A Framework for Lung and Colon Cancer Diagnosis via Lightweight Deep Learning Models and Transformation Methods
Among the leading causes of mortality and morbidity in people are lung and colon cancers. They may develop concurrently in organs and negatively impact human life. If cancer is not diagnosed in its early stages, there is a great likelihood that it will spread to the two organs. The histopathological...
Saved in:
Published in | Diagnostics (Basel) Vol. 12; no. 12; p. 2926 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
23.11.2022
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2075-4418 2075-4418 |
DOI | 10.3390/diagnostics12122926 |
Cover
Loading…
Abstract | Among the leading causes of mortality and morbidity in people are lung and colon cancers. They may develop concurrently in organs and negatively impact human life. If cancer is not diagnosed in its early stages, there is a great likelihood that it will spread to the two organs. The histopathological detection of such malignancies is one of the most crucial components of effective treatment. Although the process is lengthy and complex, deep learning (DL) techniques have made it feasible to complete it more quickly and accurately, enabling researchers to study a lot more patients in a short time period and for a lot less cost. Earlier studies relied on DL models that require great computational ability and resources. Most of them depended on individual DL models to extract features of high dimension or to perform diagnoses. However, in this study, a framework based on multiple lightweight DL models is proposed for the early detection of lung and colon cancers. The framework utilizes several transformation methods that perform feature reduction and provide a better representation of the data. In this context, histopathology scans are fed into the ShuffleNet, MobileNet, and SqueezeNet models. The number of deep features acquired from these models is subsequently reduced using principal component analysis (PCA) and fast Walsh–Hadamard transform (FHWT) techniques. Following that, discrete wavelet transform (DWT) is used to fuse the FWHT’s reduced features obtained from the three DL models. Additionally, the three DL models’ PCA features are concatenated. Finally, the diminished features as a result of PCA and FHWT-DWT reduction and fusion processes are fed to four distinct machine learning algorithms, reaching the highest accuracy of 99.6%. The results obtained using the proposed framework based on lightweight DL models show that it can distinguish lung and colon cancer variants with a lower number of features and less computational complexity compared to existing methods. They also prove that utilizing transformation methods to reduce features can offer a superior interpretation of the data, thus improving the diagnosis procedure. |
---|---|
AbstractList | Among the leading causes of mortality and morbidity in people are lung and colon cancers. They may develop concurrently in organs and negatively impact human life. If cancer is not diagnosed in its early stages, there is a great likelihood that it will spread to the two organs. The histopathological detection of such malignancies is one of the most crucial components of effective treatment. Although the process is lengthy and complex, deep learning (DL) techniques have made it feasible to complete it more quickly and accurately, enabling researchers to study a lot more patients in a short time period and for a lot less cost. Earlier studies relied on DL models that require great computational ability and resources. Most of them depended on individual DL models to extract features of high dimension or to perform diagnoses. However, in this study, a framework based on multiple lightweight DL models is proposed for the early detection of lung and colon cancers. The framework utilizes several transformation methods that perform feature reduction and provide a better representation of the data. In this context, histopathology scans are fed into the ShuffleNet, MobileNet, and SqueezeNet models. The number of deep features acquired from these models is subsequently reduced using principal component analysis (PCA) and fast Walsh-Hadamard transform (FHWT) techniques. Following that, discrete wavelet transform (DWT) is used to fuse the FWHT's reduced features obtained from the three DL models. Additionally, the three DL models' PCA features are concatenated. Finally, the diminished features as a result of PCA and FHWT-DWT reduction and fusion processes are fed to four distinct machine learning algorithms, reaching the highest accuracy of 99.6%. The results obtained using the proposed framework based on lightweight DL models show that it can distinguish lung and colon cancer variants with a lower number of features and less computational complexity compared to existing methods. They also prove that utilizing transformation methods to reduce features can offer a superior interpretation of the data, thus improving the diagnosis procedure. Among the leading causes of mortality and morbidity in people are lung and colon cancers. They may develop concurrently in organs and negatively impact human life. If cancer is not diagnosed in its early stages, there is a great likelihood that it will spread to the two organs. The histopathological detection of such malignancies is one of the most crucial components of effective treatment. Although the process is lengthy and complex, deep learning (DL) techniques have made it feasible to complete it more quickly and accurately, enabling researchers to study a lot more patients in a short time period and for a lot less cost. Earlier studies relied on DL models that require great computational ability and resources. Most of them depended on individual DL models to extract features of high dimension or to perform diagnoses. However, in this study, a framework based on multiple lightweight DL models is proposed for the early detection of lung and colon cancers. The framework utilizes several transformation methods that perform feature reduction and provide a better representation of the data. In this context, histopathology scans are fed into the ShuffleNet, MobileNet, and SqueezeNet models. The number of deep features acquired from these models is subsequently reduced using principal component analysis (PCA) and fast Walsh-Hadamard transform (FHWT) techniques. Following that, discrete wavelet transform (DWT) is used to fuse the FWHT's reduced features obtained from the three DL models. Additionally, the three DL models' PCA features are concatenated. Finally, the diminished features as a result of PCA and FHWT-DWT reduction and fusion processes are fed to four distinct machine learning algorithms, reaching the highest accuracy of 99.6%. The results obtained using the proposed framework based on lightweight DL models show that it can distinguish lung and colon cancer variants with a lower number of features and less computational complexity compared to existing methods. They also prove that utilizing transformation methods to reduce features can offer a superior interpretation of the data, thus improving the diagnosis procedure.Among the leading causes of mortality and morbidity in people are lung and colon cancers. They may develop concurrently in organs and negatively impact human life. If cancer is not diagnosed in its early stages, there is a great likelihood that it will spread to the two organs. The histopathological detection of such malignancies is one of the most crucial components of effective treatment. Although the process is lengthy and complex, deep learning (DL) techniques have made it feasible to complete it more quickly and accurately, enabling researchers to study a lot more patients in a short time period and for a lot less cost. Earlier studies relied on DL models that require great computational ability and resources. Most of them depended on individual DL models to extract features of high dimension or to perform diagnoses. However, in this study, a framework based on multiple lightweight DL models is proposed for the early detection of lung and colon cancers. The framework utilizes several transformation methods that perform feature reduction and provide a better representation of the data. In this context, histopathology scans are fed into the ShuffleNet, MobileNet, and SqueezeNet models. The number of deep features acquired from these models is subsequently reduced using principal component analysis (PCA) and fast Walsh-Hadamard transform (FHWT) techniques. Following that, discrete wavelet transform (DWT) is used to fuse the FWHT's reduced features obtained from the three DL models. Additionally, the three DL models' PCA features are concatenated. Finally, the diminished features as a result of PCA and FHWT-DWT reduction and fusion processes are fed to four distinct machine learning algorithms, reaching the highest accuracy of 99.6%. The results obtained using the proposed framework based on lightweight DL models show that it can distinguish lung and colon cancer variants with a lower number of features and less computational complexity compared to existing methods. They also prove that utilizing transformation methods to reduce features can offer a superior interpretation of the data, thus improving the diagnosis procedure. |
Audience | Academic |
Author | Attallah, Omneya Aslan, Muhammet Fatih Sabanci, Kadir |
AuthorAffiliation | 2 Department of Electrical and Electronics Engineering, Karamanoglu Mehmetbey University, 70100 Karaman, Turkey 1 Department of Electronics and Communications Engineering, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Alexandria 1029, Egypt |
AuthorAffiliation_xml | – name: 1 Department of Electronics and Communications Engineering, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Alexandria 1029, Egypt – name: 2 Department of Electrical and Electronics Engineering, Karamanoglu Mehmetbey University, 70100 Karaman, Turkey |
Author_xml | – sequence: 1 givenname: Omneya orcidid: 0000-0002-2657-2264 surname: Attallah fullname: Attallah, Omneya – sequence: 2 givenname: Muhammet Fatih orcidid: 0000-0001-7549-0137 surname: Aslan fullname: Aslan, Muhammet Fatih – sequence: 3 givenname: Kadir orcidid: 0000-0003-0238-9606 surname: Sabanci fullname: Sabanci, Kadir |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36552933$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1vEzEQhleoiJbSX4CELHHpJWX9uesLUpRSqJSKSzlbk_XsxmHXDvamFf8eJ2mhqSpsybbs931GM563xZEPHoviPS0vONflJ-ug8yGNrkmUUcY0U6-KE1ZWciIErY-enI-Ls5RWZR6a8prJN8UxV1IyzflJEabkKsKA9yH-JG2IZL7xHQFvySz0wZMZ-AYjudyHc4ncOSBz1y3He9yu5BJxTeYI0btsvAkW-7Tz30bwKRMHGF0G3eC4DDa9K1630Cc8e9hPix9XX25n3ybz71-vZ9P5pJFKjRNAwEooRK0YVUgbDaJlUOuWK1svKqQgSinYglOhJadQaa4Z46XQi6rlkp8W13uuDbAy6-gGiL9NAGd2FyF2BmKuXo_GioygWJbC1oJKVcMCrJI1aCu01XVmfd6z1pvFgLZBP0boD6CHL94tTRfujK4qpXiVAecPgBh-bTCNZnCpwb4Hj2GTDKtkTUudtVn68Zl0FTbR51JtVUrVVMvyn6qDnIDzbchxmy3UTCshZf5qvQ178YIqT4uDa3I_tS7fHxg-PE30b4aP7ZIFei9oYkgpYmsaN-7-N5Ndb2hptt1pXujO7OXPvI_4_7n-AO5x6cc |
CitedBy_id | crossref_primary_10_1016_j_compbiomed_2024_109494 crossref_primary_10_3390_cancers16223879 crossref_primary_10_1016_j_chemolab_2022_104750 crossref_primary_10_1007_s11036_024_02331_x crossref_primary_10_1007_s00521_025_11143_3 crossref_primary_10_3390_cancers15143608 crossref_primary_10_1109_ACCESS_2023_3309711 crossref_primary_10_1007_s11042_024_20216_9 crossref_primary_10_1177_11769351241290608 crossref_primary_10_1007_s11517_023_02984_y crossref_primary_10_3390_diagnostics13091594 crossref_primary_10_3390_technologies12040056 crossref_primary_10_1016_j_bspc_2023_104692 crossref_primary_10_3390_cancers16223791 crossref_primary_10_1038_s41598_024_71302_9 crossref_primary_10_22630_MGV_2023_32_1_5 crossref_primary_10_3390_app13031916 crossref_primary_10_3390_technologies12090151 crossref_primary_10_1007_s12553_024_00911_1 crossref_primary_10_1016_j_tice_2024_102523 crossref_primary_10_1021_envhealth_4c00124 crossref_primary_10_3390_cancers15153981 crossref_primary_10_1155_2024_5562890 crossref_primary_10_3390_arm92050037 crossref_primary_10_1016_j_bspc_2024_107395 crossref_primary_10_1016_j_eswa_2024_124114 crossref_primary_10_1002_jemt_24692 crossref_primary_10_2139_ssrn_4867726 crossref_primary_10_3390_technologies13020054 crossref_primary_10_3390_bioengineering10030383 crossref_primary_10_1016_j_inffus_2024_102361 crossref_primary_10_3390_cancers15051591 crossref_primary_10_1016_j_applthermaleng_2025_125599 crossref_primary_10_1016_j_heliyon_2023_e16807 crossref_primary_10_3390_diagnostics13020171 crossref_primary_10_3390_diagnostics14202274 crossref_primary_10_1049_htl2_12122 crossref_primary_10_1016_j_eij_2025_100609 |
Cites_doi | 10.1186/s12911-017-0508-3 10.1109/CVPR.2016.90 10.1155/2022/5269913 10.18201/ijisae.2018648455 10.3390/life12020232 10.1016/j.compbiomed.2022.106073 10.14445/22312803/IJCTT-V68I10P104 10.1109/TIE.2018.2877090 10.3390/diagnostics11112034 10.1109/TIP.2014.2362652 10.1177/0954411917731592 10.18201/ijisae.2017534420 10.1109/ACCESS.2021.3132062 10.1007/s11063-021-10481-2 10.1007/s11042-019-08212-w 10.3390/s21030748 10.3390/brainsci9090231 10.5958/2231-5691.2020.00036.2 10.1093/bioinformatics/btab380 10.3390/diagnostics11081485 10.3389/fninf.2021.663592 10.1109/ICIT.2014.53 10.1109/ACCESS.2019.2961960 10.1016/j.compbiomed.2022.105210 10.1101/2020.08.15.20175760 10.3390/s22134938 10.7717/peerj-cs.493 10.1371/journal.pone.0129024 10.3322/caac.21590 10.1016/j.eswa.2022.117695 10.3390/diagnostics10050292 10.1155/2017/4205141 10.1109/IDAP.2018.8620890 10.1016/j.cosrev.2021.100378 10.1007/s10916-018-1088-1 10.1109/IST48021.2019.9010115 10.1016/j.bspc.2021.102716 10.1016/j.bspc.2022.103596 10.1016/j.neucom.2018.03.080 10.3390/diagnostics11020359 10.1186/s40537-019-0197-0 10.1002/jsfa.10610 10.3390/bios12050299 10.1088/978-0-7503-3599-7ch6 10.1186/s40537-021-00444-8 10.1109/CVPR.2018.00716 10.1109/SIU53274.2021.9477801 10.1145/3551690.3551695 10.1016/j.compbiomed.2021.104730 10.3390/brainsci10110864 10.1109/ACCESS.2021.3123782 10.1109/CVPR.2015.7298594 10.1016/j.asoc.2022.109401 10.3322/caac.21660 10.1016/j.chemolab.2022.104695 10.1016/j.bspc.2022.104273 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION NPM 3V. 7XB 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO GNUQQ GUQSH M2O MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3390/diagnostics12122926 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central ProQuest Central Student ProQuest Research Library Research Library (Proquest) Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) (Open Access) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2075-4418 |
ExternalDocumentID | oai_doaj_org_article_d44951e004d841568abad658a9d49d98 PMC9776637 A745500997 36552933 10_3390_diagnostics12122926 |
Genre | Journal Article |
GeographicLocations | Egypt |
GeographicLocations_xml | – name: Egypt |
GroupedDBID | 53G 5VS 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BCNDV BENPR BPHCQ CCPQU CITATION DWQXO EBD ESX GNUQQ GROUPED_DOAJ GUQSH HYE IAO IHR ITC KQ8 M2O M48 MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM 3V. NPM PMFND 7XB 8FK COVID MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c566t-aeae746ee96216e1c9a4f2a89f36d8b7e1a40542b3149531a7939223049b7f353 |
IEDL.DBID | M48 |
ISSN | 2075-4418 |
IngestDate | Wed Aug 27 01:22:17 EDT 2025 Thu Aug 21 18:40:37 EDT 2025 Thu Jul 10 23:36:55 EDT 2025 Mon Jun 30 04:50:23 EDT 2025 Tue Jun 17 21:49:10 EDT 2025 Tue Jun 10 21:18:59 EDT 2025 Thu Jan 02 22:36:29 EST 2025 Thu Apr 24 23:01:08 EDT 2025 Tue Jul 01 02:36:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | DWT deep learning CNN lung and colon cancer diagnosis FHWT PCA |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c566t-aeae746ee96216e1c9a4f2a89f36d8b7e1a40542b3149531a7939223049b7f353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0238-9606 0000-0002-2657-2264 0000-0001-7549-0137 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/diagnostics12122926 |
PMID | 36552933 |
PQID | 2756681950 |
PQPubID | 2032410 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d44951e004d841568abad658a9d49d98 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9776637 proquest_miscellaneous_2758109663 proquest_journals_2756681950 gale_infotracmisc_A745500997 gale_infotracacademiconefile_A745500997 pubmed_primary_36552933 crossref_citationtrail_10_3390_diagnostics12122926 crossref_primary_10_3390_diagnostics12122926 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221123 |
PublicationDateYYYYMMDD | 2022-11-23 |
PublicationDate_xml | – month: 11 year: 2022 text: 20221123 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Diagnostics (Basel) |
PublicationTitleAlternate | Diagnostics (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_58 ref_13 ref_56 ref_54 Anowar (ref_50) 2021; 40 ref_51 Attallah (ref_38) 2022; 8 Garg (ref_52) 2020; 8 Wang (ref_11) 2021; 37 ref_19 ref_17 ref_16 Prabha (ref_65) 2020; 79 ref_59 Krizhevsky (ref_27) 2012; 25 Xu (ref_49) 2019; 328 Nahiduzzaman (ref_62) 2021; 9 Aslan (ref_45) 2018; 6 ref_24 ref_23 ref_22 ref_66 Shorten (ref_68) 2019; 6 ref_20 Attallah (ref_34) 2023; 80 ref_64 Aslan (ref_70) 2022; 231 Attallah (ref_40) 2021; 15 Yadav (ref_4) 2020; 10 ref_29 ref_28 Azam (ref_63) 2021; 9 Dar (ref_10) 2022; 149 Jha (ref_60) 2017; 2017 Ozkan (ref_21) 2017; 5 Attallah (ref_46) 2022; 8 Talukder (ref_53) 2022; 205 Rl (ref_5) 2020; 70 Alzubaidi (ref_48) 2021; 8 Lakshmi (ref_67) 2014; 23 ref_36 ref_33 Hamida (ref_15) 2021; 136 ref_32 ref_31 ref_30 Attallah (ref_35) 2022; 142 Kurishima (ref_7) 2018; 8 ref_39 Attallah (ref_43) 2021; 7 Kumar (ref_12) 2021; 8 Sung (ref_1) 2021; 71 Kumar (ref_8) 2022; 75 Taspinar (ref_14) 2022; 30 Attallah (ref_37) 2022; 128 ref_47 Attallah (ref_18) 2017; 231 Hasan (ref_57) 2022; 2022 Anwar (ref_26) 2018; 42 ref_44 ref_42 ref_41 Guo (ref_69) 2018; 66 ref_3 ref_2 Hatuwal (ref_55) 2020; 68 ref_9 Sabanci (ref_61) 2020; 100 Aslan (ref_25) 2021; 68 ref_6 |
References_xml | – volume: 8 start-page: 20552076221124432 year: 2022 ident: ref_46 article-title: A deep learning-based diagnostic tool for identifying various diseases via facial images publication-title: Digit. Health – volume: 25 start-page: 1097 year: 2012 ident: ref_27 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Processing Syst. – ident: ref_32 – ident: ref_19 doi: 10.1186/s12911-017-0508-3 – ident: ref_29 doi: 10.1109/CVPR.2016.90 – volume: 2022 start-page: 5269913 year: 2022 ident: ref_57 article-title: Automated Detection and Characterization of Colon Cancer with Deep Convolutional Neural Networks publication-title: J. Healthc. Eng. doi: 10.1155/2022/5269913 – volume: 30 start-page: 73 year: 2022 ident: ref_14 article-title: Classification by a stacking model using CNN features for COVID-19 infection diagnosis publication-title: J. X-ray Sci. Technol. – volume: 6 start-page: 289 year: 2018 ident: ref_45 article-title: Breast cancer diagnosis by different machine learning methods using blood analysis data publication-title: Int. J. Intell. Syst. Appl. Eng. doi: 10.18201/ijisae.2018648455 – ident: ref_42 doi: 10.3390/life12020232 – volume: 149 start-page: 106073 year: 2022 ident: ref_10 article-title: Breast cancer detection using deep learning: Datasets, methods, and challenges ahead publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.106073 – volume: 68 start-page: 21 year: 2020 ident: ref_55 article-title: Lung cancer detection using convolutional neural network on histopathological images publication-title: Int. J. Comput. Trends Technol doi: 10.14445/22312803/IJCTT-V68I10P104 – volume: 66 start-page: 7316 year: 2018 ident: ref_69 article-title: Deep convolutional transfer learning network: A new method for intelligent fault diagnosis of machines with unlabeled data publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2018.2877090 – ident: ref_47 doi: 10.3390/diagnostics11112034 – volume: 23 start-page: 5187 year: 2014 ident: ref_67 article-title: Walsh–Hadamard Transform Kernel-Based Feature Vector for Shot Boundary Detection publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2014.2362652 – volume: 231 start-page: 1048 year: 2017 ident: ref_18 article-title: Using multiple classifiers for predicting the risk of endovascular aortic aneurysm repair re-intervention through hybrid feature selection publication-title: Proc. Inst. Mech. Eng. Part H J. Eng. Med. doi: 10.1177/0954411917731592 – volume: 8 start-page: 6416 year: 2021 ident: ref_12 article-title: An Efficient Cancer Detection Using Machine Learning Algorithm publication-title: NVEO-Nat. Volatiles Essent. OILS J.|NVEO – volume: 5 start-page: 285 year: 2017 ident: ref_21 article-title: Skin lesion classification using machine learning algorithms publication-title: Int. J. Intell. Syst. Appl. Eng. doi: 10.18201/ijisae.2017534420 – ident: ref_31 – volume: 9 start-page: 161683 year: 2021 ident: ref_63 article-title: Aircraft Classification Based on PCA and Feature Fusion Techniques in Convolutional Neural Network publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3132062 – ident: ref_51 doi: 10.1007/s11063-021-10481-2 – volume: 79 start-page: 6845 year: 2020 ident: ref_65 article-title: A novel blind color image watermarking based on Walsh Hadamard Transform publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-019-08212-w – ident: ref_9 doi: 10.3390/s21030748 – ident: ref_20 doi: 10.3390/brainsci9090231 – volume: 10 start-page: 213 year: 2020 ident: ref_4 article-title: Cancer-A silent killer: An overview publication-title: Asian J. Pharm. Res. doi: 10.5958/2231-5691.2020.00036.2 – volume: 37 start-page: 4291 year: 2021 ident: ref_11 article-title: HEAL: An automated deep learning framework for cancer histopathology image analysis publication-title: Bioinformatics doi: 10.1093/bioinformatics/btab380 – ident: ref_56 doi: 10.3390/diagnostics11081485 – ident: ref_59 – volume: 8 start-page: 137 year: 2018 ident: ref_7 article-title: Lung cancer patients with synchronous colon cancer publication-title: Mol. Clin. Oncol. – ident: ref_28 – volume: 15 start-page: 663592 year: 2021 ident: ref_40 article-title: CoMB-Deep: Composite Deep Learning-Based Pipeline for Classifying Childhood Medulloblastoma and Its Classes publication-title: Front. Neuroinform. doi: 10.3389/fninf.2021.663592 – volume: 8 start-page: 20552076221092543 year: 2022 ident: ref_38 article-title: A computer-aided diagnostic framework for coronavirus diagnosis using texture-based radiomics images publication-title: Digit. Health – ident: ref_3 – ident: ref_66 doi: 10.1109/ICIT.2014.53 – volume: 8 start-page: 1347 year: 2020 ident: ref_52 article-title: A Low Effort Approach to Structured CNN Design Using PCA publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2961960 – volume: 142 start-page: 105210 year: 2022 ident: ref_35 article-title: ECG-BiCoNet: An ECG-based pipeline for COVID-19 diagnosis using Bi-Layers of deep features integration publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105210 – ident: ref_58 doi: 10.1101/2020.08.15.20175760 – ident: ref_64 doi: 10.3390/s22134938 – volume: 7 start-page: e493 year: 2021 ident: ref_43 article-title: Histo-CADx: Duo cascaded fusion stages for breast cancer diagnosis from histopathological images publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.493 – ident: ref_17 doi: 10.1371/journal.pone.0129024 – volume: 70 start-page: 7 year: 2020 ident: ref_5 article-title: Cancer statistics, 2020 publication-title: CA Cancer J Clin doi: 10.3322/caac.21590 – volume: 205 start-page: 117695 year: 2022 ident: ref_53 article-title: Machine learning-based lung and colon cancer detection using deep feature extraction and ensemble learning publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117695 – ident: ref_16 doi: 10.3390/diagnostics10050292 – volume: 2017 start-page: 4205141 year: 2017 ident: ref_60 article-title: Pathological Brain Detection Using Weiner Filtering, 2D-Discrete Wavelet Transform, Probabilistic PCA, and Random Subspace Ensemble Classifier publication-title: Comput. Intell. Neurosci. doi: 10.1155/2017/4205141 – ident: ref_22 doi: 10.1109/IDAP.2018.8620890 – volume: 40 start-page: 100378 year: 2021 ident: ref_50 article-title: Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE) publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2021.100378 – volume: 42 start-page: 226 year: 2018 ident: ref_26 article-title: Medical image analysis using convolutional neural networks: A review publication-title: J. Med. Syst. doi: 10.1007/s10916-018-1088-1 – ident: ref_23 doi: 10.1109/IST48021.2019.9010115 – volume: 68 start-page: 102716 year: 2021 ident: ref_25 article-title: A CNN-based novel solution for determining the survival status of heart failure patients with clinical record data: Numeric to image publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102716 – ident: ref_6 – volume: 75 start-page: 103596 year: 2022 ident: ref_8 article-title: An empirical study of handcrafted and dense feature extraction techniques for lung and colon cancer classification from histopathological images publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2022.103596 – volume: 328 start-page: 69 year: 2019 ident: ref_49 article-title: Overfitting remedy by sparsifying regularization on fully-connected layers of CNNs publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.03.080 – ident: ref_41 doi: 10.3390/diagnostics11020359 – ident: ref_54 – volume: 6 start-page: 60 year: 2019 ident: ref_68 article-title: A survey on image data augmentation for deep learning publication-title: J. Big Data doi: 10.1186/s40537-019-0197-0 – ident: ref_2 – volume: 100 start-page: 5577 year: 2020 ident: ref_61 article-title: Bread and durum wheat classification using wavelet based image fusion publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.10610 – ident: ref_36 doi: 10.3390/bios12050299 – ident: ref_44 doi: 10.1088/978-0-7503-3599-7ch6 – volume: 8 start-page: 53 year: 2021 ident: ref_48 article-title: Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions publication-title: J. Big Data doi: 10.1186/s40537-021-00444-8 – ident: ref_30 doi: 10.1109/CVPR.2018.00716 – ident: ref_13 doi: 10.1109/SIU53274.2021.9477801 – ident: ref_39 doi: 10.1145/3551690.3551695 – volume: 136 start-page: 104730 year: 2021 ident: ref_15 article-title: Deep learning for colon cancer histopathological images analysis publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104730 – ident: ref_24 doi: 10.3390/brainsci10110864 – volume: 9 start-page: 147512 year: 2021 ident: ref_62 article-title: A Novel Method for Multivariant Pneumonia Classification Based on Hybrid CNN-PCA Based Feature Extraction Using Extreme Learning Machine with CXR Images publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3123782 – ident: ref_33 doi: 10.1109/CVPR.2015.7298594 – volume: 128 start-page: 109401 year: 2022 ident: ref_37 article-title: A wavelet-based deep learning pipeline for efficient COVID-19 diagnosis via CT slices publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.109401 – volume: 71 start-page: 209 year: 2021 ident: ref_1 article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21660 – volume: 231 start-page: 104695 year: 2022 ident: ref_70 article-title: A robust semantic lung segmentation study for CNN-based COVID-19 diagnosis publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2022.104695 – volume: 80 start-page: 104273 year: 2023 ident: ref_34 article-title: Auto-MyIn: Automatic diagnosis of myocardial infarction via multiple GLCMs, CNNs, and SVMs publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2022.104273 |
SSID | ssj0000913825 |
Score | 2.3979518 |
Snippet | Among the leading causes of mortality and morbidity in people are lung and colon cancers. They may develop concurrently in organs and negatively impact human... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2926 |
SubjectTerms | Accuracy Algorithms Artificial intelligence Cancer CNN Colon cancer Colorectal cancer Data mining Datasets Deep learning Diagnosis DWT FHWT Health aspects lung and colon cancer diagnosis Lung cancer Machine learning Mammography Medical research Medicine, Experimental Methods Mortality PCA Tomography Wavelet transforms |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlh9JLSB9J3aZFhUIuMVlZsmUdt5suoWR7SiA3MXq4WQjekN20f78zsnexSWkvva4kI2lGo29WM98w9llF7bwMKp9A4XMFQubOiSY3EiTCWwE6FYNZfK8urtW3m_JmUOqLYsI6euBu486CQggvIsoy1ORs1OAg4LUJJigTTErzxTtv4EwlG2yIW6_saIYk-vVnoYtcI-5jgea6MESnMLiKEmP_U7s8uJjGQZODW2h-wPZ7-Min3bRfsmexfcWeL_oH8tdsNeXzbbgVRzzKL_Ewc2gDn6GVa_mMhPzAz7tpLtf85xL4JTnov9J_pPw8xnvek67-4FQp7W6dxl8NEC5-aJEqT6_fsOv516vZRd7XVMg9ArdNDhGiVlWMpipEFYU3oJoCatPIKtRORwEI4VThZIo8RVkZRFDpMc7pRpbykO21qza-ZRzKaIT36DM2E6WdBKKBRDgCEZ1e8CJjxXZ7re8Jx6nuxZ1Fx4NkYv8gk4yd7gbdd3wbf-_-heS260pk2ekHVCHbq5D9lwpl7ISkbulI4wQ99JkJuEwix7JTTanflGKcseNRTzyKfty81Rvbm4K1JX79il4rJxn7tGumkRTe1sbVY-pTC3QmK5mxo07NdkuSVVkiJsMWPVLA0ZrHLe3yNhGFI7bHT-p3_2OT3rMXBWV-CJEX8pjtbR4e4wfEYxv3MR2933saM0g priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdbC2MvY9_z1g0NBnuZaWTJH3oaadpQRlPGaKFv5izJbaDYWZxu__7uZMWL2eirJRlJdzr9Tjr9jrFPyuWVkVbFE0hMrEDIuKpEHWsJEuGtgNwng1mcZ6eX6ttVehUO3LoQVrm1id5Q29bQGfkh0ZRndOkz-br6GVPWKLpdDSk0HrJ9NMEFavj-0cn59x_DKQuxXqIP1NMNSfTvD20fwUYcyALbJJpoFXa2JM_c_6993tmgxsGTO7vR_Cl7EmAkn_Zyf8YeuOY5e7QIF-UvWDvl823YFUdcys9wUXNoLJ-htWv4jIS95sd9N5cd_7UEfkaO-m9_VsqPnVvxQL56zSlj2m3n21_sIF380cJnoO5essv5ycXsNA65FWKD87iJwYHLVeaczhKROWE0qDqBQtcys0WVOwEI5VRSSR-BijLTiKT8pVyV1zKVr9he0zbuDeOQOi2MQd-xnqi8kkB0kAhLwKHzC0ZELNlOb2kC8Tjlv7gt0QEhmZT_kUnEvgyNVj3vxv3Vj0huQ1UizfYf2vV1GdZgaRUORTg0C7Ygv7WACiwiMNBWaauLiH0mqZe0tLGDBsILBRwmkWSV05yegNNT44gdjGrikjTj4q3elMEkdOVfBY7Yx6GYWlKYW-PaO1-nEOhUZjJir3s1G4YkszRFbIYl-UgBR2MelzTLG08Yjhgff5m_vb9b79jjhN52CBEn8oDtbdZ37j0irk31ISyrP0lsLMA priority: 102 providerName: ProQuest |
Title | A Framework for Lung and Colon Cancer Diagnosis via Lightweight Deep Learning Models and Transformation Methods |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36552933 https://www.proquest.com/docview/2756681950 https://www.proquest.com/docview/2758109663 https://pubmed.ncbi.nlm.nih.gov/PMC9776637 https://doaj.org/article/d44951e004d841568abad658a9d49d98 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-6FsZexr7nrQsaDPYyb9GHLethjDRtKKMpYzTQNyPLchsITpek7fbf7052Qsy6wV6tDyzpdPc76fQ7gHfK68LJUsV9K1ysLJdxUfAqNtJKhLfc6pAMZnyaHk_U1_PkfAfWWVHbCVze6dpRPqnJYvbx549fX3DDfyaPE132T2UTlEa0xhw1sTAivQd7aJo05XIYt3g_qGZDlHsU1ijQVMYIBbKGiehv_XSsVSD1_1N1b9mublzllqEaPYKHLcJkg0YkHsOOr5_A_XF7h_4U5gM2WkdkMYSs7AT3O7N1yYaoCGs2JDlYsMPmN6dLdjO17IR8-NtwjMoOvb9iLS_rBaNkarNlaH-2BYKxo3FITr18BpPR0dnwOG7TLsQOsd0qtt56rVLvTSp46rkzVlXCZqaSaZkV2nOLKE-JQobgVFxOgyAr3NcVupKJfA679bz2L4HZxBvuHLqVVV_pQlpiikTEYj36xdbxCMR6enPXcpJTaoxZjr4JrUl-x5pE8GHT6Kqh5Ph39QNat01V4tMOH-aLi7zdnnmpcCjco8YoM3JpM1vYEsGZNaUypckieE-rnpMc4g862z5ewGESf1Y-0PQ6nF4hR7DfqYm71XWL13KTr4U9Jwr-lC40-xG83RRTS4qAq_38OtTJOPqbqYzgRSNmmyHJNEkQtmGJ7ghgZ8zdknp6GbjEEf5jl_rV_83pa3gg6BkI57GQ-7C7Wlz7NwjOVkUP9g6OTr9974XDjV7Yfr8BKmY66g |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NnQS8oPG5sAFGAvFCtDp2k_gBoa5d1bG2QqiT9hYcxxmVprS0HRP_FH8jd05SGoH2ttf4Q3bufP6dff4dwFtpo9SITPptHRhfai78NOW5r4QWCG-5jlwymPEkHJ7Lzxedix34Xb-FobDK2iY6Q53NDZ2RHxFNeUiXPu1Pix8-ZY2i29U6hUapFmf21w26bKuPp32U77sgGJxMe0O_yirgG-xh7WurbSRDa1UY8NByo7TMAx2rXIRZnEaWawQxMkiFi73E0SrEEO46Ko1ylyUCTf6uFAgVWrB7fDL58nVzqkMsm-hzlfRGQqj2UVZGzBHnMsdtIlBE47C1BbpMAf_uB1sbYjNYc2v3G-zBwwq2sm6pZ49gxxaP4d64uph_AvMuG9RhXgxxMBuhEWG6yFgPrWvBeqRcS9YvhzlbsZ8zzUZ0MHDjzmZZ39oFq8heLxllaLtaufbTLWSNHY1dxuvVUzi_k7_-DFrFvLD7wHTHKm4M-qp5W0ap0EQ_iTBIW3S2teEeBPXvTUxFdE75Nq4SdHhIJsl_ZOLBh02jRcnzcXv1Y5LbpiqRdLsP8-VlUq35JJM4FW7RDGUx-cmxTnWGiE-rTKpMxR68J6knZEpwgEZXLyJwmkTKlXQjenJOT5s9OGzURBNgmsW13iSVCVolfxeMB282xdSSwuoKO792dWKOTmwoPHheqtlmSiLsdBALYknUUMDGnJslxey7IyhHnwK7jF7cPqzXcH84HY-S0enk7AAeBPSuhHM_EIfQWi-v7UtEe-v0VbXEGHy761X9B5H_Z_8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NnTTxgvgmMMBIIF6IWsdpEj8g1LWrNtZWE9qkvQXHcUalKSlNx8S_xl_HnfNBI9De9hp_yM59-M6--x3AO9-EiRap7w6Up11fceEmCc9cKZRA85ar0BaDmS-Co3P_y8XwYgd-N7kwFFbZ6ESrqNNC0x15n2DKA3r0GfSzOizidDL9vPrhUgUpemltymlULHJift2g-1Z-Op4grd973vTwbHzk1hUGXI2zbVxllAn9wBgZeDwwXEvlZ56KZCaCNEpCwxUaNL6XCBuHiSuXaE_Yp6kkzGzFCFT_uyGlj_Zg9-Bwcfq1veEhxE30vyqoIyHkoJ9W0XOEv8zxyPAkQTpsHYe2asC_Z8PW4dgN3Nw6CacP4H5twrJRxXMPYcfkj2BvXj_SP4ZixKZNyBdDm5jNUKEwladsjJo2Z2NitDWbVMtcluznUrEZXRLc2HtaNjFmxWrg10tG1dquSjv-bMvKxonmtvp1-QTO7-SvP4VeXuTmOTA1NJJrjX5rNvDDRCiCokSTSBl0vJXmDnjN7411DXpOtTeuYnR-iCbxf2jiwMd20KrC_Li9-wHRre1KgN32Q7G-jGv5j1Mft8INqqQ0Ip85UolK0fpTMvVlKiMHPhDVY1IruECt6uwI3CYBdMWjkNLPKc3Zgf1OT1QHutvc8E1cq6My_is8Drxtm2kkhdjlpri2fSKODm0gHHhWsVm7JREMh2gXYkvYYcDOnrst-fK7BStH_wKnDF_cvqw3sIfSHM-OFycv4Z5HKSacu57Yh95mfW1eoeG3SV7XEsbg210L9R9-Vmw9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Framework+for+Lung+and+Colon+Cancer+Diagnosis+via+Lightweight+Deep+Learning+Models+and+Transformation+Methods&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Attallah%2C+Omneya&rft.au=Aslan%2C+Muhammet+Fatih&rft.au=Sabanci%2C+Kadir&rft.date=2022-11-23&rft.issn=2075-4418&rft.eissn=2075-4418&rft.volume=12&rft.issue=12&rft.spage=2926&rft_id=info:doi/10.3390%2Fdiagnostics12122926&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_diagnostics12122926 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon |