Phylogenetic convolutional neural networks in metagenomics
Convolutional Neural Networks can be effectively used only when data are endowed with an intrinsic concept of neighbourhood in the input space, as is the case of pixels in images. We introduce here Ph-CNN, a novel deep learning architecture for the classification of metagenomics data based on the Co...
Saved in:
Published in | BMC bioinformatics Vol. 19; no. S2; pp. 49 - 13 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
08.03.2018
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Convolutional Neural Networks can be effectively used only when data are endowed with an intrinsic concept of neighbourhood in the input space, as is the case of pixels in images. We introduce here Ph-CNN, a novel deep learning architecture for the classification of metagenomics data based on the Convolutional Neural Networks, with the patristic distance defined on the phylogenetic tree being used as the proximity measure. The patristic distance between variables is used together with a sparsified version of MultiDimensional Scaling to embed the phylogenetic tree in a Euclidean space.
Ph-CNN is tested with a domain adaptation approach on synthetic data and on a metagenomics collection of gut microbiota of 38 healthy subjects and 222 Inflammatory Bowel Disease patients, divided in 6 subclasses. Classification performance is promising when compared to classical algorithms like Support Vector Machines and Random Forest and a baseline fully connected neural network, e.g. the Multi-Layer Perceptron.
Ph-CNN represents a novel deep learning approach for the classification of metagenomics data. Operatively, the algorithm has been implemented as a custom Keras layer taking care of passing to the following convolutional layer not only the data but also the ranked list of neighbourhood of each sample, thus mimicking the case of image data, transparently to the user. |
---|---|
AbstractList | Convolutional Neural Networks can be effectively used only when data are endowed with an intrinsic concept of neighbourhood in the input space, as is the case of pixels in images. We introduce here Ph-CNN, a novel deep learning architecture for the classification of metagenomics data based on the Convolutional Neural Networks, with the patristic distance defined on the phylogenetic tree being used as the proximity measure. The patristic distance between variables is used together with a sparsified version of MultiDimensional Scaling to embed the phylogenetic tree in a Euclidean space.BACKGROUNDConvolutional Neural Networks can be effectively used only when data are endowed with an intrinsic concept of neighbourhood in the input space, as is the case of pixels in images. We introduce here Ph-CNN, a novel deep learning architecture for the classification of metagenomics data based on the Convolutional Neural Networks, with the patristic distance defined on the phylogenetic tree being used as the proximity measure. The patristic distance between variables is used together with a sparsified version of MultiDimensional Scaling to embed the phylogenetic tree in a Euclidean space.Ph-CNN is tested with a domain adaptation approach on synthetic data and on a metagenomics collection of gut microbiota of 38 healthy subjects and 222 Inflammatory Bowel Disease patients, divided in 6 subclasses. Classification performance is promising when compared to classical algorithms like Support Vector Machines and Random Forest and a baseline fully connected neural network, e.g. the Multi-Layer Perceptron.RESULTSPh-CNN is tested with a domain adaptation approach on synthetic data and on a metagenomics collection of gut microbiota of 38 healthy subjects and 222 Inflammatory Bowel Disease patients, divided in 6 subclasses. Classification performance is promising when compared to classical algorithms like Support Vector Machines and Random Forest and a baseline fully connected neural network, e.g. the Multi-Layer Perceptron.Ph-CNN represents a novel deep learning approach for the classification of metagenomics data. Operatively, the algorithm has been implemented as a custom Keras layer taking care of passing to the following convolutional layer not only the data but also the ranked list of neighbourhood of each sample, thus mimicking the case of image data, transparently to the user.CONCLUSIONPh-CNN represents a novel deep learning approach for the classification of metagenomics data. Operatively, the algorithm has been implemented as a custom Keras layer taking care of passing to the following convolutional layer not only the data but also the ranked list of neighbourhood of each sample, thus mimicking the case of image data, transparently to the user. Convolutional Neural Networks can be effectively used only when data are endowed with an intrinsic concept of neighbourhood in the input space, as is the case of pixels in images. We introduce here Ph-CNN, a novel deep learning architecture for the classification of metagenomics data based on the Convolutional Neural Networks, with the patristic distance defined on the phylogenetic tree being used as the proximity measure. The patristic distance between variables is used together with a sparsified version of MultiDimensional Scaling to embed the phylogenetic tree in a Euclidean space. Ph-CNN is tested with a domain adaptation approach on synthetic data and on a metagenomics collection of gut microbiota of 38 healthy subjects and 222 Inflammatory Bowel Disease patients, divided in 6 subclasses. Classification performance is promising when compared to classical algorithms like Support Vector Machines and Random Forest and a baseline fully connected neural network, e.g. the Multi-Layer Perceptron. Ph-CNN represents a novel deep learning approach for the classification of metagenomics data. Operatively, the algorithm has been implemented as a custom Keras layer taking care of passing to the following convolutional layer not only the data but also the ranked list of neighbourhood of each sample, thus mimicking the case of image data, transparently to the user. Abstract Background Convolutional Neural Networks can be effectively used only when data are endowed with an intrinsic concept of neighbourhood in the input space, as is the case of pixels in images. We introduce here Ph-CNN, a novel deep learning architecture for the classification of metagenomics data based on the Convolutional Neural Networks, with the patristic distance defined on the phylogenetic tree being used as the proximity measure. The patristic distance between variables is used together with a sparsified version of MultiDimensional Scaling to embed the phylogenetic tree in a Euclidean space. Results Ph-CNN is tested with a domain adaptation approach on synthetic data and on a metagenomics collection of gut microbiota of 38 healthy subjects and 222 Inflammatory Bowel Disease patients, divided in 6 subclasses. Classification performance is promising when compared to classical algorithms like Support Vector Machines and Random Forest and a baseline fully connected neural network, e.g. the Multi-Layer Perceptron. Conclusion Ph-CNN represents a novel deep learning approach for the classification of metagenomics data. Operatively, the algorithm has been implemented as a custom Keras layer taking care of passing to the following convolutional layer not only the data but also the ranked list of neighbourhood of each sample, thus mimicking the case of image data, transparently to the user. |
ArticleNumber | 49 |
Audience | Academic |
Author | Fioravanti, Diego Maggio, Valerio Chierici, Marco Furlanello, Cesare Giarratano, Ylenia Jurman, Giuseppe Agostinelli, Claudio |
Author_xml | – sequence: 1 givenname: Diego surname: Fioravanti fullname: Fioravanti, Diego – sequence: 2 givenname: Ylenia surname: Giarratano fullname: Giarratano, Ylenia – sequence: 3 givenname: Valerio surname: Maggio fullname: Maggio, Valerio – sequence: 4 givenname: Claudio surname: Agostinelli fullname: Agostinelli, Claudio – sequence: 5 givenname: Marco surname: Chierici fullname: Chierici, Marco – sequence: 6 givenname: Giuseppe surname: Jurman fullname: Jurman, Giuseppe – sequence: 7 givenname: Cesare surname: Furlanello fullname: Furlanello, Cesare |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29536822$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1TAQhS1URB_wA9igK7GBRcpMHCcOC6Sq4nGlSiAea8txJqlLYpfYKfTf49uUqkEIeWHL_s7xjH0O2Z7zjhh7inCMKMtXAXMp6gxQZjlwnokH7ACLCrMcQezdW--zwxAuALCSIB6x_bwWvJR5fsBefzq_HnxPjqI1G-PdlR_maL3Tw8bRPN1M8aefvoeNdZuRok6wH60Jj9nDTg-BntzOR-zbu7dfTz9kZx_fb09PzjIjyjJmugXNK5Qgu7YxORlomxJlwXlJaESjc14Qgqa2kUXb1aZuaqg6kI0BJNT8iG0X39brC3U52VFP18prq242_NQrPaXqB1KERZ0uMF2p66JGbKCiogJdoAZuhElebxavy7kZqTXkYmpxZbo-cfZc9f5KCSkgPVoyeHFrMPkfM4WoRhsMDYN25OegckBeyQrKIqHPF7TXqTTrOp8czQ5XJ4IDr5FLSNTxP6g0WkqPnP67s2l_JXi5EiQm0q_Y6zkEtf3yec0-u9_uXZ9__j8BuABm8iFM1N0hCGqXMbVkTKWMqV3GlEia6i-NsVHvMpMqt8N_lL8BiezUTQ |
CitedBy_id | crossref_primary_10_36222_ejt_1094218 crossref_primary_10_1016_j_fbio_2024_104541 crossref_primary_10_1093_bioadv_vbae203 crossref_primary_10_1128_spectrum_05237_22 crossref_primary_10_1093_bioinformatics_btaa477 crossref_primary_10_3389_fmicb_2021_634511 crossref_primary_10_1186_s12864_019_5546_z crossref_primary_10_3389_fgene_2021_697090 crossref_primary_10_2991_jaims_d_201028_001 crossref_primary_10_3390_app14198627 crossref_primary_10_1093_bioadv_vbae013 crossref_primary_10_1007_s12553_020_00486_7 crossref_primary_10_2174_1574893618666230605120615 crossref_primary_10_1038_s41545_021_00106_5 crossref_primary_10_1136_gutjnl_2019_320065 crossref_primary_10_1186_s40168_023_01737_1 crossref_primary_10_1007_s12561_020_09279_y crossref_primary_10_3748_wjg_v27_i21_2681 crossref_primary_10_1186_s44147_022_00125_0 crossref_primary_10_1016_j_it_2023_03_002 crossref_primary_10_1099_mgen_0_001231 crossref_primary_10_1186_s12911_021_01705_5 crossref_primary_10_1093_bib_bbaa073 crossref_primary_10_1007_s11831_023_09987_w crossref_primary_10_1016_j_compbiomed_2022_106020 crossref_primary_10_1111_jgh_15501 crossref_primary_10_1038_s41598_024_64658_5 crossref_primary_10_1371_journal_pone_0230536 crossref_primary_10_3390_genes13040648 crossref_primary_10_3390_healthcare10112335 crossref_primary_10_1016_j_csbr_2024_100005 crossref_primary_10_1016_j_patter_2022_100658 crossref_primary_10_1093_bioinformatics_btz476 crossref_primary_10_1186_s12934_022_01973_4 crossref_primary_10_3389_fmicb_2024_1516667 crossref_primary_10_1109_JBHI_2020_2993761 crossref_primary_10_1016_j_marpolbul_2019_110530 crossref_primary_10_1111_1462_2920_15910 crossref_primary_10_1016_j_isci_2022_104081 crossref_primary_10_12688_f1000research_27384_1 crossref_primary_10_1109_ACCESS_2019_2939284 crossref_primary_10_2139_ssrn_4129422 crossref_primary_10_3390_biom11020264 crossref_primary_10_1002_advs_202404277 crossref_primary_10_1111_ele_13462 crossref_primary_10_1128_mBio_00434_20 crossref_primary_10_1186_s12859_023_05251_x crossref_primary_10_1371_journal_pcbi_1006693 crossref_primary_10_1002_cyto_a_24920 crossref_primary_10_1155_2022_2844757 crossref_primary_10_1080_19490976_2024_2302076 crossref_primary_10_1186_s12864_019_6413_7 crossref_primary_10_1371_journal_pone_0316493 crossref_primary_10_1016_j_pbi_2022_102326 |
Cites_doi | 10.1101/114892 10.1093/nar/gkm864 10.1371/journal.pone.0009490 10.1101/149328 10.1089/cmb.2017.0054 10.1089/cmb.2015.0189 10.15252/msb.20156651 10.1093/sysbio/syr066 10.1109/BIBM.2016.7822569 10.1198/016214501753382273 10.1007/978-94-009-4109-0 10.1016/j.compbiolchem.2004.09.006 10.1016/j.cageo.2006.11.017 10.1038/nmeth.4458 10.1093/bioinformatics/btu033 10.1371/journal.pcbi.1004186 10.1038/nbt.1665 10.1109/5.726791 10.1016/j.jmva.2007.06.007 10.7717/peerj-cs.124 10.1093/oso/9780198538493.001.0001 10.1101/142760 10.1136/gutjnl-2015-310746 10.1093/bioinformatics/btp636 10.1038/ismej.2011.139 10.1023/A:1023818214614 10.1371/journal.pone.0036540 10.1038/nbt.2957 10.1093/bioinformatics/16.5.412 10.1371/journal.pone.0041882 10.1016/0005-2795(75)90109-9 10.1186/gb-2012-13-9-r79 10.1214/ss/1032280214 10.1038/sdata.2017.93 10.1073/pnas.0804812105 10.1371/journal.pcbi.1005706 10.1038/nature08821 10.1002/tax.572002 10.1093/nar/gkl244 10.32614/RJ-2009-001 10.1021/acs.molpharmaceut.5b00982 10.1093/bioinformatics/btm550 10.1038/nmeth.f.303 10.1093/bioinformatics/btq461 10.1109/TNB.2015.2461219 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2018 BioMed Central Ltd. The Author(s) 2018 |
Copyright_xml | – notice: COPYRIGHT 2018 BioMed Central Ltd. – notice: The Author(s) 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 5PM DOA |
DOI | 10.1186/s12859-018-2033-5 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2105 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_e149ec0cf6a94911b07e470a41a03c5c PMC5850953 A530391380 29536822 10_1186_s12859_018_2033_5 |
Genre | Journal Article |
GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB PMFND 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c566t-ad0a371808fdbc2ec0db6184336e1c5ba234e10aedb84df9c9b907f08bc01e1a3 |
IEDL.DBID | M48 |
ISSN | 1471-2105 |
IngestDate | Wed Aug 27 01:30:01 EDT 2025 Thu Aug 21 14:10:48 EDT 2025 Fri Jul 11 03:46:32 EDT 2025 Tue Jun 17 21:41:17 EDT 2025 Tue Jun 10 20:47:38 EDT 2025 Fri Jun 27 05:05:56 EDT 2025 Mon Jul 21 05:25:46 EDT 2025 Tue Jul 01 03:38:25 EDT 2025 Thu Apr 24 22:50:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | S2 |
Keywords | Deep learning Metagenomics Phylogenetic trees Convolutional neural networks |
Language | English |
License | Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c566t-ad0a371808fdbc2ec0db6184336e1c5ba234e10aedb84df9c9b907f08bc01e1a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-018-2033-5 |
PMID | 29536822 |
PQID | 2013787064 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e149ec0cf6a94911b07e470a41a03c5c pubmedcentral_primary_oai_pubmedcentral_nih_gov_5850953 proquest_miscellaneous_2013787064 gale_infotracmisc_A530391380 gale_infotracacademiconefile_A530391380 gale_incontextgauss_ISR_A530391380 pubmed_primary_29536822 crossref_primary_10_1186_s12859_018_2033_5 crossref_citationtrail_10_1186_s12859_018_2033_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-03-08 |
PublicationDateYYYYMMDD | 2018-03-08 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC bioinformatics |
PublicationTitleAlternate | BMC Bioinformatics |
PublicationYear | 2018 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | J Gorodkin (2033_CR35) 2004; 28 2033_CR59 TJ DiCiccio (2033_CR56) 1996; 11 JG Caporaso (2033_CR42) 2010; 7 H Sokol (2033_CR40) 2008; 105 S Min (2033_CR5) 2016; 18 E Pruesse (2033_CR49) 2007; 35 Boogaart van den (2033_CR52) 2008; 34 XC Morgan (2033_CR39) 2012; 13 G Ditzler (2033_CR6) 2015; 14 2033_CR10 2033_CR53 P Mamoshina (2033_CR2) 2016; 13 JJ Egozcue (2033_CR51) 2003; 35 2033_CR7 D McDonald (2033_CR44) 2012; 6 2033_CR29 M De Borda (2033_CR36) 1781; 1781 2033_CR4 2033_CR3 2033_CR23 C Angermueller (2033_CR55) 2016; 12 2033_CR22 2033_CR1 J Aitchison (2033_CR50) 1986 H Shen (2033_CR18) 2007; 99 J Fukuyama (2033_CR12) 2017; 13 BW Matthews (2033_CR25) 1975; 405 A Krizhevsky (2033_CR14) 2012 Y LeCun (2033_CR13) 1998; 86 G Jurman (2033_CR38) 2008; 24 D Albanese (2033_CR11) 2015; 11 G Jurman (2033_CR24) 2012; 7 D Roy (2033_CR60) 2015 2033_CR62 2033_CR21 2033_CR34 2033_CR33 Y Li (2033_CR61) 2016; 23 J Qin (2033_CR9) 2010; 464 F Pedregosa (2033_CR58) 2011; 12 H Sokol (2033_CR28) 2017; 66 A Stamatakis (2033_CR47) 2014; 30 J Fan (2033_CR19) 2001; 96 P Baldi (2033_CR26) 2000; 16 DM de Vienne (2033_CR17) 2011; 60 2033_CR30 DG Saari (2033_CR37) 2001 TF Cox (2033_CR16) 2001 TF Stuessy (2033_CR15) 2008; 57 H Fang (2033_CR8) 2017; 24 JTZ DeSantis (2033_CR45) 2006; 34 RC Edgar (2033_CR43) 2010; 26 K St John (2033_CR31) 2017; 66 JG Caporaso (2033_CR46) 2009; 26 MN Price (2033_CR48) 2010; 5 RC Entringer (2033_CR32) 1997; 24 2033_CR41 G Hinton (2033_CR57) 2008; 9 A Sczyrba (2033_CR20) 2017; 14 G Jurman (2033_CR27) 2012; 7 CM Bishop (2033_CR54) 1995 |
References_xml | – ident: 2033_CR3 doi: 10.1101/114892 – volume: 35 start-page: 7188 issue: 21 year: 2007 ident: 2033_CR49 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm864 – volume: 5 start-page: e9490 issue: 3 year: 2010 ident: 2033_CR48 publication-title: PLoS ONE doi: 10.1371/journal.pone.0009490 – ident: 2033_CR7 doi: 10.1101/149328 – volume: 24 start-page: 699 issue: 7 year: 2017 ident: 2033_CR8 publication-title: J Comput Biol doi: 10.1089/cmb.2017.0054 – volume: 23 start-page: 322 issue: 5 year: 2016 ident: 2033_CR61 publication-title: J Comput Biol doi: 10.1089/cmb.2015.0189 – volume-title: Advances in Neural Information Processing Systems vol. 25 year: 2012 ident: 2033_CR14 – volume: 12 start-page: 878 issue: 7 year: 2016 ident: 2033_CR55 publication-title: Mol Syst Biol doi: 10.15252/msb.20156651 – volume: 60 start-page: 826 issue: 6 year: 2011 ident: 2033_CR17 publication-title: Syst Biol doi: 10.1093/sysbio/syr066 – ident: 2033_CR59 doi: 10.1109/BIBM.2016.7822569 – volume: 96 start-page: 1348 year: 2001 ident: 2033_CR19 publication-title: J Am Stat Assoc doi: 10.1198/016214501753382273 – volume-title: The Statistical Analysis of Compositional Data year: 1986 ident: 2033_CR50 doi: 10.1007/978-94-009-4109-0 – volume: 28 start-page: 367 year: 2004 ident: 2033_CR35 publication-title: Comput Biol Chem doi: 10.1016/j.compbiolchem.2004.09.006 – volume: 34 start-page: 320 issue: 4 year: 2008 ident: 2033_CR52 publication-title: Comput Geosci doi: 10.1016/j.cageo.2006.11.017 – volume: 14 start-page: 1063 year: 2017 ident: 2033_CR20 publication-title: Nat Methods. doi: 10.1038/nmeth.4458 – ident: 2033_CR62 – volume: 30 start-page: 1312 issue: 9 year: 2014 ident: 2033_CR47 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu033 – volume: 11 start-page: e1004186 issue: 3 year: 2015 ident: 2033_CR11 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1004186 – ident: 2033_CR10 – ident: 2033_CR41 – ident: 2033_CR22 doi: 10.1038/nbt.1665 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 2033_CR13 publication-title: Proc IEEE doi: 10.1109/5.726791 – volume: 99 start-page: 1015 year: 2007 ident: 2033_CR18 publication-title: J Multivar Anal doi: 10.1016/j.jmva.2007.06.007 – ident: 2033_CR4 doi: 10.7717/peerj-cs.124 – volume: 18 start-page: 542 issue: 5 year: 2016 ident: 2033_CR5 publication-title: Brief Bioinform – volume-title: Neural Networks for Pattern Recognition year: 1995 ident: 2033_CR54 doi: 10.1093/oso/9780198538493.001.0001 – ident: 2033_CR1 doi: 10.1101/142760 – volume: 66 start-page: 1039 issue: 6 year: 2017 ident: 2033_CR28 publication-title: Gut doi: 10.1136/gutjnl-2015-310746 – volume: 26 start-page: 266 issue: 2 year: 2009 ident: 2033_CR46 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp636 – volume: 6 start-page: 610 issue: 3 year: 2012 ident: 2033_CR44 publication-title: ISME J doi: 10.1038/ismej.2011.139 – ident: 2033_CR34 – volume: 35 start-page: 279 issue: 3 year: 2003 ident: 2033_CR51 publication-title: Math Geol doi: 10.1023/A:1023818214614 – volume: 12 start-page: 2825 year: 2011 ident: 2033_CR58 publication-title: J Mach Learn Res – ident: 2033_CR30 – volume: 7 start-page: e36540 issue: 5 year: 2012 ident: 2033_CR24 publication-title: PLoS ONE doi: 10.1371/journal.pone.0036540 – volume: 1781 start-page: 657 year: 1781 ident: 2033_CR36 publication-title: Hist de l’Acadé,mie Royale des Sci – ident: 2033_CR23 doi: 10.1038/nbt.2957 – volume: 16 start-page: 412 issue: 5 year: 2000 ident: 2033_CR26 publication-title: Bioinformatics doi: 10.1093/bioinformatics/16.5.412 – volume-title: International Joint Conference on Neural Networks (IJCNN) year: 2015 ident: 2033_CR60 – ident: 2033_CR21 – volume: 7 start-page: e41882 issue: 8 year: 2012 ident: 2033_CR27 publication-title: PLoS ONE doi: 10.1371/journal.pone.0041882 – volume: 405 start-page: 442 issue: 2 year: 1975 ident: 2033_CR25 publication-title: Biochim Biophys Acta Protein Struct doi: 10.1016/0005-2795(75)90109-9 – volume: 13 start-page: R79 issue: 9 year: 2012 ident: 2033_CR39 publication-title: Genome Biol doi: 10.1186/gb-2012-13-9-r79 – volume: 24 start-page: 65 year: 1997 ident: 2033_CR32 publication-title: J Comb Math Comb Comput – volume: 11 start-page: 189 year: 1996 ident: 2033_CR56 publication-title: Stat Sci doi: 10.1214/ss/1032280214 – ident: 2033_CR29 doi: 10.1038/sdata.2017.93 – volume: 105 start-page: 16731 issue: 43 year: 2008 ident: 2033_CR40 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0804812105 – ident: 2033_CR33 – volume: 13 start-page: e1005706 issue: 8 year: 2017 ident: 2033_CR12 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005706 – volume: 464 start-page: 59 issue: 7285 year: 2010 ident: 2033_CR9 publication-title: Nature doi: 10.1038/nature08821 – volume-title: Multidimensional Scaling year: 2001 ident: 2033_CR16 – volume: 57 start-page: 594 issue: 2 year: 2008 ident: 2033_CR15 publication-title: Taxonomy doi: 10.1002/tax.572002 – volume: 34 start-page: W394 issue: suppl 2 year: 2006 ident: 2033_CR45 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkl244 – ident: 2033_CR53 doi: 10.32614/RJ-2009-001 – volume: 9 start-page: 2579 issue: Nov year: 2008 ident: 2033_CR57 publication-title: J Mach Learn Res – volume-title: Chaotic Elections! A Mathematician Looks at Voting year: 2001 ident: 2033_CR37 – volume: 13 start-page: 1445 issue: 5 year: 2016 ident: 2033_CR2 publication-title: Mol Pharm doi: 10.1021/acs.molpharmaceut.5b00982 – volume: 24 start-page: 258 issue: 2 year: 2008 ident: 2033_CR38 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm550 – volume: 7 start-page: 335 issue: 5 year: 2010 ident: 2033_CR42 publication-title: Nat Methods doi: 10.1038/nmeth.f.303 – volume: 26 start-page: 2460 issue: 19 year: 2010 ident: 2033_CR43 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq461 – volume: 14 start-page: 608 issue: 6 year: 2015 ident: 2033_CR6 publication-title: IEEE Trans NanoBioscience doi: 10.1109/TNB.2015.2461219 – volume: 66 start-page: e83 issue: 1 year: 2017 ident: 2033_CR31 publication-title: Syst Biol |
SSID | ssj0017805 |
Score | 2.5084314 |
Snippet | Convolutional Neural Networks can be effectively used only when data are endowed with an intrinsic concept of neighbourhood in the input space, as is the case... Abstract Background Convolutional Neural Networks can be effectively used only when data are endowed with an intrinsic concept of neighbourhood in the input... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 49 |
SubjectTerms | Algorithms Analysis Computational biology Convolutional neural networks Data Analysis Databases, Genetic Deep learning Genomics Humans Inflammatory Bowel Diseases - genetics Innovations Metagenomics Neural Networks (Computer) Phylogenetic trees Phylogeny Principal Component Analysis Reproducibility of Results Support Vector Machine |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEB5KQeiLWK26tspaBEFYmt1ksznfarFUH0pRC30Lk2zWHtg9ce8e_O-dyeaOWwT74tPCZhY2Xybzg0y-AXjjjaoCdrJQvlGFIvtXuIoWpOkarTFQ0IGR7fNSX1yrzzf1zVarL64JG-mBR-BOAoXwwQvfaZwp2plONEE1AlWJQvras_Uln7dOptL5ATP1pzPM0uiToWSeNkqbWSukLOqJF4pk_X-b5C2fNK2X3HJA54_gYYoc89Pxj_dhJ_SP4cHYS_L3E3h_dUu5N6kD30rMuZg8KRV9w6SV8RFLvod83ud3YYnMz3o398MBXJ9__HZ2UaTGCIWn6GtZYCtQklMRpmudrwie1sXGLVKH0tcOK6lCKTC0zqi2m_mZoxy4E8Z5UYYS5VPY7Rd9eA65QFE5JdrKSaRMrTHkwRUZHTS1lg1iBmINlPWJNZybV_ywMXsw2o7YWsLWMra2zuDd5pOfI2XGv4Q_MPobQWa7ji9IB2zSAXufDmRwzGtnmc-i54KZ77gaBvvp6xd7WkvmwJdGZPA2CXULmoHHdP-AcGAKrInk0USSNpyfDL9eq4jlIa5S68NiNdCUSskGUKsMno0qs5lYxefkFI1l0EyUaTLz6Ug_v41835TRMSvgi_8B1SHsVbwNuIrOHMHu8tcqvKSwaulexR30B1o1HWE priority: 102 providerName: Directory of Open Access Journals |
Title | Phylogenetic convolutional neural networks in metagenomics |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29536822 https://www.proquest.com/docview/2013787064 https://pubmed.ncbi.nlm.nih.gov/PMC5850953 https://doaj.org/article/e149ec0cf6a94911b07e470a41a03c5c |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ra9swED_6YLAvY-9664I3BoOBN9mSLWUwRjuadYOV0i2Qb0KS5TbQOm2cwPrf7052spqVfkkgOofc6Z7R6XcAb50SmTcVT4STIhHo_xKb4YbIShaF8Zh0mID2eVQcjsWPST7ZgNV4q06Aza2lHc2TGs_PP_y5uv6CBv85GLwqPjYpobBhUUx7znmSb8I2BiZJdvpT_DtUIPj-cNlIpglWOnl3yHnrV_TCVEDz_99n3wha_YbKGxFq9BAedKllvNfqwiPY8PVjuNcOm7x-Ap-Oz7A4R32ha4sxdZt3WofPEKpleAs94U08reMLvzAE4Hoxdc1TGI8Ofn89TLrJCYnD9GyRmJIZjlGHqaq0LvOOlTZMduGFT11uTcaFT5nxpVWirIZuaLFIrpiyjqU-NfwZbNWz2u9AzAzLrGBlZrnBUk4qDPECvZJRecGlMRGwlaC062DFabrFuQ7lhSp0K1uNstUkW51H8H79yGWLqXEX8T5Jf01IcNjhg9n8VHfWpT3WecikqwozFOi-LZNeSGZEahh3uYvgDe2dJsCLmjpqTs2yafT3Xyd6L-cEks8Vi-BdR1TNkANnugsKKAfCyOpR7vYo0SJdb_n1SkU0LVEbW-1nywZZSjl5yEJE8LxVmTVjGR2kY7oWgewpU4_z_ko9PQuA4FjyEWzgi7t_1ku4n5GCUwOd2oWtxXzpX2FGtbAD2JQTia9q9G0A2_sHR8cng_DvxCBY0F-rkh3E |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phylogenetic+convolutional+neural+networks+in+metagenomics&rft.jtitle=BMC+bioinformatics&rft.au=Fioravanti%2C+Diego&rft.au=Giarratano%2C+Ylenia&rft.au=Maggio%2C+Valerio&rft.au=Agostinelli%2C+Claudio&rft.date=2018-03-08&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=19&rft.issue=Suppl+2&rft_id=info:doi/10.1186%2Fs12859-018-2033-5&rft.externalDocID=A530391380 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |