Genome-wide Hi-C Analyses in Wild-Type and Mutants Reveal High-Resolution Chromatin Interactions in Arabidopsis
Chromosomes form 3D structures that are critical to the regulation of cellular and genetic processes. Here, we present a study of global chromatin interaction patterns in Arabidopsis thaliana. Our genome-wide approach confirmed interactions that were previously observed by other methods as well as u...
Saved in:
Published in | Molecular cell Vol. 55; no. 5; pp. 694 - 707 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
04.09.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chromosomes form 3D structures that are critical to the regulation of cellular and genetic processes. Here, we present a study of global chromatin interaction patterns in Arabidopsis thaliana. Our genome-wide approach confirmed interactions that were previously observed by other methods as well as uncovered long-range interactions such as those among small heterochromatic regions embedded in euchromatic arms. We also found that interactions are correlated with various epigenetic marks that are localized in active or silenced chromatin. Arabidopsis chromosomes do not contain large local interactive domains that resemble the topological domains described in animals but, instead, contain relatively small interactive regions scattered around the genome that contain H3K27me3 or H3K9me2. We generated interaction maps in mutants that are defective in specific epigenetic pathways and found altered interaction patterns that correlate with changes in the epigenome. These analyses provide further insights into molecular mechanisms of epigenetic regulation of the genome.
[Display omitted]
•Chromatins interact through pericentromeres, telomeres, and adjacent regions•Interactive heterochromatic islands (IHIs) show strong long-range interactions•Interactions are correlated with epigenetic marks in active or silenced chromatins•Mutants in repressive epigenetic pathways alter chromatin-interaction patterns
Using Hi-C analysis, Feng et al. show extensive interactions among regions of Arabidopsis chromatin. These interactions correlate with epigenetic marks, and mutants of epigenetic pathways affect interaction patterns. |
---|---|
AbstractList | Chromosomes form 3D structures that are critical to the regulation of cellular and genetic processes. Here, we present a study of global chromatin interaction patterns in Arabidopsis thaliana. Our genome-wide approach confirmed interactions that were previously observed by other methods as well as uncovered long-range interactions such as those among small heterochromatic regions embedded in euchromatic arms. We also found that interactions are correlated with various epigenetic marks that are localized in active or silenced chromatin. Arabidopsis chromosomes do not contain large local interactive domains that resemble the topological domains described in animals but, instead, contain relatively small interactive regions scattered around the genome that contain H3K27me3 or H3K9me2. We generated interaction maps in mutants that are defective in specific epigenetic pathways and found altered interaction patterns that correlate with changes in the epigenome. These analyses provide further insights into molecular mechanisms of epigenetic regulation of the genome. Chromosomes form 3D structures that are critical to the regulation of cellular and genetic processes. Here, we present a study of global chromatin interaction patterns in Arabidopsis thaliana. Our genome-wide approach confirmed interactions that were previously observed by other methods as well as uncovered long-range interactions such as those among small heterochromatic regions embedded in euchromatic arms. We also found that interactions are correlated with various epigenetic marks that are localized in active or silenced chromatin. Arabidopsis chromosomes do not contain large local interactive domains that resemble the topological domains described in animals but, instead, contain relatively small interactive regions scattered around the genome that contain H3K27me3 or H3K9me2. We generated interaction maps in mutants that are defective in specific epigenetic pathways and found altered interaction patterns that correlate with changes in the epigenome. These analyses provide further insights into molecular mechanisms of epigenetic regulation of the genome.Chromosomes form 3D structures that are critical to the regulation of cellular and genetic processes. Here, we present a study of global chromatin interaction patterns in Arabidopsis thaliana. Our genome-wide approach confirmed interactions that were previously observed by other methods as well as uncovered long-range interactions such as those among small heterochromatic regions embedded in euchromatic arms. We also found that interactions are correlated with various epigenetic marks that are localized in active or silenced chromatin. Arabidopsis chromosomes do not contain large local interactive domains that resemble the topological domains described in animals but, instead, contain relatively small interactive regions scattered around the genome that contain H3K27me3 or H3K9me2. We generated interaction maps in mutants that are defective in specific epigenetic pathways and found altered interaction patterns that correlate with changes in the epigenome. These analyses provide further insights into molecular mechanisms of epigenetic regulation of the genome. Chromosomes form three-dimensional structures that are critical to the regulation of cellular and genetic processes. Here, we present a study of global chromatin interaction patterns in Arabidopsis thaliana . Our genome-wide approach confirmed interactions that were previously observed by other methods as well as uncovered previously unknown long-range interactions such as those among small heterochromatic regions embedded in euchromatic arms. We also found that interactions are correlated with various epigenetic marks that are localized in active or silenced chromatin. Arabidopsis chromosomes do not contain large local interactive domains that resemble the topological domains described in animals, but instead contain relatively small interactive regions scattered around the genome that contain H3K27me3 or H3K9me2. We generated interaction maps in mutants that are defective in specific epigenetic pathways and found altered interaction patterns that correlate with changes in the epigenome. These analyses provide further insights into molecular mechanisms of epigenetic regulation of the genome. Chromosomes form 3D structures that are critical to the regulation of cellular and genetic processes. Here, we present a study of global chromatin interaction patterns in Arabidopsis thaliana. Our genome-wide approach confirmed interactions that were previously observed by other methods as well as uncovered long-range interactions such as those among small heterochromatic regions embedded in euchromatic arms. We also found that interactions are correlated with various epigenetic marks that are localized in active or silenced chromatin. Arabidopsis chromosomes do not contain large local interactive domains that resemble the topological domains described in animals but, instead, contain relatively small interactive regions scattered around the genome that contain H3K27me3 or H3K9me2. We generated interaction maps in mutants that are defective in specific epigenetic pathways and found altered interaction patterns that correlate with changes in the epigenome. These analyses provide further insights into molecular mechanisms of epigenetic regulation of the genome. [Display omitted] •Chromatins interact through pericentromeres, telomeres, and adjacent regions•Interactive heterochromatic islands (IHIs) show strong long-range interactions•Interactions are correlated with epigenetic marks in active or silenced chromatins•Mutants in repressive epigenetic pathways alter chromatin-interaction patterns Using Hi-C analysis, Feng et al. show extensive interactions among regions of Arabidopsis chromatin. These interactions correlate with epigenetic marks, and mutants of epigenetic pathways affect interaction patterns. |
Author | Jacobsen, Steven E. Schubert, Veit Cokus, Shawn J. Zhai, Jixian Feng, Suhua Pellegrini, Matteo |
AuthorAffiliation | 1 Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA 4 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Germany 3 Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA 2 Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California at Los Angeles, Los Angeles, CA 90095, USA |
AuthorAffiliation_xml | – name: 2 Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California at Los Angeles, Los Angeles, CA 90095, USA – name: 4 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Germany – name: 1 Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA – name: 3 Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA |
Author_xml | – sequence: 1 givenname: Suhua surname: Feng fullname: Feng, Suhua organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA – sequence: 2 givenname: Shawn J. surname: Cokus fullname: Cokus, Shawn J. organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA – sequence: 3 givenname: Veit surname: Schubert fullname: Schubert, Veit organization: Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany – sequence: 4 givenname: Jixian surname: Zhai fullname: Zhai, Jixian organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA – sequence: 5 givenname: Matteo surname: Pellegrini fullname: Pellegrini, Matteo organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA – sequence: 6 givenname: Steven E. surname: Jacobsen fullname: Jacobsen, Steven E. email: jacobsen@ucla.edu organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25132175$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkVFr2zAUhcXoWNts_2AMP-7FriRbkr2HQQhbW-gYlMAehSJdNwqylEl2Sv79lCUt2x7WJwnpO-dezrlEZz54QOg9wRXBhF9tqiE4Da6imDQVFhXG7St0QXAnyobw5ux0p4Kzc3SZ0gZnkLXdG3ROGakpEewChWvwYYDy0Roobmy5KOZeuX2CVFhf_LDOlMv9FgrlTfFtGpUfU3EPO1Au0w_r8h5ScNNogy8W6xgGNWbZrR8hKn14_W0zj2plTdgmm96i171yCd6dzhlafv2yXNyUd9-vbxfzu1IzzsdyRXFdC8xAiVpDwwzVgremazjDoudKsb7vjDHAQAgqVkJhzdu-bozgplX1DH0-2m6n1QBGgx-jcnIb7aDiXgZl5d8_3q7lQ9jJpm5El2fP0MeTQQw_J0ijHGzKaTvlIUxJUpzT7Dgl-EWUMI5Z21DOMvrhz7We93nqIwOfjoCOIaUIvdR2VIcg85bWSYLloXy5kcfy5aF8iYXM5Wdx84_4yf8F2SkryH3sLESZtAWvwdgIepQm2P8b_AK0FMxg |
CitedBy_id | crossref_primary_10_1186_s12859_015_0678_x crossref_primary_10_3389_fgene_2014_00389 crossref_primary_10_1016_j_pbi_2022_102261 crossref_primary_10_1371_journal_pone_0192634 crossref_primary_10_21769_BioProtoc_2955 crossref_primary_10_1016_j_bbagrm_2016_07_005 crossref_primary_10_1093_plcell_koab081 crossref_primary_10_7554_eLife_40655 crossref_primary_10_1016_j_tig_2016_01_003 crossref_primary_10_1111_tpj_13925 crossref_primary_10_3389_fgene_2021_799805 crossref_primary_10_1093_nar_gkae690 crossref_primary_10_1371_journal_pgen_1005771 crossref_primary_10_1101_gr_190165_115 crossref_primary_10_1508_cytologia_81_3 crossref_primary_10_1038_s41467_024_47678_7 crossref_primary_10_1016_j_pbi_2017_03_004 crossref_primary_10_1016_j_pbi_2019_03_008 crossref_primary_10_1038_s41467_019_11535_9 crossref_primary_10_1073_pnas_2400737121 crossref_primary_10_1186_s13059_019_1722_3 crossref_primary_10_1371_journal_pgen_1006749 crossref_primary_10_1002_ps_5872 crossref_primary_10_3390_genes6030520 crossref_primary_10_1016_j_xplc_2021_100267 crossref_primary_10_1080_19491034_2016_1190896 crossref_primary_10_1073_pnas_2023347118 crossref_primary_10_1111_nph_17699 crossref_primary_10_1038_s41467_024_53760_x crossref_primary_10_1016_j_cell_2015_02_040 crossref_primary_10_1016_j_molcel_2019_12_015 crossref_primary_10_1093_nar_gkv424 crossref_primary_10_3390_f11090976 crossref_primary_10_1038_s41477_017_0096_3 crossref_primary_10_1093_nar_gkab191 crossref_primary_10_1038_s41467_019_10603_4 crossref_primary_10_1038_s41477_018_0136_7 crossref_primary_10_1073_pnas_1903131116 crossref_primary_10_1016_j_cub_2019_12_015 crossref_primary_10_1186_s13059_015_0738_6 crossref_primary_10_3390_plants10071408 crossref_primary_10_1002_wdev_265 crossref_primary_10_1186_s13059_017_1236_9 crossref_primary_10_1186_s12915_021_00996_4 crossref_primary_10_1186_s12864_018_5251_3 crossref_primary_10_1038_s41477_017_0013_9 crossref_primary_10_1016_j_jtbi_2015_09_017 crossref_primary_10_1016_j_ygeno_2020_01_002 crossref_primary_10_1007_s00412_015_0538_5 crossref_primary_10_1038_s42003_020_0932_2 crossref_primary_10_1038_s41421_021_00286_x crossref_primary_10_1093_jxb_erw168 crossref_primary_10_1016_j_tplants_2015_03_003 crossref_primary_10_3389_fcell_2021_753097 crossref_primary_10_1093_jxb_erac517 crossref_primary_10_1007_s40484_016_0065_2 crossref_primary_10_1371_journal_pgen_1005998 crossref_primary_10_1101_gad_270876_115 crossref_primary_10_1371_journal_pone_0158936 crossref_primary_10_1093_jxb_eraa322 crossref_primary_10_1038_s41467_020_15809_5 crossref_primary_10_1038_s41598_017_13731_3 crossref_primary_10_1186_s13059_017_1333_9 crossref_primary_10_1016_j_molp_2017_11_005 crossref_primary_10_1093_bib_bbab021 crossref_primary_10_1093_bfgp_ely004 crossref_primary_10_1016_j_cpb_2015_10_001 crossref_primary_10_1038_s41467_019_10602_5 crossref_primary_10_2478_gsr_2018_0010 crossref_primary_10_1016_j_plantsci_2018_12_026 crossref_primary_10_1093_jxb_erv091 crossref_primary_10_3389_fpls_2022_905202 crossref_primary_10_1242_jcs_202416 crossref_primary_10_1007_s00425_020_03403_4 crossref_primary_10_1186_s13020_021_00502_6 crossref_primary_10_1093_nar_gkad710 crossref_primary_10_1016_j_gde_2015_04_004 crossref_primary_10_3390_ijms221910384 crossref_primary_10_1038_s41467_024_47789_1 crossref_primary_10_1093_plcell_koae034 crossref_primary_10_1111_nph_17262 crossref_primary_10_1508_cytologia_82_223 crossref_primary_10_1186_s13059_020_02225_7 crossref_primary_10_1080_19491034_2020_1838697 crossref_primary_10_1093_nar_gky163 crossref_primary_10_1093_jxb_eraa220 crossref_primary_10_1016_j_gde_2019_06_003 crossref_primary_10_1186_s13059_022_02611_3 crossref_primary_10_1186_s13059_023_03018_4 crossref_primary_10_1007_s13562_020_00610_8 crossref_primary_10_26508_lsa_201800197 crossref_primary_10_1111_pbi_14296 crossref_primary_10_1080_11263504_2023_2166619 crossref_primary_10_1038_s41477_019_0479_8 crossref_primary_10_1038_s41477_019_0471_3 crossref_primary_10_1093_jxb_eraa370 crossref_primary_10_1093_jxb_erae054 crossref_primary_10_1093_plphys_kiaa108 crossref_primary_10_1016_j_ceb_2016_01_009 crossref_primary_10_3389_fpls_2019_01728 crossref_primary_10_1093_bfgp_elz024 crossref_primary_10_1038_srep11058 crossref_primary_10_1080_15592294_2016_1185580 crossref_primary_10_1038_s41467_018_07010_6 crossref_primary_10_1242_dev_129007 crossref_primary_10_1007_s00122_019_03518_7 crossref_primary_10_1093_pcp_pcw194 crossref_primary_10_1016_j_cell_2015_05_048 crossref_primary_10_1016_j_pbi_2024_102599 crossref_primary_10_3390_ijms222111387 crossref_primary_10_3389_fpls_2015_00328 crossref_primary_10_3389_fpls_2022_964931 crossref_primary_10_3390_genes6030734 crossref_primary_10_3389_fpls_2020_603380 crossref_primary_10_1016_j_jmb_2014_09_013 crossref_primary_10_1101_gr_204032_116 crossref_primary_10_1016_j_pbi_2019_02_008 crossref_primary_10_1080_19491034_2016_1182277 crossref_primary_10_1016_j_ejcb_2023_151344 crossref_primary_10_1371_journal_pgen_1006875 crossref_primary_10_1007_s10265_020_01185_0 crossref_primary_10_1111_jipb_13502 crossref_primary_10_1111_jipb_13620 crossref_primary_10_1111_brv_13132 crossref_primary_10_3390_ijms23158299 crossref_primary_10_1534_genetics_117_200303 crossref_primary_10_1093_nar_gkaa1275 crossref_primary_10_1007_s00299_017_2222_0 crossref_primary_10_1038_s41467_023_39751_4 crossref_primary_10_1016_j_pbi_2015_05_011 crossref_primary_10_3390_agronomy15010094 crossref_primary_10_1093_pcp_pcaa026 crossref_primary_10_1111_jipb_13378 crossref_primary_10_1101_gr_215186_116 crossref_primary_10_1093_jxb_eraa263 crossref_primary_10_1007_s10265_020_01209_9 crossref_primary_10_1146_annurev_arplant_102720_022810 crossref_primary_10_1073_pnas_2001290119 crossref_primary_10_1111_pbi_14134 crossref_primary_10_1016_j_devcel_2021_11_002 crossref_primary_10_1111_pbi_14372 crossref_primary_10_1016_j_celrep_2023_112894 crossref_primary_10_1016_j_molcel_2020_02_007 crossref_primary_10_1016_j_xplc_2023_100666 crossref_primary_10_1111_nph_19464 crossref_primary_10_1038_s41467_021_27320_6 crossref_primary_10_1073_pnas_1920474117 crossref_primary_10_1111_tpj_15256 crossref_primary_10_1007_s00425_023_04223_y crossref_primary_10_1093_pcp_pcab134 crossref_primary_10_1111_tpj_16468 crossref_primary_10_1186_s13059_017_1281_4 crossref_primary_10_1093_nargab_lqae123 crossref_primary_10_1126_science_abi7489 crossref_primary_10_1016_j_tig_2019_05_003 crossref_primary_10_1093_bioinformatics_bty1053 crossref_primary_10_3389_fpls_2024_1358760 crossref_primary_10_1016_j_copbio_2018_01_023 crossref_primary_10_1186_s13059_024_03465_7 crossref_primary_10_1016_j_molp_2016_06_016 crossref_primary_10_1186_s11658_017_0050_4 crossref_primary_10_1186_s12864_020_07324_0 crossref_primary_10_1016_j_febslet_2015_06_008 crossref_primary_10_1016_j_plasmid_2016_12_002 crossref_primary_10_1007_s11248_022_00326_6 crossref_primary_10_1007_s11427_024_2784_3 crossref_primary_10_1038_s41467_022_31112_x crossref_primary_10_1038_s41477_017_0005_9 crossref_primary_10_1093_nar_gkae958 crossref_primary_10_1038_s41467_017_00524_5 crossref_primary_10_1038_s41477_023_01457_2 crossref_primary_10_1016_j_jgg_2020_06_007 crossref_primary_10_3389_fcell_2021_774719 crossref_primary_10_1093_molbev_msab128 crossref_primary_10_1111_tpj_16119 crossref_primary_10_3389_fpls_2021_766389 crossref_primary_10_1007_s11032_023_01374_4 crossref_primary_10_1186_s12864_022_08691_6 crossref_primary_10_1016_j_devcel_2016_12_021 crossref_primary_10_1093_hr_uhac241 crossref_primary_10_1002_iub_2681 crossref_primary_10_1146_annurev_arplant_042916_041115 crossref_primary_10_1016_j_cell_2016_09_018 crossref_primary_10_1038_s41477_021_01004_x crossref_primary_10_1089_cmb_2018_0162 crossref_primary_10_3389_fpls_2021_596236 crossref_primary_10_1111_jipb_12809 crossref_primary_10_1080_19491034_2021_1927503 crossref_primary_10_1101_gr_227116_117 crossref_primary_10_1038_s41438_021_00494_2 crossref_primary_10_1111_nph_15248 crossref_primary_10_1101_gr_203182_115 crossref_primary_10_1101_gr_196006_115 crossref_primary_10_1186_s13072_015_0033_5 crossref_primary_10_1016_j_pbi_2015_12_004 crossref_primary_10_1038_s41467_023_44347_z crossref_primary_10_1038_s41594_024_01427_y crossref_primary_10_1093_plcell_koad112 crossref_primary_10_1073_pnas_1615546113 crossref_primary_10_1038_s41586_022_05386_6 crossref_primary_10_1101_gr_273771_120 crossref_primary_10_1016_j_febslet_2015_08_044 crossref_primary_10_1038_s41477_018_0199_5 crossref_primary_10_1134_S000629791804003X crossref_primary_10_1186_s13039_018_0368_2 crossref_primary_10_1186_s13059_019_1694_3 crossref_primary_10_1093_nar_gky576 crossref_primary_10_1093_hr_uhac182 crossref_primary_10_1126_sciadv_aaw1668 crossref_primary_10_1073_pnas_1618224114 crossref_primary_10_1128_MMBR_00006_15 crossref_primary_10_1186_s12864_022_09070_x crossref_primary_10_1038_s41467_024_45771_5 crossref_primary_10_1093_jxb_eraa098 crossref_primary_10_1038_s41580_018_0016_z crossref_primary_10_1016_j_molcel_2024_05_002 crossref_primary_10_1093_plcell_koac117 crossref_primary_10_1038_s41467_019_09513_2 crossref_primary_10_1007_s00412_016_0578_5 crossref_primary_10_1186_s13007_017_0251_x crossref_primary_10_1093_nar_gkz511 crossref_primary_10_1186_s13059_015_0745_7 crossref_primary_10_1038_ng_3647 crossref_primary_10_1016_j_isci_2021_103696 crossref_primary_10_1515_ijb_2017_0061 crossref_primary_10_3390_biology6010003 crossref_primary_10_1016_j_pbi_2016_08_002 crossref_primary_10_1093_jxb_erw371 crossref_primary_10_1016_j_copbio_2017_07_010 crossref_primary_10_1016_j_tplants_2018_03_014 crossref_primary_10_1038_s41467_022_32709_y crossref_primary_10_1038_nrg_2016_112 crossref_primary_10_1016_j_tig_2018_09_002 crossref_primary_10_1007_s11033_024_09243_9 crossref_primary_10_1038_s41467_022_30770_1 crossref_primary_10_14348_molcells_2021_0014 crossref_primary_10_1101_gr_170332_113 crossref_primary_10_1042_BST20200192 crossref_primary_10_1016_j_gpb_2016_01_002 crossref_primary_10_1093_pcp_pcz051 crossref_primary_10_1038_s41467_019_12328_w crossref_primary_10_1186_s12915_023_01560_y crossref_primary_10_1111_jipb_13465 crossref_primary_10_1016_j_molp_2020_10_002 |
Cites_doi | 10.1093/nar/gkq955 10.1016/j.cell.2012.01.010 10.1016/j.cell.2012.10.054 10.1093/emboj/cdf657 10.1126/science.1186366 10.1046/j.1365-313X.2003.01667.x 10.1073/pnas.1111941109 10.1126/science.1221472 10.1016/j.cell.2011.12.014 10.1126/science.1181369 10.1186/gb-2009-10-6-r62 10.1159/000365233 10.1038/ng1817 10.1038/nrg3454 10.1016/j.pbi.2010.12.002 10.1371/journal.pgen.1003062 10.1038/ng1792 10.1038/sj.emboj.7600743 10.1038/nature11279 10.1242/jcs.01363 10.1101/gad.1980311 10.1186/gb-2013-14-11-r129 10.1534/genetics.107.073270 10.1371/journal.pgen.1002040 10.1007/s00018-006-6463-2 10.1073/pnas.212325299 10.1038/nature12644 10.1126/science.1242059 10.1016/j.molcel.2013.02.011 10.1371/journal.pgen.1002808 10.1073/pnas.1002720107 10.1038/nsmb.1611 10.1038/emboj.2012.324 10.1007/s00412-012-0367-8 10.1016/j.cell.2012.02.002 10.1038/nature11082 10.1038/ng1423 10.1038/nsmb.2735 10.1038/nature08973 10.1038/35012108 10.1101/gad.221713.113 10.1038/nature11243 10.1371/journal.pgen.0030086 10.1371/journal.pbio.0050129 10.1038/35048692 10.1371/journal.pone.0003156 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Inc. Copyright © 2014 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2014 Elsevier Inc. – notice: Copyright © 2014 Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.molcel.2014.07.008 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4164 |
EndPage | 707 |
ExternalDocumentID | PMC4347903 25132175 10_1016_j_molcel_2014_07_008 S1097276514006017 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM60398 – fundername: NIGMS NIH HHS grantid: R37 GM060398 – fundername: Howard Hughes Medical Institute – fundername: NIGMS NIH HHS grantid: R01 GM060398 |
GroupedDBID | --- --K -DZ -~X 0R~ 123 1~5 2WC 4.4 457 4G. 5RE 5VS 62- 6I. 7-5 AACTN AAEDT AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAQFI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFFNX AFTJW AGHFR AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HH5 HVGLF IH2 IHE IXB J1W JIG KQ8 L7B M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SDG SES SSZ TR2 WQ6 ZA5 .55 .GJ 29M 3O- 53G AAHBH AAIKJ AAMRU AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FGOYB HZ~ OZT R2- UHS X7M ZGI ZXP CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM EFKBS |
ID | FETCH-LOGICAL-c566t-b2033705ea73ce45d2c768d946507f6aa5ff9ddde5e7727b7a0c68f34d76d8a3 |
IEDL.DBID | IXB |
ISSN | 1097-2765 1097-4164 |
IngestDate | Thu Aug 21 18:32:17 EDT 2025 Fri Jul 11 00:41:03 EDT 2025 Fri Jul 11 06:47:36 EDT 2025 Thu Apr 03 07:01:18 EDT 2025 Thu Apr 24 22:56:40 EDT 2025 Tue Jul 01 03:40:43 EDT 2025 Fri Feb 23 02:30:34 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2014 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c566t-b2033705ea73ce45d2c768d946507f6aa5ff9ddde5e7727b7a0c68f34d76d8a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Co-first author |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1097276514006017 |
PMID | 25132175 |
PQID | 1560584265 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4347903 proquest_miscellaneous_2000196210 proquest_miscellaneous_1560584265 pubmed_primary_25132175 crossref_citationtrail_10_1016_j_molcel_2014_07_008 crossref_primary_10_1016_j_molcel_2014_07_008 elsevier_sciencedirect_doi_10_1016_j_molcel_2014_07_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-09-04 |
PublicationDateYYYYMMDD | 2014-09-04 |
PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular cell |
PublicationTitleAlternate | Mol Cell |
PublicationYear | 2014 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Sexton, Yaffe, Kenigsberg, Bantignies, Leblanc, Hoichman, Parrinello, Tanay, Cavalli (bib34) 2012; 148 Heger, Marin, Bartkuhn, Schierenberg, Wiehe (bib16) 2012; 109 Tolhuis, de Wit, Muijrers, Teunissen, Talhout, van Steensel, van Lohuizen (bib41) 2006; 38 Crevillén, Sonmez, Wu, Dean (bib5) 2013; 32 Stroud, Greenberg, Feng, Bernatavichute, Jacobsen (bib38) 2013; 152 Jacob, Feng, LeBlanc, Bernatavichute, Stroud, Cokus, Johnson, Pellegrini, Jacobsen, Michaels (bib17) 2009; 16 Stroud, Do, Du, Zhong, Feng, Johnson, Patel, Jacobsen (bib39) 2014; 21 Shen, Yue, McCleary, Ye, Edsall, Kuan, Wagner, Dixon, Lee, Lobanenkov, Ren (bib35) 2012; 488 Zhang, McCord, Ho, Lajoie, Hildebrand, Simon, Becker, Alt, Dekker (bib46) 2012; 148 Deleris, Stroud, Bernatavichute, Johnson, Klein, Schubert, Jacobsen (bib7) 2012; 8 Duan, Andronescu, Schutz, McIlwain, Kim, Lee, Shendure, Fields, Blau, Noble (bib9) 2010; 465 Osborne, Chakalova, Brown, Carter, Horton, Debrand, Goyenechea, Mitchell, Lopes, Reik, Fraser (bib25) 2004; 36 Moissiard, Cokus, Cary, Feng, Billi, Stroud, Husmann, Zhan, Lajoie, McCord (bib24) 2012; 336 Grob, Schmid, Luedtke, Wicker, Grossniklaus (bib14) 2013; 14 Berr, Schubert (bib4) 2007; 176 Feng, Cokus, Zhang, Chen, Bostick, Goll, Hetzel, Jain, Strauss, Halpern (bib11) 2010; 107 Le, Imakaev, Mirny, Laub (bib20) 2013; 342 Schubert, Berr, Meister (bib32) 2012; 121 Amedeo, Habu, Afsar, Mittelsten Scheid, Paszkowski (bib1) 2000; 405 Rosa, De Lucia, Mylne, Zhu, Ohmido, Pendle, Kato, Shaw, Dean (bib28) 2013; 27 Sanyal, Lajoie, Jain, Dekker (bib29) 2012; 489 Schwartz, Kahn, Nix, Li, Bourgon, Biggin, Pirrotta (bib33) 2006; 38 Feng, Jacobsen (bib10) 2011; 14 Lafos, Kroll, Hohenstatt, Thorpe, Clarenz, Schubert (bib19) 2011; 7 Schubert (bib31) 2014 Probst, Fransz, Paszkowski, Mittelsten Scheid (bib26) 2003; 33 (bib2) 2000; 408 Harper, Golubovskaya, Cande (bib15) 2004; 117 Rajakumara, Law, Simanshu, Voigt, Johnson, Reinberg, Patel, Jacobsen (bib27) 2011; 25 Lieberman-Aiden, van Berkum, Williams, Imakaev, Ragoczy, Telling, Amit, Lajoie, Sabo, Dorschner (bib22) 2009; 326 Dekker, Marti-Renom, Mirny (bib6) 2013; 14 Gibcus, Dekker (bib13) 2013; 49 Tanizawa, Iwasaki, Tanaka, Capizzi, Wickramasinghe, Lee, Fu, Noma (bib40) 2010; 38 Fransz, De Jong, Lysak, Castiglione, Schubert (bib12) 2002; 99 Turck, Roudier, Farrona, Martin-Magniette, Guillaume, Buisine, Gagnot, Martienssen, Coupland, Colot (bib42) 2007; 3 Zhang, Clarenz, Cokus, Bernatavichute, Pellegrini, Goodrich, Jacobsen (bib44) 2007; 5 Soppe, Jasencakova, Houben, Kakutani, Meister, Huang, Jacobsen, Schubert, Fransz (bib36) 2002; 21 Zemach, McDaniel, Silva, Zilberman (bib43) 2010; 328 Scherthan (bib30) 2007; 64 Zhang, Bernatavichute, Cokus, Pellegrini, Jacobsen (bib45) 2009; 10 Li, Ruan, Auerbach, Sandhu, Zheng, Wang, Poh, Goh, Lim, Zhang (bib21) 2012; 148 Stroud, Hale, Feng, Caro, Jacob, Michaels, Jacobsen (bib37) 2012; 8 Bernatavichute, Zhang, Cokus, Pellegrini, Jacobsen (bib3) 2008; 3 Dixon, Selvaraj, Yue, Kim, Li, Shen, Hu, Liu, Ren (bib8) 2012; 485 Mathieu, Probst, Paszkowski (bib23) 2005; 24 Jin, Li, Dixon, Selvaraj, Ye, Lee, Yen, Schmitt, Espinoza, Ren (bib18) 2013; 503 Li (10.1016/j.molcel.2014.07.008_bib21) 2012; 148 Dekker (10.1016/j.molcel.2014.07.008_bib6) 2013; 14 Zhang (10.1016/j.molcel.2014.07.008_bib44) 2007; 5 Sanyal (10.1016/j.molcel.2014.07.008_bib29) 2012; 489 Scherthan (10.1016/j.molcel.2014.07.008_bib30) 2007; 64 Grob (10.1016/j.molcel.2014.07.008_bib14) 2013; 14 Stroud (10.1016/j.molcel.2014.07.008_bib38) 2013; 152 Rajakumara (10.1016/j.molcel.2014.07.008_bib27) 2011; 25 Sexton (10.1016/j.molcel.2014.07.008_bib34) 2012; 148 Bernatavichute (10.1016/j.molcel.2014.07.008_bib3) 2008; 3 Lafos (10.1016/j.molcel.2014.07.008_bib19) 2011; 7 Moissiard (10.1016/j.molcel.2014.07.008_bib24) 2012; 336 Feng (10.1016/j.molcel.2014.07.008_bib10) 2011; 14 Crevillén (10.1016/j.molcel.2014.07.008_bib5) 2013; 32 Shen (10.1016/j.molcel.2014.07.008_bib35) 2012; 488 Amedeo (10.1016/j.molcel.2014.07.008_bib1) 2000; 405 Berr (10.1016/j.molcel.2014.07.008_bib4) 2007; 176 Schubert (10.1016/j.molcel.2014.07.008_bib31) 2014 Rosa (10.1016/j.molcel.2014.07.008_bib28) 2013; 27 Jin (10.1016/j.molcel.2014.07.008_bib18) 2013; 503 Lieberman-Aiden (10.1016/j.molcel.2014.07.008_bib22) 2009; 326 Soppe (10.1016/j.molcel.2014.07.008_bib36) 2002; 21 Tanizawa (10.1016/j.molcel.2014.07.008_bib40) 2010; 38 Probst (10.1016/j.molcel.2014.07.008_bib26) 2003; 33 Dixon (10.1016/j.molcel.2014.07.008_bib8) 2012; 485 Jacob (10.1016/j.molcel.2014.07.008_bib17) 2009; 16 Osborne (10.1016/j.molcel.2014.07.008_bib25) 2004; 36 Le (10.1016/j.molcel.2014.07.008_bib20) 2013; 342 Zhang (10.1016/j.molcel.2014.07.008_bib45) 2009; 10 Heger (10.1016/j.molcel.2014.07.008_bib16) 2012; 109 Zhang (10.1016/j.molcel.2014.07.008_bib46) 2012; 148 Turck (10.1016/j.molcel.2014.07.008_bib42) 2007; 3 Tolhuis (10.1016/j.molcel.2014.07.008_bib41) 2006; 38 Feng (10.1016/j.molcel.2014.07.008_bib11) 2010; 107 Duan (10.1016/j.molcel.2014.07.008_bib9) 2010; 465 Stroud (10.1016/j.molcel.2014.07.008_bib37) 2012; 8 Deleris (10.1016/j.molcel.2014.07.008_bib7) 2012; 8 Stroud (10.1016/j.molcel.2014.07.008_bib39) 2014; 21 Mathieu (10.1016/j.molcel.2014.07.008_bib23) 2005; 24 Schwartz (10.1016/j.molcel.2014.07.008_bib33) 2006; 38 Zemach (10.1016/j.molcel.2014.07.008_bib43) 2010; 328 Fransz (10.1016/j.molcel.2014.07.008_bib12) 2002; 99 Harper (10.1016/j.molcel.2014.07.008_bib15) 2004; 117 (10.1016/j.molcel.2014.07.008_bib2) 2000; 408 Gibcus (10.1016/j.molcel.2014.07.008_bib13) 2013; 49 Schubert (10.1016/j.molcel.2014.07.008_bib32) 2012; 121 24267747 - Genome Biol. 2013;14(11):R129 23222483 - EMBO J. 2013 Jan 9;32(1):140-8 24141950 - Nature. 2013 Nov 14;503(7475):290-4 20395474 - Science. 2010 May 14;328(5980):916-9 22792077 - PLoS Genet. 2012 Jul;8(7):e1002808 23473598 - Mol Cell. 2013 Mar 7;49(5):773-82 12456661 - EMBO J. 2002 Dec 2;21(23):6549-59 22341456 - Cell. 2012 Mar 2;148(5):908-21 22555433 - Science. 2012 Jun 15;336(6087):1448-51 16732288 - Nat Genet. 2006 Jun;38(6):700-5 17409060 - Genetics. 2007 Jun;176(2):853-63 12384572 - Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14584-9 11130711 - Nature. 2000 Dec 14;408(6814):796-815 24013499 - Genes Dev. 2013 Sep 1;27(17):1845-50 12609046 - Plant J. 2003 Feb;33(4):743-9 23313553 - Cell. 2013 Jan 17;152(1-2):352-64 21030438 - Nucleic Acids Res. 2010 Dec;38(22):8164-77 22763441 - Nature. 2012 Aug 2;488(7409):116-20 10821279 - Nature. 2000 May 11;405(6783):203-6 23209430 - PLoS Genet. 2012;8(11):e1003062 24158908 - Science. 2013 Nov 8;342(6159):731-4 19508735 - Genome Biol. 2009;10(6):R62 22476443 - Chromosoma. 2012 Aug;121(4):369-87 15361872 - Nat Genet. 2004 Oct;36(10):1065-71 20395551 - Proc Natl Acad Sci U S A. 2010 May 11;107(19):8689-94 20436457 - Nature. 2010 May 20;465(7296):363-7 24336224 - Nat Struct Mol Biol. 2014 Jan;21(1):64-72 22495300 - Nature. 2012 May 17;485(7398):376-80 17219025 - Cell Mol Life Sci. 2007 Jan;64(2):117-24 21490956 - PLoS Genet. 2011 Apr;7(4):e1002040 19815776 - Science. 2009 Oct 9;326(5950):289-93 21233005 - Curr Opin Plant Biol. 2011 Apr;14(2):179-86 23657480 - Nat Rev Genet. 2013 Jun;14(6):390-403 18776934 - PLoS One. 2008;3(9):e3156 15316078 - J Cell Sci. 2004 Aug 15;117(Pt 18):4025-32 23045651 - Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17507-12 25060696 - Cytogenet Genome Res. 2014;143(1-3):69-77 22265598 - Cell. 2012 Feb 3;148(3):458-72 19503079 - Nat Struct Mol Biol. 2009 Jul;16(7):763-8 16628213 - Nat Genet. 2006 Jun;38(6):694-9 17439305 - PLoS Biol. 2007 May;5(5):e129 21245167 - Genes Dev. 2011 Jan 15;25(2):137-52 22955621 - Nature. 2012 Sep 6;489(7414):109-13 17542647 - PLoS Genet. 2007 Jun;3(6):e86 16001083 - EMBO J. 2005 Aug 3;24(15):2783-91 22265404 - Cell. 2012 Jan 20;148(1-2):84-98 |
References_xml | – volume: 121 start-page: 369 year: 2012 end-page: 387 ident: bib32 article-title: Interphase chromatin organisation in publication-title: Chromosoma – volume: 32 start-page: 140 year: 2013 end-page: 148 ident: bib5 article-title: A gene loop containing the floral repressor FLC is disrupted in the early phase of vernalization publication-title: EMBO J. – volume: 328 start-page: 916 year: 2010 end-page: 919 ident: bib43 article-title: Genome-wide evolutionary analysis of eukaryotic DNA methylation publication-title: Science – volume: 109 start-page: 17507 year: 2012 end-page: 17512 ident: bib16 article-title: The chromatin insulator CTCF and the emergence of metazoan diversity publication-title: Proc. Natl. Acad. Sci. USA – volume: 36 start-page: 1065 year: 2004 end-page: 1071 ident: bib25 article-title: Active genes dynamically colocalize to shared sites of ongoing transcription publication-title: Nat. Genet. – volume: 16 start-page: 763 year: 2009 end-page: 768 ident: bib17 article-title: ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing publication-title: Nat. Struct. Mol. Biol. – volume: 7 start-page: e1002040 year: 2011 ident: bib19 article-title: Dynamic regulation of H3K27 trimethylation during publication-title: PLoS Genet. – volume: 148 start-page: 908 year: 2012 end-page: 921 ident: bib46 article-title: Spatial organization of the mouse genome and its role in recurrent chromosomal translocations publication-title: Cell – volume: 10 start-page: R62 year: 2009 ident: bib45 article-title: Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in publication-title: Genome Biol. – volume: 8 start-page: e1003062 year: 2012 ident: bib7 article-title: Loss of the DNA methyltransferase MET1 Induces H3K9 hypermethylation at PcG target genes and redistribution of H3K27 trimethylation to transposons in publication-title: PLoS Genet. – volume: 342 start-page: 731 year: 2013 end-page: 734 ident: bib20 article-title: High-resolution mapping of the spatial organization of a bacterial chromosome publication-title: Science – volume: 38 start-page: 8164 year: 2010 end-page: 8177 ident: bib40 article-title: Mapping of long-range associations throughout the fission yeast genome reveals global genome organization linked to transcriptional regulation publication-title: Nucleic Acids Res. – volume: 38 start-page: 694 year: 2006 end-page: 699 ident: bib41 article-title: Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in publication-title: Nat. Genet. – volume: 326 start-page: 289 year: 2009 end-page: 293 ident: bib22 article-title: Comprehensive mapping of long-range interactions reveals folding principles of the human genome publication-title: Science – volume: 152 start-page: 352 year: 2013 end-page: 364 ident: bib38 article-title: Comprehensive analysis of silencing mutants reveals complex regulation of the publication-title: Cell – volume: 176 start-page: 853 year: 2007 end-page: 863 ident: bib4 article-title: Interphase chromosome arrangement in publication-title: Genetics – volume: 99 start-page: 14584 year: 2002 end-page: 14589 ident: bib12 article-title: Interphase chromosomes in publication-title: Proc. Natl. Acad. Sci. USA – volume: 148 start-page: 458 year: 2012 end-page: 472 ident: bib34 article-title: Three-dimensional folding and functional organization principles of the publication-title: Cell – volume: 503 start-page: 290 year: 2013 end-page: 294 ident: bib18 article-title: A high-resolution map of the three-dimensional chromatin interactome in human cells publication-title: Nature – volume: 405 start-page: 203 year: 2000 end-page: 206 ident: bib1 article-title: Disruption of the plant gene MOM releases transcriptional silencing of methylated genes publication-title: Nature – volume: 14 start-page: 390 year: 2013 end-page: 403 ident: bib6 article-title: Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data publication-title: Nat. Rev. Genet. – volume: 25 start-page: 137 year: 2011 end-page: 152 ident: bib27 article-title: A dual flip-out mechanism for 5mC recognition by the publication-title: Genes Dev. – volume: 3 start-page: e86 year: 2007 ident: bib42 article-title: TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27 publication-title: PLoS Genet. – volume: 14 start-page: R129 year: 2013 ident: bib14 article-title: Characterization of chromosomal architecture in publication-title: Genome Biol. – volume: 49 start-page: 773 year: 2013 end-page: 782 ident: bib13 article-title: The hierarchy of the 3D genome publication-title: Mol. Cell – volume: 27 start-page: 1845 year: 2013 end-page: 1850 ident: bib28 article-title: Physical clustering of FLC alleles during Polycomb-mediated epigenetic silencing in vernalization publication-title: Genes Dev. – volume: 5 start-page: e129 year: 2007 ident: bib44 article-title: Whole-genome analysis of histone H3 lysine 27 trimethylation in publication-title: PLoS Biol. – volume: 3 start-page: e3156 year: 2008 ident: bib3 article-title: Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in publication-title: PLoS One – volume: 465 start-page: 363 year: 2010 end-page: 367 ident: bib9 article-title: A three-dimensional model of the yeast genome publication-title: Nature – volume: 33 start-page: 743 year: 2003 end-page: 749 ident: bib26 article-title: Two means of transcriptional reactivation within heterochromatin publication-title: Plant J. – volume: 336 start-page: 1448 year: 2012 end-page: 1451 ident: bib24 article-title: MORC family ATPases required for heterochromatin condensation and gene silencing publication-title: Science – year: 2014 ident: bib31 article-title: RNA polymerase II forms transcription networks in rye and publication-title: Cytogenet. Genome Res. – volume: 38 start-page: 700 year: 2006 end-page: 705 ident: bib33 article-title: Genome-wide analysis of Polycomb targets in publication-title: Nat. Genet. – volume: 485 start-page: 376 year: 2012 end-page: 380 ident: bib8 article-title: Topological domains in mammalian genomes identified by analysis of chromatin interactions publication-title: Nature – volume: 24 start-page: 2783 year: 2005 end-page: 2791 ident: bib23 article-title: Distinct regulation of histone H3 methylation at lysines 27 and 9 by CpG methylation in publication-title: EMBO J. – volume: 408 start-page: 796 year: 2000 end-page: 815 ident: bib2 article-title: Analysis of the genome sequence of the flowering plant publication-title: Nature – volume: 117 start-page: 4025 year: 2004 end-page: 4032 ident: bib15 article-title: A bouquet of chromosomes publication-title: J. Cell Sci. – volume: 148 start-page: 84 year: 2012 end-page: 98 ident: bib21 article-title: Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation publication-title: Cell – volume: 489 start-page: 109 year: 2012 end-page: 113 ident: bib29 article-title: The long-range interaction landscape of gene promoters publication-title: Nature – volume: 21 start-page: 6549 year: 2002 end-page: 6559 ident: bib36 article-title: DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in publication-title: EMBO J. – volume: 8 start-page: e1002808 year: 2012 ident: bib37 article-title: DNA methyltransferases are required to induce heterochromatic re-replication in publication-title: PLoS Genet. – volume: 488 start-page: 116 year: 2012 end-page: 120 ident: bib35 article-title: A map of thecis-regulatory sequences in the mouse genome publication-title: Nature – volume: 14 start-page: 179 year: 2011 end-page: 186 ident: bib10 article-title: Epigenetic modifications in plants: an evolutionary perspective publication-title: Curr. Opin. Plant Biol. – volume: 21 start-page: 64 year: 2014 end-page: 72 ident: bib39 article-title: Non-CG methylation patterns shape the epigenetic landscape in publication-title: Nat. Struct. Mol. Biol. – volume: 107 start-page: 8689 year: 2010 end-page: 8694 ident: bib11 article-title: Conservation and divergence of methylation patterning in plants and animals publication-title: Proc. Natl. Acad. Sci. USA – volume: 64 start-page: 117 year: 2007 end-page: 124 ident: bib30 article-title: Telomere attachment and clustering during meiosis publication-title: Cell. Mol. Life Sci. – volume: 38 start-page: 8164 year: 2010 ident: 10.1016/j.molcel.2014.07.008_bib40 article-title: Mapping of long-range associations throughout the fission yeast genome reveals global genome organization linked to transcriptional regulation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq955 – volume: 148 start-page: 458 year: 2012 ident: 10.1016/j.molcel.2014.07.008_bib34 article-title: Three-dimensional folding and functional organization principles of the Drosophila genome publication-title: Cell doi: 10.1016/j.cell.2012.01.010 – volume: 152 start-page: 352 year: 2013 ident: 10.1016/j.molcel.2014.07.008_bib38 article-title: Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome publication-title: Cell doi: 10.1016/j.cell.2012.10.054 – volume: 21 start-page: 6549 year: 2002 ident: 10.1016/j.molcel.2014.07.008_bib36 article-title: DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis publication-title: EMBO J. doi: 10.1093/emboj/cdf657 – volume: 328 start-page: 916 year: 2010 ident: 10.1016/j.molcel.2014.07.008_bib43 article-title: Genome-wide evolutionary analysis of eukaryotic DNA methylation publication-title: Science doi: 10.1126/science.1186366 – volume: 33 start-page: 743 year: 2003 ident: 10.1016/j.molcel.2014.07.008_bib26 article-title: Two means of transcriptional reactivation within heterochromatin publication-title: Plant J. doi: 10.1046/j.1365-313X.2003.01667.x – volume: 109 start-page: 17507 year: 2012 ident: 10.1016/j.molcel.2014.07.008_bib16 article-title: The chromatin insulator CTCF and the emergence of metazoan diversity publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1111941109 – volume: 336 start-page: 1448 year: 2012 ident: 10.1016/j.molcel.2014.07.008_bib24 article-title: MORC family ATPases required for heterochromatin condensation and gene silencing publication-title: Science doi: 10.1126/science.1221472 – volume: 148 start-page: 84 year: 2012 ident: 10.1016/j.molcel.2014.07.008_bib21 article-title: Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation publication-title: Cell doi: 10.1016/j.cell.2011.12.014 – volume: 326 start-page: 289 year: 2009 ident: 10.1016/j.molcel.2014.07.008_bib22 article-title: Comprehensive mapping of long-range interactions reveals folding principles of the human genome publication-title: Science doi: 10.1126/science.1181369 – volume: 10 start-page: R62 year: 2009 ident: 10.1016/j.molcel.2014.07.008_bib45 article-title: Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana publication-title: Genome Biol. doi: 10.1186/gb-2009-10-6-r62 – year: 2014 ident: 10.1016/j.molcel.2014.07.008_bib31 article-title: RNA polymerase II forms transcription networks in rye and Arabidopsis nuclei and its amount increases with endopolyploidy publication-title: Cytogenet. Genome Res. doi: 10.1159/000365233 – volume: 38 start-page: 700 year: 2006 ident: 10.1016/j.molcel.2014.07.008_bib33 article-title: Genome-wide analysis of Polycomb targets in Drosophila melanogaster publication-title: Nat. Genet. doi: 10.1038/ng1817 – volume: 14 start-page: 390 year: 2013 ident: 10.1016/j.molcel.2014.07.008_bib6 article-title: Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3454 – volume: 14 start-page: 179 year: 2011 ident: 10.1016/j.molcel.2014.07.008_bib10 article-title: Epigenetic modifications in plants: an evolutionary perspective publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2010.12.002 – volume: 8 start-page: e1003062 year: 2012 ident: 10.1016/j.molcel.2014.07.008_bib7 article-title: Loss of the DNA methyltransferase MET1 Induces H3K9 hypermethylation at PcG target genes and redistribution of H3K27 trimethylation to transposons in Arabidopsis thaliana publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003062 – volume: 38 start-page: 694 year: 2006 ident: 10.1016/j.molcel.2014.07.008_bib41 article-title: Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in Drosophila melanogaster publication-title: Nat. Genet. doi: 10.1038/ng1792 – volume: 24 start-page: 2783 year: 2005 ident: 10.1016/j.molcel.2014.07.008_bib23 article-title: Distinct regulation of histone H3 methylation at lysines 27 and 9 by CpG methylation in Arabidopsis publication-title: EMBO J. doi: 10.1038/sj.emboj.7600743 – volume: 489 start-page: 109 year: 2012 ident: 10.1016/j.molcel.2014.07.008_bib29 article-title: The long-range interaction landscape of gene promoters publication-title: Nature doi: 10.1038/nature11279 – volume: 117 start-page: 4025 year: 2004 ident: 10.1016/j.molcel.2014.07.008_bib15 article-title: A bouquet of chromosomes publication-title: J. Cell Sci. doi: 10.1242/jcs.01363 – volume: 25 start-page: 137 year: 2011 ident: 10.1016/j.molcel.2014.07.008_bib27 article-title: A dual flip-out mechanism for 5mC recognition by the Arabidopsis SUVH5 SRA domain and its impact on DNA methylation and H3K9 dimethylation in vivo publication-title: Genes Dev. doi: 10.1101/gad.1980311 – volume: 14 start-page: R129 year: 2013 ident: 10.1016/j.molcel.2014.07.008_bib14 article-title: Characterization of chromosomal architecture in Arabidopsis by chromosome conformation capture publication-title: Genome Biol. doi: 10.1186/gb-2013-14-11-r129 – volume: 176 start-page: 853 year: 2007 ident: 10.1016/j.molcel.2014.07.008_bib4 article-title: Interphase chromosome arrangement in Arabidopsis thaliana is similar in differentiated and meristematic tissues and shows a transient mirror symmetry after nuclear division publication-title: Genetics doi: 10.1534/genetics.107.073270 – volume: 7 start-page: e1002040 year: 2011 ident: 10.1016/j.molcel.2014.07.008_bib19 article-title: Dynamic regulation of H3K27 trimethylation during Arabidopsis differentiation publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002040 – volume: 64 start-page: 117 year: 2007 ident: 10.1016/j.molcel.2014.07.008_bib30 article-title: Telomere attachment and clustering during meiosis publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-006-6463-2 – volume: 99 start-page: 14584 year: 2002 ident: 10.1016/j.molcel.2014.07.008_bib12 article-title: Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.212325299 – volume: 503 start-page: 290 year: 2013 ident: 10.1016/j.molcel.2014.07.008_bib18 article-title: A high-resolution map of the three-dimensional chromatin interactome in human cells publication-title: Nature doi: 10.1038/nature12644 – volume: 342 start-page: 731 year: 2013 ident: 10.1016/j.molcel.2014.07.008_bib20 article-title: High-resolution mapping of the spatial organization of a bacterial chromosome publication-title: Science doi: 10.1126/science.1242059 – volume: 49 start-page: 773 year: 2013 ident: 10.1016/j.molcel.2014.07.008_bib13 article-title: The hierarchy of the 3D genome publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.02.011 – volume: 8 start-page: e1002808 year: 2012 ident: 10.1016/j.molcel.2014.07.008_bib37 article-title: DNA methyltransferases are required to induce heterochromatic re-replication in Arabidopsis publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002808 – volume: 107 start-page: 8689 year: 2010 ident: 10.1016/j.molcel.2014.07.008_bib11 article-title: Conservation and divergence of methylation patterning in plants and animals publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1002720107 – volume: 16 start-page: 763 year: 2009 ident: 10.1016/j.molcel.2014.07.008_bib17 article-title: ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1611 – volume: 32 start-page: 140 year: 2013 ident: 10.1016/j.molcel.2014.07.008_bib5 article-title: A gene loop containing the floral repressor FLC is disrupted in the early phase of vernalization publication-title: EMBO J. doi: 10.1038/emboj.2012.324 – volume: 121 start-page: 369 year: 2012 ident: 10.1016/j.molcel.2014.07.008_bib32 article-title: Interphase chromatin organisation in Arabidopsis nuclei: constraints versus randomness publication-title: Chromosoma doi: 10.1007/s00412-012-0367-8 – volume: 148 start-page: 908 year: 2012 ident: 10.1016/j.molcel.2014.07.008_bib46 article-title: Spatial organization of the mouse genome and its role in recurrent chromosomal translocations publication-title: Cell doi: 10.1016/j.cell.2012.02.002 – volume: 485 start-page: 376 year: 2012 ident: 10.1016/j.molcel.2014.07.008_bib8 article-title: Topological domains in mammalian genomes identified by analysis of chromatin interactions publication-title: Nature doi: 10.1038/nature11082 – volume: 36 start-page: 1065 year: 2004 ident: 10.1016/j.molcel.2014.07.008_bib25 article-title: Active genes dynamically colocalize to shared sites of ongoing transcription publication-title: Nat. Genet. doi: 10.1038/ng1423 – volume: 21 start-page: 64 year: 2014 ident: 10.1016/j.molcel.2014.07.008_bib39 article-title: Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2735 – volume: 465 start-page: 363 year: 2010 ident: 10.1016/j.molcel.2014.07.008_bib9 article-title: A three-dimensional model of the yeast genome publication-title: Nature doi: 10.1038/nature08973 – volume: 405 start-page: 203 year: 2000 ident: 10.1016/j.molcel.2014.07.008_bib1 article-title: Disruption of the plant gene MOM releases transcriptional silencing of methylated genes publication-title: Nature doi: 10.1038/35012108 – volume: 27 start-page: 1845 year: 2013 ident: 10.1016/j.molcel.2014.07.008_bib28 article-title: Physical clustering of FLC alleles during Polycomb-mediated epigenetic silencing in vernalization publication-title: Genes Dev. doi: 10.1101/gad.221713.113 – volume: 488 start-page: 116 year: 2012 ident: 10.1016/j.molcel.2014.07.008_bib35 article-title: A map of thecis-regulatory sequences in the mouse genome publication-title: Nature doi: 10.1038/nature11243 – volume: 3 start-page: e86 year: 2007 ident: 10.1016/j.molcel.2014.07.008_bib42 article-title: Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.0030086 – volume: 5 start-page: e129 year: 2007 ident: 10.1016/j.molcel.2014.07.008_bib44 article-title: Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0050129 – volume: 408 start-page: 796 year: 2000 ident: 10.1016/j.molcel.2014.07.008_bib2 article-title: Analysis of the genome sequence of the flowering plant Arabidopsis thaliana publication-title: Nature doi: 10.1038/35048692 – volume: 3 start-page: e3156 year: 2008 ident: 10.1016/j.molcel.2014.07.008_bib3 article-title: Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana publication-title: PLoS One doi: 10.1371/journal.pone.0003156 – reference: 23045651 - Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17507-12 – reference: 25060696 - Cytogenet Genome Res. 2014;143(1-3):69-77 – reference: 22265598 - Cell. 2012 Feb 3;148(3):458-72 – reference: 22955621 - Nature. 2012 Sep 6;489(7414):109-13 – reference: 22476443 - Chromosoma. 2012 Aug;121(4):369-87 – reference: 23657480 - Nat Rev Genet. 2013 Jun;14(6):390-403 – reference: 16001083 - EMBO J. 2005 Aug 3;24(15):2783-91 – reference: 17219025 - Cell Mol Life Sci. 2007 Jan;64(2):117-24 – reference: 23473598 - Mol Cell. 2013 Mar 7;49(5):773-82 – reference: 15361872 - Nat Genet. 2004 Oct;36(10):1065-71 – reference: 17542647 - PLoS Genet. 2007 Jun;3(6):e86 – reference: 22555433 - Science. 2012 Jun 15;336(6087):1448-51 – reference: 22792077 - PLoS Genet. 2012 Jul;8(7):e1002808 – reference: 10821279 - Nature. 2000 May 11;405(6783):203-6 – reference: 17409060 - Genetics. 2007 Jun;176(2):853-63 – reference: 23209430 - PLoS Genet. 2012;8(11):e1003062 – reference: 16628213 - Nat Genet. 2006 Jun;38(6):694-9 – reference: 21030438 - Nucleic Acids Res. 2010 Dec;38(22):8164-77 – reference: 21490956 - PLoS Genet. 2011 Apr;7(4):e1002040 – reference: 22265404 - Cell. 2012 Jan 20;148(1-2):84-98 – reference: 15316078 - J Cell Sci. 2004 Aug 15;117(Pt 18):4025-32 – reference: 21233005 - Curr Opin Plant Biol. 2011 Apr;14(2):179-86 – reference: 24158908 - Science. 2013 Nov 8;342(6159):731-4 – reference: 16732288 - Nat Genet. 2006 Jun;38(6):700-5 – reference: 22763441 - Nature. 2012 Aug 2;488(7409):116-20 – reference: 12456661 - EMBO J. 2002 Dec 2;21(23):6549-59 – reference: 24141950 - Nature. 2013 Nov 14;503(7475):290-4 – reference: 18776934 - PLoS One. 2008;3(9):e3156 – reference: 23313553 - Cell. 2013 Jan 17;152(1-2):352-64 – reference: 11130711 - Nature. 2000 Dec 14;408(6814):796-815 – reference: 12609046 - Plant J. 2003 Feb;33(4):743-9 – reference: 20395551 - Proc Natl Acad Sci U S A. 2010 May 11;107(19):8689-94 – reference: 24013499 - Genes Dev. 2013 Sep 1;27(17):1845-50 – reference: 23222483 - EMBO J. 2013 Jan 9;32(1):140-8 – reference: 19508735 - Genome Biol. 2009;10(6):R62 – reference: 20395474 - Science. 2010 May 14;328(5980):916-9 – reference: 24336224 - Nat Struct Mol Biol. 2014 Jan;21(1):64-72 – reference: 19815776 - Science. 2009 Oct 9;326(5950):289-93 – reference: 20436457 - Nature. 2010 May 20;465(7296):363-7 – reference: 22341456 - Cell. 2012 Mar 2;148(5):908-21 – reference: 22495300 - Nature. 2012 May 17;485(7398):376-80 – reference: 12384572 - Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14584-9 – reference: 21245167 - Genes Dev. 2011 Jan 15;25(2):137-52 – reference: 24267747 - Genome Biol. 2013;14(11):R129 – reference: 17439305 - PLoS Biol. 2007 May;5(5):e129 – reference: 19503079 - Nat Struct Mol Biol. 2009 Jul;16(7):763-8 |
SSID | ssj0014589 |
Score | 2.5726101 |
Snippet | Chromosomes form 3D structures that are critical to the regulation of cellular and genetic processes. Here, we present a study of global chromatin interaction... Chromosomes form 3D structures that are critical to the regulation of cellular and genetic processes. Here, we present a study of global chromatin interaction... Chromosomes form three-dimensional structures that are critical to the regulation of cellular and genetic processes. Here, we present a study of global... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 694 |
SubjectTerms | animals Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis Proteins - physiology Arabidopsis thaliana Chromatin - metabolism Chromatin - ultrastructure Chromosomes, Plant - chemistry Chromosomes, Plant - metabolism DNA, Plant - chemistry Epigenesis, Genetic - genetics epigenetics genome Genome, Plant Genomics - methods heterochromatin mutants Mutation Nucleic Acid Conformation topology |
Title | Genome-wide Hi-C Analyses in Wild-Type and Mutants Reveal High-Resolution Chromatin Interactions in Arabidopsis |
URI | https://dx.doi.org/10.1016/j.molcel.2014.07.008 https://www.ncbi.nlm.nih.gov/pubmed/25132175 https://www.proquest.com/docview/1560584265 https://www.proquest.com/docview/2000196210 https://pubmed.ncbi.nlm.nih.gov/PMC4347903 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqVkhcEG8WaGUkrtamfsTJcVm1XVGVQylib5ZjOyKoTVbNLoh_z4ydrFgeqsQxydhyYmf8jWfmG0LeFlXuaoXFXQoPBopznpXOKiZCqRznXnmH5x0XH_LFJ_l-qZZ7ZD7mwmBY5aD7k06P2nq4Mx2-5nTVNNOP6DvlOocdP5KKYEa5kEVM4lu-23oSpIpl8FCYofSYPhdjvG66axfQAXEsI4UnFpn8-_b0J_z8PYryl23p9CF5MOBJOktDfkT2QvuY3EsVJn88Id1ZaLubwL43PtBFw-Y0sZCEnjYtBZXgGVqi1LaeXmywonBPL8M3QI8UI0AYnu6ntUmRRhfhbUvjKWJKiIjdzG5t1fhu1Tf9U3J1enI1X7ChxgJzAOTWrOKZEDpTwWrhglSeOzBAfCkBuek6t1bVdelBB6oAOFxX2mYuL2ohvc59YcUzst92bXhBaBCqCpWTRVlLGRQvfKa5stC7Bsh0bCdEjF_WuIF_HMtgXJsx0OyrSfNhcD5Mho7xYkLYttUq8W_cIa_HSTM768jAFnFHyzfjHBv4xdBvYtvQbXqDyeaA03iu_i3DE9MQGNAT8jyti-14AUIKsPygtd5ZMVsBpPjefdI2XyLVt8RE30y8_O-3ekXu41WMipOvyf76dhMOAUatqyNyMDu__Hx-FP-Xn8-DHyc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4lmWp5HgaG3q2HH2wKEUyi7t9gCLtDfLsR0R1CarZpeqf4tfyIydrFgeqoTUa_yQ4_GMv_G8CHmVF5ktJRZ3yR0oKNY6NrJGstSPpOXcSWfxvWN6nI2_iI9zOd8iP_pYGHSr7GR_lOlBWndfht1uDhdVNfyMtlOuMrjxQ1IR1XlWHvqLc9Db2jeTd0Dk15wfvJ_tj1lXWoBZwC9LVvAkTVUivVGp9UI6bgF3u5EAwKLKzBhZliMHrC89wE9VKJPYLC9T4VTmcpPCtNfIdQAfCoXBZP52bbkQMpTdw8UxXF0frhd8yk6bE-vR4LErQspQLGr59-vwT7j7u9fmL9fgwR1yu8OvdC9u0V2y5et75EasaHlxnzQffN2cenZeOU_HFdunMeuJb2lVUxBBjqHmS03t6HSFFYxb-sl_B7RK0eOEoTUh8gLFtL0Ip2saXi1jAEaYZu_MFJVrFm3VPiCzq9j4h2S7bmr_iFCfysIXVuSjUggvee4SxaWB2RVAtF0zIGm_s9p2-c6x7MaJ7h3bvulID4300Aka4vMBYetRi5jv45L-qiea3ji3Gq6kS0a-7GmsgaXRTmNq36xajcHtgAt5Jv_dh8fMRqCwD8hOPBfr9QJkTUHThNFq48SsO2BK8c2WuvoaUosLDCxO0sf__VcvyM3xbHqkjybHh0_ILWwJHnniKdlenq38M4Bwy-J54BlK9BXz6E-HUVqq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-wide+Hi-C+Analyses+in+Wild-Type+and+Mutants+Reveal+High-Resolution+Chromatin+Interactions+in+Arabidopsis&rft.jtitle=Molecular+cell&rft.au=Feng%2C+Suhua&rft.au=Cokus%2C+Shawn%C2%A0J.&rft.au=Schubert%2C+Veit&rft.au=Zhai%2C+Jixian&rft.date=2014-09-04&rft.issn=1097-2765&rft.volume=55&rft.issue=5&rft.spage=694&rft.epage=707&rft_id=info:doi/10.1016%2Fj.molcel.2014.07.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_molcel_2014_07_008 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon |