Accurate prediction of secondary metabolite gene clusters in filamentous fungi
Biosynthetic pathways of secondary metabolites from fungi are currently subject to an intense effort to elucidate the genetic basis for these compounds due to their large potential within pharmaceutics and synthetic biochemistry. The preferred method is methodical gene deletions to identify supporti...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 110; no. 1; pp. E99 - E107 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
02.01.2013
National Acad Sciences |
Series | PNAS Plus |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biosynthetic pathways of secondary metabolites from fungi are currently subject to an intense effort to elucidate the genetic basis for these compounds due to their large potential within pharmaceutics and synthetic biochemistry. The preferred method is methodical gene deletions to identify supporting enzymes for key synthases one cluster at a time. In this study, we design and apply a DNA expression array for Aspergillus nidulans in combination with legacy data to form a comprehensive gene expression compendium. We apply a guilt-by-association–based analysis to predict the extent of the biosynthetic clusters for the 58 synthases active in our set of experimental conditions. A comparison with legacy data shows the method to be accurate in 13 of 16 known clusters and nearly accurate for the remaining 3 clusters. Furthermore, we apply a data clustering approach, which identifies cross-chemistry between physically separate gene clusters (superclusters), and validate this both with legacy data and experimentally by prediction and verification of a supercluster consisting of the synthase AN1242 and the prenyltransferase AN11080, as well as identification of the product compound nidulanin A. We have used A. nidulans for our method development and validation due to the wealth of available biochemical data, but the method can be applied to any fungus with a sequenced and assembled genome, thus supporting further secondary metabolite pathway elucidation in the fungal kingdom. |
---|---|
AbstractList | Biosynthetic pathways of secondary metabolites from fungi are currently subject to an intense effort to elucidate the genetic basis for these compounds due to their large potential within pharmaceutics and synthetic biochemistry. The preferred method is methodical gene deletions to identify supporting enzymes for key synthases one cluster at a time. In this study, we design and apply a DNA expression array for Aspergillus nidulans in combination with legacy data to form a comprehensive gene expression compendium. We apply a guilt-by-association–based analysis to predict the extent of the biosynthetic clusters for the 58 synthases active in our set of experimental conditions. A comparison with legacy data shows the method to be accurate in 13 of 16 known clusters and nearly accurate for the remaining 3 clusters. Furthermore, we apply a data clustering approach, which identifies cross-chemistry between physically separate gene clusters (superclusters), and validate this both with legacy data and experimentally by prediction and verification of a supercluster consisting of the synthase AN1242 and the prenyltransferase AN11080, as well as identification of the product compound nidulanin A. We have used A. nidulans for our method development and validation due to the wealth of available biochemical data, but the method can be applied to any fungus with a sequenced and assembled genome, thus supporting further secondary metabolite pathway elucidation in the fungal kingdom. Biosynthetic pathways of secondary metabolites from fungi are currently subject to an intense effort to elucidate the genetic basis for these compounds due to their large potential within pharmaceutics and synthetic biochemistry. The preferred method is methodical gene deletions to identify supporting enzymes for key synthases one cluster at a time. In this study, we design and apply a DNA expression array for Aspergillus nidulans in combination with legacy data to form a comprehensive gene expression compendium. We apply a guilt-by-association-based analysis to predict the extent of the biosynthetic clusters for the 58 synthases active in our set of experimental conditions. A comparison with legacy data shows the method to be accurate in 13 of 16 known clusters and nearly accurate for the remaining 3 clusters. Furthermore, we apply a data clustering approach, which identifies cross-chemistry between physically separate gene clusters (superclusters), and validate this both with legacy data and experimentally by prediction and verification of a supercluster consisting of the synthase AN1242 and the prenyltransferase AN11080, as well as identification of the product compound nidulanin A. We have used A. nidulans for our method development and validation due to the wealth of available biochemical data, but the method can be applied to any fungus with a sequenced and assembled genome, thus supporting further secondary metabolite pathway elucidation in the fungal kingdom.Biosynthetic pathways of secondary metabolites from fungi are currently subject to an intense effort to elucidate the genetic basis for these compounds due to their large potential within pharmaceutics and synthetic biochemistry. The preferred method is methodical gene deletions to identify supporting enzymes for key synthases one cluster at a time. In this study, we design and apply a DNA expression array for Aspergillus nidulans in combination with legacy data to form a comprehensive gene expression compendium. We apply a guilt-by-association-based analysis to predict the extent of the biosynthetic clusters for the 58 synthases active in our set of experimental conditions. A comparison with legacy data shows the method to be accurate in 13 of 16 known clusters and nearly accurate for the remaining 3 clusters. Furthermore, we apply a data clustering approach, which identifies cross-chemistry between physically separate gene clusters (superclusters), and validate this both with legacy data and experimentally by prediction and verification of a supercluster consisting of the synthase AN1242 and the prenyltransferase AN11080, as well as identification of the product compound nidulanin A. We have used A. nidulans for our method development and validation due to the wealth of available biochemical data, but the method can be applied to any fungus with a sequenced and assembled genome, thus supporting further secondary metabolite pathway elucidation in the fungal kingdom. Biosynthetic pathways of secondary metabolites from fungi are currently subject to an intense effort to elucidate the genetic basis for these compounds due to their large potential within pharmaceutics and synthetic biochemistry. The preferred method is methodical gene deletions to identify supporting enzymes for key synthases one cluster at a time. In this study, we design and apply a DNA expression array for Aspergillus nidulans in combination with legacy data to form a comprehensive gene expression compendium. We apply a guilt-by-association–based analysis to predict the extent of the biosynthetic clusters for the 58 synthases active in our set of experimental conditions. A comparison with legacy data shows the method to be accurate in 13 of 16 known clusters and nearly accurate for the remaining 3 clusters. Furthermore, we apply a data clustering approach, which identifies cross-chemistry between physically separate gene clusters (superclusters), and validate this both with legacy data and experimentally by prediction and verification of a supercluster consisting of the synthase AN1242 and the prenyltransferase AN11080, as well as identification of the product compound nidulanin A. We have used A. nidulans for our method development and validation due to the wealth of available biochemical data, but the method can be applied to any fungus with a sequenced and assembled genome, thus supporting further secondary metabolite pathway elucidation in the fungal kingdom. Biosynthetic pathways of secondary metabolites from fungi are currently subject to an intense effort to elucidate the genetic basis for these compounds due to their large potential within pharmaceutics and synthetic biochemistry. The preferred method is methodical gene deletions to identify supporting enzymes for key synthases one cluster at a time. In this study, we design and apply a DNA expression array for Aspergillus nidulans in combination with legacy data to form a comprehensive gene expression compendium. We apply a guilt-by-association-based analysis to predict the extent of the biosynthetic clusters for the 58 synthases active in our set of experimental conditions. A comparison with legacy data shows the method to be accurate in 13 of 16 known clusters and nearly accurate for the remaining 3 clusters. Furthermore, we apply a data clustering approach, which identifies cross-chemistry between physically separate gene clusters (superclusters), and validate this both with legacy data and experimentally by prediction and verification of a supercluster consisting of the synthase AN1242 and the prenyltransferase AN11080, as well as identification of the product compound nidulanin A. We have used A. nidulans for our method development and validation due to the wealth of available biochemical data, but the method can be applied to any fungus with a sequenced and assembled genome, thus supporting further secondary metabolite pathway elucidation in the fungal kingdom. [PUBLICATION ABSTRACT] Biosynthetic pathways of secondary metabolites from fungi are currently subject to an intense effort to elucidate the genetic basis for these compounds due to their large potential within pharmaceutics and synthetic biochemistry. The preferred method is methodical gene deletions to identify supporting enzymes for key synthases one cluster at a time. In this study, we design and apply a DNA expression array for Aspergillus nidulans in combination with legacy data to form a comprehensive gene expression compendium. We apply a guilt-by-association–based analysis to predict the extent of the biosynthetic clusters for the 58 synthases active in our set of experimental conditions. A comparison with legacy data shows the method to be accurate in 13 of 16 known clusters and nearly accurate for the remaining 3 clusters. Furthermore, we apply a data clustering approach, which identifies cross-chemistry between physically separate gene clusters (superclusters), and validate this both with legacy data and experimentally by prediction and verification of a supercluster consisting of the synthase AN1242 and the prenyltransferase AN11080, as well as identification of the product compound nidulanin A. We have used A. nidulans for our method development and validation due to the wealth of available biochemical data, but the method can be applied to any fungus with a sequenced and assembled genome, thus supporting further secondary metabolite pathway elucidation in the fungal kingdom. In summary, our present findings can immediately support an area of intense focus within fungal biology, namely, the identification of gene clusters involved in biosynthesis of bioactive metabolites, by providing targets and predictions for gene clusters for the important model fungus A. nidulans . Further, in the short term, they provide a general method for rapid prediction of gene clusters in other fungi. This will assist in the identification of biosynthetic genes for a given SM, which can support pathway elucidation in general and is of particular interest for known and potential bioactive compounds. This method can be applied directly to the many fungal species for which large amounts of legacy data exist. Further, we showed that the gene expression profiles of key genes can be used to predict gene clusters located on different chromosomes involved in the biosynthesis of the same class of compounds (cross-chemistry). Our analysis showed a high degree of coordinated expression between biosynthetic gene clusters, which, in some cases, suggests cross-chemistry between clusters. For example, we used gene deletions and chemical analysis of deletion mutants efficiently to determine two gene clusters on separate chromosomes involved in producing the same family of compounds. We further confirmed the interaction of these gene clusters by structural elucidation of the main compound, a prenylated nonribosomal cyclopeptide called nidulanin A. In the present study, we collected and expanded a compendium of gene expression data for a model fungus, Aspergillus nidulans , to encompass >40 samples from a diverse set of conditions. We combined the expression profiles with the chromosomal location of the genes to identify colocalized and coregulated genes. Using a statistical method, we identified the member genes of biosynthetic clusters around predicted and known SM synthases. Here, we predicted the members of 58 gene clusters and validated these predictions through comparison with 16 known clusters (see example in Fig. P1 ). We constructed additional gene deletion strains to investigate further the accuracy of predictions and to compare the findings with the findings of previous studies, as well as to account for changes in gene annotation over time. Our analysis showed overall accuracy of the predictions. The efficiency of the method depends on the number and diversity of the sampling conditions included in gene expression analysis. This diversity should at least include different growth media and liquid as well as solid-state cultivation. The method is immediately applicable to any fungal species with legacy gene expression data and a sequenced genome. Filamentous fungi are particularly interesting as sources of SMs. Despite their relatively small genomes (30–40 Mb), microbial fungi contain more than 40 different genes catalyzing the biosynthesis of SMs. The number of different compounds produced by each fungus can exceed the number of genes by many times. This increased diversity is due to the highly modular mode of the biosynthesis of SMs, which involves different classes of polymer backbones being modified by a plethora of tailoring enzymes, such as (de)hydratases, oxygenases, hydrolases, and methylases. Secondary (nongrowth associated) metabolites (SMs) are chemical entities found primarily in plants, fungi, and microbes. SMs comprise molecules such as hormones, antibiotics, and toxins and provide abundant sources of pharmaceuticals ( 1 ). Here, we describe methods for predicting and identifying the genes of microbial fungi responsible for the abundant biosynthesis of SMs. These methods are capable of accelerating elucidation of the important SM biosynthetic pathways and should benefit development of pharmaceuticals and synthetic biochemistry ( 2 ). |
Author | Andreas Klitgaard Jakob B. Nielsen Thomas O. Larsen Lene H. Blicher Uffe H. Mortensen Lene M. Petersen Mia Zachariasen Kristian F. Nielsen Tilde J. Hansen Mikael R. Andersen Charlotte H. Gotfredsen |
Author_xml | – sequence: 1 givenname: Mikael R. surname: Andersen fullname: Andersen, Mikael R. organization: Center for Microbial Biotechnology, Department of Systems Biology – sequence: 2 givenname: Jakob B. surname: Nielsen fullname: Nielsen, Jakob B. organization: Center for Microbial Biotechnology, Department of Systems Biology – sequence: 3 givenname: Andreas surname: Klitgaard fullname: Klitgaard, Andreas organization: Center for Microbial Biotechnology, Department of Systems Biology – sequence: 4 givenname: Lene M. surname: Petersen fullname: Petersen, Lene M. organization: Center for Microbial Biotechnology, Department of Systems Biology – sequence: 5 givenname: Mia surname: Zachariasen fullname: Zachariasen, Mia organization: Center for Microbial Biotechnology, Department of Systems Biology – sequence: 6 givenname: Tilde J. surname: Hansen fullname: Hansen, Tilde J. organization: Center for Microbial Biotechnology, Department of Systems Biology – sequence: 7 givenname: Lene H. surname: Blicher fullname: Blicher, Lene H. organization: DTU Multi-Assay Core, Department of Systems Biology, and – sequence: 8 givenname: Charlotte H. surname: Gotfredsen fullname: Gotfredsen, Charlotte H. organization: Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark – sequence: 9 givenname: Thomas O. surname: Larsen fullname: Larsen, Thomas O. organization: Center for Microbial Biotechnology, Department of Systems Biology – sequence: 10 givenname: Kristian F. surname: Nielsen fullname: Nielsen, Kristian F. organization: Center for Microbial Biotechnology, Department of Systems Biology – sequence: 11 givenname: Uffe H. surname: Mortensen fullname: Mortensen, Uffe H. organization: Center for Microbial Biotechnology, Department of Systems Biology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23248299$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1rFTEUhoNU7G117UodcONm2nxnsimU0qpQdKFdh0zm5JoyN7kmM4L_3kzvbdWCuMriPOflOXmP0EFMERB6SfAJwYqdbqMtJ4RiIRglBD9BK4I1aSXX-ACtMKaq7Tjlh-iolFuMsRYdfoYOKaO8o1qv0Kdz5-ZsJ2i2GYbgppBik3xTwKU42Pyz2cBk-zSGiqwhQuPGuUyQSxNi48NoNxCnNJfGz3EdnqOn3o4FXuzfY3Rzdfn14kN7_fn9x4vz69YJKae2V73tCHDN2DAwq5UWytuegtTaeT0I7weQUNUxp473nXKCKsK55wpAeXaMzna527nfwOCqQ7aj2eawqc4m2WD-nsTwzazTD8ME6ygnNeDdPiCn7zOUyWxCcTCONkK9xpAOM4JFJ7v_o1QxIpXmvKJvH6G3ac6x_kSlpORMUEkr9fpP-Qfr-1YqIHaAy6mUDN64MNmlmnpLGA3BZmnfLO2b3-3XvdNHe_fR_954tVdZBg_0gpvLO5M3u7m3ydh1DsXcfKGYSIwJU6Qe8wspyMVz |
CitedBy_id | crossref_primary_10_1016_j_fgb_2017_01_006 crossref_primary_10_3389_fpls_2021_791033 crossref_primary_10_3390_jof8060591 crossref_primary_10_1039_C9MD00054B crossref_primary_10_3390_jof7070503 crossref_primary_10_1016_j_fgb_2019_01_003 crossref_primary_10_1021_acschembio_9b00380 crossref_primary_10_1094_MPMI_12_14_0398_FI crossref_primary_10_1039_C7NP00032D crossref_primary_10_1039_C6NP00025H crossref_primary_10_1038_ja_2015_105 crossref_primary_10_1016_j_bbrc_2015_03_011 crossref_primary_10_1073_pnas_1609348114 crossref_primary_10_1534_g3_116_036152 crossref_primary_10_3390_fermentation3030045 crossref_primary_10_1016_j_ijmm_2014_02_001 crossref_primary_10_1016_j_synbio_2015_12_002 crossref_primary_10_1016_j_phytochem_2014_11_019 crossref_primary_10_1038_s41579_018_0121_1 crossref_primary_10_1111_1462_2920_12596 crossref_primary_10_1016_j_phytochem_2024_114164 crossref_primary_10_3390_toxins7093785 crossref_primary_10_1186_s12864_024_10501_0 crossref_primary_10_3390_jof10060430 crossref_primary_10_3920_WMJ2017_2283 crossref_primary_10_3390_jof10090648 crossref_primary_10_1007_s10295_019_02250_x crossref_primary_10_1016_j_tibtech_2018_09_003 crossref_primary_10_1371_journal_ppat_1007606 crossref_primary_10_1128_msystems_00232_22 crossref_primary_10_1038_ncomms10610 crossref_primary_10_1007_s11694_019_00345_8 crossref_primary_10_1039_c3sc51785c crossref_primary_10_1186_s12864_016_2577_6 crossref_primary_10_1111_mmi_13562 crossref_primary_10_1111_mmi_14376 crossref_primary_10_1186_1471_2180_13_91 crossref_primary_10_1007_s10337_016_3188_8 crossref_primary_10_1093_bfgp_elu029 crossref_primary_10_3389_fmicb_2018_02212 crossref_primary_10_1016_j_tim_2013_11_002 crossref_primary_10_1098_rstb_2016_0023 crossref_primary_10_1021_acschembio_8b00679 crossref_primary_10_1016_j_pmpp_2023_102021 crossref_primary_10_1016_j_tim_2017_11_004 crossref_primary_10_3389_fmicb_2018_01246 crossref_primary_10_1007_s00253_018_9525_0 crossref_primary_10_1093_bfgp_elu028 crossref_primary_10_1007_s00294_016_0597_z crossref_primary_10_1002_cbic_201800486 crossref_primary_10_3389_fmicb_2015_00062 crossref_primary_10_1021_acs_biochem_4c00035 crossref_primary_10_1186_s12864_015_1719_6 crossref_primary_10_1371_journal_pone_0084028 crossref_primary_10_1007_s10126_022_10118_y crossref_primary_10_1007_s11101_015_9448_7 crossref_primary_10_1039_D0CC03990J crossref_primary_10_1021_acschembio_6b00213 crossref_primary_10_1038_s41598_023_29753_z crossref_primary_10_1186_s13059_017_1151_0 crossref_primary_10_3389_fmicb_2018_02325 crossref_primary_10_1007_s00203_016_1240_6 crossref_primary_10_1038_s41467_022_32394_x crossref_primary_10_1093_nar_gkac371 crossref_primary_10_1111_1462_2920_12564 crossref_primary_10_1093_dnares_dsu010 crossref_primary_10_1007_s00438_024_02162_1 crossref_primary_10_1016_j_fgb_2020_103477 crossref_primary_10_1038_s41598_017_10376_0 crossref_primary_10_1099_mgen_0_000243 crossref_primary_10_1007_s00253_020_10900_9 crossref_primary_10_1186_s12864_017_4083_x crossref_primary_10_1016_j_mib_2019_03_002 crossref_primary_10_1111_mpp_12795 crossref_primary_10_3390_pharmaceutics14091837 crossref_primary_10_3390_molecules25040913 crossref_primary_10_1038_s41576_021_00363_7 crossref_primary_10_1007_s00253_022_11964_5 crossref_primary_10_1128_mBio_01691_20 crossref_primary_10_1016_j_synbio_2016_01_002 crossref_primary_10_1111_mmi_13708 crossref_primary_10_1186_s12864_015_1561_x crossref_primary_10_1016_j_fgb_2019_06_001 crossref_primary_10_1021_acsomega_4c05007 crossref_primary_10_1073_pnas_1819254116 crossref_primary_10_3390_toxins7093572 crossref_primary_10_1038_s41467_019_14051_y crossref_primary_10_1128_EC_00076_15 crossref_primary_10_1093_jimb_kuad045 crossref_primary_10_1038_s41579_018_0075_3 crossref_primary_10_1016_j_chembiol_2014_01_013 crossref_primary_10_1016_j_sajb_2024_03_019 crossref_primary_10_3762_bjoc_17_124 crossref_primary_10_1016_j_mib_2013_08_001 crossref_primary_10_1007_s12272_023_01442_5 crossref_primary_10_1128_mBio_00768_21 crossref_primary_10_14252_foodsafetyfscj_2017024 crossref_primary_10_1186_s40793_021_00375_0 crossref_primary_10_1126_sciadv_abo6094 crossref_primary_10_1016_j_tim_2015_09_008 crossref_primary_10_1039_C4NP00134F crossref_primary_10_1021_acs_jnatprod_4c00483 crossref_primary_10_1371_journal_pone_0286271 crossref_primary_10_1007_s10295_013_1366_3 crossref_primary_10_1016_j_biortech_2024_131703 crossref_primary_10_2323_jgam_2016_11_002 crossref_primary_10_1007_s10295_013_1386_z crossref_primary_10_3389_fmicb_2015_00077 crossref_primary_10_1128_msystems_01538_24 crossref_primary_10_3389_fmicb_2014_00718 crossref_primary_10_1016_j_chembiol_2014_03_011 crossref_primary_10_1007_s10295_017_1923_2 crossref_primary_10_1038_s41598_023_27813_y crossref_primary_10_1093_gbe_evv204 crossref_primary_10_3390_jof7080624 crossref_primary_10_1002_ange_201507097 crossref_primary_10_1007_s00253_017_8497_9 crossref_primary_10_1128_Spectrum_00898_21 crossref_primary_10_1038_s41588_018_0246_1 crossref_primary_10_1155_2014_540292 crossref_primary_10_1007_s00253_016_7517_5 crossref_primary_10_1016_j_micres_2015_10_009 crossref_primary_10_1186_s13068_020_01702_2 crossref_primary_10_1093_nar_gky1183 crossref_primary_10_1016_j_genrep_2024_101924 crossref_primary_10_1111_1462_2920_14542 crossref_primary_10_3390_jof7070525 crossref_primary_10_1534_g3_115_024067 crossref_primary_10_1039_C3AY41640B crossref_primary_10_1002_ajb2_1216 crossref_primary_10_1016_j_pbi_2015_05_030 crossref_primary_10_1021_jacs_2c10211 crossref_primary_10_3389_fmicb_2016_00353 crossref_primary_10_1186_1756_0500_6_71 crossref_primary_10_1038_ja_2016_121 crossref_primary_10_1002_cbic_201402195 crossref_primary_10_1002_anie_201507097 crossref_primary_10_1007_s11427_022_2175_0 crossref_primary_10_3390_jof8111205 crossref_primary_10_1093_bib_bbx146 crossref_primary_10_3389_fmicb_2017_00516 crossref_primary_10_1093_bioinformatics_btv713 crossref_primary_10_1093_dnares_dsx040 crossref_primary_10_1016_j_jgeb_2018_01_006 crossref_primary_10_1371_journal_pone_0073369 crossref_primary_10_3390_jof7121091 crossref_primary_10_1093_bib_bbx020 crossref_primary_10_1590_s0100_204x2016001200003 crossref_primary_10_3389_fpls_2024_1435440 crossref_primary_10_1021_acssynbio_0c00197 crossref_primary_10_1038_s41598_018_36561_3 crossref_primary_10_1073_pnas_2217400119 crossref_primary_10_3390_ijms22168709 crossref_primary_10_1038_nchembio_1897 |
Cites_doi | 10.1021/ja205780g 10.1128/AEM.02187-09 10.1073/pnas.0901870106 10.1021/np068054v 10.1093/nar/gng015 10.1002/cbic.201200014 10.1038/nchembio.177 10.1128/AEM.66.1.359-362.2000 10.1021/np200906s 10.1128/AEM.01743-08 10.1128/AEM.01768-10 10.1099/00221287-136-9-1725 10.1073/pnas.1103523108 10.1016/j.chembiol.2008.05.010 10.1371/journal.pone.0035450 10.1007/BF01569737 10.1021/ja3016395 10.1038/nature04341 10.1016/j.mib.2010.04.008 10.1021/np200254t 10.1073/pnas.93.4.1418 10.1016/j.fgb.2005.09.005 10.1186/1472-6750-10-21 10.1093/genetics/63.2.317 10.1111/j.1574-6968.2011.02327.x 10.1016/j.fgb.2008.08.010 10.1038/nchembio869 10.1039/B904541D 10.1371/journal.pone.0003847 10.1016/j.fgb.2006.12.010 10.1021/ja1096682 10.1007/BF02908688 10.1046/j.1365-2958.2003.03586.x 10.1016/j.fgb.2007.09.004 10.1016/j.fgb.2007.07.003 10.1016/j.chembiol.2005.10.008 10.1093/nar/gki885 10.1016/S0021-9673(03)00490-4 10.1128/AEM.01461-08 10.1038/nbt0207-189 10.1186/gb-2002-3-9-research0048 10.1007/s00253-012-4098-9 10.1021/ja307151x 10.1093/nar/gkr466 10.1016/S0021-9258(18)98948-9 10.1128/AEM.00683-10 10.1016/j.fgb.2010.06.003 10.1016/S0076-6879(09)04808-3 10.1093/nar/gkp751 10.1016/S0021-9673(96)00803-5 10.1021/np100151y 10.1128/aem.62.11.4296-4298.1996 10.1021/ja209809t 10.1186/gb-2004-5-10-r80 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Jan 2, 2013 |
Copyright_xml | – notice: Copyright National Academy of Sciences Jan 2, 2013 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1205532110 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic Virology and AIDS Abstracts MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Prediction of gene clusters in filamentous fungi |
EISSN | 1091-6490 |
EndPage | E107 |
ExternalDocumentID | PMC3538241 2857286161 23248299 10_1073_pnas_1205532110 110_1_E99 US201600137162 |
Genre | Validation Studies Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW DZ H13 KM PQEST X XHC AAYXX ABXSQ ACHIC ADQXQ ADXHL AQVQM CITATION IPSME CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c566t-b7ba81e4933dd3a97957fab2e699cf9d5ffde6e842042c4b87c527144f47ee7f3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:13:45 EDT 2025 Fri Jul 11 15:33:51 EDT 2025 Fri Jul 11 15:51:10 EDT 2025 Mon Jun 30 08:09:10 EDT 2025 Thu Apr 03 07:04:25 EDT 2025 Thu Apr 24 23:04:19 EDT 2025 Tue Jul 01 03:39:33 EDT 2025 Wed Nov 11 00:30:18 EST 2020 Wed Dec 27 19:24:34 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c566t-b7ba81e4933dd3a97957fab2e699cf9d5ffde6e842042c4b87c527144f47ee7f3 |
Notes | http://dx.doi.org/10.1073/pnas.1205532110 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 Author contributions: M.R.A., J.B.N., L.M.P., C.H.G., T.O.L., K.F.N., and U.H.M. designed research; M.R.A., J.B.N., A.K., L.M.P., M.Z., T.J.H., L.H.B., C.H.G., and K.F.N. performed research; M.R.A. and K.F.N. contributed new reagents/analytic tools; M.R.A., J.B.N., A.K., L.M.P., T.J.H., C.H.G., T.O.L., K.F.N., and U.H.M. analyzed data; and M.R.A., J.B.N., A.K., L.M.P., C.H.G., K.F.N., and U.H.M. wrote the paper. Edited by Jerrold Meinwald, Cornell University, Ithaca, NY, and approved November 19, 2012 (received for review August 20, 2012) |
OpenAccessLink | https://www.pnas.org/content/pnas/110/1/E99.full.pdf |
PMID | 23248299 |
PQID | 1266435262 |
PQPubID | 42026 |
ParticipantIDs | fao_agris_US201600137162 proquest_miscellaneous_1803105868 crossref_primary_10_1073_pnas_1205532110 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3538241 proquest_journals_1266435262 pubmed_primary_23248299 crossref_citationtrail_10_1073_pnas_1205532110 pnas_primary_110_1_E99 proquest_miscellaneous_1273167944 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-01-02 |
PublicationDateYYYYMMDD | 2013-01-02 |
PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2013 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Keller NP (e_1_3_4_19_2) 2000; 66 Månsson M (e_1_3_4_45_2) 2010; 73 Clutterbuck AJ (e_1_3_4_23_2) 1969; 63 e_1_1_2_17_9_2_2 Palmer JM (e_1_3_4_6_2) 2010; 13 Chiang YM (e_1_3_4_16_2) 2008; 15 Nielsen KF (e_1_3_4_44_2) 2003; 1002 Nielsen KF (e_1_3_4_31_2) 2011; 74 Chiang YM (e_1_3_4_7_2) 2010; 76 MacCabe AP (e_1_3_4_27_2) 1991; 266 Khaldi N (e_1_3_4_3_2) 2010; 47 Panagiotou G (e_1_3_4_34_2) 2009; 75 Nørholm MH (e_1_3_4_53_2) 2010; 10 Eisendle M (e_1_3_4_55_2) 2003; 49 Birse CE (e_1_3_4_26_2) 1990; 136 Cullen D (e_1_3_4_38_2) 2007; 25 Bachmann BO (e_1_3_4_56_2) 2009; 458 Brakhage AA (e_1_3_4_36_2) 2008; 66 Schneider P (e_1_3_4_22_2) 2008; 45 Bergmann S (e_1_3_4_39_2) 2010; 76 Newman DJ (e_1_3_4_1_2) 2012; 75 Nielsen JB (e_1_3_4_52_2) 2008; 45 Medema MH (e_1_3_4_4_2) 2011; 39 Schätzle MA (e_1_3_4_10_2) 2012; 134 Galagan JE (e_1_3_4_35_2) 2005; 438 Panagiotou G (e_1_3_4_33_2) 2008; 3 Yeh HH (e_1_3_4_29_2) 2012; 96 Szewczyk E (e_1_3_4_15_2) 2008; 74 Schroeckh V (e_1_3_4_14_2) 2009; 106 Arnaud MB (e_1_3_4_32_2) 2010; 38 Bok JW (e_1_3_4_13_2) 2009; 5 Martin JF (e_1_3_4_28_2) 1992; 9 Simpson TJ (e_1_3_4_9_2) 2012; 13 Workman C (e_1_3_4_46_2) 2002; 3 Smyth GK (e_1_3_4_47_2) 2005 e_1_1_2_17_9_1_2 e_1_1_2_17_9_3_2 e_1_3_4_49_2 Hansen BG (e_1_3_4_54_2) 2011; 77 Bok JW (e_1_3_4_37_2) 2006; 13 Gentleman RC (e_1_3_4_50_2) 2004; 5 Kelly DE (e_1_3_4_5_2) 2009; 46 Rausch C (e_1_3_4_57_2) 2005; 33 Marfey P (e_1_3_4_40_2) 1984; 49 Nützmann HW (e_1_3_4_41_2) 2011; 108 Lo H-C (e_1_3_4_30_2) 2012; 134 Brown DW (e_1_3_4_17_2) 1996; 93 Irizarry RA (e_1_3_4_48_2) 2003; 31 Bergmann S (e_1_3_4_20_2) 2007; 3 Frisvad JC (e_1_3_4_42_2) 2004; 49 Kelkar HS (e_1_3_4_18_2) 1996; 62 Bouhired S (e_1_3_4_21_2) 2007; 44 Ahuja M (e_1_3_4_24_2) 2012; 134 Bromann K (e_1_3_4_25_2) 2012; 7 Nielsen ML (e_1_3_4_51_2) 2006; 43 Liu T (e_1_3_4_2_2) 2011; 133 Sanchez JF (e_1_3_4_12_2) 2010; 6 Sanchez JF (e_1_3_4_8_2) 2011; 133 Nielsen ML (e_1_3_4_11_2) 2011; 321 Smedsgaard J (e_1_3_4_43_2) 1997; 760 17291795 - Fungal Genet Biol. 2007 Nov;44(11):1134-45 17309302 - J Nat Prod. 2007 Mar;70(3):461-77 22506079 - PLoS One. 2012;7(4):e35450 18978088 - Appl Environ Microbiol. 2008 Dec;74(24):7607-12 21672958 - Nucleic Acids Res. 2011 Jul;39(Web Server issue):W339-46 20509666 - J Nat Prod. 2010 Jun 25;73(6):1126-32 17369821 - Nat Chem Biol. 2007 Apr;3(4):213-7 8643646 - Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1418-22 20139316 - Appl Environ Microbiol. 2010 Apr;76(7):2067-74 19374984 - Methods Enzymol. 2009;458:181-217 22316239 - J Nat Prod. 2012 Mar 23;75(3):311-35 16221976 - Nucleic Acids Res. 2005;33(18):5799-808 21658102 - FEMS Microbiol Lett. 2011 Aug;321(2):157-66 9062989 - J Chromatogr A. 1997 Jan 31;760(2):264-70 22329759 - J Am Chem Soc. 2012 Mar 14;134(10):4709-20 18029206 - Fungal Genet Biol. 2008 Mar;45(3):302-9 20952652 - Appl Environ Microbiol. 2010 Dec;76(24):8143-9 20627806 - Curr Opin Microbiol. 2010 Aug;13(4):431-6 20174687 - Mol Biosyst. 2010 Mar;6(3):587-93 21815681 - J Am Chem Soc. 2011 Aug 31;133(34):13314-6 12582260 - Nucleic Acids Res. 2003 Feb 15;31(4):e15 20554054 - Fungal Genet Biol. 2010 Sep;47(9):736-41 2061333 - J Biol Chem. 1991 Jul 5;266(19):12646-54 21825172 - Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14282-7 22510154 - J Am Chem Soc. 2012 May 16;134(19):8212-21 2126551 - J Gen Microbiol. 1990 Sep;136(9):1725-30 22026385 - J Nat Prod. 2011 Nov 28;74(11):2338-48 19052639 - PLoS One. 2008;3(12):e3847 12885084 - J Chromatogr A. 2003 Jun 20;1002(1-2):111-36 19448638 - Nat Chem Biol. 2009 Jul;5(7):462-4 10618248 - Appl Environ Microbiol. 2000 Jan;66(1):359-62 19666480 - Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14558-63 17287752 - Nat Biotechnol. 2007 Feb;25(2):189-90 22627757 - Appl Microbiol Biotechnol. 2012 Nov;96(3):739-48 18559263 - Chem Biol. 2008 Jun;15(6):527-32 21351751 - J Am Chem Soc. 2011 Mar 23;133(11):4010-7 22730213 - Chembiochem. 2012 Jul 23;13(11):1680-8 22909031 - J Am Chem Soc. 2012 Sep 12;134(36):14742-5 16372000 - Nature. 2005 Dec 22;438(7071):1105-15 18416304 - Prog Drug Res. 2008;66:1, 3-12 12828635 - Mol Microbiol. 2003 Jul;49(2):359-75 20233396 - BMC Biotechnol. 2010;10:21 1368054 - J Ind Microbiol. 1992 Feb-Mar;9(2):73-90 19773420 - Nucleic Acids Res. 2010 Jan;38(Database issue):D420-7 12225587 - Genome Biol. 2002 Aug 30;3(9):research0048 15461798 - Genome Biol. 2004;5(10):R80 21398493 - Appl Environ Microbiol. 2011 May;77(9):3044-51 16426969 - Chem Biol. 2006 Jan;13(1):31-7 17703973 - Fungal Genet Biol. 2008 Mar;45(3):165-70 8900026 - Appl Environ Microbiol. 1996 Nov;62(11):4296-8 18824241 - Fungal Genet Biol. 2009 Mar;46 Suppl 1:S53-61 16289954 - Fungal Genet Biol. 2006 Jan;43(1):54-64 5366214 - Genetics. 1969 Oct;63(2):317-27 19168657 - Appl Environ Microbiol. 2009 Apr;75(7):2212-20 |
References_xml | – ident: e_1_1_2_17_9_2_2 doi: 10.1021/ja205780g – volume: 76 start-page: 2067 year: 2010 ident: e_1_3_4_7_2 article-title: Characterization of the Aspergillus nidulans monodictyphenone gene cluster publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02187-09 – volume: 106 start-page: 14558 year: 2009 ident: e_1_3_4_14_2 article-title: Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0901870106 – ident: e_1_1_2_17_9_1_2 doi: 10.1021/np068054v – volume: 31 start-page: e15 year: 2003 ident: e_1_3_4_48_2 article-title: Summaries of Affymetrix GeneChip probe level data publication-title: Nucleic Acids Res doi: 10.1093/nar/gng015 – volume: 13 start-page: 1680 year: 2012 ident: e_1_3_4_9_2 article-title: Genetic and biosynthetic studies of the fungal prenylated xanthone shamixanthone and related metabolites in Aspergillus spp. revisited publication-title: ChemBioChem doi: 10.1002/cbic.201200014 – volume: 5 start-page: 462 year: 2009 ident: e_1_3_4_13_2 article-title: Chromatin-level regulation of biosynthetic gene clusters publication-title: Nat Chem Biol doi: 10.1038/nchembio.177 – volume: 66 start-page: 359 year: 2000 ident: e_1_3_4_19_2 article-title: Requirement of monooxygenase-mediated steps for sterigmatocystin biosynthesis by Aspergillus nidulans publication-title: Appl Environ Microbiol doi: 10.1128/AEM.66.1.359-362.2000 – volume: 75 start-page: 311 year: 2012 ident: e_1_3_4_1_2 article-title: Natural products as sources of new drugs over the 30 years from 1981 to 2010 publication-title: J Nat Prod doi: 10.1021/np200906s – volume: 74 start-page: 7607 year: 2008 ident: e_1_3_4_15_2 article-title: Identification and characterization of the asperthecin gene cluster of Aspergillus nidulans publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01743-08 – volume: 77 start-page: 3044 year: 2011 ident: e_1_3_4_54_2 article-title: Versatile enzyme expression and characterization system for Aspergillus nidulans, with the Penicillium brevicompactum polyketide synthase gene from the mycophenolic acid gene cluster as a test case publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01768-10 – volume: 136 start-page: 1725 year: 1990 ident: e_1_3_4_26_2 article-title: N-acetyl-6-hydroxytryptophan oxidase, a developmentally controlled phenol oxidase from Aspergillus nidulans publication-title: J Gen Microbiol doi: 10.1099/00221287-136-9-1725 – volume: 108 start-page: 14282 year: 2011 ident: e_1_3_4_41_2 article-title: Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1103523108 – volume: 15 start-page: 527 year: 2008 ident: e_1_3_4_16_2 article-title: Molecular genetic mining of the Aspergillus secondary metabolome: Discovery of the emericellamide biosynthetic pathway publication-title: Chem Biol doi: 10.1016/j.chembiol.2008.05.010 – volume: 7 start-page: e35450 year: 2012 ident: e_1_3_4_25_2 article-title: Identification and characterization of a novel diterpene gene cluster in Aspergillus nidulans publication-title: PLoS ONE doi: 10.1371/journal.pone.0035450 – volume: 9 start-page: 73 year: 1992 ident: e_1_3_4_28_2 article-title: Clusters of genes for the biosynthesis of antibiotics: regulatory genes and overproduction of pharmaceuticals publication-title: J Ind Microbiol doi: 10.1007/BF01569737 – volume: 134 start-page: 8212 year: 2012 ident: e_1_3_4_24_2 article-title: Illuminating the diversity of aromatic polyketide synthases in Aspergillus nidulans publication-title: J Am Chem Soc doi: 10.1021/ja3016395 – ident: e_1_1_2_17_9_3_2 doi: 10.1016/j.chembiol.2008.05.010 – volume: 438 start-page: 1105 year: 2005 ident: e_1_3_4_35_2 article-title: Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae publication-title: Nature doi: 10.1038/nature04341 – volume: 13 start-page: 431 year: 2010 ident: e_1_3_4_6_2 article-title: Secondary metabolism in fungi: Does chromosomal location matter? publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2010.04.008 – volume: 74 start-page: 2338 year: 2011 ident: e_1_3_4_31_2 article-title: Dereplication of microbial natural products by LC-DAD-TOFMS publication-title: J Nat Prod doi: 10.1021/np200254t – volume: 93 start-page: 1418 year: 1996 ident: e_1_3_4_17_2 article-title: Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulans publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.93.4.1418 – volume: 43 start-page: 54 year: 2006 ident: e_1_3_4_51_2 article-title: Efficient PCR-based gene targeting with a recyclable marker for Aspergillus nidulans publication-title: Fungal Genet Biol doi: 10.1016/j.fgb.2005.09.005 – volume: 10 start-page: 21 year: 2010 ident: e_1_3_4_53_2 article-title: A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering publication-title: BMC Biotechnol doi: 10.1186/1472-6750-10-21 – volume: 49 start-page: 1 year: 2004 ident: e_1_3_4_42_2 article-title: Polyphasic taxonomy of Penicillium subgenus Penicillium. A guide to identification of the food and air-borne terverticillate Penicillia and their mycotoxins publication-title: Stud Mycol – volume: 63 start-page: 317 year: 1969 ident: e_1_3_4_23_2 article-title: A mutational analysis of conidial development in Aspergillus nidulans publication-title: Genetics doi: 10.1093/genetics/63.2.317 – volume: 321 start-page: 157 year: 2011 ident: e_1_3_4_11_2 article-title: A genome-wide polyketide synthase deletion library uncovers novel genetic links to polyketides and meroterpenoids in Aspergillus nidulans publication-title: FEMS Microbiol Lett doi: 10.1111/j.1574-6968.2011.02327.x – volume: 46 start-page: S53 year: 2009 ident: e_1_3_4_5_2 article-title: The CYPome (Cytochrome P450 complement) of Aspergillus nidulans publication-title: Fungal Genet Biol doi: 10.1016/j.fgb.2008.08.010 – volume: 3 start-page: 213 year: 2007 ident: e_1_3_4_20_2 article-title: Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans publication-title: Nat Chem Biol doi: 10.1038/nchembio869 – volume: 6 start-page: 587 year: 2010 ident: e_1_3_4_12_2 article-title: Molecular genetic analysis of the orsellinic acid/F9775 gene cluster of Aspergillus nidulans publication-title: Mol Biosyst doi: 10.1039/B904541D – volume: 133 start-page: 13314 year: 2011 ident: e_1_3_4_2_2 article-title: Engineering of an “unnatural” natural product by swapping polyketide synthase domains in Aspergillus nidulans publication-title: J Am Chem Soc doi: 10.1021/ja205780g – volume: 3 start-page: e3847 year: 2008 ident: e_1_3_4_33_2 article-title: Systems analysis unfolds the relationship between the phosphoketolase pathway and growth in Aspergillus nidulans publication-title: PLoS ONE doi: 10.1371/journal.pone.0003847 – volume: 44 start-page: 1134 year: 2007 ident: e_1_3_4_21_2 article-title: Accurate prediction of the Aspergillus nidulans terrequinone gene cluster boundaries using the transcriptional regulator LaeA publication-title: Fungal Genet Biol doi: 10.1016/j.fgb.2006.12.010 – volume: 133 start-page: 4010 year: 2011 ident: e_1_3_4_8_2 article-title: Genome-based deletion analysis reveals the prenyl xanthone biosynthesis pathway in Aspergillus nidulans publication-title: J Am Chem Soc doi: 10.1021/ja1096682 – volume: 49 start-page: 591 year: 1984 ident: e_1_3_4_40_2 article-title: Determination of D- amino acids. II. Use of a bifunctional reagent, 1,5-di-fluoro-2,4-dinitrobenzene publication-title: Carlsberg Res Commun doi: 10.1007/BF02908688 – volume: 49 start-page: 359 year: 2003 ident: e_1_3_4_55_2 article-title: The siderophore system is essential for viability of Aspergillus nidulans: Functional analysis of two genes encoding l-ornithine N 5-monooxygenase (sidA) and a non-ribosomal peptide synthetase (sidC) publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.2003.03586.x – volume: 45 start-page: 302 year: 2008 ident: e_1_3_4_22_2 article-title: The Aspergillus nidulans enzyme TdiB catalyzes prenyltransfer to the precursor of bioactive asterriquinones publication-title: Fungal Genet Biol doi: 10.1016/j.fgb.2007.09.004 – volume: 45 start-page: 165 year: 2008 ident: e_1_3_4_52_2 article-title: Transient disruption of non-homologous end-joining facilitates targeted genome manipulations in the filamentous fungus Aspergillus nidulans publication-title: Fungal Genet Biol doi: 10.1016/j.fgb.2007.07.003 – volume: 13 start-page: 31 year: 2006 ident: e_1_3_4_37_2 article-title: Genomic mining for Aspergillus natural products publication-title: Chem Biol doi: 10.1016/j.chembiol.2005.10.008 – volume: 33 start-page: 5799 year: 2005 ident: e_1_3_4_57_2 article-title: Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs) publication-title: Nucleic Acids Res doi: 10.1093/nar/gki885 – volume: 1002 start-page: 111 year: 2003 ident: e_1_3_4_44_2 article-title: Fungal metabolite screening: Database of 474 mycotoxins and fungal metabolites for dereplication by standardised liquid chromatography-UV-mass spectrometry methodology publication-title: J Chromatogr A doi: 10.1016/S0021-9673(03)00490-4 – volume: 75 start-page: 2212 year: 2009 ident: e_1_3_4_34_2 article-title: Studies of the production of fungal polyketides in Aspergillus nidulans by using systems biology tools publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01461-08 – volume: 25 start-page: 189 year: 2007 ident: e_1_3_4_38_2 article-title: The genome of an industrial workhorse publication-title: Nat Biotechnol doi: 10.1038/nbt0207-189 – volume: 3 start-page: research0048 year: 2002 ident: e_1_3_4_46_2 article-title: A new non-linear normalization method for reducing variability in DNA microarray experiments publication-title: Genome Biol doi: 10.1186/gb-2002-3-9-research0048 – volume: 96 start-page: 739 year: 2012 ident: e_1_3_4_29_2 article-title: Molecular genetic analysis reveals that a nonribosomal peptide synthetase-like (NRPS-like) gene in Aspergillus nidulans is responsible for microperfuranone biosynthesis publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-012-4098-9 – volume: 134 start-page: 14742 year: 2012 ident: e_1_3_4_10_2 article-title: Tautomers of anthrahydroquinones: Enzymatic reduction and implications for chrysophanol, monodictyphenone, and related xanthone biosyntheses publication-title: J Am Chem Soc doi: 10.1021/ja307151x – start-page: 397 volume-title: Limma: Linear models for microarray data year: 2005 ident: e_1_3_4_47_2 – volume: 39 start-page: W339 year: 2011 ident: e_1_3_4_4_2 article-title: antiSMASH: Rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr466 – volume: 266 start-page: 12646 year: 1991 ident: e_1_3_4_27_2 article-title: Delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase from Aspergillus nidulans. Molecular characterization of the acvA gene encoding the first enzyme of the penicillin biosynthetic pathway publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)98948-9 – volume: 76 start-page: 8143 year: 2010 ident: e_1_3_4_39_2 article-title: Activation of a silent fungal polyketide biosynthesis pathway through regulatory cross talk with a cryptic nonribosomal peptide synthetase gene cluster publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00683-10 – volume: 47 start-page: 736 year: 2010 ident: e_1_3_4_3_2 article-title: SMURF: Genomic mapping of fungal secondary metabolite clusters publication-title: Fungal Genet Biol doi: 10.1016/j.fgb.2010.06.003 – volume: 458 start-page: 181 year: 2009 ident: e_1_3_4_56_2 article-title: Chapter 8. Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data publication-title: Methods Enzymol doi: 10.1016/S0076-6879(09)04808-3 – volume: 38 start-page: D420 year: 2010 ident: e_1_3_4_32_2 article-title: The Aspergillus Genome Database, a curated comparative genomics resource for gene, protein and sequence information for the Aspergillus research community publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp751 – volume: 760 start-page: 264 year: 1997 ident: e_1_3_4_43_2 article-title: Micro-scale extraction procedure for standardized screening of fungal metabolite production in cultures publication-title: J Chromatogr A doi: 10.1016/S0021-9673(96)00803-5 – ident: e_1_3_4_49_2 – volume: 73 start-page: 1126 year: 2010 ident: e_1_3_4_45_2 article-title: Explorative solid-phase extraction (E-SPE) for accelerated microbial natural product discovery, dereplication, and purification publication-title: J Nat Prod doi: 10.1021/np100151y – volume: 62 start-page: 4296 year: 1996 ident: e_1_3_4_18_2 article-title: Aspergillus nidulans stcP encodes an O-methyltransferase that is required for sterigmatocystin biosynthesis publication-title: Appl Environ Microbiol doi: 10.1128/aem.62.11.4296-4298.1996 – volume: 66 start-page: 3 year: 2008 ident: e_1_3_4_36_2 article-title: Activation of fungal silent gene clusters: A new avenue to drug discovery publication-title: Prog Drug Res – volume: 134 start-page: 4709 year: 2012 ident: e_1_3_4_30_2 article-title: Two separate gene clusters encode the biosynthetic pathway for the meroterpenoids austinol and dehydroaustinol in Aspergillus nidulans publication-title: J Am Chem Soc doi: 10.1021/ja209809t – volume: 5 start-page: R80 year: 2004 ident: e_1_3_4_50_2 article-title: Bioconductor: Open software development for computational biology and bioinformatics publication-title: Genome Biol doi: 10.1186/gb-2004-5-10-r80 – reference: 20627806 - Curr Opin Microbiol. 2010 Aug;13(4):431-6 – reference: 15461798 - Genome Biol. 2004;5(10):R80 – reference: 17309302 - J Nat Prod. 2007 Mar;70(3):461-77 – reference: 9062989 - J Chromatogr A. 1997 Jan 31;760(2):264-70 – reference: 16221976 - Nucleic Acids Res. 2005;33(18):5799-808 – reference: 22026385 - J Nat Prod. 2011 Nov 28;74(11):2338-48 – reference: 19666480 - Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14558-63 – reference: 12828635 - Mol Microbiol. 2003 Jul;49(2):359-75 – reference: 22329759 - J Am Chem Soc. 2012 Mar 14;134(10):4709-20 – reference: 19168657 - Appl Environ Microbiol. 2009 Apr;75(7):2212-20 – reference: 21815681 - J Am Chem Soc. 2011 Aug 31;133(34):13314-6 – reference: 10618248 - Appl Environ Microbiol. 2000 Jan;66(1):359-62 – reference: 19448638 - Nat Chem Biol. 2009 Jul;5(7):462-4 – reference: 21658102 - FEMS Microbiol Lett. 2011 Aug;321(2):157-66 – reference: 12885084 - J Chromatogr A. 2003 Jun 20;1002(1-2):111-36 – reference: 1368054 - J Ind Microbiol. 1992 Feb-Mar;9(2):73-90 – reference: 20174687 - Mol Biosyst. 2010 Mar;6(3):587-93 – reference: 8900026 - Appl Environ Microbiol. 1996 Nov;62(11):4296-8 – reference: 20233396 - BMC Biotechnol. 2010;10:21 – reference: 22909031 - J Am Chem Soc. 2012 Sep 12;134(36):14742-5 – reference: 20554054 - Fungal Genet Biol. 2010 Sep;47(9):736-41 – reference: 16426969 - Chem Biol. 2006 Jan;13(1):31-7 – reference: 21825172 - Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14282-7 – reference: 18559263 - Chem Biol. 2008 Jun;15(6):527-32 – reference: 19773420 - Nucleic Acids Res. 2010 Jan;38(Database issue):D420-7 – reference: 22627757 - Appl Microbiol Biotechnol. 2012 Nov;96(3):739-48 – reference: 20139316 - Appl Environ Microbiol. 2010 Apr;76(7):2067-74 – reference: 12225587 - Genome Biol. 2002 Aug 30;3(9):research0048 – reference: 18029206 - Fungal Genet Biol. 2008 Mar;45(3):302-9 – reference: 19052639 - PLoS One. 2008;3(12):e3847 – reference: 22510154 - J Am Chem Soc. 2012 May 16;134(19):8212-21 – reference: 17287752 - Nat Biotechnol. 2007 Feb;25(2):189-90 – reference: 18824241 - Fungal Genet Biol. 2009 Mar;46 Suppl 1:S53-61 – reference: 16372000 - Nature. 2005 Dec 22;438(7071):1105-15 – reference: 21398493 - Appl Environ Microbiol. 2011 May;77(9):3044-51 – reference: 2061333 - J Biol Chem. 1991 Jul 5;266(19):12646-54 – reference: 12582260 - Nucleic Acids Res. 2003 Feb 15;31(4):e15 – reference: 22506079 - PLoS One. 2012;7(4):e35450 – reference: 18416304 - Prog Drug Res. 2008;66:1, 3-12 – reference: 19374984 - Methods Enzymol. 2009;458:181-217 – reference: 22316239 - J Nat Prod. 2012 Mar 23;75(3):311-35 – reference: 17291795 - Fungal Genet Biol. 2007 Nov;44(11):1134-45 – reference: 16289954 - Fungal Genet Biol. 2006 Jan;43(1):54-64 – reference: 21672958 - Nucleic Acids Res. 2011 Jul;39(Web Server issue):W339-46 – reference: 20509666 - J Nat Prod. 2010 Jun 25;73(6):1126-32 – reference: 17369821 - Nat Chem Biol. 2007 Apr;3(4):213-7 – reference: 17703973 - Fungal Genet Biol. 2008 Mar;45(3):165-70 – reference: 21351751 - J Am Chem Soc. 2011 Mar 23;133(11):4010-7 – reference: 22730213 - Chembiochem. 2012 Jul 23;13(11):1680-8 – reference: 2126551 - J Gen Microbiol. 1990 Sep;136(9):1725-30 – reference: 8643646 - Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1418-22 – reference: 18978088 - Appl Environ Microbiol. 2008 Dec;74(24):7607-12 – reference: 5366214 - Genetics. 1969 Oct;63(2):317-27 – reference: 20952652 - Appl Environ Microbiol. 2010 Dec;76(24):8143-9 |
SSID | ssj0009580 |
Score | 2.4946485 |
Snippet | Biosynthetic pathways of secondary metabolites from fungi are currently subject to an intense effort to elucidate the genetic basis for these compounds due to... |
SourceID | pubmedcentral proquest pubmed crossref pnas fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | E99 |
SubjectTerms | Aspergillus nidulans Aspergillus nidulans - genetics biochemical pathways Biochemistry Biological Sciences Biosynthesis Biosynthetic Pathways - genetics Cluster Analysis DNA Enzymes Fungi Gene expression Gene Expression Profiling - methods Gene Expression Regulation, Fungal - genetics Metabolites Metabolome - genetics Microarray Analysis - methods multigene family Multigene Family - genetics PNAS Plus Polyketide Synthases - genetics prediction Secondary metabolites Tandem Mass Spectrometry Xanthines - chemistry Xanthines - isolation & purification |
Title | Accurate prediction of secondary metabolite gene clusters in filamentous fungi |
URI | http://www.pnas.org/content/110/1/E99.abstract https://www.ncbi.nlm.nih.gov/pubmed/23248299 https://www.proquest.com/docview/1266435262 https://www.proquest.com/docview/1273167944 https://www.proquest.com/docview/1803105868 https://pubmed.ncbi.nlm.nih.gov/PMC3538241 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcuGCWGDZwoKMxGFRldI6DzvHCnW1ghJWopV6i2zHLtGWFG3TC_-Mf8dM3l2WCrhEVeO4jufLPNKZbwh5k0hmNB-FjpSudjzlGkeoJHQgFmFMilDxMtsiCi4X3oelv-z1fnaylna5Guofd9aV_I9U4TuQK1bJ_oNkm0nhC_gM8oUjSBiOfyXjidY7pHrASv8k1bXzt8UgN8F0uG8mByFjmTG2SjYDvd4hMUKRA2tTAAOYHMyBBeu2Srt-6lVj17Z1FkFUvzactEUolWbYDpzBVdS2NJ4UFTOmysu_lmbd5iVGKVrjsiJEXm9U2_b5I6xzJeVNm2gpt63mzpsZZ3gnn7qvK7B1xNgZtcHtobV29TQD2-mV1dVDU6pm8GycwCubiza6u8qJ7YK01MTTsu_SbxYCVBq2Nc7kdjhmI993WT3HHhd39Dm-WMxm8Xy6nO-fLWw_Ez5nIhhj4H2fQYTCCpvQ5XsWZfVTdSM1qxR339367T2H6J6VG6TZhSF3hTy3M3c7rtD8EXlYxTB0UgLymPRM9pgc1_tLzysq87dPSFQjlLYIpRtLG4TSFqEUEUprhNI0ox2E0gKhT8niYjp_f-lUHTwcDWFC7iiupBgbL3TdJHFlyEOfW6mYCcJQ2zDxrU1MYGCDwHZoTwmufcYhxrceN4Zb94QcZZvMnBIasBG3lstEM-lZq4TxA2UNzJmMxokRfTKstzHWFb09dllZx0WaBXdj3NS43fc-OW8u-F4yu_x56CnIJZYrsLvx4gtDVkak6hwHrE9OisHNDDhFDODrk7NafHGlMnDKACIAn-F1r5vToNDxXzqZGdhPGIPN5MBMegfGCGT09UUAt_2sRESzAgyRBMMF8D2sNAOQUH7_TJZ-LYjlXfB-wKN_fnjpL8iD9sE-I0f5zc68BM88V6-KZ-AXnSblng |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+prediction+of+secondary+metabolite+gene+clusters+in+filamentous+fungi&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Andersen%2C+Mikael+R&rft.au=Nielsen%2C+Jakob+B&rft.au=Klitgaard%2C+Andreas&rft.au=Petersen%2C+Lene+M&rft.date=2013-01-02&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=110&rft.issue=1&rft.spage=E99&rft_id=info:doi/10.1073%2Fpnas.1205532110&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2857286161 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F1.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F1.cover.gif |