) 2013 Dufresne (CR14) 2013; 40 Dunne (CR15) 2012; 25 Kuhlbrodt (CR41) 2018; 10 J-L Dufresne (5471_CR14) 2013; 40 M Watanabe (5471_CR76) 2010; 23 OA Saenko (5471_CR61) 2015; 120 E Exarchou (5471_CR16) 2015; 28 5471_CR2 MB Huber (5471_CR34) 2017; 44 J Karlsson (5471_CR36) 2013; 40 JA Lowe (5471_CR46) 2006; 111 AE Kiss (5471_CR39) 2020; 13 TJ McDougall (5471_CR50) 2011; 127 P Xie (5471_CR80) 2012; 38 V Eyring (5471_CR17) 2016 A Melet (5471_CR51) 2015; 28 IM Held (5471_CR32) 2006; 19 RAF Bilbao (5471_CR3) 2015; 45 K Lyu (5471_CR47) 2020; 33 S Watanabe (5471_CR77) 2011; 4 S Yukimoto (5471_CR86) 2012; 90 SM Griffies (5471_CR27) 2011; 24 A Voldoire (5471_CR73) 2013; 40 SM Griffies (5471_CR28) 2016; 9 J Turner (5471_CR72) 2013; 26 T Kuhlbrodt (5471_CR41) 2018; 10 GM Martin (5471_CR48) 2011 A Gettelman (5471_CR22) 2019 A Todd (5471_CR71) 2020; 12 PJ Hawkes (5471_CR29) 2013 JX Mitrovica (5471_CR53) 2011; 187 A Voldoire (5471_CR74) 2019; 11 EM Volodin (5471_CR75) 2010; 46 M Winton (5471_CR78) 2013; 26 B He (5471_CR30) 2020 X Hu (5471_CR33) 2017 JA Church (5471_CR11) 2013 NC Swart (5471_CR69) 2019 C Chen (5471_CR10) 2019; 32 J Yin (5471_CR83) 2009; 2 LM Frankcombe (5471_CR18) 2013; 40 N Bouttes (5471_CR6) 2014; 9 MA Giorgetta (5471_CR23) 2013; 5 R Séférian (5471_CR64) 2019; 11 MAA Rugenstein (5471_CR60) 2013; 26 JM Gregory (5471_CR26) 2019; 40 S Yukimoto (5471_CR87) 2019; 97 RM Ponte (5471_CR59) 2006; 23 ABA Slangen (5471_CR65) 2012; 38 5471_CR12 5471_CR55 T Mauritsen (5471_CR49) 2019; 11 5471_CR52 OA Saenko (5471_CR62) 2018; 31 N Bouttes (5471_CR7) 2014; 43 Y Kostov (5471_CR40) 2014; 41 B Bronselaer (5471_CR8) 2020; 584 FW Landerer (5471_CR42) 2007 OA Garuba (5471_CR21) 2018; 31 W Liu (5471_CR45) 2018; 31 B Wouters (5471_CR79) 2015; 348 M Perrette (5471_CR58) 2013 F Boeira Dias (5471_CR4) 2020; 33 GA Schmidt (5471_CR63) 2014; 6 MD Zelinka (5471_CR89) 2020; 47 JP Dunne (5471_CR15) 2012; 25 L Zanna (5471_CR88) 2018; 145 FS Paolo (5471_CR56) 2015; 348 Y Xin (5471_CR81) 2019; 33 S Park (5471_CR57) 2019; 32 T Yuan (5471_CR85) 2016; 43 C Gordon (5471_CR24) 2000 JM Gregory (5471_CR25) 2016; 9 J He (5471_CR31) 2016 P Ceppi (5471_CR9) 2017; 8 T Frederikse (5471_CR20) 2020; 584 H Tatebe (5471_CR70) 2019; 12 CLE Franzke (5471_CR19) 2017; 48 E Larour (5471_CR43) 2019; 364 O Boucher (5471_CR5) 2020; 12 L Jullion (5471_CR35) 2010 SMJ Nowicki (5471_CR54) 2016; 9 A Kavvada (5471_CR37) 2013; 41 ABA Slangen (5471_CR66) 2014; 124 KD Stewart (5471_CR68) 2019; 143 M Bentsen (5471_CR1) 2013; 6 Kelley (5471_CR38) 2020; 12 J Yin (5471_CR84) 2010; 23 L Li (5471_CR44) 2013; 30 G Danabasoglu (5471_CR13) 2020; 12 D Stammer (5471_CR67) 2013; 5 D Yang (5471_CR82) 2012 |
References_xml | – year: 2013 ident: CR58 article-title: A scaling approach to project regional sea level rise and its uncertainties publication-title: Earth Syst Dyn doi: 10.5194/esd-4-11-2013 – volume: 26 start-page: 2268 year: 2013 end-page: 2278 ident: CR78 article-title: Connecting changing ocean circulation with changing climate publication-title: J Clim – volume: 13 start-page: 401 year: 2020 end-page: 442 ident: CR39 article-title: ACCESS-OM2 v1. 0: a global ocean-sea ice model at three resolutions publication-title: Geosci Model Dev – year: 2011 ident: CR48 article-title: The HadGEM2 family of Met Office Unified Model climate configurations publication-title: Geosci Model Dev doi: 10.5194/gmd-4-723-2011 – ident: CR12 – volume: 187 start-page: 729 year: 2011 end-page: 742 ident: CR53 article-title: On the robustness of predictions of sea level fingerprints publication-title: Geophys J Int – volume: 348 start-page: 327 year: 2015 end-page: 331 ident: CR56 article-title: Volume loss from Antarctic ice shelves is accelerating publication-title: Science – volume: 43 start-page: 1349 year: 2016 end-page: 1356 ident: CR85 article-title: Positive low cloud and dust feedbacks amplify tropical North Atlantic Multidecadal Oscillation publication-title: Geophys Res Lett – volume: 12 start-page: e2019MS001916 year: 2020 ident: CR13 article-title: The community earth system model version 2 (CESM2) publication-title: J Adv Model Earth Syst – volume: 33 start-page: 6377 year: 2020 end-page: 6398 ident: CR47 article-title: Regional dynamic sea level simulated in the CMIP5 and CMIP6 models: mean biases, future projections, and their linkages publication-title: J. Clim – volume: 124 start-page: 317 year: 2014 end-page: 332 ident: CR66 article-title: Projecting twenty-first century regional sea-level changes publication-title: Clim Change – volume: 127 start-page: 1 year: 2011 end-page: 28 ident: CR50 article-title: Getting started with TEOS-10 and the Gibbs Seawater (GSW) oceanographic toolbox publication-title: SCOR/IAPSO WG – volume: 45 start-page: 2647 year: 2015 end-page: 2666 ident: CR3 article-title: Analysis of the regional pattern of sea level change due to ocean dynamics and density change for 1993–2099 in observations and CMIP5 AOGCMs publication-title: Clim Dyn doi: 10.1007/s00382-015-2499-z – volume: 40 start-page: 5710 year: 2013 end-page: 5715 ident: CR18 article-title: Sea level changes forced by Southern Ocean winds publication-title: Geophys Res Lett – volume: 46 start-page: 414 year: 2010 end-page: 431 ident: CR75 article-title: Simulating present-day climate with the INMCM4. 0 coupled model of the atmospheric and oceanic general circulations publication-title: Izv Atmos Ocean Phys – volume: 12 start-page: 1 year: 2020 end-page: 52 ident: CR5 article-title: Presentation and evaluation of the IPSL-CM6A-LR climate model publication-title: J Adv Model Earth Syst – volume: 6 start-page: 687 year: 2013 end-page: 720 ident: CR1 article-title: The Norwegian earth system model, NorESM1-M—Part 1: description and basic evaluation of the physical climate publication-title: Geosci Model Dev – volume: 23 start-page: 6312 year: 2010 end-page: 6335 ident: CR76 article-title: Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity publication-title: J Clim – volume: 38 start-page: 667 year: 2012 end-page: 684 ident: CR80 article-title: The passive and active nature of ocean heat uptake in idealized climate change experiments publication-title: Clim Dyn – start-page: 1137 year: 2013 end-page: 1216 ident: CR11 article-title: Sea Level Change publication-title: Climate Change 2013: The Physical Science Basis Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change – volume: 40 start-page: 2123 year: 2013 end-page: 2165 ident: CR14 article-title: Climate change projections using the IPSL-CM5 earth system model: from CMIP3 to CMIP5 publication-title: Clim Dyn – volume: 9 start-page: 4521 year: 2016 ident: CR54 article-title: Ice sheet model intercomparison project (ISMIP6) contribution to CMIP6 publication-title: Geosci Model Dev – volume: 31 start-page: 4727 year: 2018 end-page: 4743 ident: CR45 article-title: Southern Ocean heat uptake, redistribution, and storage in a warming climate: the role of meridional overturning circulation publication-title: J Clim – volume: 26 start-page: 609 year: 2013 end-page: 621 ident: CR60 article-title: Northern high-latitude heat budget decomposition and transient warming publication-title: J Clim – year: 2017 ident: CR33 article-title: Inter-model warming projection spread: inherited traits from control climate diversity publication-title: Sci Rep doi: 10.1038/s41598-017-04623-7 – volume: 12 start-page: e2019MS002027 year: 2020 ident: CR71 article-title: Ocean-only FAFMIP: understanding regional patterns of Ocean Heat Content and dynamic sea level change publication-title: J Adv Model Earth Syst – volume: 26 start-page: 1473 year: 2013 end-page: 1484 ident: CR72 article-title: An initial assessment of Antarctic sea ice extent in the CMIP5 models publication-title: J Clim – volume: 25 start-page: 6646 year: 2012 end-page: 6665 ident: CR15 article-title: GFDL’s ESM2 global coupled climate–carbon earth system models. Part I: physical formulation and baseline simulation characteristics publication-title: J Clim – volume: 120 start-page: 5749 year: 2015 end-page: 5765 ident: CR61 article-title: Separating the influence of projected changes in air temperature and wind on patterns of sea level change and ocean heat content publication-title: J Geophys Res Ocean – volume: 40 start-page: 1251 year: 2019 end-page: 1289 ident: CR26 article-title: Concepts and terminology for sea level: mean, variability and change, both local and global publication-title: Surv Geophys – volume: 28 start-page: 9918 year: 2015 end-page: 9940 ident: CR51 article-title: Explaining the spread in global mean thermosteric sea level rise in CMIP5 climate models publication-title: J Clim – volume: 584 start-page: 393 year: 2020 end-page: 397 ident: CR20 article-title: The causes of sea-level rise since 1900 publication-title: Nature – volume: 145 start-page: 160 year: 2018 end-page: 175 ident: CR88 article-title: Uncertainty and scale interactions in ocean ensembles: From seasonal forecasts to multidecadal climate predictions publication-title: Q J R Meteorol Soc doi: 10.1002/qj.3397 – volume: 23 start-page: 619 year: 2006 end-page: 629 ident: CR59 article-title: Low-frequency sea level variability and the inverted barometer effect publication-title: J Atmos Ocean Technol – volume: 9 start-page: 3231 year: 2016 end-page: 3296 ident: CR28 article-title: OMIP contribution to CMIP6: Experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project publication-title: Geosci Model Dev doi: 10.5194/gmd-9-3231-2016 – volume: 41 start-page: 2108 year: 2014 end-page: 2116 ident: CR40 article-title: Impact of the Atlantic meridional overturning circulation on ocean heat storage and transient climate change publication-title: Geophys Res Lett – volume: 9 start-page: 34004 year: 2014 ident: CR6 article-title: Attribution of the spatial pattern of CO2-forced sea level change to ocean surface flux changes publication-title: Environ Res Lett – year: 2016 ident: CR17 article-title: Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization publication-title: Geosci Model Dev doi: 10.5194/gmd-9-1937-2016 – year: 2012 ident: CR82 article-title: Ocean heat transport and its projected change in CanESM2 publication-title: J Clim doi: 10.1175/JCLI-D-11-00715.1 – year: 2000 ident: CR24 article-title: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments publication-title: Dyn Clim doi: 10.1007/s003820050010 – volume: 40 start-page: 4374 year: 2013 end-page: 4379 ident: CR36 article-title: Consequences of poor representation of Arctic sea-ice albedo and cloud-radiation interactions in the CMIP5 model ensemble publication-title: Geophys Res Lett – volume: 12 start-page: e2019MS002025 year: 2020 ident: CR38 article-title: GISS-E21: configurations and climatology publication-title: J Adv Model Earth Syst – volume: 30 start-page: 543 year: 2013 end-page: 560 ident: CR44 article-title: The flexible global ocean-atmosphere-land system model, Grid-point Version 2: FGOALS-g2 publication-title: Adv Atmos Sci – volume: 10 start-page: 2865 year: 2018 end-page: 2888 ident: CR41 article-title: The low-resolution version of HadGEM3 GC3.1: development and evaluation for global climate publication-title: J Adv Model Earth Syst – volume: 6 start-page: 141 year: 2014 end-page: 184 ident: CR63 article-title: Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive publication-title: J Adv Model Earth Syst – volume: 8 start-page: e465 year: 2017 ident: CR9 article-title: Cloud feedback mechanisms and their representation in global climate models publication-title: Wiley Interdiscip Rev Clim Chang – volume: 348 start-page: 899 year: 2015 end-page: 903 ident: CR79 article-title: Dynamic thinning of glaciers on the Southern Antarctic Peninsula publication-title: Science – ident: CR2 – volume: 2 start-page: 262 year: 2009 end-page: 266 ident: CR83 article-title: Model projections of rapid sea-level rise on the northeast coast of the United States publication-title: Nat Geosci – year: 2016 ident: CR31 article-title: The impact of SST biases on projections of anthropogenic climate change: a greater role for atmosphere-only models? publication-title: Geophys Res Lett doi: 10.1002/2016GL069803 – year: 2019 ident: CR22 publication-title: The Whole Atmosphere Community Climate Model Version 6 (WACCM6) – volume: 4 start-page: 845 year: 2011 ident: CR77 article-title: MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments publication-title: Geosci Model Dev – volume: 90 start-page: 23 year: 2012 end-page: 64 ident: CR86 article-title: A new global climate model of the Meteorological Research Institute: MRI-CGCM3—model description and basic performance publication-title: J Meteorol Soc Japan Ser II – volume: 19 start-page: 5686 year: 2006 end-page: 5699 ident: CR32 article-title: Robust responses of the hydrological cycle to global warming publication-title: J Clim – volume: 143 start-page: 101456 year: 2019 ident: CR68 article-title: Southern Ocean heat and momentum uptake are sensitive to the vertical resolution at the ocean surface publication-title: Ocean Model – start-page: 895 year: 2013 end-page: 900 ident: CR29 publication-title: Sea level change – volume: 32 start-page: 7437 year: 2019 end-page: 7451 ident: CR10 article-title: Why does global warming weaken the Gulf stream but intensify the Kuroshio? publication-title: J Clim – volume: 44 start-page: 1402 year: 2017 end-page: 1413 ident: CR34 article-title: Drivers of uncertainty in simulated ocean circulation and heat uptake publication-title: Geophys Res Lett – volume: 12 start-page: 2727 year: 2019 end-page: 2765 ident: CR70 article-title: Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6 publication-title: Geosci Model Dev – year: 2019 ident: CR69 article-title: The Canadian Earth System Model version 5 (CanESM5.0.3) publication-title: Geosci Model Dev Discuss doi: 10.5194/gmd-2019-177 – volume: 23 start-page: 4585 year: 2010 end-page: 4607 ident: CR84 article-title: Spatial variability of sea level rise in twenty-first century projections publication-title: J Clim – volume: 11 start-page: 998 year: 2019 end-page: 1038 ident: CR49 article-title: Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1. 2) and its response to increasing CO2 publication-title: J Adv Model Earth Syst – volume: 33 start-page: 251 year: 2019 end-page: 263 ident: CR81 article-title: Coupling the common land model to echam5 atmospheric general circulation model publication-title: J Meteorol Res – volume: 28 start-page: 887 year: 2015 end-page: 908 ident: CR16 article-title: Ocean heat uptake processes: a model intercomparison publication-title: J Clim doi: 10.1175/JCLI-D-14-00235.1 – volume: 48 start-page: 3247 year: 2017 end-page: 3260 ident: CR19 article-title: Evaluating Arctic warming mechanisms in CMIP5 models publication-title: Clim Dyn – volume: 97 start-page: 931 year: 2019 end-page: 965 ident: CR87 article-title: The Meteorological Research Institute Earth System Model version 2.0, MRI-ESM2.0: description and basic evaluation of the physical component publication-title: J Meteorol Soc Japan Ser II doi: 10.2151/jmsj.2019-051 – year: 2020 ident: CR30 article-title: CAS FGOALS-f3-L model dataset descriptions for CMIP6 DECK experiments publication-title: Atmos Ocean Sci Lett doi: 10.1080/16742834.2020.1778419 – volume: 38 start-page: 1191 year: 2012 end-page: 1209 ident: CR65 article-title: Towards regional projections of twenty-first century sea-level change based on IPCC SRES scenarios publication-title: Clim Dyn – ident: CR52 – volume: 5 start-page: 572 year: 2013 end-page: 597 ident: CR23 article-title: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the coupled model intercomparison project phase 5 publication-title: J Adv Model Earth Syst – volume: 364 start-page: eaav7908 year: 2019 ident: CR43 article-title: Slowdown in Antarctic mass loss from solid Earth and sea-level feedbacks publication-title: Science – volume: 9 start-page: 3993 year: 2016 end-page: 4017 ident: CR25 article-title: The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) contribution to CMIP6: Investigation of sea-level and ocean climate change in response to CO2 forcing publication-title: Geosci Model Dev doi: 10.5194/gmd-9-3993-2016 – volume: 111 start-page: 1 year: 2006 end-page: 12 ident: CR46 article-title: Understanding projections of sea level rise in a Hadley Centre coupled climate model publication-title: J Geophys Res Ocean doi: 10.1029/2005JC003421 – volume: 41 start-page: 1345 year: 2013 end-page: 1364 ident: CR37 article-title: AMO’s structure and climate footprint in observations and IPCC AR5 climate simulations publication-title: Clim Dyn – volume: 11 start-page: 4182 year: 2019 end-page: 4227 ident: CR64 article-title: Evaluation of CNRM earth-system model, CNRM-ESM 2–1: role of earth system processes in present-day and future climate publication-title: J Adv Model Earth Syst – volume: 5 start-page: 21 year: 2013 end-page: 46 ident: CR67 article-title: Causes for contemporary regional sea level changes publication-title: Ann Rev Mar Sci – volume: 31 start-page: 6157 year: 2018 end-page: 6173 ident: CR21 article-title: The role of individual surface flux components in the passive and active ocean heat uptake publication-title: J Clim – ident: CR55 – year: 2010 ident: CR35 article-title: Wind-controlled export of Antarctic Bottom Water from the Weddell Sea publication-title: Geophys Res Lett doi: 10.1029/2010GL042822 – year: 2007 ident: CR42 article-title: Ocean bottom pressure changes lead to a decreasing length-of-day in a warming climate publication-title: Geophys Res Lett doi: 10.1029/2006GL029106 – volume: 11 start-page: 2177 year: 2019 end-page: 2213 ident: CR74 article-title: Evaluation of CMIP6 DECK experiments with CNRM-CM6-1 publication-title: J Adv Model Earth Syst doi: 10.1029/2019MS001683 – volume: 33 start-page: 9065 year: 2020 end-page: 9082 ident: CR4 article-title: Ocean heat storage in response to changing ocean circulation processes publication-title: J. Clim – volume: 32 start-page: 2917 year: 2019 end-page: 2949 ident: CR57 article-title: Global Climate Simulated by the Seoul National University Atmosphere Model Version 0 with a Unified Convection Scheme (SAM0-UNICON) publication-title: J Clim – volume: 43 start-page: 1531 year: 2014 end-page: 1544 ident: CR7 article-title: The drivers of projected North Atlantic sea level change publication-title: Clim Dyn – volume: 31 start-page: 8589 year: 2018 end-page: 8606 ident: CR62 article-title: Impact of mesoscale Eddy transfer on heat uptake in an Eddy-parameterizing ocean model publication-title: J Clim – volume: 40 start-page: 2091 year: 2013 end-page: 2121 ident: CR73 article-title: The CNRM-CM5. 1 global climate model: description and basic evaluation publication-title: Clim Dyn – volume: 24 start-page: 3520 year: 2011 end-page: 3544 ident: CR27 article-title: The GFDL CM3 coupled climate model: characteristics of the ocean and sea ice simulations publication-title: J Clim – volume: 584 start-page: 227 year: 2020 end-page: 233 ident: CR8 article-title: Heat and carbon coupling reveals ocean warming due to circulation changes publication-title: Nature – volume: 47 start-page: e2019GL085782 year: 2020 ident: CR89 article-title: Causes of higher climate sensitivity in CMIP6 models publication-title: Geophys Res Lett – volume: 120 start-page: 5749 year: 2015 ident: 5471_CR61 publication-title: J Geophys Res Ocean doi: 10.1002/2015JC010928 – volume: 23 start-page: 4585 year: 2010 ident: 5471_CR84 publication-title: J Clim doi: 10.1175/2010JCLI3533.1 – volume: 30 start-page: 543 year: 2013 ident: 5471_CR44 publication-title: Adv Atmos Sci doi: 10.1007/s00376-012-2140-6 – volume: 26 start-page: 609 year: 2013 ident: 5471_CR60 publication-title: J Clim doi: 10.1175/JCLI-D-11-00695.1 – volume: 38 start-page: 1191 year: 2012 ident: 5471_CR65 publication-title: Clim Dyn doi: 10.1007/s00382-011-1057-6 – volume: 43 start-page: 1349 year: 2016 ident: 5471_CR85 publication-title: Geophys Res Lett doi: 10.1002/2016GL067679 – volume: 23 start-page: 619 year: 2006 ident: 5471_CR59 publication-title: J Atmos Ocean Technol doi: 10.1175/JTECH1864.1 – volume: 12 start-page: 2727 year: 2019 ident: 5471_CR70 publication-title: Geosci Model Dev doi: 10.5194/gmd-12-2727-2019 – volume: 25 start-page: 6646 year: 2012 ident: 5471_CR15 publication-title: J Clim doi: 10.1175/JCLI-D-11-00560.1 – year: 2019 ident: 5471_CR69 publication-title: Geosci Model Dev Discuss doi: 10.5194/gmd-2019-177 – volume: 5 start-page: 21 year: 2013 ident: 5471_CR67 publication-title: Ann Rev Mar Sci doi: 10.1146/annurev-marine-121211-172406 – volume: 40 start-page: 4374 year: 2013 ident: 5471_CR36 publication-title: Geophys Res Lett doi: 10.1002/grl.50768 – volume: 46 start-page: 414 year: 2010 ident: 5471_CR75 publication-title: Izv Atmos Ocean Phys doi: 10.1134/S000143381004002X – volume: 40 start-page: 2123 year: 2013 ident: 5471_CR14 publication-title: Clim Dyn doi: 10.1007/s00382-012-1636-1 – volume: 26 start-page: 1473 year: 2013 ident: 5471_CR72 publication-title: J Clim doi: 10.1175/JCLI-D-12-00068.1 – year: 2012 ident: 5471_CR82 publication-title: J Clim doi: 10.1175/JCLI-D-11-00715.1 – volume: 40 start-page: 2091 year: 2013 ident: 5471_CR73 publication-title: Clim Dyn doi: 10.1007/s00382-011-1259-y – volume: 9 start-page: 3993 year: 2016 ident: 5471_CR25 publication-title: Geosci Model Dev doi: 10.5194/gmd-9-3993-2016 – volume: 584 start-page: 227 year: 2020 ident: 5471_CR8 publication-title: Nature doi: 10.1038/s41586-020-2573-5 – volume: 145 start-page: 160 year: 2018 ident: 5471_CR88 publication-title: Q J R Meteorol Soc doi: 10.1002/qj.3397 – volume: 41 start-page: 2108 year: 2014 ident: 5471_CR40 publication-title: Geophys Res Lett doi: 10.1002/2013GL058998 – volume: 28 start-page: 9918 year: 2015 ident: 5471_CR51 publication-title: J Clim doi: 10.1175/JCLI-D-15-0200.1 – volume: 9 start-page: 4521 year: 2016 ident: 5471_CR54 publication-title: Geosci Model Dev doi: 10.5194/gmd-9-4521-2016 – volume: 348 start-page: 327 year: 2015 ident: 5471_CR56 publication-title: Science doi: 10.1126/science.aaa0940 – volume: 32 start-page: 7437 year: 2019 ident: 5471_CR10 publication-title: J Clim doi: 10.1175/JCLI-D-18-0895.1 – year: 2007 ident: 5471_CR42 publication-title: Geophys Res Lett doi: 10.1029/2006GL029106 – volume: 187 start-page: 729 year: 2011 ident: 5471_CR53 publication-title: Geophys J Int doi: 10.1111/j.1365-246X.2011.05090.x – ident: 5471_CR55 – volume: 38 start-page: 667 year: 2012 ident: 5471_CR80 publication-title: Clim Dyn doi: 10.1007/s00382-011-1063-8 – year: 2020 ident: 5471_CR30 publication-title: Atmos Ocean Sci Lett doi: 10.1080/16742834.2020.1778419 – volume: 45 start-page: 2647 year: 2015 ident: 5471_CR3 publication-title: Clim Dyn doi: 10.1007/s00382-015-2499-z – volume: 28 start-page: 887 year: 2015 ident: 5471_CR16 publication-title: J Clim doi: 10.1175/JCLI-D-14-00235.1 – volume: 13 start-page: 401 year: 2020 ident: 5471_CR39 publication-title: Geosci Model Dev doi: 10.5194/gmd-13-401-2020 – volume: 40 start-page: 5710 year: 2013 ident: 5471_CR18 publication-title: Geophys Res Lett doi: 10.1002/2013GL058104 – volume: 90 start-page: 23 year: 2012 ident: 5471_CR86 publication-title: J Meteorol Soc Japan Ser II doi: 10.2151/jmsj.2012-A02 – year: 2017 ident: 5471_CR33 publication-title: Sci Rep doi: 10.1038/s41598-017-04623-7 – volume: 12 start-page: e2019MS001916 year: 2020 ident: 5471_CR13 publication-title: J Adv Model Earth Syst doi: 10.1029/2019MS001916 – volume: 48 start-page: 3247 year: 2017 ident: 5471_CR19 publication-title: Clim Dyn doi: 10.1007/s00382-016-3262-9 – volume: 111 start-page: 1 year: 2006 ident: 5471_CR46 publication-title: J Geophys Res Ocean doi: 10.1029/2005JC003421 – volume: 33 start-page: 6377 year: 2020 ident: 5471_CR47 publication-title: J. Clim doi: 10.1175/JCLI-D-19-1029.1 – volume: 19 start-page: 5686 year: 2006 ident: 5471_CR32 publication-title: J Clim doi: 10.1175/JCLI3990.1 – volume: 33 start-page: 251 year: 2019 ident: 5471_CR81 publication-title: J Meteorol Res doi: 10.1007/s13351-019-8117-y – volume: 43 start-page: 1531 year: 2014 ident: 5471_CR7 publication-title: Clim Dyn doi: 10.1007/s00382-013-1973-8 – year: 2011 ident: 5471_CR48 publication-title: Geosci Model Dev doi: 10.5194/gmd-4-723-2011 – volume: 6 start-page: 687 year: 2013 ident: 5471_CR1 publication-title: Geosci Model Dev doi: 10.5194/gmd-6-687-2013 – ident: 5471_CR12 doi: 10.36334/modsim.2011.F5.collier – volume: 584 start-page: 393 year: 2020 ident: 5471_CR20 publication-title: Nature doi: 10.1038/s41586-020-2591-3 – volume: 364 start-page: eaav7908 year: 2019 ident: 5471_CR43 publication-title: Science doi: 10.1126/science.aav7908 – ident: 5471_CR52 – volume: 143 start-page: 101456 year: 2019 ident: 5471_CR68 publication-title: Ocean Model doi: 10.1016/j.ocemod.2019.101456 – volume: 47 start-page: e2019GL085782 year: 2020 ident: 5471_CR89 publication-title: Geophys Res Lett doi: 10.1029/2019GL085782 – volume: 33 start-page: 9065 year: 2020 ident: 5471_CR4 publication-title: J. Clim doi: 10.1175/JCLI-D-19-1016.1 – year: 2013 ident: 5471_CR58 publication-title: Earth Syst Dyn doi: 10.5194/esd-4-11-2013 – volume: 12 start-page: e2019MS002027 year: 2020 ident: 5471_CR71 publication-title: J Adv Model Earth Syst doi: 10.1029/2019MS002027 – volume: 124 start-page: 317 year: 2014 ident: 5471_CR66 publication-title: Clim Change doi: 10.1007/s10584-014-1080-9 – start-page: 1137 volume-title: Climate Change 2013: The Physical Science Basis Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change year: 2013 ident: 5471_CR11 – volume: 23 start-page: 6312 year: 2010 ident: 5471_CR76 publication-title: J Clim doi: 10.1175/2010JCLI3679.1 – volume: 2 start-page: 262 year: 2009 ident: 5471_CR83 publication-title: Nat Geosci doi: 10.1038/ngeo462 – volume: 31 start-page: 8589 year: 2018 ident: 5471_CR62 publication-title: J Clim doi: 10.1175/JCLI-D-18-0186.1 – volume: 12 start-page: 1 year: 2020 ident: 5471_CR5 publication-title: J Adv Model Earth Syst doi: 10.1029/2019MS002010 – volume: 11 start-page: 998 year: 2019 ident: 5471_CR49 publication-title: J Adv Model Earth Syst doi: 10.1029/2018MS001400 – volume: 8 start-page: e465 year: 2017 ident: 5471_CR9 publication-title: Wiley Interdiscip Rev Clim Chang doi: 10.1002/wcc.465 – year: 2016 ident: 5471_CR31 publication-title: Geophys Res Lett doi: 10.1002/2016GL069803 – volume: 32 start-page: 2917 year: 2019 ident: 5471_CR57 publication-title: J Clim doi: 10.1175/JCLI-D-18-0796.1 – volume: 127 start-page: 1 year: 2011 ident: 5471_CR50 publication-title: SCOR/IAPSO WG – volume: 5 start-page: 572 year: 2013 ident: 5471_CR23 publication-title: J Adv Model Earth Syst doi: 10.1002/jame.20038 – year: 2010 ident: 5471_CR35 publication-title: Geophys Res Lett doi: 10.1029/2010GL042822 – volume: 24 start-page: 3520 year: 2011 ident: 5471_CR27 publication-title: J Clim doi: 10.1175/2011JCLI3964.1 – volume: 44 start-page: 1402 year: 2017 ident: 5471_CR34 publication-title: Geophys Res Lett doi: 10.1002/2016GL071587 – volume: 348 start-page: 899 year: 2015 ident: 5471_CR79 publication-title: Science doi: 10.1126/science.aaa5727 – volume: 12 start-page: e2019MS002025 year: 2020 ident: 5471_CR38 publication-title: J Adv Model Earth Syst doi: 10.1029/2019MS002025 – volume: 9 start-page: 34004 year: 2014 ident: 5471_CR6 publication-title: Environ Res Lett doi: 10.1088/1748-9326/9/3/034004 – start-page: 895 volume-title: Sea level change year: 2013 ident: 5471_CR29 – volume: 10 start-page: 2865 year: 2018 ident: 5471_CR41 publication-title: J Adv Model Earth Syst doi: 10.1029/2018MS001370 – volume: 31 start-page: 4727 year: 2018 ident: 5471_CR45 publication-title: J Clim doi: 10.1175/JCLI-D-17-0761.1 – year: 2000 ident: 5471_CR24 publication-title: Dyn Clim doi: 10.1007/s003820050010 – volume: 40 start-page: 1251 year: 2019 ident: 5471_CR26 publication-title: Surv Geophys doi: 10.1007/s10712-019-09525-z – volume: 97 start-page: 931 year: 2019 ident: 5471_CR87 publication-title: J Meteorol Soc Japan Ser II doi: 10.2151/jmsj.2019-051 – year: 2016 ident: 5471_CR17 publication-title: Geosci Model Dev doi: 10.5194/gmd-9-1937-2016 – volume: 26 start-page: 2268 year: 2013 ident: 5471_CR78 publication-title: J Clim doi: 10.1175/JCLI-D-12-00296.1 – volume: 11 start-page: 4182 year: 2019 ident: 5471_CR64 publication-title: J Adv Model Earth Syst doi: 10.1029/2019MS001791 – volume: 31 start-page: 6157 year: 2018 ident: 5471_CR21 publication-title: J Clim doi: 10.1175/JCLI-D-17-0452.1 – volume: 6 start-page: 141 year: 2014 ident: 5471_CR63 publication-title: J Adv Model Earth Syst doi: 10.1002/2013MS000265 – volume-title: The Whole Atmosphere Community Climate Model Version 6 (WACCM6) year: 2019 ident: 5471_CR22 – volume: 41 start-page: 1345 year: 2013 ident: 5471_CR37 publication-title: Clim Dyn doi: 10.1007/s00382-013-1712-1 – volume: 9 start-page: 3231 year: 2016 ident: 5471_CR28 publication-title: Geosci Model Dev doi: 10.5194/gmd-9-3231-2016 – volume: 11 start-page: 2177 year: 2019 ident: 5471_CR74 publication-title: J Adv Model Earth Syst doi: 10.1029/2019MS001683 – volume: 4 start-page: 845 year: 2011 ident: 5471_CR77 publication-title: Geosci Model Dev doi: 10.5194/gmd-4-845-2011 – ident: 5471_CR2 doi: 10.1071/ES19040 |
SSID | ssj0014672 |
Score | 2.5234575 |
Snippet | Sea levels of different atmosphere–ocean general circulation models (AOGCMs) respond to climate change forcing in different ways, representing a crucial... Sea levels of different atmosphere-ocean general circulation models (AOGCMs) respond to climate change forcing in different ways, representing a crucial... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 155 |
SubjectTerms | Air-sea flux Air-sea interaction Antarctic region Arctic circulation Arctic Ocean Atlantic Ocean Atmospheric circulation Atmospheric models Climate change Climate change research Climate models Climatic changes Climatology Earth and Environmental Science Earth Sciences Environmental aspects Fluctuations Forecasts and trends Freshwater General Circulation Models Geophysics/Geodesy Greenhouse gases Heat heat flow Heat flux Heat transfer Inland water environment Meteorological research Momentum Observations Ocean dynamics Ocean models Ocean-atmosphere interaction Oceanic general circulation model Oceanography Oceans Perturbation Sea level Sea level changes surface water temperature Transport Uptake water flow water salinity wind |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge-GCeIpAAYMQHMAifsRJTlWpWhWkVqhQqTcrduyl0iopm_T_M-N4Uy2IHpNMnMd4xp_nSci7UImGO52zWuQFU4XwzKIL0RdSNKoVqgqYO3xyqo_P1beL4iIZ3IYUVrnRiVFRt71DG_lnuEtIjZnPe1e_GXaNQu9qaqFxl-yACq6qBdn5cnj6_Wz2I4AaiH6EWuasBGSS0mZi8hw6xQTD7RPAlhJ2UltL098K-h9PaVyAjh6Q-wk50v2J1Q_JHd89ItkJgN5-HW3j9D09WF0CAo1Hj8mIZbmpa64HP1DAeRRGBo7SPtDY_4YmKwxOPDwJK1nT0XZqUU9BBNgKI4rolBtMLzu6ngJqPR17usSAnV89DE6XzUAB-zp47b0n5Pzo8OfBMUtNFpgDJDcyWzrAeM7VjXOw3Pugy1DWovCtljLUWI9et1oAKmiV5d46y9u8dFpwa4UNQT4li67v_DNCpbBKKt_Cjk-rNi8aW3Gvg-aWB-VtmRG--b_GpQrk2AhjZebayZEnBnhiIk-MysjH-Z6rqf7GrdSvkW1myiGdhdfsa8CFgLUKmZG3kQJLX3QYW7MELgzm64-zLaIPiSj08IKuSakK8JlYLWuLcnczQUwS_sHcTNWMvJkvg9iiL6bpPLDGgKbEynFc8Ix82kysmyH-_4nPb3_iC3JPYNRNNBLtksW4vvYvATaN9lWSjT9TXxKL priority: 102 providerName: ProQuest |
Title | What causes the spread of model projections of ocean dynamic sea-level change in response to greenhouse gas forcing? |
URI | https://link.springer.com/article/10.1007/s00382-020-05471-4 https://www.proquest.com/docview/2482360190 https://www.proquest.com/docview/2574332121 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdge0FICAaIwBgGIXiASPFHnOYJtaVlgDbQoNJ4smLHLpOqBDXZ_8-d4xZ1fEi8NGpzcercXfyzz_c7Qp77Ea-YVVla8ixPZc5dajCE6HLBK1lzOfKYO3xyqo4X8sN5fh5pcjAX5kr8Hsk-BWBAnOQAuChgvnOd7OdMFFimYaqm24gBOHyIGJQiSwvAIDFB5s9t7AxCV1_Fv8VEw1Azv01uRYxIx4NS75BrrjkgyQnA23YdVsHpCzpdXQDWDN8OyM1P1lVNJJ--S3rk46a2uuxcRwHgUbgRqJK2nobCNzQuv6DF4Y8tXk3roTY9BdtPV7iViA5JwfSioethJ62jfUuXuFPnewuN02XVUQC9Fnrx5h5ZzGdfp8dprK6QWoBwfWoKC-DO2rKyFsZ551Xhi5LnrlZC-BKJ6FWtOMCBWhrmjDWszgqrODOGG-_FfbLXtI17QKjgRgrpapjqKVlneWVGzCmvmGFeOlMkhG0et7aRehwrYKz0ljQ5qEiDinRQkZYJebW95sdAvPFP6SeoRT0kj269Vo8VAEIAWblIyLMggZwXDW6qWYIWOv3-y9mO0Mso5Fv4g7aKOQrQTaTJ2pE83NiLjl7fabBsLhRm5yfk6fY0-CsGYarGgWo0vCKRMo5xlpDXGzv71cTfu_jw_8QfkRsct9-E1aJDstevL91jwE-9OSL748nbyRyP7759nMFxMjv9fHYUHAo-F3z8E4Q3FHA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7gFeEJ8ibDCD-HiAiMZxnPYBTWNsatlaobFJezOxY3eVSjKaTmj_FH8jd07SqSD2tse2F9fxne9-9n0BvHI9nkVGdsM-7yahSLgNNbkQbRLzTORc9BzlDo_GcnAivpwmp2vwu82FobDKVid6RZ2Xhu7IP-BTPJaU-bx9_jOkrlHkXW1baNRicWAvf-GRrfo4_Iz8fc35_t7x7iBsugqEBqHLItSpQVBjTD8zBu2bdTJ1aZ8nNpdx7PpUgF3mkqMZzIWOrDY6yrupkTzSmmvnYhz3FqwLnAzvwPqnvfHXo6XfAtWO91v0426YIhJq0nR8sh454XhIxzWESSme3FZM4d8G4R_PrDd4-_fgboNU2U4tWvdhzRYPIBghyC7n_i6evWG7sykiXv_pISyoDDgz2UVlK4a4kuHIKEGsdMz322HNrQ8JOn2JljMrWH5ZZD-mhuHahjOKYGJ1LjKbFmxeB_BatijZhAKEzkocnE2yiiHWNjjt7UdwciPL_xg6RVnYJ8BirkUsbI4nTCnybpLpXmSlk5GOnLA6DSBq11eZpuI5Nd6YqWWtZs8ThTxRnidKBPBu-cx5Xe_jWuotYpuqc1aXykLtSMShiO2SOICXnoJKbRQUyzNBLlRq-O1ohehtQ-RKnKDJmtQIfE2qzrVCudkKiGqUTaWutkYAL5Y_o5og309WWGSNQs1MleoiHgXwvhWsqyH-_4pPr__HLbg9OB4dqsPh-GAD7nCK-PEXVJvQWcwv7DOEbAv9vNknDL7f9Nb8A5-CUGA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkK8ID5F2GAG8fEA0RoncdoHNI1t1cpYNQ0m7c2LHburVJLRZEL71_jruHM-poLY2x6bXpzEd777ne_DAG_sgKeBFn1_yPuxH8Xc-IpCiCYOeRplPBpYqh0-nIj9k-jLaXy6Ar_bWhhKq2x1olPUWaFpj3wT7-KhoMrnTdukRRztjrYufvp0ghRFWtvjNGoROTBXv9B9Kz-Nd5HXbzkf7X3f2febEwZ8jTCm8lWiEeBoPUy1RltnrEhsMuSxyUQY2iE1YxeZ4GgSs0gFRmkVZP1ECx4oxZW1IY57B1YT8op6sPp5b3J03MUwUAW5GMYw7PsJoqKmZMcV7lFAjvvkuiFkStCLWzKLfxuHf6K0zviNHsD9BrWy7VrMHsKKyR-Bd4iAu1i4fXn2ju3MZ4h-3a_HUFFLcKbTy9KUDDEmw5FRmlhhmTt7hzU7QCT0dBGtaJqz7CpPf8w0w7n155TNxOq6ZDbL2aJO5jWsKtiUkoXOCxycTdOSIe7W-NpbT-DkVqb_KfTyIjfPgIVcRWFkMvQ2RZT141QNAiOsCFRgI6MSD4J2fqVuup_TIRxz2fVtdjyRyBPpeCIjDz5091zUvT9upN4gtsm6frVTHHJbICZFnBeHHrx2FNR2IycBniIXSjn-drxE9L4hsgW-oE6bMgn8TOrUtUS53gqIbBRPKa-XiQevur9RZVAcKM0NskailqaudQEPPPjYCtb1EP__xOc3P3ED7uKSlF_Hk4M1uMcp-cftVa1Dr1pcmheI3ir1slkmDM5ue2X-AXBKVJU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=What+causes+the+spread+of+model+projections+of+ocean+dynamic+sea-level+change+in+response+to+greenhouse+gas+forcing%3F&rft.jtitle=Climate+dynamics&rft.au=Couldrey%2C+Matthew+P.&rft.au=Gregory%2C+Jonathan+M.&rft.au=Boeira+Dias%2C+Fabio&rft.au=Dobrohotoff%2C+Peter&rft.date=2021-01-01&rft.issn=0930-7575&rft.eissn=1432-0894&rft.volume=56&rft.issue=1-2&rft.spage=155&rft.epage=187&rft_id=info:doi/10.1007%2Fs00382-020-05471-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00382_020_05471_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0930-7575&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0930-7575&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0930-7575&client=summon |