Genome-wide Hi-C Analyses in Wild-Type and Mutants Reveal High-Resolution Chromatin Interactions in Arabidopsis

Chromosomes form 3D structures that are critical to the regulation of cellular and genetic processes. Here, we present a study of global chromatin interaction patterns in Arabidopsis thaliana. Our genome-wide approach confirmed interactions that were previously observed by other methods as well as u...

Full description

Saved in:
Bibliographic Details
Published inMolecular cell Vol. 55; no. 5; pp. 694 - 707
Main Authors Feng, Suhua, Cokus, Shawn J., Schubert, Veit, Zhai, Jixian, Pellegrini, Matteo, Jacobsen, Steven E.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 04.09.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Chromosomes form 3D structures that are critical to the regulation of cellular and genetic processes. Here, we present a study of global chromatin interaction patterns in Arabidopsis thaliana. Our genome-wide approach confirmed interactions that were previously observed by other methods as well as uncovered long-range interactions such as those among small heterochromatic regions embedded in euchromatic arms. We also found that interactions are correlated with various epigenetic marks that are localized in active or silenced chromatin. Arabidopsis chromosomes do not contain large local interactive domains that resemble the topological domains described in animals but, instead, contain relatively small interactive regions scattered around the genome that contain H3K27me3 or H3K9me2. We generated interaction maps in mutants that are defective in specific epigenetic pathways and found altered interaction patterns that correlate with changes in the epigenome. These analyses provide further insights into molecular mechanisms of epigenetic regulation of the genome. [Display omitted] •Chromatins interact through pericentromeres, telomeres, and adjacent regions•Interactive heterochromatic islands (IHIs) show strong long-range interactions•Interactions are correlated with epigenetic marks in active or silenced chromatins•Mutants in repressive epigenetic pathways alter chromatin-interaction patterns Using Hi-C analysis, Feng et al. show extensive interactions among regions of Arabidopsis chromatin. These interactions correlate with epigenetic marks, and mutants of epigenetic pathways affect interaction patterns.
AbstractList Chromosomes form 3D structures that are critical to the regulation of cellular and genetic processes. Here, we present a study of global chromatin interaction patterns in Arabidopsis thaliana. Our genome-wide approach confirmed interactions that were previously observed by other methods as well as uncovered long-range interactions such as those among small heterochromatic regions embedded in euchromatic arms. We also found that interactions are correlated with various epigenetic marks that are localized in active or silenced chromatin. Arabidopsis chromosomes do not contain large local interactive domains that resemble the topological domains described in animals but, instead, contain relatively small interactive regions scattered around the genome that contain H3K27me3 or H3K9me2. We generated interaction maps in mutants that are defective in specific epigenetic pathways and found altered interaction patterns that correlate with changes in the epigenome. These analyses provide further insights into molecular mechanisms of epigenetic regulation of the genome.
Chromosomes form 3D structures that are critical to the regulation of cellular and genetic processes. Here, we present a study of global chromatin interaction patterns in Arabidopsis thaliana. Our genome-wide approach confirmed interactions that were previously observed by other methods as well as uncovered long-range interactions such as those among small heterochromatic regions embedded in euchromatic arms. We also found that interactions are correlated with various epigenetic marks that are localized in active or silenced chromatin. Arabidopsis chromosomes do not contain large local interactive domains that resemble the topological domains described in animals but, instead, contain relatively small interactive regions scattered around the genome that contain H3K27me3 or H3K9me2. We generated interaction maps in mutants that are defective in specific epigenetic pathways and found altered interaction patterns that correlate with changes in the epigenome. These analyses provide further insights into molecular mechanisms of epigenetic regulation of the genome.Chromosomes form 3D structures that are critical to the regulation of cellular and genetic processes. Here, we present a study of global chromatin interaction patterns in Arabidopsis thaliana. Our genome-wide approach confirmed interactions that were previously observed by other methods as well as uncovered long-range interactions such as those among small heterochromatic regions embedded in euchromatic arms. We also found that interactions are correlated with various epigenetic marks that are localized in active or silenced chromatin. Arabidopsis chromosomes do not contain large local interactive domains that resemble the topological domains described in animals but, instead, contain relatively small interactive regions scattered around the genome that contain H3K27me3 or H3K9me2. We generated interaction maps in mutants that are defective in specific epigenetic pathways and found altered interaction patterns that correlate with changes in the epigenome. These analyses provide further insights into molecular mechanisms of epigenetic regulation of the genome.
Chromosomes form three-dimensional structures that are critical to the regulation of cellular and genetic processes. Here, we present a study of global chromatin interaction patterns in Arabidopsis thaliana . Our genome-wide approach confirmed interactions that were previously observed by other methods as well as uncovered previously unknown long-range interactions such as those among small heterochromatic regions embedded in euchromatic arms. We also found that interactions are correlated with various epigenetic marks that are localized in active or silenced chromatin. Arabidopsis chromosomes do not contain large local interactive domains that resemble the topological domains described in animals, but instead contain relatively small interactive regions scattered around the genome that contain H3K27me3 or H3K9me2. We generated interaction maps in mutants that are defective in specific epigenetic pathways and found altered interaction patterns that correlate with changes in the epigenome. These analyses provide further insights into molecular mechanisms of epigenetic regulation of the genome.
Chromosomes form 3D structures that are critical to the regulation of cellular and genetic processes. Here, we present a study of global chromatin interaction patterns in Arabidopsis thaliana. Our genome-wide approach confirmed interactions that were previously observed by other methods as well as uncovered long-range interactions such as those among small heterochromatic regions embedded in euchromatic arms. We also found that interactions are correlated with various epigenetic marks that are localized in active or silenced chromatin. Arabidopsis chromosomes do not contain large local interactive domains that resemble the topological domains described in animals but, instead, contain relatively small interactive regions scattered around the genome that contain H3K27me3 or H3K9me2. We generated interaction maps in mutants that are defective in specific epigenetic pathways and found altered interaction patterns that correlate with changes in the epigenome. These analyses provide further insights into molecular mechanisms of epigenetic regulation of the genome. [Display omitted] •Chromatins interact through pericentromeres, telomeres, and adjacent regions•Interactive heterochromatic islands (IHIs) show strong long-range interactions•Interactions are correlated with epigenetic marks in active or silenced chromatins•Mutants in repressive epigenetic pathways alter chromatin-interaction patterns Using Hi-C analysis, Feng et al. show extensive interactions among regions of Arabidopsis chromatin. These interactions correlate with epigenetic marks, and mutants of epigenetic pathways affect interaction patterns.
Author Jacobsen, Steven E.
Schubert, Veit
Cokus, Shawn J.
Zhai, Jixian
Feng, Suhua
Pellegrini, Matteo
AuthorAffiliation 1 Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
4 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Germany
3 Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
2 Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California at Los Angeles, Los Angeles, CA 90095, USA
AuthorAffiliation_xml – name: 2 Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California at Los Angeles, Los Angeles, CA 90095, USA
– name: 4 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Germany
– name: 1 Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
– name: 3 Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
Author_xml – sequence: 1
  givenname: Suhua
  surname: Feng
  fullname: Feng, Suhua
  organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
– sequence: 2
  givenname: Shawn J.
  surname: Cokus
  fullname: Cokus, Shawn J.
  organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
– sequence: 3
  givenname: Veit
  surname: Schubert
  fullname: Schubert, Veit
  organization: Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
– sequence: 4
  givenname: Jixian
  surname: Zhai
  fullname: Zhai, Jixian
  organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
– sequence: 5
  givenname: Matteo
  surname: Pellegrini
  fullname: Pellegrini, Matteo
  organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
– sequence: 6
  givenname: Steven E.
  surname: Jacobsen
  fullname: Jacobsen, Steven E.
  email: jacobsen@ucla.edu
  organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25132175$$D View this record in MEDLINE/PubMed
BookMark eNqFkVFr2zAUhcXoWNts_2AMP-7FriRbkr2HQQhbW-gYlMAehSJdNwqylEl2Sv79lCUt2x7WJwnpO-dezrlEZz54QOg9wRXBhF9tqiE4Da6imDQVFhXG7St0QXAnyobw5ux0p4Kzc3SZ0gZnkLXdG3ROGakpEewChWvwYYDy0Roobmy5KOZeuX2CVFhf_LDOlMv9FgrlTfFtGpUfU3EPO1Au0w_r8h5ScNNogy8W6xgGNWbZrR8hKn14_W0zj2plTdgmm96i171yCd6dzhlafv2yXNyUd9-vbxfzu1IzzsdyRXFdC8xAiVpDwwzVgremazjDoudKsb7vjDHAQAgqVkJhzdu-bozgplX1DH0-2m6n1QBGgx-jcnIb7aDiXgZl5d8_3q7lQ9jJpm5El2fP0MeTQQw_J0ijHGzKaTvlIUxJUpzT7Dgl-EWUMI5Z21DOMvrhz7We93nqIwOfjoCOIaUIvdR2VIcg85bWSYLloXy5kcfy5aF8iYXM5Wdx84_4yf8F2SkryH3sLESZtAWvwdgIepQm2P8b_AK0FMxg
CitedBy_id crossref_primary_10_1186_s12859_015_0678_x
crossref_primary_10_3389_fgene_2014_00389
crossref_primary_10_1016_j_pbi_2022_102261
crossref_primary_10_1371_journal_pone_0192634
crossref_primary_10_21769_BioProtoc_2955
crossref_primary_10_1016_j_bbagrm_2016_07_005
crossref_primary_10_1093_plcell_koab081
crossref_primary_10_7554_eLife_40655
crossref_primary_10_1016_j_tig_2016_01_003
crossref_primary_10_1111_tpj_13925
crossref_primary_10_3389_fgene_2021_799805
crossref_primary_10_1093_nar_gkae690
crossref_primary_10_1371_journal_pgen_1005771
crossref_primary_10_1101_gr_190165_115
crossref_primary_10_1508_cytologia_81_3
crossref_primary_10_1038_s41467_024_47678_7
crossref_primary_10_1016_j_pbi_2017_03_004
crossref_primary_10_1016_j_pbi_2019_03_008
crossref_primary_10_1038_s41467_019_11535_9
crossref_primary_10_1073_pnas_2400737121
crossref_primary_10_1186_s13059_019_1722_3
crossref_primary_10_1371_journal_pgen_1006749
crossref_primary_10_1002_ps_5872
crossref_primary_10_3390_genes6030520
crossref_primary_10_1016_j_xplc_2021_100267
crossref_primary_10_1080_19491034_2016_1190896
crossref_primary_10_1073_pnas_2023347118
crossref_primary_10_1111_nph_17699
crossref_primary_10_1038_s41467_024_53760_x
crossref_primary_10_1016_j_cell_2015_02_040
crossref_primary_10_1016_j_molcel_2019_12_015
crossref_primary_10_1093_nar_gkv424
crossref_primary_10_3390_f11090976
crossref_primary_10_1038_s41477_017_0096_3
crossref_primary_10_1093_nar_gkab191
crossref_primary_10_1038_s41467_019_10603_4
crossref_primary_10_1038_s41477_018_0136_7
crossref_primary_10_1073_pnas_1903131116
crossref_primary_10_1016_j_cub_2019_12_015
crossref_primary_10_1186_s13059_015_0738_6
crossref_primary_10_3390_plants10071408
crossref_primary_10_1002_wdev_265
crossref_primary_10_1186_s13059_017_1236_9
crossref_primary_10_1186_s12915_021_00996_4
crossref_primary_10_1186_s12864_018_5251_3
crossref_primary_10_1038_s41477_017_0013_9
crossref_primary_10_1016_j_jtbi_2015_09_017
crossref_primary_10_1016_j_ygeno_2020_01_002
crossref_primary_10_1007_s00412_015_0538_5
crossref_primary_10_1038_s42003_020_0932_2
crossref_primary_10_1038_s41421_021_00286_x
crossref_primary_10_1093_jxb_erw168
crossref_primary_10_1016_j_tplants_2015_03_003
crossref_primary_10_3389_fcell_2021_753097
crossref_primary_10_1093_jxb_erac517
crossref_primary_10_1007_s40484_016_0065_2
crossref_primary_10_1371_journal_pgen_1005998
crossref_primary_10_1101_gad_270876_115
crossref_primary_10_1371_journal_pone_0158936
crossref_primary_10_1093_jxb_eraa322
crossref_primary_10_1038_s41467_020_15809_5
crossref_primary_10_1038_s41598_017_13731_3
crossref_primary_10_1186_s13059_017_1333_9
crossref_primary_10_1016_j_molp_2017_11_005
crossref_primary_10_1093_bib_bbab021
crossref_primary_10_1093_bfgp_ely004
crossref_primary_10_1016_j_cpb_2015_10_001
crossref_primary_10_1038_s41467_019_10602_5
crossref_primary_10_2478_gsr_2018_0010
crossref_primary_10_1016_j_plantsci_2018_12_026
crossref_primary_10_1093_jxb_erv091
crossref_primary_10_3389_fpls_2022_905202
crossref_primary_10_1242_jcs_202416
crossref_primary_10_1007_s00425_020_03403_4
crossref_primary_10_1186_s13020_021_00502_6
crossref_primary_10_1093_nar_gkad710
crossref_primary_10_1016_j_gde_2015_04_004
crossref_primary_10_3390_ijms221910384
crossref_primary_10_1038_s41467_024_47789_1
crossref_primary_10_1093_plcell_koae034
crossref_primary_10_1111_nph_17262
crossref_primary_10_1508_cytologia_82_223
crossref_primary_10_1186_s13059_020_02225_7
crossref_primary_10_1080_19491034_2020_1838697
crossref_primary_10_1093_nar_gky163
crossref_primary_10_1093_jxb_eraa220
crossref_primary_10_1016_j_gde_2019_06_003
crossref_primary_10_1186_s13059_022_02611_3
crossref_primary_10_1186_s13059_023_03018_4
crossref_primary_10_1007_s13562_020_00610_8
crossref_primary_10_26508_lsa_201800197
crossref_primary_10_1111_pbi_14296
crossref_primary_10_1080_11263504_2023_2166619
crossref_primary_10_1038_s41477_019_0479_8
crossref_primary_10_1038_s41477_019_0471_3
crossref_primary_10_1093_jxb_eraa370
crossref_primary_10_1093_jxb_erae054
crossref_primary_10_1093_plphys_kiaa108
crossref_primary_10_1016_j_ceb_2016_01_009
crossref_primary_10_3389_fpls_2019_01728
crossref_primary_10_1093_bfgp_elz024
crossref_primary_10_1038_srep11058
crossref_primary_10_1080_15592294_2016_1185580
crossref_primary_10_1038_s41467_018_07010_6
crossref_primary_10_1242_dev_129007
crossref_primary_10_1007_s00122_019_03518_7
crossref_primary_10_1093_pcp_pcw194
crossref_primary_10_1016_j_cell_2015_05_048
crossref_primary_10_1016_j_pbi_2024_102599
crossref_primary_10_3390_ijms222111387
crossref_primary_10_3389_fpls_2015_00328
crossref_primary_10_3389_fpls_2022_964931
crossref_primary_10_3390_genes6030734
crossref_primary_10_3389_fpls_2020_603380
crossref_primary_10_1016_j_jmb_2014_09_013
crossref_primary_10_1101_gr_204032_116
crossref_primary_10_1016_j_pbi_2019_02_008
crossref_primary_10_1080_19491034_2016_1182277
crossref_primary_10_1016_j_ejcb_2023_151344
crossref_primary_10_1371_journal_pgen_1006875
crossref_primary_10_1007_s10265_020_01185_0
crossref_primary_10_1111_jipb_13502
crossref_primary_10_1111_jipb_13620
crossref_primary_10_1111_brv_13132
crossref_primary_10_3390_ijms23158299
crossref_primary_10_1534_genetics_117_200303
crossref_primary_10_1093_nar_gkaa1275
crossref_primary_10_1007_s00299_017_2222_0
crossref_primary_10_1038_s41467_023_39751_4
crossref_primary_10_1016_j_pbi_2015_05_011
crossref_primary_10_3390_agronomy15010094
crossref_primary_10_1093_pcp_pcaa026
crossref_primary_10_1111_jipb_13378
crossref_primary_10_1101_gr_215186_116
crossref_primary_10_1093_jxb_eraa263
crossref_primary_10_1007_s10265_020_01209_9
crossref_primary_10_1146_annurev_arplant_102720_022810
crossref_primary_10_1073_pnas_2001290119
crossref_primary_10_1111_pbi_14134
crossref_primary_10_1016_j_devcel_2021_11_002
crossref_primary_10_1111_pbi_14372
crossref_primary_10_1016_j_celrep_2023_112894
crossref_primary_10_1016_j_molcel_2020_02_007
crossref_primary_10_1016_j_xplc_2023_100666
crossref_primary_10_1111_nph_19464
crossref_primary_10_1038_s41467_021_27320_6
crossref_primary_10_1073_pnas_1920474117
crossref_primary_10_1111_tpj_15256
crossref_primary_10_1007_s00425_023_04223_y
crossref_primary_10_1093_pcp_pcab134
crossref_primary_10_1111_tpj_16468
crossref_primary_10_1186_s13059_017_1281_4
crossref_primary_10_1093_nargab_lqae123
crossref_primary_10_1126_science_abi7489
crossref_primary_10_1016_j_tig_2019_05_003
crossref_primary_10_1093_bioinformatics_bty1053
crossref_primary_10_3389_fpls_2024_1358760
crossref_primary_10_1016_j_copbio_2018_01_023
crossref_primary_10_1186_s13059_024_03465_7
crossref_primary_10_1016_j_molp_2016_06_016
crossref_primary_10_1186_s11658_017_0050_4
crossref_primary_10_1186_s12864_020_07324_0
crossref_primary_10_1016_j_febslet_2015_06_008
crossref_primary_10_1016_j_plasmid_2016_12_002
crossref_primary_10_1007_s11248_022_00326_6
crossref_primary_10_1007_s11427_024_2784_3
crossref_primary_10_1038_s41467_022_31112_x
crossref_primary_10_1038_s41477_017_0005_9
crossref_primary_10_1093_nar_gkae958
crossref_primary_10_1038_s41467_017_00524_5
crossref_primary_10_1038_s41477_023_01457_2
crossref_primary_10_1016_j_jgg_2020_06_007
crossref_primary_10_3389_fcell_2021_774719
crossref_primary_10_1093_molbev_msab128
crossref_primary_10_1111_tpj_16119
crossref_primary_10_3389_fpls_2021_766389
crossref_primary_10_1007_s11032_023_01374_4
crossref_primary_10_1186_s12864_022_08691_6
crossref_primary_10_1016_j_devcel_2016_12_021
crossref_primary_10_1093_hr_uhac241
crossref_primary_10_1002_iub_2681
crossref_primary_10_1146_annurev_arplant_042916_041115
crossref_primary_10_1016_j_cell_2016_09_018
crossref_primary_10_1038_s41477_021_01004_x
crossref_primary_10_1089_cmb_2018_0162
crossref_primary_10_3389_fpls_2021_596236
crossref_primary_10_1111_jipb_12809
crossref_primary_10_1080_19491034_2021_1927503
crossref_primary_10_1101_gr_227116_117
crossref_primary_10_1038_s41438_021_00494_2
crossref_primary_10_1111_nph_15248
crossref_primary_10_1101_gr_203182_115
crossref_primary_10_1101_gr_196006_115
crossref_primary_10_1186_s13072_015_0033_5
crossref_primary_10_1016_j_pbi_2015_12_004
crossref_primary_10_1038_s41467_023_44347_z
crossref_primary_10_1038_s41594_024_01427_y
crossref_primary_10_1093_plcell_koad112
crossref_primary_10_1073_pnas_1615546113
crossref_primary_10_1038_s41586_022_05386_6
crossref_primary_10_1101_gr_273771_120
crossref_primary_10_1016_j_febslet_2015_08_044
crossref_primary_10_1038_s41477_018_0199_5
crossref_primary_10_1134_S000629791804003X
crossref_primary_10_1186_s13039_018_0368_2
crossref_primary_10_1186_s13059_019_1694_3
crossref_primary_10_1093_nar_gky576
crossref_primary_10_1093_hr_uhac182
crossref_primary_10_1126_sciadv_aaw1668
crossref_primary_10_1073_pnas_1618224114
crossref_primary_10_1128_MMBR_00006_15
crossref_primary_10_1186_s12864_022_09070_x
crossref_primary_10_1038_s41467_024_45771_5
crossref_primary_10_1093_jxb_eraa098
crossref_primary_10_1038_s41580_018_0016_z
crossref_primary_10_1016_j_molcel_2024_05_002
crossref_primary_10_1093_plcell_koac117
crossref_primary_10_1038_s41467_019_09513_2
crossref_primary_10_1007_s00412_016_0578_5
crossref_primary_10_1186_s13007_017_0251_x
crossref_primary_10_1093_nar_gkz511
crossref_primary_10_1186_s13059_015_0745_7
crossref_primary_10_1038_ng_3647
crossref_primary_10_1016_j_isci_2021_103696
crossref_primary_10_1515_ijb_2017_0061
crossref_primary_10_3390_biology6010003
crossref_primary_10_1016_j_pbi_2016_08_002
crossref_primary_10_1093_jxb_erw371
crossref_primary_10_1016_j_copbio_2017_07_010
crossref_primary_10_1016_j_tplants_2018_03_014
crossref_primary_10_1038_s41467_022_32709_y
crossref_primary_10_1038_nrg_2016_112
crossref_primary_10_1016_j_tig_2018_09_002
crossref_primary_10_1007_s11033_024_09243_9
crossref_primary_10_1038_s41467_022_30770_1
crossref_primary_10_14348_molcells_2021_0014
crossref_primary_10_1101_gr_170332_113
crossref_primary_10_1042_BST20200192
crossref_primary_10_1016_j_gpb_2016_01_002
crossref_primary_10_1093_pcp_pcz051
crossref_primary_10_1038_s41467_019_12328_w
crossref_primary_10_1186_s12915_023_01560_y
crossref_primary_10_1111_jipb_13465
crossref_primary_10_1016_j_molp_2020_10_002
Cites_doi 10.1093/nar/gkq955
10.1016/j.cell.2012.01.010
10.1016/j.cell.2012.10.054
10.1093/emboj/cdf657
10.1126/science.1186366
10.1046/j.1365-313X.2003.01667.x
10.1073/pnas.1111941109
10.1126/science.1221472
10.1016/j.cell.2011.12.014
10.1126/science.1181369
10.1186/gb-2009-10-6-r62
10.1159/000365233
10.1038/ng1817
10.1038/nrg3454
10.1016/j.pbi.2010.12.002
10.1371/journal.pgen.1003062
10.1038/ng1792
10.1038/sj.emboj.7600743
10.1038/nature11279
10.1242/jcs.01363
10.1101/gad.1980311
10.1186/gb-2013-14-11-r129
10.1534/genetics.107.073270
10.1371/journal.pgen.1002040
10.1007/s00018-006-6463-2
10.1073/pnas.212325299
10.1038/nature12644
10.1126/science.1242059
10.1016/j.molcel.2013.02.011
10.1371/journal.pgen.1002808
10.1073/pnas.1002720107
10.1038/nsmb.1611
10.1038/emboj.2012.324
10.1007/s00412-012-0367-8
10.1016/j.cell.2012.02.002
10.1038/nature11082
10.1038/ng1423
10.1038/nsmb.2735
10.1038/nature08973
10.1038/35012108
10.1101/gad.221713.113
10.1038/nature11243
10.1371/journal.pgen.0030086
10.1371/journal.pbio.0050129
10.1038/35048692
10.1371/journal.pone.0003156
ContentType Journal Article
Copyright 2014 Elsevier Inc.
Copyright © 2014 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2014 Elsevier Inc.
– notice: Copyright © 2014 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.molcel.2014.07.008
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4164
EndPage 707
ExternalDocumentID PMC4347903
25132175
10_1016_j_molcel_2014_07_008
S1097276514006017
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: GM60398
– fundername: NIGMS NIH HHS
  grantid: R37 GM060398
– fundername: Howard Hughes Medical Institute
– fundername: NIGMS NIH HHS
  grantid: R01 GM060398
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1~5
2WC
4.4
457
4G.
5RE
5VS
62-
6I.
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAQFI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFFNX
AFTJW
AGHFR
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HH5
HVGLF
IH2
IHE
IXB
J1W
JIG
KQ8
L7B
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SDG
SES
SSZ
TR2
WQ6
ZA5
.55
.GJ
29M
3O-
53G
AAHBH
AAIKJ
AAMRU
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FGOYB
HZ~
OZT
R2-
UHS
X7M
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
EFKBS
ID FETCH-LOGICAL-c566t-b2033705ea73ce45d2c768d946507f6aa5ff9ddde5e7727b7a0c68f34d76d8a3
IEDL.DBID IXB
ISSN 1097-2765
1097-4164
IngestDate Thu Aug 21 18:32:17 EDT 2025
Fri Jul 11 00:41:03 EDT 2025
Fri Jul 11 06:47:36 EDT 2025
Thu Apr 03 07:01:18 EDT 2025
Thu Apr 24 22:56:40 EDT 2025
Tue Jul 01 03:40:43 EDT 2025
Fri Feb 23 02:30:34 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2014 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c566t-b2033705ea73ce45d2c768d946507f6aa5ff9ddde5e7727b7a0c68f34d76d8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Co-first author
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1097276514006017
PMID 25132175
PQID 1560584265
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4347903
proquest_miscellaneous_2000196210
proquest_miscellaneous_1560584265
pubmed_primary_25132175
crossref_citationtrail_10_1016_j_molcel_2014_07_008
crossref_primary_10_1016_j_molcel_2014_07_008
elsevier_sciencedirect_doi_10_1016_j_molcel_2014_07_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-04
PublicationDateYYYYMMDD 2014-09-04
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-04
  day: 04
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular cell
PublicationTitleAlternate Mol Cell
PublicationYear 2014
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Sexton, Yaffe, Kenigsberg, Bantignies, Leblanc, Hoichman, Parrinello, Tanay, Cavalli (bib34) 2012; 148
Heger, Marin, Bartkuhn, Schierenberg, Wiehe (bib16) 2012; 109
Tolhuis, de Wit, Muijrers, Teunissen, Talhout, van Steensel, van Lohuizen (bib41) 2006; 38
Crevillén, Sonmez, Wu, Dean (bib5) 2013; 32
Stroud, Greenberg, Feng, Bernatavichute, Jacobsen (bib38) 2013; 152
Jacob, Feng, LeBlanc, Bernatavichute, Stroud, Cokus, Johnson, Pellegrini, Jacobsen, Michaels (bib17) 2009; 16
Stroud, Do, Du, Zhong, Feng, Johnson, Patel, Jacobsen (bib39) 2014; 21
Shen, Yue, McCleary, Ye, Edsall, Kuan, Wagner, Dixon, Lee, Lobanenkov, Ren (bib35) 2012; 488
Zhang, McCord, Ho, Lajoie, Hildebrand, Simon, Becker, Alt, Dekker (bib46) 2012; 148
Deleris, Stroud, Bernatavichute, Johnson, Klein, Schubert, Jacobsen (bib7) 2012; 8
Duan, Andronescu, Schutz, McIlwain, Kim, Lee, Shendure, Fields, Blau, Noble (bib9) 2010; 465
Osborne, Chakalova, Brown, Carter, Horton, Debrand, Goyenechea, Mitchell, Lopes, Reik, Fraser (bib25) 2004; 36
Moissiard, Cokus, Cary, Feng, Billi, Stroud, Husmann, Zhan, Lajoie, McCord (bib24) 2012; 336
Grob, Schmid, Luedtke, Wicker, Grossniklaus (bib14) 2013; 14
Berr, Schubert (bib4) 2007; 176
Feng, Cokus, Zhang, Chen, Bostick, Goll, Hetzel, Jain, Strauss, Halpern (bib11) 2010; 107
Le, Imakaev, Mirny, Laub (bib20) 2013; 342
Schubert, Berr, Meister (bib32) 2012; 121
Amedeo, Habu, Afsar, Mittelsten Scheid, Paszkowski (bib1) 2000; 405
Rosa, De Lucia, Mylne, Zhu, Ohmido, Pendle, Kato, Shaw, Dean (bib28) 2013; 27
Sanyal, Lajoie, Jain, Dekker (bib29) 2012; 489
Schwartz, Kahn, Nix, Li, Bourgon, Biggin, Pirrotta (bib33) 2006; 38
Feng, Jacobsen (bib10) 2011; 14
Lafos, Kroll, Hohenstatt, Thorpe, Clarenz, Schubert (bib19) 2011; 7
Schubert (bib31) 2014
Probst, Fransz, Paszkowski, Mittelsten Scheid (bib26) 2003; 33
(bib2) 2000; 408
Harper, Golubovskaya, Cande (bib15) 2004; 117
Rajakumara, Law, Simanshu, Voigt, Johnson, Reinberg, Patel, Jacobsen (bib27) 2011; 25
Lieberman-Aiden, van Berkum, Williams, Imakaev, Ragoczy, Telling, Amit, Lajoie, Sabo, Dorschner (bib22) 2009; 326
Dekker, Marti-Renom, Mirny (bib6) 2013; 14
Gibcus, Dekker (bib13) 2013; 49
Tanizawa, Iwasaki, Tanaka, Capizzi, Wickramasinghe, Lee, Fu, Noma (bib40) 2010; 38
Fransz, De Jong, Lysak, Castiglione, Schubert (bib12) 2002; 99
Turck, Roudier, Farrona, Martin-Magniette, Guillaume, Buisine, Gagnot, Martienssen, Coupland, Colot (bib42) 2007; 3
Zhang, Clarenz, Cokus, Bernatavichute, Pellegrini, Goodrich, Jacobsen (bib44) 2007; 5
Soppe, Jasencakova, Houben, Kakutani, Meister, Huang, Jacobsen, Schubert, Fransz (bib36) 2002; 21
Zemach, McDaniel, Silva, Zilberman (bib43) 2010; 328
Scherthan (bib30) 2007; 64
Zhang, Bernatavichute, Cokus, Pellegrini, Jacobsen (bib45) 2009; 10
Li, Ruan, Auerbach, Sandhu, Zheng, Wang, Poh, Goh, Lim, Zhang (bib21) 2012; 148
Stroud, Hale, Feng, Caro, Jacob, Michaels, Jacobsen (bib37) 2012; 8
Bernatavichute, Zhang, Cokus, Pellegrini, Jacobsen (bib3) 2008; 3
Dixon, Selvaraj, Yue, Kim, Li, Shen, Hu, Liu, Ren (bib8) 2012; 485
Mathieu, Probst, Paszkowski (bib23) 2005; 24
Jin, Li, Dixon, Selvaraj, Ye, Lee, Yen, Schmitt, Espinoza, Ren (bib18) 2013; 503
Li (10.1016/j.molcel.2014.07.008_bib21) 2012; 148
Dekker (10.1016/j.molcel.2014.07.008_bib6) 2013; 14
Zhang (10.1016/j.molcel.2014.07.008_bib44) 2007; 5
Sanyal (10.1016/j.molcel.2014.07.008_bib29) 2012; 489
Scherthan (10.1016/j.molcel.2014.07.008_bib30) 2007; 64
Grob (10.1016/j.molcel.2014.07.008_bib14) 2013; 14
Stroud (10.1016/j.molcel.2014.07.008_bib38) 2013; 152
Rajakumara (10.1016/j.molcel.2014.07.008_bib27) 2011; 25
Sexton (10.1016/j.molcel.2014.07.008_bib34) 2012; 148
Bernatavichute (10.1016/j.molcel.2014.07.008_bib3) 2008; 3
Lafos (10.1016/j.molcel.2014.07.008_bib19) 2011; 7
Moissiard (10.1016/j.molcel.2014.07.008_bib24) 2012; 336
Feng (10.1016/j.molcel.2014.07.008_bib10) 2011; 14
Crevillén (10.1016/j.molcel.2014.07.008_bib5) 2013; 32
Shen (10.1016/j.molcel.2014.07.008_bib35) 2012; 488
Amedeo (10.1016/j.molcel.2014.07.008_bib1) 2000; 405
Berr (10.1016/j.molcel.2014.07.008_bib4) 2007; 176
Schubert (10.1016/j.molcel.2014.07.008_bib31) 2014
Rosa (10.1016/j.molcel.2014.07.008_bib28) 2013; 27
Jin (10.1016/j.molcel.2014.07.008_bib18) 2013; 503
Lieberman-Aiden (10.1016/j.molcel.2014.07.008_bib22) 2009; 326
Soppe (10.1016/j.molcel.2014.07.008_bib36) 2002; 21
Tanizawa (10.1016/j.molcel.2014.07.008_bib40) 2010; 38
Probst (10.1016/j.molcel.2014.07.008_bib26) 2003; 33
Dixon (10.1016/j.molcel.2014.07.008_bib8) 2012; 485
Jacob (10.1016/j.molcel.2014.07.008_bib17) 2009; 16
Osborne (10.1016/j.molcel.2014.07.008_bib25) 2004; 36
Le (10.1016/j.molcel.2014.07.008_bib20) 2013; 342
Zhang (10.1016/j.molcel.2014.07.008_bib45) 2009; 10
Heger (10.1016/j.molcel.2014.07.008_bib16) 2012; 109
Zhang (10.1016/j.molcel.2014.07.008_bib46) 2012; 148
Turck (10.1016/j.molcel.2014.07.008_bib42) 2007; 3
Tolhuis (10.1016/j.molcel.2014.07.008_bib41) 2006; 38
Feng (10.1016/j.molcel.2014.07.008_bib11) 2010; 107
Duan (10.1016/j.molcel.2014.07.008_bib9) 2010; 465
Stroud (10.1016/j.molcel.2014.07.008_bib37) 2012; 8
Deleris (10.1016/j.molcel.2014.07.008_bib7) 2012; 8
Stroud (10.1016/j.molcel.2014.07.008_bib39) 2014; 21
Mathieu (10.1016/j.molcel.2014.07.008_bib23) 2005; 24
Schwartz (10.1016/j.molcel.2014.07.008_bib33) 2006; 38
Zemach (10.1016/j.molcel.2014.07.008_bib43) 2010; 328
Fransz (10.1016/j.molcel.2014.07.008_bib12) 2002; 99
Harper (10.1016/j.molcel.2014.07.008_bib15) 2004; 117
(10.1016/j.molcel.2014.07.008_bib2) 2000; 408
Gibcus (10.1016/j.molcel.2014.07.008_bib13) 2013; 49
Schubert (10.1016/j.molcel.2014.07.008_bib32) 2012; 121
24267747 - Genome Biol. 2013;14(11):R129
23222483 - EMBO J. 2013 Jan 9;32(1):140-8
24141950 - Nature. 2013 Nov 14;503(7475):290-4
20395474 - Science. 2010 May 14;328(5980):916-9
22792077 - PLoS Genet. 2012 Jul;8(7):e1002808
23473598 - Mol Cell. 2013 Mar 7;49(5):773-82
12456661 - EMBO J. 2002 Dec 2;21(23):6549-59
22341456 - Cell. 2012 Mar 2;148(5):908-21
22555433 - Science. 2012 Jun 15;336(6087):1448-51
16732288 - Nat Genet. 2006 Jun;38(6):700-5
17409060 - Genetics. 2007 Jun;176(2):853-63
12384572 - Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14584-9
11130711 - Nature. 2000 Dec 14;408(6814):796-815
24013499 - Genes Dev. 2013 Sep 1;27(17):1845-50
12609046 - Plant J. 2003 Feb;33(4):743-9
23313553 - Cell. 2013 Jan 17;152(1-2):352-64
21030438 - Nucleic Acids Res. 2010 Dec;38(22):8164-77
22763441 - Nature. 2012 Aug 2;488(7409):116-20
10821279 - Nature. 2000 May 11;405(6783):203-6
23209430 - PLoS Genet. 2012;8(11):e1003062
24158908 - Science. 2013 Nov 8;342(6159):731-4
19508735 - Genome Biol. 2009;10(6):R62
22476443 - Chromosoma. 2012 Aug;121(4):369-87
15361872 - Nat Genet. 2004 Oct;36(10):1065-71
20395551 - Proc Natl Acad Sci U S A. 2010 May 11;107(19):8689-94
20436457 - Nature. 2010 May 20;465(7296):363-7
24336224 - Nat Struct Mol Biol. 2014 Jan;21(1):64-72
22495300 - Nature. 2012 May 17;485(7398):376-80
17219025 - Cell Mol Life Sci. 2007 Jan;64(2):117-24
21490956 - PLoS Genet. 2011 Apr;7(4):e1002040
19815776 - Science. 2009 Oct 9;326(5950):289-93
21233005 - Curr Opin Plant Biol. 2011 Apr;14(2):179-86
23657480 - Nat Rev Genet. 2013 Jun;14(6):390-403
18776934 - PLoS One. 2008;3(9):e3156
15316078 - J Cell Sci. 2004 Aug 15;117(Pt 18):4025-32
23045651 - Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17507-12
25060696 - Cytogenet Genome Res. 2014;143(1-3):69-77
22265598 - Cell. 2012 Feb 3;148(3):458-72
19503079 - Nat Struct Mol Biol. 2009 Jul;16(7):763-8
16628213 - Nat Genet. 2006 Jun;38(6):694-9
17439305 - PLoS Biol. 2007 May;5(5):e129
21245167 - Genes Dev. 2011 Jan 15;25(2):137-52
22955621 - Nature. 2012 Sep 6;489(7414):109-13
17542647 - PLoS Genet. 2007 Jun;3(6):e86
16001083 - EMBO J. 2005 Aug 3;24(15):2783-91
22265404 - Cell. 2012 Jan 20;148(1-2):84-98
References_xml – volume: 121
  start-page: 369
  year: 2012
  end-page: 387
  ident: bib32
  article-title: Interphase chromatin organisation in
  publication-title: Chromosoma
– volume: 32
  start-page: 140
  year: 2013
  end-page: 148
  ident: bib5
  article-title: A gene loop containing the floral repressor FLC is disrupted in the early phase of vernalization
  publication-title: EMBO J.
– volume: 328
  start-page: 916
  year: 2010
  end-page: 919
  ident: bib43
  article-title: Genome-wide evolutionary analysis of eukaryotic DNA methylation
  publication-title: Science
– volume: 109
  start-page: 17507
  year: 2012
  end-page: 17512
  ident: bib16
  article-title: The chromatin insulator CTCF and the emergence of metazoan diversity
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 36
  start-page: 1065
  year: 2004
  end-page: 1071
  ident: bib25
  article-title: Active genes dynamically colocalize to shared sites of ongoing transcription
  publication-title: Nat. Genet.
– volume: 16
  start-page: 763
  year: 2009
  end-page: 768
  ident: bib17
  article-title: ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing
  publication-title: Nat. Struct. Mol. Biol.
– volume: 7
  start-page: e1002040
  year: 2011
  ident: bib19
  article-title: Dynamic regulation of H3K27 trimethylation during
  publication-title: PLoS Genet.
– volume: 148
  start-page: 908
  year: 2012
  end-page: 921
  ident: bib46
  article-title: Spatial organization of the mouse genome and its role in recurrent chromosomal translocations
  publication-title: Cell
– volume: 10
  start-page: R62
  year: 2009
  ident: bib45
  article-title: Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in
  publication-title: Genome Biol.
– volume: 8
  start-page: e1003062
  year: 2012
  ident: bib7
  article-title: Loss of the DNA methyltransferase MET1 Induces H3K9 hypermethylation at PcG target genes and redistribution of H3K27 trimethylation to transposons in
  publication-title: PLoS Genet.
– volume: 342
  start-page: 731
  year: 2013
  end-page: 734
  ident: bib20
  article-title: High-resolution mapping of the spatial organization of a bacterial chromosome
  publication-title: Science
– volume: 38
  start-page: 8164
  year: 2010
  end-page: 8177
  ident: bib40
  article-title: Mapping of long-range associations throughout the fission yeast genome reveals global genome organization linked to transcriptional regulation
  publication-title: Nucleic Acids Res.
– volume: 38
  start-page: 694
  year: 2006
  end-page: 699
  ident: bib41
  article-title: Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in
  publication-title: Nat. Genet.
– volume: 326
  start-page: 289
  year: 2009
  end-page: 293
  ident: bib22
  article-title: Comprehensive mapping of long-range interactions reveals folding principles of the human genome
  publication-title: Science
– volume: 152
  start-page: 352
  year: 2013
  end-page: 364
  ident: bib38
  article-title: Comprehensive analysis of silencing mutants reveals complex regulation of the
  publication-title: Cell
– volume: 176
  start-page: 853
  year: 2007
  end-page: 863
  ident: bib4
  article-title: Interphase chromosome arrangement in
  publication-title: Genetics
– volume: 99
  start-page: 14584
  year: 2002
  end-page: 14589
  ident: bib12
  article-title: Interphase chromosomes in
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 148
  start-page: 458
  year: 2012
  end-page: 472
  ident: bib34
  article-title: Three-dimensional folding and functional organization principles of the
  publication-title: Cell
– volume: 503
  start-page: 290
  year: 2013
  end-page: 294
  ident: bib18
  article-title: A high-resolution map of the three-dimensional chromatin interactome in human cells
  publication-title: Nature
– volume: 405
  start-page: 203
  year: 2000
  end-page: 206
  ident: bib1
  article-title: Disruption of the plant gene MOM releases transcriptional silencing of methylated genes
  publication-title: Nature
– volume: 14
  start-page: 390
  year: 2013
  end-page: 403
  ident: bib6
  article-title: Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data
  publication-title: Nat. Rev. Genet.
– volume: 25
  start-page: 137
  year: 2011
  end-page: 152
  ident: bib27
  article-title: A dual flip-out mechanism for 5mC recognition by the
  publication-title: Genes Dev.
– volume: 3
  start-page: e86
  year: 2007
  ident: bib42
  article-title: TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27
  publication-title: PLoS Genet.
– volume: 14
  start-page: R129
  year: 2013
  ident: bib14
  article-title: Characterization of chromosomal architecture in
  publication-title: Genome Biol.
– volume: 49
  start-page: 773
  year: 2013
  end-page: 782
  ident: bib13
  article-title: The hierarchy of the 3D genome
  publication-title: Mol. Cell
– volume: 27
  start-page: 1845
  year: 2013
  end-page: 1850
  ident: bib28
  article-title: Physical clustering of FLC alleles during Polycomb-mediated epigenetic silencing in vernalization
  publication-title: Genes Dev.
– volume: 5
  start-page: e129
  year: 2007
  ident: bib44
  article-title: Whole-genome analysis of histone H3 lysine 27 trimethylation in
  publication-title: PLoS Biol.
– volume: 3
  start-page: e3156
  year: 2008
  ident: bib3
  article-title: Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in
  publication-title: PLoS One
– volume: 465
  start-page: 363
  year: 2010
  end-page: 367
  ident: bib9
  article-title: A three-dimensional model of the yeast genome
  publication-title: Nature
– volume: 33
  start-page: 743
  year: 2003
  end-page: 749
  ident: bib26
  article-title: Two means of transcriptional reactivation within heterochromatin
  publication-title: Plant J.
– volume: 336
  start-page: 1448
  year: 2012
  end-page: 1451
  ident: bib24
  article-title: MORC family ATPases required for heterochromatin condensation and gene silencing
  publication-title: Science
– year: 2014
  ident: bib31
  article-title: RNA polymerase II forms transcription networks in rye and
  publication-title: Cytogenet. Genome Res.
– volume: 38
  start-page: 700
  year: 2006
  end-page: 705
  ident: bib33
  article-title: Genome-wide analysis of Polycomb targets in
  publication-title: Nat. Genet.
– volume: 485
  start-page: 376
  year: 2012
  end-page: 380
  ident: bib8
  article-title: Topological domains in mammalian genomes identified by analysis of chromatin interactions
  publication-title: Nature
– volume: 24
  start-page: 2783
  year: 2005
  end-page: 2791
  ident: bib23
  article-title: Distinct regulation of histone H3 methylation at lysines 27 and 9 by CpG methylation in
  publication-title: EMBO J.
– volume: 408
  start-page: 796
  year: 2000
  end-page: 815
  ident: bib2
  article-title: Analysis of the genome sequence of the flowering plant
  publication-title: Nature
– volume: 117
  start-page: 4025
  year: 2004
  end-page: 4032
  ident: bib15
  article-title: A bouquet of chromosomes
  publication-title: J. Cell Sci.
– volume: 148
  start-page: 84
  year: 2012
  end-page: 98
  ident: bib21
  article-title: Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation
  publication-title: Cell
– volume: 489
  start-page: 109
  year: 2012
  end-page: 113
  ident: bib29
  article-title: The long-range interaction landscape of gene promoters
  publication-title: Nature
– volume: 21
  start-page: 6549
  year: 2002
  end-page: 6559
  ident: bib36
  article-title: DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in
  publication-title: EMBO J.
– volume: 8
  start-page: e1002808
  year: 2012
  ident: bib37
  article-title: DNA methyltransferases are required to induce heterochromatic re-replication in
  publication-title: PLoS Genet.
– volume: 488
  start-page: 116
  year: 2012
  end-page: 120
  ident: bib35
  article-title: A map of thecis-regulatory sequences in the mouse genome
  publication-title: Nature
– volume: 14
  start-page: 179
  year: 2011
  end-page: 186
  ident: bib10
  article-title: Epigenetic modifications in plants: an evolutionary perspective
  publication-title: Curr. Opin. Plant Biol.
– volume: 21
  start-page: 64
  year: 2014
  end-page: 72
  ident: bib39
  article-title: Non-CG methylation patterns shape the epigenetic landscape in
  publication-title: Nat. Struct. Mol. Biol.
– volume: 107
  start-page: 8689
  year: 2010
  end-page: 8694
  ident: bib11
  article-title: Conservation and divergence of methylation patterning in plants and animals
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 64
  start-page: 117
  year: 2007
  end-page: 124
  ident: bib30
  article-title: Telomere attachment and clustering during meiosis
  publication-title: Cell. Mol. Life Sci.
– volume: 38
  start-page: 8164
  year: 2010
  ident: 10.1016/j.molcel.2014.07.008_bib40
  article-title: Mapping of long-range associations throughout the fission yeast genome reveals global genome organization linked to transcriptional regulation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq955
– volume: 148
  start-page: 458
  year: 2012
  ident: 10.1016/j.molcel.2014.07.008_bib34
  article-title: Three-dimensional folding and functional organization principles of the Drosophila genome
  publication-title: Cell
  doi: 10.1016/j.cell.2012.01.010
– volume: 152
  start-page: 352
  year: 2013
  ident: 10.1016/j.molcel.2014.07.008_bib38
  article-title: Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome
  publication-title: Cell
  doi: 10.1016/j.cell.2012.10.054
– volume: 21
  start-page: 6549
  year: 2002
  ident: 10.1016/j.molcel.2014.07.008_bib36
  article-title: DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdf657
– volume: 328
  start-page: 916
  year: 2010
  ident: 10.1016/j.molcel.2014.07.008_bib43
  article-title: Genome-wide evolutionary analysis of eukaryotic DNA methylation
  publication-title: Science
  doi: 10.1126/science.1186366
– volume: 33
  start-page: 743
  year: 2003
  ident: 10.1016/j.molcel.2014.07.008_bib26
  article-title: Two means of transcriptional reactivation within heterochromatin
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.2003.01667.x
– volume: 109
  start-page: 17507
  year: 2012
  ident: 10.1016/j.molcel.2014.07.008_bib16
  article-title: The chromatin insulator CTCF and the emergence of metazoan diversity
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1111941109
– volume: 336
  start-page: 1448
  year: 2012
  ident: 10.1016/j.molcel.2014.07.008_bib24
  article-title: MORC family ATPases required for heterochromatin condensation and gene silencing
  publication-title: Science
  doi: 10.1126/science.1221472
– volume: 148
  start-page: 84
  year: 2012
  ident: 10.1016/j.molcel.2014.07.008_bib21
  article-title: Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation
  publication-title: Cell
  doi: 10.1016/j.cell.2011.12.014
– volume: 326
  start-page: 289
  year: 2009
  ident: 10.1016/j.molcel.2014.07.008_bib22
  article-title: Comprehensive mapping of long-range interactions reveals folding principles of the human genome
  publication-title: Science
  doi: 10.1126/science.1181369
– volume: 10
  start-page: R62
  year: 2009
  ident: 10.1016/j.molcel.2014.07.008_bib45
  article-title: Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana
  publication-title: Genome Biol.
  doi: 10.1186/gb-2009-10-6-r62
– year: 2014
  ident: 10.1016/j.molcel.2014.07.008_bib31
  article-title: RNA polymerase II forms transcription networks in rye and Arabidopsis nuclei and its amount increases with endopolyploidy
  publication-title: Cytogenet. Genome Res.
  doi: 10.1159/000365233
– volume: 38
  start-page: 700
  year: 2006
  ident: 10.1016/j.molcel.2014.07.008_bib33
  article-title: Genome-wide analysis of Polycomb targets in Drosophila melanogaster
  publication-title: Nat. Genet.
  doi: 10.1038/ng1817
– volume: 14
  start-page: 390
  year: 2013
  ident: 10.1016/j.molcel.2014.07.008_bib6
  article-title: Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3454
– volume: 14
  start-page: 179
  year: 2011
  ident: 10.1016/j.molcel.2014.07.008_bib10
  article-title: Epigenetic modifications in plants: an evolutionary perspective
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2010.12.002
– volume: 8
  start-page: e1003062
  year: 2012
  ident: 10.1016/j.molcel.2014.07.008_bib7
  article-title: Loss of the DNA methyltransferase MET1 Induces H3K9 hypermethylation at PcG target genes and redistribution of H3K27 trimethylation to transposons in Arabidopsis thaliana
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003062
– volume: 38
  start-page: 694
  year: 2006
  ident: 10.1016/j.molcel.2014.07.008_bib41
  article-title: Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in Drosophila melanogaster
  publication-title: Nat. Genet.
  doi: 10.1038/ng1792
– volume: 24
  start-page: 2783
  year: 2005
  ident: 10.1016/j.molcel.2014.07.008_bib23
  article-title: Distinct regulation of histone H3 methylation at lysines 27 and 9 by CpG methylation in Arabidopsis
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600743
– volume: 489
  start-page: 109
  year: 2012
  ident: 10.1016/j.molcel.2014.07.008_bib29
  article-title: The long-range interaction landscape of gene promoters
  publication-title: Nature
  doi: 10.1038/nature11279
– volume: 117
  start-page: 4025
  year: 2004
  ident: 10.1016/j.molcel.2014.07.008_bib15
  article-title: A bouquet of chromosomes
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.01363
– volume: 25
  start-page: 137
  year: 2011
  ident: 10.1016/j.molcel.2014.07.008_bib27
  article-title: A dual flip-out mechanism for 5mC recognition by the Arabidopsis SUVH5 SRA domain and its impact on DNA methylation and H3K9 dimethylation in vivo
  publication-title: Genes Dev.
  doi: 10.1101/gad.1980311
– volume: 14
  start-page: R129
  year: 2013
  ident: 10.1016/j.molcel.2014.07.008_bib14
  article-title: Characterization of chromosomal architecture in Arabidopsis by chromosome conformation capture
  publication-title: Genome Biol.
  doi: 10.1186/gb-2013-14-11-r129
– volume: 176
  start-page: 853
  year: 2007
  ident: 10.1016/j.molcel.2014.07.008_bib4
  article-title: Interphase chromosome arrangement in Arabidopsis thaliana is similar in differentiated and meristematic tissues and shows a transient mirror symmetry after nuclear division
  publication-title: Genetics
  doi: 10.1534/genetics.107.073270
– volume: 7
  start-page: e1002040
  year: 2011
  ident: 10.1016/j.molcel.2014.07.008_bib19
  article-title: Dynamic regulation of H3K27 trimethylation during Arabidopsis differentiation
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002040
– volume: 64
  start-page: 117
  year: 2007
  ident: 10.1016/j.molcel.2014.07.008_bib30
  article-title: Telomere attachment and clustering during meiosis
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-006-6463-2
– volume: 99
  start-page: 14584
  year: 2002
  ident: 10.1016/j.molcel.2014.07.008_bib12
  article-title: Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.212325299
– volume: 503
  start-page: 290
  year: 2013
  ident: 10.1016/j.molcel.2014.07.008_bib18
  article-title: A high-resolution map of the three-dimensional chromatin interactome in human cells
  publication-title: Nature
  doi: 10.1038/nature12644
– volume: 342
  start-page: 731
  year: 2013
  ident: 10.1016/j.molcel.2014.07.008_bib20
  article-title: High-resolution mapping of the spatial organization of a bacterial chromosome
  publication-title: Science
  doi: 10.1126/science.1242059
– volume: 49
  start-page: 773
  year: 2013
  ident: 10.1016/j.molcel.2014.07.008_bib13
  article-title: The hierarchy of the 3D genome
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.02.011
– volume: 8
  start-page: e1002808
  year: 2012
  ident: 10.1016/j.molcel.2014.07.008_bib37
  article-title: DNA methyltransferases are required to induce heterochromatic re-replication in Arabidopsis
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002808
– volume: 107
  start-page: 8689
  year: 2010
  ident: 10.1016/j.molcel.2014.07.008_bib11
  article-title: Conservation and divergence of methylation patterning in plants and animals
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1002720107
– volume: 16
  start-page: 763
  year: 2009
  ident: 10.1016/j.molcel.2014.07.008_bib17
  article-title: ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1611
– volume: 32
  start-page: 140
  year: 2013
  ident: 10.1016/j.molcel.2014.07.008_bib5
  article-title: A gene loop containing the floral repressor FLC is disrupted in the early phase of vernalization
  publication-title: EMBO J.
  doi: 10.1038/emboj.2012.324
– volume: 121
  start-page: 369
  year: 2012
  ident: 10.1016/j.molcel.2014.07.008_bib32
  article-title: Interphase chromatin organisation in Arabidopsis nuclei: constraints versus randomness
  publication-title: Chromosoma
  doi: 10.1007/s00412-012-0367-8
– volume: 148
  start-page: 908
  year: 2012
  ident: 10.1016/j.molcel.2014.07.008_bib46
  article-title: Spatial organization of the mouse genome and its role in recurrent chromosomal translocations
  publication-title: Cell
  doi: 10.1016/j.cell.2012.02.002
– volume: 485
  start-page: 376
  year: 2012
  ident: 10.1016/j.molcel.2014.07.008_bib8
  article-title: Topological domains in mammalian genomes identified by analysis of chromatin interactions
  publication-title: Nature
  doi: 10.1038/nature11082
– volume: 36
  start-page: 1065
  year: 2004
  ident: 10.1016/j.molcel.2014.07.008_bib25
  article-title: Active genes dynamically colocalize to shared sites of ongoing transcription
  publication-title: Nat. Genet.
  doi: 10.1038/ng1423
– volume: 21
  start-page: 64
  year: 2014
  ident: 10.1016/j.molcel.2014.07.008_bib39
  article-title: Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2735
– volume: 465
  start-page: 363
  year: 2010
  ident: 10.1016/j.molcel.2014.07.008_bib9
  article-title: A three-dimensional model of the yeast genome
  publication-title: Nature
  doi: 10.1038/nature08973
– volume: 405
  start-page: 203
  year: 2000
  ident: 10.1016/j.molcel.2014.07.008_bib1
  article-title: Disruption of the plant gene MOM releases transcriptional silencing of methylated genes
  publication-title: Nature
  doi: 10.1038/35012108
– volume: 27
  start-page: 1845
  year: 2013
  ident: 10.1016/j.molcel.2014.07.008_bib28
  article-title: Physical clustering of FLC alleles during Polycomb-mediated epigenetic silencing in vernalization
  publication-title: Genes Dev.
  doi: 10.1101/gad.221713.113
– volume: 488
  start-page: 116
  year: 2012
  ident: 10.1016/j.molcel.2014.07.008_bib35
  article-title: A map of thecis-regulatory sequences in the mouse genome
  publication-title: Nature
  doi: 10.1038/nature11243
– volume: 3
  start-page: e86
  year: 2007
  ident: 10.1016/j.molcel.2014.07.008_bib42
  article-title: Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.0030086
– volume: 5
  start-page: e129
  year: 2007
  ident: 10.1016/j.molcel.2014.07.008_bib44
  article-title: Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0050129
– volume: 408
  start-page: 796
  year: 2000
  ident: 10.1016/j.molcel.2014.07.008_bib2
  article-title: Analysis of the genome sequence of the flowering plant Arabidopsis thaliana
  publication-title: Nature
  doi: 10.1038/35048692
– volume: 3
  start-page: e3156
  year: 2008
  ident: 10.1016/j.molcel.2014.07.008_bib3
  article-title: Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0003156
– reference: 23045651 - Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17507-12
– reference: 25060696 - Cytogenet Genome Res. 2014;143(1-3):69-77
– reference: 22265598 - Cell. 2012 Feb 3;148(3):458-72
– reference: 22955621 - Nature. 2012 Sep 6;489(7414):109-13
– reference: 22476443 - Chromosoma. 2012 Aug;121(4):369-87
– reference: 23657480 - Nat Rev Genet. 2013 Jun;14(6):390-403
– reference: 16001083 - EMBO J. 2005 Aug 3;24(15):2783-91
– reference: 17219025 - Cell Mol Life Sci. 2007 Jan;64(2):117-24
– reference: 23473598 - Mol Cell. 2013 Mar 7;49(5):773-82
– reference: 15361872 - Nat Genet. 2004 Oct;36(10):1065-71
– reference: 17542647 - PLoS Genet. 2007 Jun;3(6):e86
– reference: 22555433 - Science. 2012 Jun 15;336(6087):1448-51
– reference: 22792077 - PLoS Genet. 2012 Jul;8(7):e1002808
– reference: 10821279 - Nature. 2000 May 11;405(6783):203-6
– reference: 17409060 - Genetics. 2007 Jun;176(2):853-63
– reference: 23209430 - PLoS Genet. 2012;8(11):e1003062
– reference: 16628213 - Nat Genet. 2006 Jun;38(6):694-9
– reference: 21030438 - Nucleic Acids Res. 2010 Dec;38(22):8164-77
– reference: 21490956 - PLoS Genet. 2011 Apr;7(4):e1002040
– reference: 22265404 - Cell. 2012 Jan 20;148(1-2):84-98
– reference: 15316078 - J Cell Sci. 2004 Aug 15;117(Pt 18):4025-32
– reference: 21233005 - Curr Opin Plant Biol. 2011 Apr;14(2):179-86
– reference: 24158908 - Science. 2013 Nov 8;342(6159):731-4
– reference: 16732288 - Nat Genet. 2006 Jun;38(6):700-5
– reference: 22763441 - Nature. 2012 Aug 2;488(7409):116-20
– reference: 12456661 - EMBO J. 2002 Dec 2;21(23):6549-59
– reference: 24141950 - Nature. 2013 Nov 14;503(7475):290-4
– reference: 18776934 - PLoS One. 2008;3(9):e3156
– reference: 23313553 - Cell. 2013 Jan 17;152(1-2):352-64
– reference: 11130711 - Nature. 2000 Dec 14;408(6814):796-815
– reference: 12609046 - Plant J. 2003 Feb;33(4):743-9
– reference: 20395551 - Proc Natl Acad Sci U S A. 2010 May 11;107(19):8689-94
– reference: 24013499 - Genes Dev. 2013 Sep 1;27(17):1845-50
– reference: 23222483 - EMBO J. 2013 Jan 9;32(1):140-8
– reference: 19508735 - Genome Biol. 2009;10(6):R62
– reference: 20395474 - Science. 2010 May 14;328(5980):916-9
– reference: 24336224 - Nat Struct Mol Biol. 2014 Jan;21(1):64-72
– reference: 19815776 - Science. 2009 Oct 9;326(5950):289-93
– reference: 20436457 - Nature. 2010 May 20;465(7296):363-7
– reference: 22341456 - Cell. 2012 Mar 2;148(5):908-21
– reference: 22495300 - Nature. 2012 May 17;485(7398):376-80
– reference: 12384572 - Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14584-9
– reference: 21245167 - Genes Dev. 2011 Jan 15;25(2):137-52
– reference: 24267747 - Genome Biol. 2013;14(11):R129
– reference: 17439305 - PLoS Biol. 2007 May;5(5):e129
– reference: 19503079 - Nat Struct Mol Biol. 2009 Jul;16(7):763-8
SSID ssj0014589
Score 2.5726101
Snippet Chromosomes form 3D structures that are critical to the regulation of cellular and genetic processes. Here, we present a study of global chromatin interaction...
Chromosomes form 3D structures that are critical to the regulation of cellular and genetic processes. Here, we present a study of global chromatin interaction...
Chromosomes form three-dimensional structures that are critical to the regulation of cellular and genetic processes. Here, we present a study of global...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 694
SubjectTerms animals
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis Proteins - physiology
Arabidopsis thaliana
Chromatin - metabolism
Chromatin - ultrastructure
Chromosomes, Plant - chemistry
Chromosomes, Plant - metabolism
DNA, Plant - chemistry
Epigenesis, Genetic - genetics
epigenetics
genome
Genome, Plant
Genomics - methods
heterochromatin
mutants
Mutation
Nucleic Acid Conformation
topology
Title Genome-wide Hi-C Analyses in Wild-Type and Mutants Reveal High-Resolution Chromatin Interactions in Arabidopsis
URI https://dx.doi.org/10.1016/j.molcel.2014.07.008
https://www.ncbi.nlm.nih.gov/pubmed/25132175
https://www.proquest.com/docview/1560584265
https://www.proquest.com/docview/2000196210
https://pubmed.ncbi.nlm.nih.gov/PMC4347903
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqVkhcEG8WaGUkrtamfsTJcVm1XVGVQylib5ZjOyKoTVbNLoh_z4ydrFgeqsQxydhyYmf8jWfmG0LeFlXuaoXFXQoPBopznpXOKiZCqRznXnmH5x0XH_LFJ_l-qZZ7ZD7mwmBY5aD7k06P2nq4Mx2-5nTVNNOP6DvlOocdP5KKYEa5kEVM4lu-23oSpIpl8FCYofSYPhdjvG66axfQAXEsI4UnFpn8-_b0J_z8PYryl23p9CF5MOBJOktDfkT2QvuY3EsVJn88Id1ZaLubwL43PtBFw-Y0sZCEnjYtBZXgGVqi1LaeXmywonBPL8M3QI8UI0AYnu6ntUmRRhfhbUvjKWJKiIjdzG5t1fhu1Tf9U3J1enI1X7ChxgJzAOTWrOKZEDpTwWrhglSeOzBAfCkBuek6t1bVdelBB6oAOFxX2mYuL2ohvc59YcUzst92bXhBaBCqCpWTRVlLGRQvfKa5stC7Bsh0bCdEjF_WuIF_HMtgXJsx0OyrSfNhcD5Mho7xYkLYttUq8W_cIa_HSTM768jAFnFHyzfjHBv4xdBvYtvQbXqDyeaA03iu_i3DE9MQGNAT8jyti-14AUIKsPygtd5ZMVsBpPjefdI2XyLVt8RE30y8_O-3ekXu41WMipOvyf76dhMOAUatqyNyMDu__Hx-FP-Xn8-DHyc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4lmWp5HgaG3q2HH2wKEUyi7t9gCLtDfLsR0R1CarZpeqf4tfyIydrFgeqoTUa_yQ4_GMv_G8CHmVF5ktJRZ3yR0oKNY6NrJGstSPpOXcSWfxvWN6nI2_iI9zOd8iP_pYGHSr7GR_lOlBWndfht1uDhdVNfyMtlOuMrjxQ1IR1XlWHvqLc9Db2jeTd0Dk15wfvJ_tj1lXWoBZwC9LVvAkTVUivVGp9UI6bgF3u5EAwKLKzBhZliMHrC89wE9VKJPYLC9T4VTmcpPCtNfIdQAfCoXBZP52bbkQMpTdw8UxXF0frhd8yk6bE-vR4LErQspQLGr59-vwT7j7u9fmL9fgwR1yu8OvdC9u0V2y5et75EasaHlxnzQffN2cenZeOU_HFdunMeuJb2lVUxBBjqHmS03t6HSFFYxb-sl_B7RK0eOEoTUh8gLFtL0Ip2saXi1jAEaYZu_MFJVrFm3VPiCzq9j4h2S7bmr_iFCfysIXVuSjUggvee4SxaWB2RVAtF0zIGm_s9p2-c6x7MaJ7h3bvulID4300Aka4vMBYetRi5jv45L-qiea3ji3Gq6kS0a-7GmsgaXRTmNq36xajcHtgAt5Jv_dh8fMRqCwD8hOPBfr9QJkTUHThNFq48SsO2BK8c2WuvoaUosLDCxO0sf__VcvyM3xbHqkjybHh0_ILWwJHnniKdlenq38M4Bwy-J54BlK9BXz6E-HUVqq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-wide+Hi-C+Analyses+in+Wild-Type+and+Mutants+Reveal+High-Resolution+Chromatin+Interactions+in+Arabidopsis&rft.jtitle=Molecular+cell&rft.au=Feng%2C+Suhua&rft.au=Cokus%2C+Shawn%C2%A0J.&rft.au=Schubert%2C+Veit&rft.au=Zhai%2C+Jixian&rft.date=2014-09-04&rft.issn=1097-2765&rft.volume=55&rft.issue=5&rft.spage=694&rft.epage=707&rft_id=info:doi/10.1016%2Fj.molcel.2014.07.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_molcel_2014_07_008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon