A Framework for Lung and Colon Cancer Diagnosis via Lightweight Deep Learning Models and Transformation Methods

Among the leading causes of mortality and morbidity in people are lung and colon cancers. They may develop concurrently in organs and negatively impact human life. If cancer is not diagnosed in its early stages, there is a great likelihood that it will spread to the two organs. The histopathological...

Full description

Saved in:
Bibliographic Details
Published inDiagnostics (Basel) Vol. 12; no. 12; p. 2926
Main Authors Attallah, Omneya, Aslan, Muhammet Fatih, Sabanci, Kadir
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 23.11.2022
MDPI
Subjects
Online AccessGet full text
ISSN2075-4418
2075-4418
DOI10.3390/diagnostics12122926

Cover

Loading…
Abstract Among the leading causes of mortality and morbidity in people are lung and colon cancers. They may develop concurrently in organs and negatively impact human life. If cancer is not diagnosed in its early stages, there is a great likelihood that it will spread to the two organs. The histopathological detection of such malignancies is one of the most crucial components of effective treatment. Although the process is lengthy and complex, deep learning (DL) techniques have made it feasible to complete it more quickly and accurately, enabling researchers to study a lot more patients in a short time period and for a lot less cost. Earlier studies relied on DL models that require great computational ability and resources. Most of them depended on individual DL models to extract features of high dimension or to perform diagnoses. However, in this study, a framework based on multiple lightweight DL models is proposed for the early detection of lung and colon cancers. The framework utilizes several transformation methods that perform feature reduction and provide a better representation of the data. In this context, histopathology scans are fed into the ShuffleNet, MobileNet, and SqueezeNet models. The number of deep features acquired from these models is subsequently reduced using principal component analysis (PCA) and fast Walsh–Hadamard transform (FHWT) techniques. Following that, discrete wavelet transform (DWT) is used to fuse the FWHT’s reduced features obtained from the three DL models. Additionally, the three DL models’ PCA features are concatenated. Finally, the diminished features as a result of PCA and FHWT-DWT reduction and fusion processes are fed to four distinct machine learning algorithms, reaching the highest accuracy of 99.6%. The results obtained using the proposed framework based on lightweight DL models show that it can distinguish lung and colon cancer variants with a lower number of features and less computational complexity compared to existing methods. They also prove that utilizing transformation methods to reduce features can offer a superior interpretation of the data, thus improving the diagnosis procedure.
AbstractList Among the leading causes of mortality and morbidity in people are lung and colon cancers. They may develop concurrently in organs and negatively impact human life. If cancer is not diagnosed in its early stages, there is a great likelihood that it will spread to the two organs. The histopathological detection of such malignancies is one of the most crucial components of effective treatment. Although the process is lengthy and complex, deep learning (DL) techniques have made it feasible to complete it more quickly and accurately, enabling researchers to study a lot more patients in a short time period and for a lot less cost. Earlier studies relied on DL models that require great computational ability and resources. Most of them depended on individual DL models to extract features of high dimension or to perform diagnoses. However, in this study, a framework based on multiple lightweight DL models is proposed for the early detection of lung and colon cancers. The framework utilizes several transformation methods that perform feature reduction and provide a better representation of the data. In this context, histopathology scans are fed into the ShuffleNet, MobileNet, and SqueezeNet models. The number of deep features acquired from these models is subsequently reduced using principal component analysis (PCA) and fast Walsh-Hadamard transform (FHWT) techniques. Following that, discrete wavelet transform (DWT) is used to fuse the FWHT's reduced features obtained from the three DL models. Additionally, the three DL models' PCA features are concatenated. Finally, the diminished features as a result of PCA and FHWT-DWT reduction and fusion processes are fed to four distinct machine learning algorithms, reaching the highest accuracy of 99.6%. The results obtained using the proposed framework based on lightweight DL models show that it can distinguish lung and colon cancer variants with a lower number of features and less computational complexity compared to existing methods. They also prove that utilizing transformation methods to reduce features can offer a superior interpretation of the data, thus improving the diagnosis procedure.
Among the leading causes of mortality and morbidity in people are lung and colon cancers. They may develop concurrently in organs and negatively impact human life. If cancer is not diagnosed in its early stages, there is a great likelihood that it will spread to the two organs. The histopathological detection of such malignancies is one of the most crucial components of effective treatment. Although the process is lengthy and complex, deep learning (DL) techniques have made it feasible to complete it more quickly and accurately, enabling researchers to study a lot more patients in a short time period and for a lot less cost. Earlier studies relied on DL models that require great computational ability and resources. Most of them depended on individual DL models to extract features of high dimension or to perform diagnoses. However, in this study, a framework based on multiple lightweight DL models is proposed for the early detection of lung and colon cancers. The framework utilizes several transformation methods that perform feature reduction and provide a better representation of the data. In this context, histopathology scans are fed into the ShuffleNet, MobileNet, and SqueezeNet models. The number of deep features acquired from these models is subsequently reduced using principal component analysis (PCA) and fast Walsh-Hadamard transform (FHWT) techniques. Following that, discrete wavelet transform (DWT) is used to fuse the FWHT's reduced features obtained from the three DL models. Additionally, the three DL models' PCA features are concatenated. Finally, the diminished features as a result of PCA and FHWT-DWT reduction and fusion processes are fed to four distinct machine learning algorithms, reaching the highest accuracy of 99.6%. The results obtained using the proposed framework based on lightweight DL models show that it can distinguish lung and colon cancer variants with a lower number of features and less computational complexity compared to existing methods. They also prove that utilizing transformation methods to reduce features can offer a superior interpretation of the data, thus improving the diagnosis procedure.Among the leading causes of mortality and morbidity in people are lung and colon cancers. They may develop concurrently in organs and negatively impact human life. If cancer is not diagnosed in its early stages, there is a great likelihood that it will spread to the two organs. The histopathological detection of such malignancies is one of the most crucial components of effective treatment. Although the process is lengthy and complex, deep learning (DL) techniques have made it feasible to complete it more quickly and accurately, enabling researchers to study a lot more patients in a short time period and for a lot less cost. Earlier studies relied on DL models that require great computational ability and resources. Most of them depended on individual DL models to extract features of high dimension or to perform diagnoses. However, in this study, a framework based on multiple lightweight DL models is proposed for the early detection of lung and colon cancers. The framework utilizes several transformation methods that perform feature reduction and provide a better representation of the data. In this context, histopathology scans are fed into the ShuffleNet, MobileNet, and SqueezeNet models. The number of deep features acquired from these models is subsequently reduced using principal component analysis (PCA) and fast Walsh-Hadamard transform (FHWT) techniques. Following that, discrete wavelet transform (DWT) is used to fuse the FWHT's reduced features obtained from the three DL models. Additionally, the three DL models' PCA features are concatenated. Finally, the diminished features as a result of PCA and FHWT-DWT reduction and fusion processes are fed to four distinct machine learning algorithms, reaching the highest accuracy of 99.6%. The results obtained using the proposed framework based on lightweight DL models show that it can distinguish lung and colon cancer variants with a lower number of features and less computational complexity compared to existing methods. They also prove that utilizing transformation methods to reduce features can offer a superior interpretation of the data, thus improving the diagnosis procedure.
Audience Academic
Author Attallah, Omneya
Aslan, Muhammet Fatih
Sabanci, Kadir
AuthorAffiliation 2 Department of Electrical and Electronics Engineering, Karamanoglu Mehmetbey University, 70100 Karaman, Turkey
1 Department of Electronics and Communications Engineering, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Alexandria 1029, Egypt
AuthorAffiliation_xml – name: 1 Department of Electronics and Communications Engineering, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Alexandria 1029, Egypt
– name: 2 Department of Electrical and Electronics Engineering, Karamanoglu Mehmetbey University, 70100 Karaman, Turkey
Author_xml – sequence: 1
  givenname: Omneya
  orcidid: 0000-0002-2657-2264
  surname: Attallah
  fullname: Attallah, Omneya
– sequence: 2
  givenname: Muhammet Fatih
  orcidid: 0000-0001-7549-0137
  surname: Aslan
  fullname: Aslan, Muhammet Fatih
– sequence: 3
  givenname: Kadir
  orcidid: 0000-0003-0238-9606
  surname: Sabanci
  fullname: Sabanci, Kadir
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36552933$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1vEzEQhleoiJbSX4CELHHpJWX9uesLUpRSqJSKSzlbk_XsxmHXDvamFf8eJ2mhqSpsybbs931GM563xZEPHoviPS0vONflJ-ug8yGNrkmUUcY0U6-KE1ZWciIErY-enI-Ls5RWZR6a8prJN8UxV1IyzflJEabkKsKA9yH-JG2IZL7xHQFvySz0wZMZ-AYjudyHc4ncOSBz1y3He9yu5BJxTeYI0btsvAkW-7Tz30bwKRMHGF0G3eC4DDa9K1630Cc8e9hPix9XX25n3ybz71-vZ9P5pJFKjRNAwEooRK0YVUgbDaJlUOuWK1svKqQgSinYglOhJadQaa4Z46XQi6rlkp8W13uuDbAy6-gGiL9NAGd2FyF2BmKuXo_GioygWJbC1oJKVcMCrJI1aCu01XVmfd6z1pvFgLZBP0boD6CHL94tTRfujK4qpXiVAecPgBh-bTCNZnCpwb4Hj2GTDKtkTUudtVn68Zl0FTbR51JtVUrVVMvyn6qDnIDzbchxmy3UTCshZf5qvQ178YIqT4uDa3I_tS7fHxg-PE30b4aP7ZIFei9oYkgpYmsaN-7-N5Ndb2hptt1pXujO7OXPvI_4_7n-AO5x6cc
CitedBy_id crossref_primary_10_1016_j_compbiomed_2024_109494
crossref_primary_10_3390_cancers16223879
crossref_primary_10_1016_j_chemolab_2022_104750
crossref_primary_10_1007_s11036_024_02331_x
crossref_primary_10_1007_s00521_025_11143_3
crossref_primary_10_3390_cancers15143608
crossref_primary_10_1109_ACCESS_2023_3309711
crossref_primary_10_1007_s11042_024_20216_9
crossref_primary_10_1177_11769351241290608
crossref_primary_10_1007_s11517_023_02984_y
crossref_primary_10_3390_diagnostics13091594
crossref_primary_10_3390_technologies12040056
crossref_primary_10_1016_j_bspc_2023_104692
crossref_primary_10_3390_cancers16223791
crossref_primary_10_1038_s41598_024_71302_9
crossref_primary_10_22630_MGV_2023_32_1_5
crossref_primary_10_3390_app13031916
crossref_primary_10_3390_technologies12090151
crossref_primary_10_1007_s12553_024_00911_1
crossref_primary_10_1016_j_tice_2024_102523
crossref_primary_10_1021_envhealth_4c00124
crossref_primary_10_3390_cancers15153981
crossref_primary_10_1155_2024_5562890
crossref_primary_10_3390_arm92050037
crossref_primary_10_1016_j_bspc_2024_107395
crossref_primary_10_1016_j_eswa_2024_124114
crossref_primary_10_1002_jemt_24692
crossref_primary_10_2139_ssrn_4867726
crossref_primary_10_3390_technologies13020054
crossref_primary_10_3390_bioengineering10030383
crossref_primary_10_1016_j_inffus_2024_102361
crossref_primary_10_3390_cancers15051591
crossref_primary_10_1016_j_applthermaleng_2025_125599
crossref_primary_10_1016_j_heliyon_2023_e16807
crossref_primary_10_3390_diagnostics13020171
crossref_primary_10_3390_diagnostics14202274
crossref_primary_10_1049_htl2_12122
crossref_primary_10_1016_j_eij_2025_100609
Cites_doi 10.1186/s12911-017-0508-3
10.1109/CVPR.2016.90
10.1155/2022/5269913
10.18201/ijisae.2018648455
10.3390/life12020232
10.1016/j.compbiomed.2022.106073
10.14445/22312803/IJCTT-V68I10P104
10.1109/TIE.2018.2877090
10.3390/diagnostics11112034
10.1109/TIP.2014.2362652
10.1177/0954411917731592
10.18201/ijisae.2017534420
10.1109/ACCESS.2021.3132062
10.1007/s11063-021-10481-2
10.1007/s11042-019-08212-w
10.3390/s21030748
10.3390/brainsci9090231
10.5958/2231-5691.2020.00036.2
10.1093/bioinformatics/btab380
10.3390/diagnostics11081485
10.3389/fninf.2021.663592
10.1109/ICIT.2014.53
10.1109/ACCESS.2019.2961960
10.1016/j.compbiomed.2022.105210
10.1101/2020.08.15.20175760
10.3390/s22134938
10.7717/peerj-cs.493
10.1371/journal.pone.0129024
10.3322/caac.21590
10.1016/j.eswa.2022.117695
10.3390/diagnostics10050292
10.1155/2017/4205141
10.1109/IDAP.2018.8620890
10.1016/j.cosrev.2021.100378
10.1007/s10916-018-1088-1
10.1109/IST48021.2019.9010115
10.1016/j.bspc.2021.102716
10.1016/j.bspc.2022.103596
10.1016/j.neucom.2018.03.080
10.3390/diagnostics11020359
10.1186/s40537-019-0197-0
10.1002/jsfa.10610
10.3390/bios12050299
10.1088/978-0-7503-3599-7ch6
10.1186/s40537-021-00444-8
10.1109/CVPR.2018.00716
10.1109/SIU53274.2021.9477801
10.1145/3551690.3551695
10.1016/j.compbiomed.2021.104730
10.3390/brainsci10110864
10.1109/ACCESS.2021.3123782
10.1109/CVPR.2015.7298594
10.1016/j.asoc.2022.109401
10.3322/caac.21660
10.1016/j.chemolab.2022.104695
10.1016/j.bspc.2022.104273
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
3V.
7XB
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
GNUQQ
GUQSH
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3390/diagnostics12122926
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
ProQuest Central Student
ProQuest Research Library
Research Library (Proquest)
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef



MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ) (Open Access)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2075-4418
ExternalDocumentID oai_doaj_org_article_d44951e004d841568abad658a9d49d98
PMC9776637
A745500997
36552933
10_3390_diagnostics12122926
Genre Journal Article
GeographicLocations Egypt
GeographicLocations_xml – name: Egypt
GroupedDBID 53G
5VS
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BCNDV
BENPR
BPHCQ
CCPQU
CITATION
DWQXO
EBD
ESX
GNUQQ
GROUPED_DOAJ
GUQSH
HYE
IAO
IHR
ITC
KQ8
M2O
M48
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
3V.
NPM
PMFND
7XB
8FK
COVID
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c566t-aeae746ee96216e1c9a4f2a89f36d8b7e1a40542b3149531a7939223049b7f353
IEDL.DBID M48
ISSN 2075-4418
IngestDate Wed Aug 27 01:22:17 EDT 2025
Thu Aug 21 18:40:37 EDT 2025
Thu Jul 10 23:36:55 EDT 2025
Mon Jun 30 04:50:23 EDT 2025
Tue Jun 17 21:49:10 EDT 2025
Tue Jun 10 21:18:59 EDT 2025
Thu Jan 02 22:36:29 EST 2025
Thu Apr 24 23:01:08 EDT 2025
Tue Jul 01 02:36:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords DWT
deep learning
CNN
lung and colon cancer diagnosis
FHWT
PCA
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c566t-aeae746ee96216e1c9a4f2a89f36d8b7e1a40542b3149531a7939223049b7f353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0238-9606
0000-0002-2657-2264
0000-0001-7549-0137
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/diagnostics12122926
PMID 36552933
PQID 2756681950
PQPubID 2032410
ParticipantIDs doaj_primary_oai_doaj_org_article_d44951e004d841568abad658a9d49d98
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9776637
proquest_miscellaneous_2758109663
proquest_journals_2756681950
gale_infotracmisc_A745500997
gale_infotracacademiconefile_A745500997
pubmed_primary_36552933
crossref_citationtrail_10_3390_diagnostics12122926
crossref_primary_10_3390_diagnostics12122926
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221123
PublicationDateYYYYMMDD 2022-11-23
PublicationDate_xml – month: 11
  year: 2022
  text: 20221123
  day: 23
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Diagnostics (Basel)
PublicationTitleAlternate Diagnostics (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_58
ref_13
ref_56
ref_54
Anowar (ref_50) 2021; 40
ref_51
Attallah (ref_38) 2022; 8
Garg (ref_52) 2020; 8
Wang (ref_11) 2021; 37
ref_19
ref_17
ref_16
Prabha (ref_65) 2020; 79
ref_59
Krizhevsky (ref_27) 2012; 25
Xu (ref_49) 2019; 328
Nahiduzzaman (ref_62) 2021; 9
Aslan (ref_45) 2018; 6
ref_24
ref_23
ref_22
ref_66
Shorten (ref_68) 2019; 6
ref_20
Attallah (ref_34) 2023; 80
ref_64
Aslan (ref_70) 2022; 231
Attallah (ref_40) 2021; 15
Yadav (ref_4) 2020; 10
ref_29
ref_28
Azam (ref_63) 2021; 9
Dar (ref_10) 2022; 149
Jha (ref_60) 2017; 2017
Ozkan (ref_21) 2017; 5
Attallah (ref_46) 2022; 8
Talukder (ref_53) 2022; 205
Rl (ref_5) 2020; 70
Alzubaidi (ref_48) 2021; 8
Lakshmi (ref_67) 2014; 23
ref_36
ref_33
Hamida (ref_15) 2021; 136
ref_32
ref_31
ref_30
Attallah (ref_35) 2022; 142
Kurishima (ref_7) 2018; 8
ref_39
Attallah (ref_43) 2021; 7
Kumar (ref_12) 2021; 8
Sung (ref_1) 2021; 71
Kumar (ref_8) 2022; 75
Taspinar (ref_14) 2022; 30
Attallah (ref_37) 2022; 128
ref_47
Attallah (ref_18) 2017; 231
Hasan (ref_57) 2022; 2022
Anwar (ref_26) 2018; 42
ref_44
ref_42
ref_41
Guo (ref_69) 2018; 66
ref_3
ref_2
Hatuwal (ref_55) 2020; 68
ref_9
Sabanci (ref_61) 2020; 100
Aslan (ref_25) 2021; 68
ref_6
References_xml – volume: 8
  start-page: 20552076221124432
  year: 2022
  ident: ref_46
  article-title: A deep learning-based diagnostic tool for identifying various diseases via facial images
  publication-title: Digit. Health
– volume: 25
  start-page: 1097
  year: 2012
  ident: ref_27
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Processing Syst.
– ident: ref_32
– ident: ref_19
  doi: 10.1186/s12911-017-0508-3
– ident: ref_29
  doi: 10.1109/CVPR.2016.90
– volume: 2022
  start-page: 5269913
  year: 2022
  ident: ref_57
  article-title: Automated Detection and Characterization of Colon Cancer with Deep Convolutional Neural Networks
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2022/5269913
– volume: 30
  start-page: 73
  year: 2022
  ident: ref_14
  article-title: Classification by a stacking model using CNN features for COVID-19 infection diagnosis
  publication-title: J. X-ray Sci. Technol.
– volume: 6
  start-page: 289
  year: 2018
  ident: ref_45
  article-title: Breast cancer diagnosis by different machine learning methods using blood analysis data
  publication-title: Int. J. Intell. Syst. Appl. Eng.
  doi: 10.18201/ijisae.2018648455
– ident: ref_42
  doi: 10.3390/life12020232
– volume: 149
  start-page: 106073
  year: 2022
  ident: ref_10
  article-title: Breast cancer detection using deep learning: Datasets, methods, and challenges ahead
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.106073
– volume: 68
  start-page: 21
  year: 2020
  ident: ref_55
  article-title: Lung cancer detection using convolutional neural network on histopathological images
  publication-title: Int. J. Comput. Trends Technol
  doi: 10.14445/22312803/IJCTT-V68I10P104
– volume: 66
  start-page: 7316
  year: 2018
  ident: ref_69
  article-title: Deep convolutional transfer learning network: A new method for intelligent fault diagnosis of machines with unlabeled data
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2877090
– ident: ref_47
  doi: 10.3390/diagnostics11112034
– volume: 23
  start-page: 5187
  year: 2014
  ident: ref_67
  article-title: Walsh–Hadamard Transform Kernel-Based Feature Vector for Shot Boundary Detection
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2362652
– volume: 231
  start-page: 1048
  year: 2017
  ident: ref_18
  article-title: Using multiple classifiers for predicting the risk of endovascular aortic aneurysm repair re-intervention through hybrid feature selection
  publication-title: Proc. Inst. Mech. Eng. Part H J. Eng. Med.
  doi: 10.1177/0954411917731592
– volume: 8
  start-page: 6416
  year: 2021
  ident: ref_12
  article-title: An Efficient Cancer Detection Using Machine Learning Algorithm
  publication-title: NVEO-Nat. Volatiles Essent. OILS J.|NVEO
– volume: 5
  start-page: 285
  year: 2017
  ident: ref_21
  article-title: Skin lesion classification using machine learning algorithms
  publication-title: Int. J. Intell. Syst. Appl. Eng.
  doi: 10.18201/ijisae.2017534420
– ident: ref_31
– volume: 9
  start-page: 161683
  year: 2021
  ident: ref_63
  article-title: Aircraft Classification Based on PCA and Feature Fusion Techniques in Convolutional Neural Network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3132062
– ident: ref_51
  doi: 10.1007/s11063-021-10481-2
– volume: 79
  start-page: 6845
  year: 2020
  ident: ref_65
  article-title: A novel blind color image watermarking based on Walsh Hadamard Transform
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-019-08212-w
– ident: ref_9
  doi: 10.3390/s21030748
– ident: ref_20
  doi: 10.3390/brainsci9090231
– volume: 10
  start-page: 213
  year: 2020
  ident: ref_4
  article-title: Cancer-A silent killer: An overview
  publication-title: Asian J. Pharm. Res.
  doi: 10.5958/2231-5691.2020.00036.2
– volume: 37
  start-page: 4291
  year: 2021
  ident: ref_11
  article-title: HEAL: An automated deep learning framework for cancer histopathology image analysis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab380
– ident: ref_56
  doi: 10.3390/diagnostics11081485
– ident: ref_59
– volume: 8
  start-page: 137
  year: 2018
  ident: ref_7
  article-title: Lung cancer patients with synchronous colon cancer
  publication-title: Mol. Clin. Oncol.
– ident: ref_28
– volume: 15
  start-page: 663592
  year: 2021
  ident: ref_40
  article-title: CoMB-Deep: Composite Deep Learning-Based Pipeline for Classifying Childhood Medulloblastoma and Its Classes
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2021.663592
– volume: 8
  start-page: 20552076221092543
  year: 2022
  ident: ref_38
  article-title: A computer-aided diagnostic framework for coronavirus diagnosis using texture-based radiomics images
  publication-title: Digit. Health
– ident: ref_3
– ident: ref_66
  doi: 10.1109/ICIT.2014.53
– volume: 8
  start-page: 1347
  year: 2020
  ident: ref_52
  article-title: A Low Effort Approach to Structured CNN Design Using PCA
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2961960
– volume: 142
  start-page: 105210
  year: 2022
  ident: ref_35
  article-title: ECG-BiCoNet: An ECG-based pipeline for COVID-19 diagnosis using Bi-Layers of deep features integration
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105210
– ident: ref_58
  doi: 10.1101/2020.08.15.20175760
– ident: ref_64
  doi: 10.3390/s22134938
– volume: 7
  start-page: e493
  year: 2021
  ident: ref_43
  article-title: Histo-CADx: Duo cascaded fusion stages for breast cancer diagnosis from histopathological images
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.493
– ident: ref_17
  doi: 10.1371/journal.pone.0129024
– volume: 70
  start-page: 7
  year: 2020
  ident: ref_5
  article-title: Cancer statistics, 2020
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21590
– volume: 205
  start-page: 117695
  year: 2022
  ident: ref_53
  article-title: Machine learning-based lung and colon cancer detection using deep feature extraction and ensemble learning
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117695
– ident: ref_16
  doi: 10.3390/diagnostics10050292
– volume: 2017
  start-page: 4205141
  year: 2017
  ident: ref_60
  article-title: Pathological Brain Detection Using Weiner Filtering, 2D-Discrete Wavelet Transform, Probabilistic PCA, and Random Subspace Ensemble Classifier
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2017/4205141
– ident: ref_22
  doi: 10.1109/IDAP.2018.8620890
– volume: 40
  start-page: 100378
  year: 2021
  ident: ref_50
  article-title: Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE)
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2021.100378
– volume: 42
  start-page: 226
  year: 2018
  ident: ref_26
  article-title: Medical image analysis using convolutional neural networks: A review
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-018-1088-1
– ident: ref_23
  doi: 10.1109/IST48021.2019.9010115
– volume: 68
  start-page: 102716
  year: 2021
  ident: ref_25
  article-title: A CNN-based novel solution for determining the survival status of heart failure patients with clinical record data: Numeric to image
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102716
– ident: ref_6
– volume: 75
  start-page: 103596
  year: 2022
  ident: ref_8
  article-title: An empirical study of handcrafted and dense feature extraction techniques for lung and colon cancer classification from histopathological images
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.103596
– volume: 328
  start-page: 69
  year: 2019
  ident: ref_49
  article-title: Overfitting remedy by sparsifying regularization on fully-connected layers of CNNs
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.03.080
– ident: ref_41
  doi: 10.3390/diagnostics11020359
– ident: ref_54
– volume: 6
  start-page: 60
  year: 2019
  ident: ref_68
  article-title: A survey on image data augmentation for deep learning
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0197-0
– ident: ref_2
– volume: 100
  start-page: 5577
  year: 2020
  ident: ref_61
  article-title: Bread and durum wheat classification using wavelet based image fusion
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.10610
– ident: ref_36
  doi: 10.3390/bios12050299
– ident: ref_44
  doi: 10.1088/978-0-7503-3599-7ch6
– volume: 8
  start-page: 53
  year: 2021
  ident: ref_48
  article-title: Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions
  publication-title: J. Big Data
  doi: 10.1186/s40537-021-00444-8
– ident: ref_30
  doi: 10.1109/CVPR.2018.00716
– ident: ref_13
  doi: 10.1109/SIU53274.2021.9477801
– ident: ref_39
  doi: 10.1145/3551690.3551695
– volume: 136
  start-page: 104730
  year: 2021
  ident: ref_15
  article-title: Deep learning for colon cancer histopathological images analysis
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104730
– ident: ref_24
  doi: 10.3390/brainsci10110864
– volume: 9
  start-page: 147512
  year: 2021
  ident: ref_62
  article-title: A Novel Method for Multivariant Pneumonia Classification Based on Hybrid CNN-PCA Based Feature Extraction Using Extreme Learning Machine with CXR Images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3123782
– ident: ref_33
  doi: 10.1109/CVPR.2015.7298594
– volume: 128
  start-page: 109401
  year: 2022
  ident: ref_37
  article-title: A wavelet-based deep learning pipeline for efficient COVID-19 diagnosis via CT slices
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.109401
– volume: 71
  start-page: 209
  year: 2021
  ident: ref_1
  article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21660
– volume: 231
  start-page: 104695
  year: 2022
  ident: ref_70
  article-title: A robust semantic lung segmentation study for CNN-based COVID-19 diagnosis
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2022.104695
– volume: 80
  start-page: 104273
  year: 2023
  ident: ref_34
  article-title: Auto-MyIn: Automatic diagnosis of myocardial infarction via multiple GLCMs, CNNs, and SVMs
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.104273
SSID ssj0000913825
Score 2.3979518
Snippet Among the leading causes of mortality and morbidity in people are lung and colon cancers. They may develop concurrently in organs and negatively impact human...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2926
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Cancer
CNN
Colon cancer
Colorectal cancer
Data mining
Datasets
Deep learning
Diagnosis
DWT
FHWT
Health aspects
lung and colon cancer diagnosis
Lung cancer
Machine learning
Mammography
Medical research
Medicine, Experimental
Methods
Mortality
PCA
Tomography
Wavelet transforms
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlh9JLSB9J3aZFhUIuMVlZsmUdt5suoWR7SiA3MXq4WQjekN20f78zsnexSWkvva4kI2lGo29WM98w9llF7bwMKp9A4XMFQubOiSY3EiTCWwE6FYNZfK8urtW3m_JmUOqLYsI6euBu486CQggvIsoy1ORs1OAg4LUJJigTTErzxTtv4EwlG2yIW6_saIYk-vVnoYtcI-5jgea6MESnMLiKEmP_U7s8uJjGQZODW2h-wPZ7-Min3bRfsmexfcWeL_oH8tdsNeXzbbgVRzzKL_Ewc2gDn6GVa_mMhPzAz7tpLtf85xL4JTnov9J_pPw8xnvek67-4FQp7W6dxl8NEC5-aJEqT6_fsOv516vZRd7XVMg9ArdNDhGiVlWMpipEFYU3oJoCatPIKtRORwEI4VThZIo8RVkZRFDpMc7pRpbykO21qza-ZRzKaIT36DM2E6WdBKKBRDgCEZ1e8CJjxXZ7re8Jx6nuxZ1Fx4NkYv8gk4yd7gbdd3wbf-_-heS260pk2ekHVCHbq5D9lwpl7ISkbulI4wQ99JkJuEwix7JTTanflGKcseNRTzyKfty81Rvbm4K1JX79il4rJxn7tGumkRTe1sbVY-pTC3QmK5mxo07NdkuSVVkiJsMWPVLA0ZrHLe3yNhGFI7bHT-p3_2OT3rMXBWV-CJEX8pjtbR4e4wfEYxv3MR2933saM0g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdbC2MvY9_z1g0NBnuZaWTJH3oaadpQRlPGaKFv5izJbaDYWZxu__7uZMWL2eirJRlJdzr9Tjr9jrFPyuWVkVbFE0hMrEDIuKpEHWsJEuGtgNwng1mcZ6eX6ttVehUO3LoQVrm1id5Q29bQGfkh0ZRndOkz-br6GVPWKLpdDSk0HrJ9NMEFavj-0cn59x_DKQuxXqIP1NMNSfTvD20fwUYcyALbJJpoFXa2JM_c_6993tmgxsGTO7vR_Cl7EmAkn_Zyf8YeuOY5e7QIF-UvWDvl823YFUdcys9wUXNoLJ-htWv4jIS95sd9N5cd_7UEfkaO-m9_VsqPnVvxQL56zSlj2m3n21_sIF380cJnoO5essv5ycXsNA65FWKD87iJwYHLVeaczhKROWE0qDqBQtcys0WVOwEI5VRSSR-BijLTiKT8pVyV1zKVr9he0zbuDeOQOi2MQd-xnqi8kkB0kAhLwKHzC0ZELNlOb2kC8Tjlv7gt0QEhmZT_kUnEvgyNVj3vxv3Vj0huQ1UizfYf2vV1GdZgaRUORTg0C7Ygv7WACiwiMNBWaauLiH0mqZe0tLGDBsILBRwmkWSV05yegNNT44gdjGrikjTj4q3elMEkdOVfBY7Yx6GYWlKYW-PaO1-nEOhUZjJir3s1G4YkszRFbIYl-UgBR2MelzTLG08Yjhgff5m_vb9b79jjhN52CBEn8oDtbdZ37j0irk31ISyrP0lsLMA
  priority: 102
  providerName: ProQuest
Title A Framework for Lung and Colon Cancer Diagnosis via Lightweight Deep Learning Models and Transformation Methods
URI https://www.ncbi.nlm.nih.gov/pubmed/36552933
https://www.proquest.com/docview/2756681950
https://www.proquest.com/docview/2758109663
https://pubmed.ncbi.nlm.nih.gov/PMC9776637
https://doaj.org/article/d44951e004d841568abad658a9d49d98
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-6FsZexr7nrQsaDPYyb9GHLethjDRtKKMpYzTQNyPLchsITpek7fbf7052Qsy6wV6tDyzpdPc76fQ7gHfK68LJUsV9K1ysLJdxUfAqNtJKhLfc6pAMZnyaHk_U1_PkfAfWWVHbCVze6dpRPqnJYvbx549fX3DDfyaPE132T2UTlEa0xhw1sTAivQd7aJo05XIYt3g_qGZDlHsU1ijQVMYIBbKGiehv_XSsVSD1_1N1b9mublzllqEaPYKHLcJkg0YkHsOOr5_A_XF7h_4U5gM2WkdkMYSs7AT3O7N1yYaoCGs2JDlYsMPmN6dLdjO17IR8-NtwjMoOvb9iLS_rBaNkarNlaH-2BYKxo3FITr18BpPR0dnwOG7TLsQOsd0qtt56rVLvTSp46rkzVlXCZqaSaZkV2nOLKE-JQobgVFxOgyAr3NcVupKJfA679bz2L4HZxBvuHLqVVV_pQlpiikTEYj36xdbxCMR6enPXcpJTaoxZjr4JrUl-x5pE8GHT6Kqh5Ph39QNat01V4tMOH-aLi7zdnnmpcCjco8YoM3JpM1vYEsGZNaUypckieE-rnpMc4g862z5ewGESf1Y-0PQ6nF4hR7DfqYm71XWL13KTr4U9Jwr-lC40-xG83RRTS4qAq_38OtTJOPqbqYzgRSNmmyHJNEkQtmGJ7ghgZ8zdknp6GbjEEf5jl_rV_83pa3gg6BkI57GQ-7C7Wlz7NwjOVkUP9g6OTr9974XDjV7Yfr8BKmY66g
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NnQS8oPG5sAFGAvFCtDp2k_gBoa5d1bG2QqiT9hYcxxmVprS0HRP_FH8jd05SGoH2ttf4Q3bufP6dff4dwFtpo9SITPptHRhfai78NOW5r4QWCG-5jlwymPEkHJ7Lzxedix34Xb-FobDK2iY6Q53NDZ2RHxFNeUiXPu1Pix8-ZY2i29U6hUapFmf21w26bKuPp32U77sgGJxMe0O_yirgG-xh7WurbSRDa1UY8NByo7TMAx2rXIRZnEaWawQxMkiFi73E0SrEEO46Ko1ylyUCTf6uFAgVWrB7fDL58nVzqkMsm-hzlfRGQqj2UVZGzBHnMsdtIlBE47C1BbpMAf_uB1sbYjNYc2v3G-zBwwq2sm6pZ49gxxaP4d64uph_AvMuG9RhXgxxMBuhEWG6yFgPrWvBeqRcS9YvhzlbsZ8zzUZ0MHDjzmZZ39oFq8heLxllaLtaufbTLWSNHY1dxuvVUzi_k7_-DFrFvLD7wHTHKm4M-qp5W0ap0EQ_iTBIW3S2teEeBPXvTUxFdE75Nq4SdHhIJsl_ZOLBh02jRcnzcXv1Y5LbpiqRdLsP8-VlUq35JJM4FW7RDGUx-cmxTnWGiE-rTKpMxR68J6knZEpwgEZXLyJwmkTKlXQjenJOT5s9OGzURBNgmsW13iSVCVolfxeMB282xdSSwuoKO792dWKOTmwoPHheqtlmSiLsdBALYknUUMDGnJslxey7IyhHnwK7jF7cPqzXcH84HY-S0enk7AAeBPSuhHM_EIfQWi-v7UtEe-v0VbXEGHy761X9B5H_Z_8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NnTTxgvgmMMBIIF6IWsdpEj8g1LWrNtZWE9qkvQXHcUalKSlNx8S_xl_HnfNBI9De9hp_yM59-M6--x3AO9-EiRap7w6Up11fceEmCc9cKZRA85ar0BaDmS-Co3P_y8XwYgd-N7kwFFbZ6ESrqNNC0x15n2DKA3r0GfSzOizidDL9vPrhUgUpemltymlULHJift2g-1Z-Op4grd973vTwbHzk1hUGXI2zbVxllAn9wBgZeDwwXEvlZ56KZCaCNEpCwxUaNL6XCBuHiSuXaE_Yp6kkzGzFCFT_uyGlj_Zg9-Bwcfq1veEhxE30vyqoIyHkoJ9W0XOEv8zxyPAkQTpsHYe2asC_Z8PW4dgN3Nw6CacP4H5twrJRxXMPYcfkj2BvXj_SP4ZixKZNyBdDm5jNUKEwladsjJo2Z2NitDWbVMtcluznUrEZXRLc2HtaNjFmxWrg10tG1dquSjv-bMvKxonmtvp1-QTO7-SvP4VeXuTmOTA1NJJrjX5rNvDDRCiCokSTSBl0vJXmDnjN7411DXpOtTeuYnR-iCbxf2jiwMd20KrC_Li9-wHRre1KgN32Q7G-jGv5j1Mft8INqqQ0Ip85UolK0fpTMvVlKiMHPhDVY1IruECt6uwI3CYBdMWjkNLPKc3Zgf1OT1QHutvc8E1cq6My_is8Drxtm2kkhdjlpri2fSKODm0gHHhWsVm7JREMh2gXYkvYYcDOnrst-fK7BStH_wKnDF_cvqw3sIfSHM-OFycv4Z5HKSacu57Yh95mfW1eoeG3SV7XEsbg210L9R9-Vmw9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Framework+for+Lung+and+Colon+Cancer+Diagnosis+via+Lightweight+Deep+Learning+Models+and+Transformation+Methods&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Attallah%2C+Omneya&rft.au=Aslan%2C+Muhammet+Fatih&rft.au=Sabanci%2C+Kadir&rft.date=2022-11-23&rft.issn=2075-4418&rft.eissn=2075-4418&rft.volume=12&rft.issue=12&rft.spage=2926&rft_id=info:doi/10.3390%2Fdiagnostics12122926&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_diagnostics12122926
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon