Accurate prediction of secondary metabolite gene clusters in filamentous fungi

Biosynthetic pathways of secondary metabolites from fungi are currently subject to an intense effort to elucidate the genetic basis for these compounds due to their large potential within pharmaceutics and synthetic biochemistry. The preferred method is methodical gene deletions to identify supporti...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 110; no. 1; pp. E99 - E107
Main Authors Andersen, Mikael R., Nielsen, Jakob B., Klitgaard, Andreas, Petersen, Lene M., Zachariasen, Mia, Hansen, Tilde J., Blicher, Lene H., Gotfredsen, Charlotte H., Larsen, Thomas O., Nielsen, Kristian F., Mortensen, Uffe H.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 02.01.2013
National Acad Sciences
SeriesPNAS Plus
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biosynthetic pathways of secondary metabolites from fungi are currently subject to an intense effort to elucidate the genetic basis for these compounds due to their large potential within pharmaceutics and synthetic biochemistry. The preferred method is methodical gene deletions to identify supporting enzymes for key synthases one cluster at a time. In this study, we design and apply a DNA expression array for Aspergillus nidulans in combination with legacy data to form a comprehensive gene expression compendium. We apply a guilt-by-association–based analysis to predict the extent of the biosynthetic clusters for the 58 synthases active in our set of experimental conditions. A comparison with legacy data shows the method to be accurate in 13 of 16 known clusters and nearly accurate for the remaining 3 clusters. Furthermore, we apply a data clustering approach, which identifies cross-chemistry between physically separate gene clusters (superclusters), and validate this both with legacy data and experimentally by prediction and verification of a supercluster consisting of the synthase AN1242 and the prenyltransferase AN11080, as well as identification of the product compound nidulanin A. We have used A. nidulans for our method development and validation due to the wealth of available biochemical data, but the method can be applied to any fungus with a sequenced and assembled genome, thus supporting further secondary metabolite pathway elucidation in the fungal kingdom.
AbstractList Biosynthetic pathways of secondary metabolites from fungi are currently subject to an intense effort to elucidate the genetic basis for these compounds due to their large potential within pharmaceutics and synthetic biochemistry. The preferred method is methodical gene deletions to identify supporting enzymes for key synthases one cluster at a time. In this study, we design and apply a DNA expression array for Aspergillus nidulans in combination with legacy data to form a comprehensive gene expression compendium. We apply a guilt-by-association–based analysis to predict the extent of the biosynthetic clusters for the 58 synthases active in our set of experimental conditions. A comparison with legacy data shows the method to be accurate in 13 of 16 known clusters and nearly accurate for the remaining 3 clusters. Furthermore, we apply a data clustering approach, which identifies cross-chemistry between physically separate gene clusters (superclusters), and validate this both with legacy data and experimentally by prediction and verification of a supercluster consisting of the synthase AN1242 and the prenyltransferase AN11080, as well as identification of the product compound nidulanin A. We have used A. nidulans for our method development and validation due to the wealth of available biochemical data, but the method can be applied to any fungus with a sequenced and assembled genome, thus supporting further secondary metabolite pathway elucidation in the fungal kingdom.
Biosynthetic pathways of secondary metabolites from fungi are currently subject to an intense effort to elucidate the genetic basis for these compounds due to their large potential within pharmaceutics and synthetic biochemistry. The preferred method is methodical gene deletions to identify supporting enzymes for key synthases one cluster at a time. In this study, we design and apply a DNA expression array for Aspergillus nidulans in combination with legacy data to form a comprehensive gene expression compendium. We apply a guilt-by-association-based analysis to predict the extent of the biosynthetic clusters for the 58 synthases active in our set of experimental conditions. A comparison with legacy data shows the method to be accurate in 13 of 16 known clusters and nearly accurate for the remaining 3 clusters. Furthermore, we apply a data clustering approach, which identifies cross-chemistry between physically separate gene clusters (superclusters), and validate this both with legacy data and experimentally by prediction and verification of a supercluster consisting of the synthase AN1242 and the prenyltransferase AN11080, as well as identification of the product compound nidulanin A. We have used A. nidulans for our method development and validation due to the wealth of available biochemical data, but the method can be applied to any fungus with a sequenced and assembled genome, thus supporting further secondary metabolite pathway elucidation in the fungal kingdom.Biosynthetic pathways of secondary metabolites from fungi are currently subject to an intense effort to elucidate the genetic basis for these compounds due to their large potential within pharmaceutics and synthetic biochemistry. The preferred method is methodical gene deletions to identify supporting enzymes for key synthases one cluster at a time. In this study, we design and apply a DNA expression array for Aspergillus nidulans in combination with legacy data to form a comprehensive gene expression compendium. We apply a guilt-by-association-based analysis to predict the extent of the biosynthetic clusters for the 58 synthases active in our set of experimental conditions. A comparison with legacy data shows the method to be accurate in 13 of 16 known clusters and nearly accurate for the remaining 3 clusters. Furthermore, we apply a data clustering approach, which identifies cross-chemistry between physically separate gene clusters (superclusters), and validate this both with legacy data and experimentally by prediction and verification of a supercluster consisting of the synthase AN1242 and the prenyltransferase AN11080, as well as identification of the product compound nidulanin A. We have used A. nidulans for our method development and validation due to the wealth of available biochemical data, but the method can be applied to any fungus with a sequenced and assembled genome, thus supporting further secondary metabolite pathway elucidation in the fungal kingdom.
Biosynthetic pathways of secondary metabolites from fungi are currently subject to an intense effort to elucidate the genetic basis for these compounds due to their large potential within pharmaceutics and synthetic biochemistry. The preferred method is methodical gene deletions to identify supporting enzymes for key synthases one cluster at a time. In this study, we design and apply a DNA expression array for Aspergillus nidulans in combination with legacy data to form a comprehensive gene expression compendium. We apply a guilt-by-association–based analysis to predict the extent of the biosynthetic clusters for the 58 synthases active in our set of experimental conditions. A comparison with legacy data shows the method to be accurate in 13 of 16 known clusters and nearly accurate for the remaining 3 clusters. Furthermore, we apply a data clustering approach, which identifies cross-chemistry between physically separate gene clusters (superclusters), and validate this both with legacy data and experimentally by prediction and verification of a supercluster consisting of the synthase AN1242 and the prenyltransferase AN11080, as well as identification of the product compound nidulanin A. We have used A. nidulans for our method development and validation due to the wealth of available biochemical data, but the method can be applied to any fungus with a sequenced and assembled genome, thus supporting further secondary metabolite pathway elucidation in the fungal kingdom.
Biosynthetic pathways of secondary metabolites from fungi are currently subject to an intense effort to elucidate the genetic basis for these compounds due to their large potential within pharmaceutics and synthetic biochemistry. The preferred method is methodical gene deletions to identify supporting enzymes for key synthases one cluster at a time. In this study, we design and apply a DNA expression array for Aspergillus nidulans in combination with legacy data to form a comprehensive gene expression compendium. We apply a guilt-by-association-based analysis to predict the extent of the biosynthetic clusters for the 58 synthases active in our set of experimental conditions. A comparison with legacy data shows the method to be accurate in 13 of 16 known clusters and nearly accurate for the remaining 3 clusters. Furthermore, we apply a data clustering approach, which identifies cross-chemistry between physically separate gene clusters (superclusters), and validate this both with legacy data and experimentally by prediction and verification of a supercluster consisting of the synthase AN1242 and the prenyltransferase AN11080, as well as identification of the product compound nidulanin A. We have used A. nidulans for our method development and validation due to the wealth of available biochemical data, but the method can be applied to any fungus with a sequenced and assembled genome, thus supporting further secondary metabolite pathway elucidation in the fungal kingdom. [PUBLICATION ABSTRACT]
Biosynthetic pathways of secondary metabolites from fungi are currently subject to an intense effort to elucidate the genetic basis for these compounds due to their large potential within pharmaceutics and synthetic biochemistry. The preferred method is methodical gene deletions to identify supporting enzymes for key synthases one cluster at a time. In this study, we design and apply a DNA expression array for Aspergillus nidulans in combination with legacy data to form a comprehensive gene expression compendium. We apply a guilt-by-association–based analysis to predict the extent of the biosynthetic clusters for the 58 synthases active in our set of experimental conditions. A comparison with legacy data shows the method to be accurate in 13 of 16 known clusters and nearly accurate for the remaining 3 clusters. Furthermore, we apply a data clustering approach, which identifies cross-chemistry between physically separate gene clusters (superclusters), and validate this both with legacy data and experimentally by prediction and verification of a supercluster consisting of the synthase AN1242 and the prenyltransferase AN11080, as well as identification of the product compound nidulanin A. We have used A. nidulans for our method development and validation due to the wealth of available biochemical data, but the method can be applied to any fungus with a sequenced and assembled genome, thus supporting further secondary metabolite pathway elucidation in the fungal kingdom. In summary, our present findings can immediately support an area of intense focus within fungal biology, namely, the identification of gene clusters involved in biosynthesis of bioactive metabolites, by providing targets and predictions for gene clusters for the important model fungus A. nidulans . Further, in the short term, they provide a general method for rapid prediction of gene clusters in other fungi. This will assist in the identification of biosynthetic genes for a given SM, which can support pathway elucidation in general and is of particular interest for known and potential bioactive compounds. This method can be applied directly to the many fungal species for which large amounts of legacy data exist. Further, we showed that the gene expression profiles of key genes can be used to predict gene clusters located on different chromosomes involved in the biosynthesis of the same class of compounds (cross-chemistry). Our analysis showed a high degree of coordinated expression between biosynthetic gene clusters, which, in some cases, suggests cross-chemistry between clusters. For example, we used gene deletions and chemical analysis of deletion mutants efficiently to determine two gene clusters on separate chromosomes involved in producing the same family of compounds. We further confirmed the interaction of these gene clusters by structural elucidation of the main compound, a prenylated nonribosomal cyclopeptide called nidulanin A. In the present study, we collected and expanded a compendium of gene expression data for a model fungus, Aspergillus nidulans , to encompass >40 samples from a diverse set of conditions. We combined the expression profiles with the chromosomal location of the genes to identify colocalized and coregulated genes. Using a statistical method, we identified the member genes of biosynthetic clusters around predicted and known SM synthases. Here, we predicted the members of 58 gene clusters and validated these predictions through comparison with 16 known clusters (see example in Fig. P1 ). We constructed additional gene deletion strains to investigate further the accuracy of predictions and to compare the findings with the findings of previous studies, as well as to account for changes in gene annotation over time. Our analysis showed overall accuracy of the predictions. The efficiency of the method depends on the number and diversity of the sampling conditions included in gene expression analysis. This diversity should at least include different growth media and liquid as well as solid-state cultivation. The method is immediately applicable to any fungal species with legacy gene expression data and a sequenced genome. Filamentous fungi are particularly interesting as sources of SMs. Despite their relatively small genomes (30–40 Mb), microbial fungi contain more than 40 different genes catalyzing the biosynthesis of SMs. The number of different compounds produced by each fungus can exceed the number of genes by many times. This increased diversity is due to the highly modular mode of the biosynthesis of SMs, which involves different classes of polymer backbones being modified by a plethora of tailoring enzymes, such as (de)hydratases, oxygenases, hydrolases, and methylases. Secondary (nongrowth associated) metabolites (SMs) are chemical entities found primarily in plants, fungi, and microbes. SMs comprise molecules such as hormones, antibiotics, and toxins and provide abundant sources of pharmaceuticals ( 1 ). Here, we describe methods for predicting and identifying the genes of microbial fungi responsible for the abundant biosynthesis of SMs. These methods are capable of accelerating elucidation of the important SM biosynthetic pathways and should benefit development of pharmaceuticals and synthetic biochemistry ( 2 ).
Author Andreas Klitgaard
Jakob B. Nielsen
Thomas O. Larsen
Lene H. Blicher
Uffe H. Mortensen
Lene M. Petersen
Mia Zachariasen
Kristian F. Nielsen
Tilde J. Hansen
Mikael R. Andersen
Charlotte H. Gotfredsen
Author_xml – sequence: 1
  givenname: Mikael R.
  surname: Andersen
  fullname: Andersen, Mikael R.
  organization: Center for Microbial Biotechnology, Department of Systems Biology
– sequence: 2
  givenname: Jakob B.
  surname: Nielsen
  fullname: Nielsen, Jakob B.
  organization: Center for Microbial Biotechnology, Department of Systems Biology
– sequence: 3
  givenname: Andreas
  surname: Klitgaard
  fullname: Klitgaard, Andreas
  organization: Center for Microbial Biotechnology, Department of Systems Biology
– sequence: 4
  givenname: Lene M.
  surname: Petersen
  fullname: Petersen, Lene M.
  organization: Center for Microbial Biotechnology, Department of Systems Biology
– sequence: 5
  givenname: Mia
  surname: Zachariasen
  fullname: Zachariasen, Mia
  organization: Center for Microbial Biotechnology, Department of Systems Biology
– sequence: 6
  givenname: Tilde J.
  surname: Hansen
  fullname: Hansen, Tilde J.
  organization: Center for Microbial Biotechnology, Department of Systems Biology
– sequence: 7
  givenname: Lene H.
  surname: Blicher
  fullname: Blicher, Lene H.
  organization: DTU Multi-Assay Core, Department of Systems Biology, and
– sequence: 8
  givenname: Charlotte H.
  surname: Gotfredsen
  fullname: Gotfredsen, Charlotte H.
  organization: Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
– sequence: 9
  givenname: Thomas O.
  surname: Larsen
  fullname: Larsen, Thomas O.
  organization: Center for Microbial Biotechnology, Department of Systems Biology
– sequence: 10
  givenname: Kristian F.
  surname: Nielsen
  fullname: Nielsen, Kristian F.
  organization: Center for Microbial Biotechnology, Department of Systems Biology
– sequence: 11
  givenname: Uffe H.
  surname: Mortensen
  fullname: Mortensen, Uffe H.
  organization: Center for Microbial Biotechnology, Department of Systems Biology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23248299$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rFTEUhoNU7G117UodcONm2nxnsimU0qpQdKFdh0zm5JoyN7kmM4L_3kzvbdWCuMriPOflOXmP0EFMERB6SfAJwYqdbqMtJ4RiIRglBD9BK4I1aSXX-ACtMKaq7Tjlh-iolFuMsRYdfoYOKaO8o1qv0Kdz5-ZsJ2i2GYbgppBik3xTwKU42Pyz2cBk-zSGiqwhQuPGuUyQSxNi48NoNxCnNJfGz3EdnqOn3o4FXuzfY3Rzdfn14kN7_fn9x4vz69YJKae2V73tCHDN2DAwq5UWytuegtTaeT0I7weQUNUxp473nXKCKsK55wpAeXaMzna527nfwOCqQ7aj2eawqc4m2WD-nsTwzazTD8ME6ygnNeDdPiCn7zOUyWxCcTCONkK9xpAOM4JFJ7v_o1QxIpXmvKJvH6G3ac6x_kSlpORMUEkr9fpP-Qfr-1YqIHaAy6mUDN64MNmlmnpLGA3BZmnfLO2b3-3XvdNHe_fR_954tVdZBg_0gpvLO5M3u7m3ydh1DsXcfKGYSIwJU6Qe8wspyMVz
CitedBy_id crossref_primary_10_1016_j_fgb_2017_01_006
crossref_primary_10_3389_fpls_2021_791033
crossref_primary_10_3390_jof8060591
crossref_primary_10_1039_C9MD00054B
crossref_primary_10_3390_jof7070503
crossref_primary_10_1016_j_fgb_2019_01_003
crossref_primary_10_1021_acschembio_9b00380
crossref_primary_10_1094_MPMI_12_14_0398_FI
crossref_primary_10_1039_C7NP00032D
crossref_primary_10_1039_C6NP00025H
crossref_primary_10_1038_ja_2015_105
crossref_primary_10_1016_j_bbrc_2015_03_011
crossref_primary_10_1073_pnas_1609348114
crossref_primary_10_1534_g3_116_036152
crossref_primary_10_3390_fermentation3030045
crossref_primary_10_1016_j_ijmm_2014_02_001
crossref_primary_10_1016_j_synbio_2015_12_002
crossref_primary_10_1016_j_phytochem_2014_11_019
crossref_primary_10_1038_s41579_018_0121_1
crossref_primary_10_1111_1462_2920_12596
crossref_primary_10_1016_j_phytochem_2024_114164
crossref_primary_10_3390_toxins7093785
crossref_primary_10_1186_s12864_024_10501_0
crossref_primary_10_3390_jof10060430
crossref_primary_10_3920_WMJ2017_2283
crossref_primary_10_3390_jof10090648
crossref_primary_10_1007_s10295_019_02250_x
crossref_primary_10_1016_j_tibtech_2018_09_003
crossref_primary_10_1371_journal_ppat_1007606
crossref_primary_10_1128_msystems_00232_22
crossref_primary_10_1038_ncomms10610
crossref_primary_10_1007_s11694_019_00345_8
crossref_primary_10_1039_c3sc51785c
crossref_primary_10_1186_s12864_016_2577_6
crossref_primary_10_1111_mmi_13562
crossref_primary_10_1111_mmi_14376
crossref_primary_10_1186_1471_2180_13_91
crossref_primary_10_1007_s10337_016_3188_8
crossref_primary_10_1093_bfgp_elu029
crossref_primary_10_3389_fmicb_2018_02212
crossref_primary_10_1016_j_tim_2013_11_002
crossref_primary_10_1098_rstb_2016_0023
crossref_primary_10_1021_acschembio_8b00679
crossref_primary_10_1016_j_pmpp_2023_102021
crossref_primary_10_1016_j_tim_2017_11_004
crossref_primary_10_3389_fmicb_2018_01246
crossref_primary_10_1007_s00253_018_9525_0
crossref_primary_10_1093_bfgp_elu028
crossref_primary_10_1007_s00294_016_0597_z
crossref_primary_10_1002_cbic_201800486
crossref_primary_10_3389_fmicb_2015_00062
crossref_primary_10_1021_acs_biochem_4c00035
crossref_primary_10_1186_s12864_015_1719_6
crossref_primary_10_1371_journal_pone_0084028
crossref_primary_10_1007_s10126_022_10118_y
crossref_primary_10_1007_s11101_015_9448_7
crossref_primary_10_1039_D0CC03990J
crossref_primary_10_1021_acschembio_6b00213
crossref_primary_10_1038_s41598_023_29753_z
crossref_primary_10_1186_s13059_017_1151_0
crossref_primary_10_3389_fmicb_2018_02325
crossref_primary_10_1007_s00203_016_1240_6
crossref_primary_10_1038_s41467_022_32394_x
crossref_primary_10_1093_nar_gkac371
crossref_primary_10_1111_1462_2920_12564
crossref_primary_10_1093_dnares_dsu010
crossref_primary_10_1007_s00438_024_02162_1
crossref_primary_10_1016_j_fgb_2020_103477
crossref_primary_10_1038_s41598_017_10376_0
crossref_primary_10_1099_mgen_0_000243
crossref_primary_10_1007_s00253_020_10900_9
crossref_primary_10_1186_s12864_017_4083_x
crossref_primary_10_1016_j_mib_2019_03_002
crossref_primary_10_1111_mpp_12795
crossref_primary_10_3390_pharmaceutics14091837
crossref_primary_10_3390_molecules25040913
crossref_primary_10_1038_s41576_021_00363_7
crossref_primary_10_1007_s00253_022_11964_5
crossref_primary_10_1128_mBio_01691_20
crossref_primary_10_1016_j_synbio_2016_01_002
crossref_primary_10_1111_mmi_13708
crossref_primary_10_1186_s12864_015_1561_x
crossref_primary_10_1016_j_fgb_2019_06_001
crossref_primary_10_1021_acsomega_4c05007
crossref_primary_10_1073_pnas_1819254116
crossref_primary_10_3390_toxins7093572
crossref_primary_10_1038_s41467_019_14051_y
crossref_primary_10_1128_EC_00076_15
crossref_primary_10_1093_jimb_kuad045
crossref_primary_10_1038_s41579_018_0075_3
crossref_primary_10_1016_j_chembiol_2014_01_013
crossref_primary_10_1016_j_sajb_2024_03_019
crossref_primary_10_3762_bjoc_17_124
crossref_primary_10_1016_j_mib_2013_08_001
crossref_primary_10_1007_s12272_023_01442_5
crossref_primary_10_1128_mBio_00768_21
crossref_primary_10_14252_foodsafetyfscj_2017024
crossref_primary_10_1186_s40793_021_00375_0
crossref_primary_10_1126_sciadv_abo6094
crossref_primary_10_1016_j_tim_2015_09_008
crossref_primary_10_1039_C4NP00134F
crossref_primary_10_1021_acs_jnatprod_4c00483
crossref_primary_10_1371_journal_pone_0286271
crossref_primary_10_1007_s10295_013_1366_3
crossref_primary_10_1016_j_biortech_2024_131703
crossref_primary_10_2323_jgam_2016_11_002
crossref_primary_10_1007_s10295_013_1386_z
crossref_primary_10_3389_fmicb_2015_00077
crossref_primary_10_1128_msystems_01538_24
crossref_primary_10_3389_fmicb_2014_00718
crossref_primary_10_1016_j_chembiol_2014_03_011
crossref_primary_10_1007_s10295_017_1923_2
crossref_primary_10_1038_s41598_023_27813_y
crossref_primary_10_1093_gbe_evv204
crossref_primary_10_3390_jof7080624
crossref_primary_10_1002_ange_201507097
crossref_primary_10_1007_s00253_017_8497_9
crossref_primary_10_1128_Spectrum_00898_21
crossref_primary_10_1038_s41588_018_0246_1
crossref_primary_10_1155_2014_540292
crossref_primary_10_1007_s00253_016_7517_5
crossref_primary_10_1016_j_micres_2015_10_009
crossref_primary_10_1186_s13068_020_01702_2
crossref_primary_10_1093_nar_gky1183
crossref_primary_10_1016_j_genrep_2024_101924
crossref_primary_10_1111_1462_2920_14542
crossref_primary_10_3390_jof7070525
crossref_primary_10_1534_g3_115_024067
crossref_primary_10_1039_C3AY41640B
crossref_primary_10_1002_ajb2_1216
crossref_primary_10_1016_j_pbi_2015_05_030
crossref_primary_10_1021_jacs_2c10211
crossref_primary_10_3389_fmicb_2016_00353
crossref_primary_10_1186_1756_0500_6_71
crossref_primary_10_1038_ja_2016_121
crossref_primary_10_1002_cbic_201402195
crossref_primary_10_1002_anie_201507097
crossref_primary_10_1007_s11427_022_2175_0
crossref_primary_10_3390_jof8111205
crossref_primary_10_1093_bib_bbx146
crossref_primary_10_3389_fmicb_2017_00516
crossref_primary_10_1093_bioinformatics_btv713
crossref_primary_10_1093_dnares_dsx040
crossref_primary_10_1016_j_jgeb_2018_01_006
crossref_primary_10_1371_journal_pone_0073369
crossref_primary_10_3390_jof7121091
crossref_primary_10_1093_bib_bbx020
crossref_primary_10_1590_s0100_204x2016001200003
crossref_primary_10_3389_fpls_2024_1435440
crossref_primary_10_1021_acssynbio_0c00197
crossref_primary_10_1038_s41598_018_36561_3
crossref_primary_10_1073_pnas_2217400119
crossref_primary_10_3390_ijms22168709
crossref_primary_10_1038_nchembio_1897
Cites_doi 10.1021/ja205780g
10.1128/AEM.02187-09
10.1073/pnas.0901870106
10.1021/np068054v
10.1093/nar/gng015
10.1002/cbic.201200014
10.1038/nchembio.177
10.1128/AEM.66.1.359-362.2000
10.1021/np200906s
10.1128/AEM.01743-08
10.1128/AEM.01768-10
10.1099/00221287-136-9-1725
10.1073/pnas.1103523108
10.1016/j.chembiol.2008.05.010
10.1371/journal.pone.0035450
10.1007/BF01569737
10.1021/ja3016395
10.1038/nature04341
10.1016/j.mib.2010.04.008
10.1021/np200254t
10.1073/pnas.93.4.1418
10.1016/j.fgb.2005.09.005
10.1186/1472-6750-10-21
10.1093/genetics/63.2.317
10.1111/j.1574-6968.2011.02327.x
10.1016/j.fgb.2008.08.010
10.1038/nchembio869
10.1039/B904541D
10.1371/journal.pone.0003847
10.1016/j.fgb.2006.12.010
10.1021/ja1096682
10.1007/BF02908688
10.1046/j.1365-2958.2003.03586.x
10.1016/j.fgb.2007.09.004
10.1016/j.fgb.2007.07.003
10.1016/j.chembiol.2005.10.008
10.1093/nar/gki885
10.1016/S0021-9673(03)00490-4
10.1128/AEM.01461-08
10.1038/nbt0207-189
10.1186/gb-2002-3-9-research0048
10.1007/s00253-012-4098-9
10.1021/ja307151x
10.1093/nar/gkr466
10.1016/S0021-9258(18)98948-9
10.1128/AEM.00683-10
10.1016/j.fgb.2010.06.003
10.1016/S0076-6879(09)04808-3
10.1093/nar/gkp751
10.1016/S0021-9673(96)00803-5
10.1021/np100151y
10.1128/aem.62.11.4296-4298.1996
10.1021/ja209809t
10.1186/gb-2004-5-10-r80
ContentType Journal Article
Copyright Copyright National Academy of Sciences Jan 2, 2013
Copyright_xml – notice: Copyright National Academy of Sciences Jan 2, 2013
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1205532110
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic


Virology and AIDS Abstracts
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Prediction of gene clusters in filamentous fungi
EISSN 1091-6490
EndPage E107
ExternalDocumentID PMC3538241
2857286161
23248299
10_1073_pnas_1205532110
110_1_E99
US201600137162
Genre Validation Studies
Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
DZ
H13
KM
PQEST
X
XHC
AAYXX
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
CITATION
IPSME
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c566t-b7ba81e4933dd3a97957fab2e699cf9d5ffde6e842042c4b87c527144f47ee7f3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:13:45 EDT 2025
Fri Jul 11 15:33:51 EDT 2025
Fri Jul 11 15:51:10 EDT 2025
Mon Jun 30 08:09:10 EDT 2025
Thu Apr 03 07:04:25 EDT 2025
Thu Apr 24 23:04:19 EDT 2025
Tue Jul 01 03:39:33 EDT 2025
Wed Nov 11 00:30:18 EST 2020
Wed Dec 27 19:24:34 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c566t-b7ba81e4933dd3a97957fab2e699cf9d5ffde6e842042c4b87c527144f47ee7f3
Notes http://dx.doi.org/10.1073/pnas.1205532110
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
Author contributions: M.R.A., J.B.N., L.M.P., C.H.G., T.O.L., K.F.N., and U.H.M. designed research; M.R.A., J.B.N., A.K., L.M.P., M.Z., T.J.H., L.H.B., C.H.G., and K.F.N. performed research; M.R.A. and K.F.N. contributed new reagents/analytic tools; M.R.A., J.B.N., A.K., L.M.P., T.J.H., C.H.G., T.O.L., K.F.N., and U.H.M. analyzed data; and M.R.A., J.B.N., A.K., L.M.P., C.H.G., K.F.N., and U.H.M. wrote the paper.
Edited by Jerrold Meinwald, Cornell University, Ithaca, NY, and approved November 19, 2012 (received for review August 20, 2012)
OpenAccessLink https://www.pnas.org/content/pnas/110/1/E99.full.pdf
PMID 23248299
PQID 1266435262
PQPubID 42026
ParticipantIDs fao_agris_US201600137162
proquest_miscellaneous_1803105868
crossref_primary_10_1073_pnas_1205532110
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3538241
proquest_journals_1266435262
pubmed_primary_23248299
crossref_citationtrail_10_1073_pnas_1205532110
pnas_primary_110_1_E99
proquest_miscellaneous_1273167944
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-01-02
PublicationDateYYYYMMDD 2013-01-02
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2013
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Keller NP (e_1_3_4_19_2) 2000; 66
Månsson M (e_1_3_4_45_2) 2010; 73
Clutterbuck AJ (e_1_3_4_23_2) 1969; 63
e_1_1_2_17_9_2_2
Palmer JM (e_1_3_4_6_2) 2010; 13
Chiang YM (e_1_3_4_16_2) 2008; 15
Nielsen KF (e_1_3_4_44_2) 2003; 1002
Nielsen KF (e_1_3_4_31_2) 2011; 74
Chiang YM (e_1_3_4_7_2) 2010; 76
MacCabe AP (e_1_3_4_27_2) 1991; 266
Khaldi N (e_1_3_4_3_2) 2010; 47
Panagiotou G (e_1_3_4_34_2) 2009; 75
Nørholm MH (e_1_3_4_53_2) 2010; 10
Eisendle M (e_1_3_4_55_2) 2003; 49
Birse CE (e_1_3_4_26_2) 1990; 136
Cullen D (e_1_3_4_38_2) 2007; 25
Bachmann BO (e_1_3_4_56_2) 2009; 458
Brakhage AA (e_1_3_4_36_2) 2008; 66
Schneider P (e_1_3_4_22_2) 2008; 45
Bergmann S (e_1_3_4_39_2) 2010; 76
Newman DJ (e_1_3_4_1_2) 2012; 75
Nielsen JB (e_1_3_4_52_2) 2008; 45
Medema MH (e_1_3_4_4_2) 2011; 39
Schätzle MA (e_1_3_4_10_2) 2012; 134
Galagan JE (e_1_3_4_35_2) 2005; 438
Panagiotou G (e_1_3_4_33_2) 2008; 3
Yeh HH (e_1_3_4_29_2) 2012; 96
Szewczyk E (e_1_3_4_15_2) 2008; 74
Schroeckh V (e_1_3_4_14_2) 2009; 106
Arnaud MB (e_1_3_4_32_2) 2010; 38
Bok JW (e_1_3_4_13_2) 2009; 5
Martin JF (e_1_3_4_28_2) 1992; 9
Simpson TJ (e_1_3_4_9_2) 2012; 13
Workman C (e_1_3_4_46_2) 2002; 3
Smyth GK (e_1_3_4_47_2) 2005
e_1_1_2_17_9_1_2
e_1_1_2_17_9_3_2
e_1_3_4_49_2
Hansen BG (e_1_3_4_54_2) 2011; 77
Bok JW (e_1_3_4_37_2) 2006; 13
Gentleman RC (e_1_3_4_50_2) 2004; 5
Kelly DE (e_1_3_4_5_2) 2009; 46
Rausch C (e_1_3_4_57_2) 2005; 33
Marfey P (e_1_3_4_40_2) 1984; 49
Nützmann HW (e_1_3_4_41_2) 2011; 108
Lo H-C (e_1_3_4_30_2) 2012; 134
Brown DW (e_1_3_4_17_2) 1996; 93
Irizarry RA (e_1_3_4_48_2) 2003; 31
Bergmann S (e_1_3_4_20_2) 2007; 3
Frisvad JC (e_1_3_4_42_2) 2004; 49
Kelkar HS (e_1_3_4_18_2) 1996; 62
Bouhired S (e_1_3_4_21_2) 2007; 44
Ahuja M (e_1_3_4_24_2) 2012; 134
Bromann K (e_1_3_4_25_2) 2012; 7
Nielsen ML (e_1_3_4_51_2) 2006; 43
Liu T (e_1_3_4_2_2) 2011; 133
Sanchez JF (e_1_3_4_12_2) 2010; 6
Sanchez JF (e_1_3_4_8_2) 2011; 133
Nielsen ML (e_1_3_4_11_2) 2011; 321
Smedsgaard J (e_1_3_4_43_2) 1997; 760
17291795 - Fungal Genet Biol. 2007 Nov;44(11):1134-45
17309302 - J Nat Prod. 2007 Mar;70(3):461-77
22506079 - PLoS One. 2012;7(4):e35450
18978088 - Appl Environ Microbiol. 2008 Dec;74(24):7607-12
21672958 - Nucleic Acids Res. 2011 Jul;39(Web Server issue):W339-46
20509666 - J Nat Prod. 2010 Jun 25;73(6):1126-32
17369821 - Nat Chem Biol. 2007 Apr;3(4):213-7
8643646 - Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1418-22
20139316 - Appl Environ Microbiol. 2010 Apr;76(7):2067-74
19374984 - Methods Enzymol. 2009;458:181-217
22316239 - J Nat Prod. 2012 Mar 23;75(3):311-35
16221976 - Nucleic Acids Res. 2005;33(18):5799-808
21658102 - FEMS Microbiol Lett. 2011 Aug;321(2):157-66
9062989 - J Chromatogr A. 1997 Jan 31;760(2):264-70
22329759 - J Am Chem Soc. 2012 Mar 14;134(10):4709-20
18029206 - Fungal Genet Biol. 2008 Mar;45(3):302-9
20952652 - Appl Environ Microbiol. 2010 Dec;76(24):8143-9
20627806 - Curr Opin Microbiol. 2010 Aug;13(4):431-6
20174687 - Mol Biosyst. 2010 Mar;6(3):587-93
21815681 - J Am Chem Soc. 2011 Aug 31;133(34):13314-6
12582260 - Nucleic Acids Res. 2003 Feb 15;31(4):e15
20554054 - Fungal Genet Biol. 2010 Sep;47(9):736-41
2061333 - J Biol Chem. 1991 Jul 5;266(19):12646-54
21825172 - Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14282-7
22510154 - J Am Chem Soc. 2012 May 16;134(19):8212-21
2126551 - J Gen Microbiol. 1990 Sep;136(9):1725-30
22026385 - J Nat Prod. 2011 Nov 28;74(11):2338-48
19052639 - PLoS One. 2008;3(12):e3847
12885084 - J Chromatogr A. 2003 Jun 20;1002(1-2):111-36
19448638 - Nat Chem Biol. 2009 Jul;5(7):462-4
10618248 - Appl Environ Microbiol. 2000 Jan;66(1):359-62
19666480 - Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14558-63
17287752 - Nat Biotechnol. 2007 Feb;25(2):189-90
22627757 - Appl Microbiol Biotechnol. 2012 Nov;96(3):739-48
18559263 - Chem Biol. 2008 Jun;15(6):527-32
21351751 - J Am Chem Soc. 2011 Mar 23;133(11):4010-7
22730213 - Chembiochem. 2012 Jul 23;13(11):1680-8
22909031 - J Am Chem Soc. 2012 Sep 12;134(36):14742-5
16372000 - Nature. 2005 Dec 22;438(7071):1105-15
18416304 - Prog Drug Res. 2008;66:1, 3-12
12828635 - Mol Microbiol. 2003 Jul;49(2):359-75
20233396 - BMC Biotechnol. 2010;10:21
1368054 - J Ind Microbiol. 1992 Feb-Mar;9(2):73-90
19773420 - Nucleic Acids Res. 2010 Jan;38(Database issue):D420-7
12225587 - Genome Biol. 2002 Aug 30;3(9):research0048
15461798 - Genome Biol. 2004;5(10):R80
21398493 - Appl Environ Microbiol. 2011 May;77(9):3044-51
16426969 - Chem Biol. 2006 Jan;13(1):31-7
17703973 - Fungal Genet Biol. 2008 Mar;45(3):165-70
8900026 - Appl Environ Microbiol. 1996 Nov;62(11):4296-8
18824241 - Fungal Genet Biol. 2009 Mar;46 Suppl 1:S53-61
16289954 - Fungal Genet Biol. 2006 Jan;43(1):54-64
5366214 - Genetics. 1969 Oct;63(2):317-27
19168657 - Appl Environ Microbiol. 2009 Apr;75(7):2212-20
References_xml – ident: e_1_1_2_17_9_2_2
  doi: 10.1021/ja205780g
– volume: 76
  start-page: 2067
  year: 2010
  ident: e_1_3_4_7_2
  article-title: Characterization of the Aspergillus nidulans monodictyphenone gene cluster
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02187-09
– volume: 106
  start-page: 14558
  year: 2009
  ident: e_1_3_4_14_2
  article-title: Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0901870106
– ident: e_1_1_2_17_9_1_2
  doi: 10.1021/np068054v
– volume: 31
  start-page: e15
  year: 2003
  ident: e_1_3_4_48_2
  article-title: Summaries of Affymetrix GeneChip probe level data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gng015
– volume: 13
  start-page: 1680
  year: 2012
  ident: e_1_3_4_9_2
  article-title: Genetic and biosynthetic studies of the fungal prenylated xanthone shamixanthone and related metabolites in Aspergillus spp. revisited
  publication-title: ChemBioChem
  doi: 10.1002/cbic.201200014
– volume: 5
  start-page: 462
  year: 2009
  ident: e_1_3_4_13_2
  article-title: Chromatin-level regulation of biosynthetic gene clusters
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.177
– volume: 66
  start-page: 359
  year: 2000
  ident: e_1_3_4_19_2
  article-title: Requirement of monooxygenase-mediated steps for sterigmatocystin biosynthesis by Aspergillus nidulans
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.66.1.359-362.2000
– volume: 75
  start-page: 311
  year: 2012
  ident: e_1_3_4_1_2
  article-title: Natural products as sources of new drugs over the 30 years from 1981 to 2010
  publication-title: J Nat Prod
  doi: 10.1021/np200906s
– volume: 74
  start-page: 7607
  year: 2008
  ident: e_1_3_4_15_2
  article-title: Identification and characterization of the asperthecin gene cluster of Aspergillus nidulans
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01743-08
– volume: 77
  start-page: 3044
  year: 2011
  ident: e_1_3_4_54_2
  article-title: Versatile enzyme expression and characterization system for Aspergillus nidulans, with the Penicillium brevicompactum polyketide synthase gene from the mycophenolic acid gene cluster as a test case
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01768-10
– volume: 136
  start-page: 1725
  year: 1990
  ident: e_1_3_4_26_2
  article-title: N-acetyl-6-hydroxytryptophan oxidase, a developmentally controlled phenol oxidase from Aspergillus nidulans
  publication-title: J Gen Microbiol
  doi: 10.1099/00221287-136-9-1725
– volume: 108
  start-page: 14282
  year: 2011
  ident: e_1_3_4_41_2
  article-title: Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1103523108
– volume: 15
  start-page: 527
  year: 2008
  ident: e_1_3_4_16_2
  article-title: Molecular genetic mining of the Aspergillus secondary metabolome: Discovery of the emericellamide biosynthetic pathway
  publication-title: Chem Biol
  doi: 10.1016/j.chembiol.2008.05.010
– volume: 7
  start-page: e35450
  year: 2012
  ident: e_1_3_4_25_2
  article-title: Identification and characterization of a novel diterpene gene cluster in Aspergillus nidulans
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0035450
– volume: 9
  start-page: 73
  year: 1992
  ident: e_1_3_4_28_2
  article-title: Clusters of genes for the biosynthesis of antibiotics: regulatory genes and overproduction of pharmaceuticals
  publication-title: J Ind Microbiol
  doi: 10.1007/BF01569737
– volume: 134
  start-page: 8212
  year: 2012
  ident: e_1_3_4_24_2
  article-title: Illuminating the diversity of aromatic polyketide synthases in Aspergillus nidulans
  publication-title: J Am Chem Soc
  doi: 10.1021/ja3016395
– ident: e_1_1_2_17_9_3_2
  doi: 10.1016/j.chembiol.2008.05.010
– volume: 438
  start-page: 1105
  year: 2005
  ident: e_1_3_4_35_2
  article-title: Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae
  publication-title: Nature
  doi: 10.1038/nature04341
– volume: 13
  start-page: 431
  year: 2010
  ident: e_1_3_4_6_2
  article-title: Secondary metabolism in fungi: Does chromosomal location matter?
  publication-title: Curr Opin Microbiol
  doi: 10.1016/j.mib.2010.04.008
– volume: 74
  start-page: 2338
  year: 2011
  ident: e_1_3_4_31_2
  article-title: Dereplication of microbial natural products by LC-DAD-TOFMS
  publication-title: J Nat Prod
  doi: 10.1021/np200254t
– volume: 93
  start-page: 1418
  year: 1996
  ident: e_1_3_4_17_2
  article-title: Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulans
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.93.4.1418
– volume: 43
  start-page: 54
  year: 2006
  ident: e_1_3_4_51_2
  article-title: Efficient PCR-based gene targeting with a recyclable marker for Aspergillus nidulans
  publication-title: Fungal Genet Biol
  doi: 10.1016/j.fgb.2005.09.005
– volume: 10
  start-page: 21
  year: 2010
  ident: e_1_3_4_53_2
  article-title: A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering
  publication-title: BMC Biotechnol
  doi: 10.1186/1472-6750-10-21
– volume: 49
  start-page: 1
  year: 2004
  ident: e_1_3_4_42_2
  article-title: Polyphasic taxonomy of Penicillium subgenus Penicillium. A guide to identification of the food and air-borne terverticillate Penicillia and their mycotoxins
  publication-title: Stud Mycol
– volume: 63
  start-page: 317
  year: 1969
  ident: e_1_3_4_23_2
  article-title: A mutational analysis of conidial development in Aspergillus nidulans
  publication-title: Genetics
  doi: 10.1093/genetics/63.2.317
– volume: 321
  start-page: 157
  year: 2011
  ident: e_1_3_4_11_2
  article-title: A genome-wide polyketide synthase deletion library uncovers novel genetic links to polyketides and meroterpenoids in Aspergillus nidulans
  publication-title: FEMS Microbiol Lett
  doi: 10.1111/j.1574-6968.2011.02327.x
– volume: 46
  start-page: S53
  year: 2009
  ident: e_1_3_4_5_2
  article-title: The CYPome (Cytochrome P450 complement) of Aspergillus nidulans
  publication-title: Fungal Genet Biol
  doi: 10.1016/j.fgb.2008.08.010
– volume: 3
  start-page: 213
  year: 2007
  ident: e_1_3_4_20_2
  article-title: Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio869
– volume: 6
  start-page: 587
  year: 2010
  ident: e_1_3_4_12_2
  article-title: Molecular genetic analysis of the orsellinic acid/F9775 gene cluster of Aspergillus nidulans
  publication-title: Mol Biosyst
  doi: 10.1039/B904541D
– volume: 133
  start-page: 13314
  year: 2011
  ident: e_1_3_4_2_2
  article-title: Engineering of an “unnatural” natural product by swapping polyketide synthase domains in Aspergillus nidulans
  publication-title: J Am Chem Soc
  doi: 10.1021/ja205780g
– volume: 3
  start-page: e3847
  year: 2008
  ident: e_1_3_4_33_2
  article-title: Systems analysis unfolds the relationship between the phosphoketolase pathway and growth in Aspergillus nidulans
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0003847
– volume: 44
  start-page: 1134
  year: 2007
  ident: e_1_3_4_21_2
  article-title: Accurate prediction of the Aspergillus nidulans terrequinone gene cluster boundaries using the transcriptional regulator LaeA
  publication-title: Fungal Genet Biol
  doi: 10.1016/j.fgb.2006.12.010
– volume: 133
  start-page: 4010
  year: 2011
  ident: e_1_3_4_8_2
  article-title: Genome-based deletion analysis reveals the prenyl xanthone biosynthesis pathway in Aspergillus nidulans
  publication-title: J Am Chem Soc
  doi: 10.1021/ja1096682
– volume: 49
  start-page: 591
  year: 1984
  ident: e_1_3_4_40_2
  article-title: Determination of D- amino acids. II. Use of a bifunctional reagent, 1,5-di-fluoro-2,4-dinitrobenzene
  publication-title: Carlsberg Res Commun
  doi: 10.1007/BF02908688
– volume: 49
  start-page: 359
  year: 2003
  ident: e_1_3_4_55_2
  article-title: The siderophore system is essential for viability of Aspergillus nidulans: Functional analysis of two genes encoding l-ornithine N 5-monooxygenase (sidA) and a non-ribosomal peptide synthetase (sidC)
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2003.03586.x
– volume: 45
  start-page: 302
  year: 2008
  ident: e_1_3_4_22_2
  article-title: The Aspergillus nidulans enzyme TdiB catalyzes prenyltransfer to the precursor of bioactive asterriquinones
  publication-title: Fungal Genet Biol
  doi: 10.1016/j.fgb.2007.09.004
– volume: 45
  start-page: 165
  year: 2008
  ident: e_1_3_4_52_2
  article-title: Transient disruption of non-homologous end-joining facilitates targeted genome manipulations in the filamentous fungus Aspergillus nidulans
  publication-title: Fungal Genet Biol
  doi: 10.1016/j.fgb.2007.07.003
– volume: 13
  start-page: 31
  year: 2006
  ident: e_1_3_4_37_2
  article-title: Genomic mining for Aspergillus natural products
  publication-title: Chem Biol
  doi: 10.1016/j.chembiol.2005.10.008
– volume: 33
  start-page: 5799
  year: 2005
  ident: e_1_3_4_57_2
  article-title: Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs)
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki885
– volume: 1002
  start-page: 111
  year: 2003
  ident: e_1_3_4_44_2
  article-title: Fungal metabolite screening: Database of 474 mycotoxins and fungal metabolites for dereplication by standardised liquid chromatography-UV-mass spectrometry methodology
  publication-title: J Chromatogr A
  doi: 10.1016/S0021-9673(03)00490-4
– volume: 75
  start-page: 2212
  year: 2009
  ident: e_1_3_4_34_2
  article-title: Studies of the production of fungal polyketides in Aspergillus nidulans by using systems biology tools
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01461-08
– volume: 25
  start-page: 189
  year: 2007
  ident: e_1_3_4_38_2
  article-title: The genome of an industrial workhorse
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt0207-189
– volume: 3
  start-page: research0048
  year: 2002
  ident: e_1_3_4_46_2
  article-title: A new non-linear normalization method for reducing variability in DNA microarray experiments
  publication-title: Genome Biol
  doi: 10.1186/gb-2002-3-9-research0048
– volume: 96
  start-page: 739
  year: 2012
  ident: e_1_3_4_29_2
  article-title: Molecular genetic analysis reveals that a nonribosomal peptide synthetase-like (NRPS-like) gene in Aspergillus nidulans is responsible for microperfuranone biosynthesis
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-012-4098-9
– volume: 134
  start-page: 14742
  year: 2012
  ident: e_1_3_4_10_2
  article-title: Tautomers of anthrahydroquinones: Enzymatic reduction and implications for chrysophanol, monodictyphenone, and related xanthone biosyntheses
  publication-title: J Am Chem Soc
  doi: 10.1021/ja307151x
– start-page: 397
  volume-title: Limma: Linear models for microarray data
  year: 2005
  ident: e_1_3_4_47_2
– volume: 39
  start-page: W339
  year: 2011
  ident: e_1_3_4_4_2
  article-title: antiSMASH: Rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr466
– volume: 266
  start-page: 12646
  year: 1991
  ident: e_1_3_4_27_2
  article-title: Delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase from Aspergillus nidulans. Molecular characterization of the acvA gene encoding the first enzyme of the penicillin biosynthetic pathway
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)98948-9
– volume: 76
  start-page: 8143
  year: 2010
  ident: e_1_3_4_39_2
  article-title: Activation of a silent fungal polyketide biosynthesis pathway through regulatory cross talk with a cryptic nonribosomal peptide synthetase gene cluster
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00683-10
– volume: 47
  start-page: 736
  year: 2010
  ident: e_1_3_4_3_2
  article-title: SMURF: Genomic mapping of fungal secondary metabolite clusters
  publication-title: Fungal Genet Biol
  doi: 10.1016/j.fgb.2010.06.003
– volume: 458
  start-page: 181
  year: 2009
  ident: e_1_3_4_56_2
  article-title: Chapter 8. Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data
  publication-title: Methods Enzymol
  doi: 10.1016/S0076-6879(09)04808-3
– volume: 38
  start-page: D420
  year: 2010
  ident: e_1_3_4_32_2
  article-title: The Aspergillus Genome Database, a curated comparative genomics resource for gene, protein and sequence information for the Aspergillus research community
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkp751
– volume: 760
  start-page: 264
  year: 1997
  ident: e_1_3_4_43_2
  article-title: Micro-scale extraction procedure for standardized screening of fungal metabolite production in cultures
  publication-title: J Chromatogr A
  doi: 10.1016/S0021-9673(96)00803-5
– ident: e_1_3_4_49_2
– volume: 73
  start-page: 1126
  year: 2010
  ident: e_1_3_4_45_2
  article-title: Explorative solid-phase extraction (E-SPE) for accelerated microbial natural product discovery, dereplication, and purification
  publication-title: J Nat Prod
  doi: 10.1021/np100151y
– volume: 62
  start-page: 4296
  year: 1996
  ident: e_1_3_4_18_2
  article-title: Aspergillus nidulans stcP encodes an O-methyltransferase that is required for sterigmatocystin biosynthesis
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.62.11.4296-4298.1996
– volume: 66
  start-page: 3
  year: 2008
  ident: e_1_3_4_36_2
  article-title: Activation of fungal silent gene clusters: A new avenue to drug discovery
  publication-title: Prog Drug Res
– volume: 134
  start-page: 4709
  year: 2012
  ident: e_1_3_4_30_2
  article-title: Two separate gene clusters encode the biosynthetic pathway for the meroterpenoids austinol and dehydroaustinol in Aspergillus nidulans
  publication-title: J Am Chem Soc
  doi: 10.1021/ja209809t
– volume: 5
  start-page: R80
  year: 2004
  ident: e_1_3_4_50_2
  article-title: Bioconductor: Open software development for computational biology and bioinformatics
  publication-title: Genome Biol
  doi: 10.1186/gb-2004-5-10-r80
– reference: 20627806 - Curr Opin Microbiol. 2010 Aug;13(4):431-6
– reference: 15461798 - Genome Biol. 2004;5(10):R80
– reference: 17309302 - J Nat Prod. 2007 Mar;70(3):461-77
– reference: 9062989 - J Chromatogr A. 1997 Jan 31;760(2):264-70
– reference: 16221976 - Nucleic Acids Res. 2005;33(18):5799-808
– reference: 22026385 - J Nat Prod. 2011 Nov 28;74(11):2338-48
– reference: 19666480 - Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14558-63
– reference: 12828635 - Mol Microbiol. 2003 Jul;49(2):359-75
– reference: 22329759 - J Am Chem Soc. 2012 Mar 14;134(10):4709-20
– reference: 19168657 - Appl Environ Microbiol. 2009 Apr;75(7):2212-20
– reference: 21815681 - J Am Chem Soc. 2011 Aug 31;133(34):13314-6
– reference: 10618248 - Appl Environ Microbiol. 2000 Jan;66(1):359-62
– reference: 19448638 - Nat Chem Biol. 2009 Jul;5(7):462-4
– reference: 21658102 - FEMS Microbiol Lett. 2011 Aug;321(2):157-66
– reference: 12885084 - J Chromatogr A. 2003 Jun 20;1002(1-2):111-36
– reference: 1368054 - J Ind Microbiol. 1992 Feb-Mar;9(2):73-90
– reference: 20174687 - Mol Biosyst. 2010 Mar;6(3):587-93
– reference: 8900026 - Appl Environ Microbiol. 1996 Nov;62(11):4296-8
– reference: 20233396 - BMC Biotechnol. 2010;10:21
– reference: 22909031 - J Am Chem Soc. 2012 Sep 12;134(36):14742-5
– reference: 20554054 - Fungal Genet Biol. 2010 Sep;47(9):736-41
– reference: 16426969 - Chem Biol. 2006 Jan;13(1):31-7
– reference: 21825172 - Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14282-7
– reference: 18559263 - Chem Biol. 2008 Jun;15(6):527-32
– reference: 19773420 - Nucleic Acids Res. 2010 Jan;38(Database issue):D420-7
– reference: 22627757 - Appl Microbiol Biotechnol. 2012 Nov;96(3):739-48
– reference: 20139316 - Appl Environ Microbiol. 2010 Apr;76(7):2067-74
– reference: 12225587 - Genome Biol. 2002 Aug 30;3(9):research0048
– reference: 18029206 - Fungal Genet Biol. 2008 Mar;45(3):302-9
– reference: 19052639 - PLoS One. 2008;3(12):e3847
– reference: 22510154 - J Am Chem Soc. 2012 May 16;134(19):8212-21
– reference: 17287752 - Nat Biotechnol. 2007 Feb;25(2):189-90
– reference: 18824241 - Fungal Genet Biol. 2009 Mar;46 Suppl 1:S53-61
– reference: 16372000 - Nature. 2005 Dec 22;438(7071):1105-15
– reference: 21398493 - Appl Environ Microbiol. 2011 May;77(9):3044-51
– reference: 2061333 - J Biol Chem. 1991 Jul 5;266(19):12646-54
– reference: 12582260 - Nucleic Acids Res. 2003 Feb 15;31(4):e15
– reference: 22506079 - PLoS One. 2012;7(4):e35450
– reference: 18416304 - Prog Drug Res. 2008;66:1, 3-12
– reference: 19374984 - Methods Enzymol. 2009;458:181-217
– reference: 22316239 - J Nat Prod. 2012 Mar 23;75(3):311-35
– reference: 17291795 - Fungal Genet Biol. 2007 Nov;44(11):1134-45
– reference: 16289954 - Fungal Genet Biol. 2006 Jan;43(1):54-64
– reference: 21672958 - Nucleic Acids Res. 2011 Jul;39(Web Server issue):W339-46
– reference: 20509666 - J Nat Prod. 2010 Jun 25;73(6):1126-32
– reference: 17369821 - Nat Chem Biol. 2007 Apr;3(4):213-7
– reference: 17703973 - Fungal Genet Biol. 2008 Mar;45(3):165-70
– reference: 21351751 - J Am Chem Soc. 2011 Mar 23;133(11):4010-7
– reference: 22730213 - Chembiochem. 2012 Jul 23;13(11):1680-8
– reference: 2126551 - J Gen Microbiol. 1990 Sep;136(9):1725-30
– reference: 8643646 - Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1418-22
– reference: 18978088 - Appl Environ Microbiol. 2008 Dec;74(24):7607-12
– reference: 5366214 - Genetics. 1969 Oct;63(2):317-27
– reference: 20952652 - Appl Environ Microbiol. 2010 Dec;76(24):8143-9
SSID ssj0009580
Score 2.4946485
Snippet Biosynthetic pathways of secondary metabolites from fungi are currently subject to an intense effort to elucidate the genetic basis for these compounds due to...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage E99
SubjectTerms Aspergillus nidulans
Aspergillus nidulans - genetics
biochemical pathways
Biochemistry
Biological Sciences
Biosynthesis
Biosynthetic Pathways - genetics
Cluster Analysis
DNA
Enzymes
Fungi
Gene expression
Gene Expression Profiling - methods
Gene Expression Regulation, Fungal - genetics
Metabolites
Metabolome - genetics
Microarray Analysis - methods
multigene family
Multigene Family - genetics
PNAS Plus
Polyketide Synthases - genetics
prediction
Secondary metabolites
Tandem Mass Spectrometry
Xanthines - chemistry
Xanthines - isolation & purification
Title Accurate prediction of secondary metabolite gene clusters in filamentous fungi
URI http://www.pnas.org/content/110/1/E99.abstract
https://www.ncbi.nlm.nih.gov/pubmed/23248299
https://www.proquest.com/docview/1266435262
https://www.proquest.com/docview/1273167944
https://www.proquest.com/docview/1803105868
https://pubmed.ncbi.nlm.nih.gov/PMC3538241
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcuGCWGDZwoKMxGFRldI6DzvHCnW1ghJWopV6i2zHLtGWFG3TC_-Mf8dM3l2WCrhEVeO4jufLPNKZbwh5k0hmNB-FjpSudjzlGkeoJHQgFmFMilDxMtsiCi4X3oelv-z1fnaylna5Guofd9aV_I9U4TuQK1bJ_oNkm0nhC_gM8oUjSBiOfyXjidY7pHrASv8k1bXzt8UgN8F0uG8mByFjmTG2SjYDvd4hMUKRA2tTAAOYHMyBBeu2Srt-6lVj17Z1FkFUvzactEUolWbYDpzBVdS2NJ4UFTOmysu_lmbd5iVGKVrjsiJEXm9U2_b5I6xzJeVNm2gpt63mzpsZZ3gnn7qvK7B1xNgZtcHtobV29TQD2-mV1dVDU6pm8GycwCubiza6u8qJ7YK01MTTsu_SbxYCVBq2Nc7kdjhmI993WT3HHhd39Dm-WMxm8Xy6nO-fLWw_Ez5nIhhj4H2fQYTCCpvQ5XsWZfVTdSM1qxR339367T2H6J6VG6TZhSF3hTy3M3c7rtD8EXlYxTB0UgLymPRM9pgc1_tLzysq87dPSFQjlLYIpRtLG4TSFqEUEUprhNI0ox2E0gKhT8niYjp_f-lUHTwcDWFC7iiupBgbL3TdJHFlyEOfW6mYCcJQ2zDxrU1MYGCDwHZoTwmufcYhxrceN4Zb94QcZZvMnBIasBG3lstEM-lZq4TxA2UNzJmMxokRfTKstzHWFb09dllZx0WaBXdj3NS43fc-OW8u-F4yu_x56CnIJZYrsLvx4gtDVkak6hwHrE9OisHNDDhFDODrk7NafHGlMnDKACIAn-F1r5vToNDxXzqZGdhPGIPN5MBMegfGCGT09UUAt_2sRESzAgyRBMMF8D2sNAOQUH7_TJZ-LYjlXfB-wKN_fnjpL8iD9sE-I0f5zc68BM88V6-KZ-AXnSblng
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+prediction+of+secondary+metabolite+gene+clusters+in+filamentous+fungi&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Andersen%2C+Mikael+R&rft.au=Nielsen%2C+Jakob+B&rft.au=Klitgaard%2C+Andreas&rft.au=Petersen%2C+Lene+M&rft.date=2013-01-02&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=110&rft.issue=1&rft.spage=E99&rft_id=info:doi/10.1073%2Fpnas.1205532110&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2857286161
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F1.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F1.cover.gif