Phylogenetic convolutional neural networks in metagenomics

Convolutional Neural Networks can be effectively used only when data are endowed with an intrinsic concept of neighbourhood in the input space, as is the case of pixels in images. We introduce here Ph-CNN, a novel deep learning architecture for the classification of metagenomics data based on the Co...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 19; no. S2; pp. 49 - 13
Main Authors Fioravanti, Diego, Giarratano, Ylenia, Maggio, Valerio, Agostinelli, Claudio, Chierici, Marco, Jurman, Giuseppe, Furlanello, Cesare
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 08.03.2018
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Convolutional Neural Networks can be effectively used only when data are endowed with an intrinsic concept of neighbourhood in the input space, as is the case of pixels in images. We introduce here Ph-CNN, a novel deep learning architecture for the classification of metagenomics data based on the Convolutional Neural Networks, with the patristic distance defined on the phylogenetic tree being used as the proximity measure. The patristic distance between variables is used together with a sparsified version of MultiDimensional Scaling to embed the phylogenetic tree in a Euclidean space. Ph-CNN is tested with a domain adaptation approach on synthetic data and on a metagenomics collection of gut microbiota of 38 healthy subjects and 222 Inflammatory Bowel Disease patients, divided in 6 subclasses. Classification performance is promising when compared to classical algorithms like Support Vector Machines and Random Forest and a baseline fully connected neural network, e.g. the Multi-Layer Perceptron. Ph-CNN represents a novel deep learning approach for the classification of metagenomics data. Operatively, the algorithm has been implemented as a custom Keras layer taking care of passing to the following convolutional layer not only the data but also the ranked list of neighbourhood of each sample, thus mimicking the case of image data, transparently to the user.
AbstractList Convolutional Neural Networks can be effectively used only when data are endowed with an intrinsic concept of neighbourhood in the input space, as is the case of pixels in images. We introduce here Ph-CNN, a novel deep learning architecture for the classification of metagenomics data based on the Convolutional Neural Networks, with the patristic distance defined on the phylogenetic tree being used as the proximity measure. The patristic distance between variables is used together with a sparsified version of MultiDimensional Scaling to embed the phylogenetic tree in a Euclidean space.BACKGROUNDConvolutional Neural Networks can be effectively used only when data are endowed with an intrinsic concept of neighbourhood in the input space, as is the case of pixels in images. We introduce here Ph-CNN, a novel deep learning architecture for the classification of metagenomics data based on the Convolutional Neural Networks, with the patristic distance defined on the phylogenetic tree being used as the proximity measure. The patristic distance between variables is used together with a sparsified version of MultiDimensional Scaling to embed the phylogenetic tree in a Euclidean space.Ph-CNN is tested with a domain adaptation approach on synthetic data and on a metagenomics collection of gut microbiota of 38 healthy subjects and 222 Inflammatory Bowel Disease patients, divided in 6 subclasses. Classification performance is promising when compared to classical algorithms like Support Vector Machines and Random Forest and a baseline fully connected neural network, e.g. the Multi-Layer Perceptron.RESULTSPh-CNN is tested with a domain adaptation approach on synthetic data and on a metagenomics collection of gut microbiota of 38 healthy subjects and 222 Inflammatory Bowel Disease patients, divided in 6 subclasses. Classification performance is promising when compared to classical algorithms like Support Vector Machines and Random Forest and a baseline fully connected neural network, e.g. the Multi-Layer Perceptron.Ph-CNN represents a novel deep learning approach for the classification of metagenomics data. Operatively, the algorithm has been implemented as a custom Keras layer taking care of passing to the following convolutional layer not only the data but also the ranked list of neighbourhood of each sample, thus mimicking the case of image data, transparently to the user.CONCLUSIONPh-CNN represents a novel deep learning approach for the classification of metagenomics data. Operatively, the algorithm has been implemented as a custom Keras layer taking care of passing to the following convolutional layer not only the data but also the ranked list of neighbourhood of each sample, thus mimicking the case of image data, transparently to the user.
Convolutional Neural Networks can be effectively used only when data are endowed with an intrinsic concept of neighbourhood in the input space, as is the case of pixels in images. We introduce here Ph-CNN, a novel deep learning architecture for the classification of metagenomics data based on the Convolutional Neural Networks, with the patristic distance defined on the phylogenetic tree being used as the proximity measure. The patristic distance between variables is used together with a sparsified version of MultiDimensional Scaling to embed the phylogenetic tree in a Euclidean space. Ph-CNN is tested with a domain adaptation approach on synthetic data and on a metagenomics collection of gut microbiota of 38 healthy subjects and 222 Inflammatory Bowel Disease patients, divided in 6 subclasses. Classification performance is promising when compared to classical algorithms like Support Vector Machines and Random Forest and a baseline fully connected neural network, e.g. the Multi-Layer Perceptron. Ph-CNN represents a novel deep learning approach for the classification of metagenomics data. Operatively, the algorithm has been implemented as a custom Keras layer taking care of passing to the following convolutional layer not only the data but also the ranked list of neighbourhood of each sample, thus mimicking the case of image data, transparently to the user.
Abstract Background Convolutional Neural Networks can be effectively used only when data are endowed with an intrinsic concept of neighbourhood in the input space, as is the case of pixels in images. We introduce here Ph-CNN, a novel deep learning architecture for the classification of metagenomics data based on the Convolutional Neural Networks, with the patristic distance defined on the phylogenetic tree being used as the proximity measure. The patristic distance between variables is used together with a sparsified version of MultiDimensional Scaling to embed the phylogenetic tree in a Euclidean space. Results Ph-CNN is tested with a domain adaptation approach on synthetic data and on a metagenomics collection of gut microbiota of 38 healthy subjects and 222 Inflammatory Bowel Disease patients, divided in 6 subclasses. Classification performance is promising when compared to classical algorithms like Support Vector Machines and Random Forest and a baseline fully connected neural network, e.g. the Multi-Layer Perceptron. Conclusion Ph-CNN represents a novel deep learning approach for the classification of metagenomics data. Operatively, the algorithm has been implemented as a custom Keras layer taking care of passing to the following convolutional layer not only the data but also the ranked list of neighbourhood of each sample, thus mimicking the case of image data, transparently to the user.
ArticleNumber 49
Audience Academic
Author Fioravanti, Diego
Maggio, Valerio
Chierici, Marco
Furlanello, Cesare
Giarratano, Ylenia
Jurman, Giuseppe
Agostinelli, Claudio
Author_xml – sequence: 1
  givenname: Diego
  surname: Fioravanti
  fullname: Fioravanti, Diego
– sequence: 2
  givenname: Ylenia
  surname: Giarratano
  fullname: Giarratano, Ylenia
– sequence: 3
  givenname: Valerio
  surname: Maggio
  fullname: Maggio, Valerio
– sequence: 4
  givenname: Claudio
  surname: Agostinelli
  fullname: Agostinelli, Claudio
– sequence: 5
  givenname: Marco
  surname: Chierici
  fullname: Chierici, Marco
– sequence: 6
  givenname: Giuseppe
  surname: Jurman
  fullname: Jurman, Giuseppe
– sequence: 7
  givenname: Cesare
  surname: Furlanello
  fullname: Furlanello, Cesare
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29536822$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1TAQhS1URB_wA9igK7GBRcpMHCcOC6Sq4nGlSiAea8txJqlLYpfYKfTf49uUqkEIeWHL_s7xjH0O2Z7zjhh7inCMKMtXAXMp6gxQZjlwnokH7ACLCrMcQezdW--zwxAuALCSIB6x_bwWvJR5fsBefzq_HnxPjqI1G-PdlR_maL3Tw8bRPN1M8aefvoeNdZuRok6wH60Jj9nDTg-BntzOR-zbu7dfTz9kZx_fb09PzjIjyjJmugXNK5Qgu7YxORlomxJlwXlJaESjc14Qgqa2kUXb1aZuaqg6kI0BJNT8iG0X39brC3U52VFP18prq242_NQrPaXqB1KERZ0uMF2p66JGbKCiogJdoAZuhElebxavy7kZqTXkYmpxZbo-cfZc9f5KCSkgPVoyeHFrMPkfM4WoRhsMDYN25OegckBeyQrKIqHPF7TXqTTrOp8czQ5XJ4IDr5FLSNTxP6g0WkqPnP67s2l_JXi5EiQm0q_Y6zkEtf3yec0-u9_uXZ9__j8BuABm8iFM1N0hCGqXMbVkTKWMqV3GlEia6i-NsVHvMpMqt8N_lL8BiezUTQ
CitedBy_id crossref_primary_10_36222_ejt_1094218
crossref_primary_10_1016_j_fbio_2024_104541
crossref_primary_10_1093_bioadv_vbae203
crossref_primary_10_1128_spectrum_05237_22
crossref_primary_10_1093_bioinformatics_btaa477
crossref_primary_10_3389_fmicb_2021_634511
crossref_primary_10_1186_s12864_019_5546_z
crossref_primary_10_3389_fgene_2021_697090
crossref_primary_10_2991_jaims_d_201028_001
crossref_primary_10_3390_app14198627
crossref_primary_10_1093_bioadv_vbae013
crossref_primary_10_1007_s12553_020_00486_7
crossref_primary_10_2174_1574893618666230605120615
crossref_primary_10_1038_s41545_021_00106_5
crossref_primary_10_1136_gutjnl_2019_320065
crossref_primary_10_1186_s40168_023_01737_1
crossref_primary_10_1007_s12561_020_09279_y
crossref_primary_10_3748_wjg_v27_i21_2681
crossref_primary_10_1186_s44147_022_00125_0
crossref_primary_10_1016_j_it_2023_03_002
crossref_primary_10_1099_mgen_0_001231
crossref_primary_10_1186_s12911_021_01705_5
crossref_primary_10_1093_bib_bbaa073
crossref_primary_10_1007_s11831_023_09987_w
crossref_primary_10_1016_j_compbiomed_2022_106020
crossref_primary_10_1111_jgh_15501
crossref_primary_10_1038_s41598_024_64658_5
crossref_primary_10_1371_journal_pone_0230536
crossref_primary_10_3390_genes13040648
crossref_primary_10_3390_healthcare10112335
crossref_primary_10_1016_j_csbr_2024_100005
crossref_primary_10_1016_j_patter_2022_100658
crossref_primary_10_1093_bioinformatics_btz476
crossref_primary_10_1186_s12934_022_01973_4
crossref_primary_10_3389_fmicb_2024_1516667
crossref_primary_10_1109_JBHI_2020_2993761
crossref_primary_10_1016_j_marpolbul_2019_110530
crossref_primary_10_1111_1462_2920_15910
crossref_primary_10_1016_j_isci_2022_104081
crossref_primary_10_12688_f1000research_27384_1
crossref_primary_10_1109_ACCESS_2019_2939284
crossref_primary_10_2139_ssrn_4129422
crossref_primary_10_3390_biom11020264
crossref_primary_10_1002_advs_202404277
crossref_primary_10_1111_ele_13462
crossref_primary_10_1128_mBio_00434_20
crossref_primary_10_1186_s12859_023_05251_x
crossref_primary_10_1371_journal_pcbi_1006693
crossref_primary_10_1002_cyto_a_24920
crossref_primary_10_1155_2022_2844757
crossref_primary_10_1080_19490976_2024_2302076
crossref_primary_10_1186_s12864_019_6413_7
crossref_primary_10_1371_journal_pone_0316493
crossref_primary_10_1016_j_pbi_2022_102326
Cites_doi 10.1101/114892
10.1093/nar/gkm864
10.1371/journal.pone.0009490
10.1101/149328
10.1089/cmb.2017.0054
10.1089/cmb.2015.0189
10.15252/msb.20156651
10.1093/sysbio/syr066
10.1109/BIBM.2016.7822569
10.1198/016214501753382273
10.1007/978-94-009-4109-0
10.1016/j.compbiolchem.2004.09.006
10.1016/j.cageo.2006.11.017
10.1038/nmeth.4458
10.1093/bioinformatics/btu033
10.1371/journal.pcbi.1004186
10.1038/nbt.1665
10.1109/5.726791
10.1016/j.jmva.2007.06.007
10.7717/peerj-cs.124
10.1093/oso/9780198538493.001.0001
10.1101/142760
10.1136/gutjnl-2015-310746
10.1093/bioinformatics/btp636
10.1038/ismej.2011.139
10.1023/A:1023818214614
10.1371/journal.pone.0036540
10.1038/nbt.2957
10.1093/bioinformatics/16.5.412
10.1371/journal.pone.0041882
10.1016/0005-2795(75)90109-9
10.1186/gb-2012-13-9-r79
10.1214/ss/1032280214
10.1038/sdata.2017.93
10.1073/pnas.0804812105
10.1371/journal.pcbi.1005706
10.1038/nature08821
10.1002/tax.572002
10.1093/nar/gkl244
10.32614/RJ-2009-001
10.1021/acs.molpharmaceut.5b00982
10.1093/bioinformatics/btm550
10.1038/nmeth.f.303
10.1093/bioinformatics/btq461
10.1109/TNB.2015.2461219
ContentType Journal Article
Copyright COPYRIGHT 2018 BioMed Central Ltd.
The Author(s) 2018
Copyright_xml – notice: COPYRIGHT 2018 BioMed Central Ltd.
– notice: The Author(s) 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
5PM
DOA
DOI 10.1186/s12859-018-2033-5
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 13
ExternalDocumentID oai_doaj_org_article_e149ec0cf6a94911b07e470a41a03c5c
PMC5850953
A530391380
29536822
10_1186_s12859_018_2033_5
Genre Journal Article
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
PMFND
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c566t-ad0a371808fdbc2ec0db6184336e1c5ba234e10aedb84df9c9b907f08bc01e1a3
IEDL.DBID M48
ISSN 1471-2105
IngestDate Wed Aug 27 01:30:01 EDT 2025
Thu Aug 21 14:10:48 EDT 2025
Fri Jul 11 03:46:32 EDT 2025
Tue Jun 17 21:41:17 EDT 2025
Tue Jun 10 20:47:38 EDT 2025
Fri Jun 27 05:05:56 EDT 2025
Mon Jul 21 05:25:46 EDT 2025
Tue Jul 01 03:38:25 EDT 2025
Thu Apr 24 22:50:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue S2
Keywords Deep learning
Metagenomics
Phylogenetic trees
Convolutional neural networks
Language English
License Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c566t-ad0a371808fdbc2ec0db6184336e1c5ba234e10aedb84df9c9b907f08bc01e1a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-018-2033-5
PMID 29536822
PQID 2013787064
PQPubID 23479
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_e149ec0cf6a94911b07e470a41a03c5c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5850953
proquest_miscellaneous_2013787064
gale_infotracmisc_A530391380
gale_infotracacademiconefile_A530391380
gale_incontextgauss_ISR_A530391380
pubmed_primary_29536822
crossref_primary_10_1186_s12859_018_2033_5
crossref_citationtrail_10_1186_s12859_018_2033_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-08
PublicationDateYYYYMMDD 2018-03-08
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-08
  day: 08
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2018
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References J Gorodkin (2033_CR35) 2004; 28
2033_CR59
TJ DiCiccio (2033_CR56) 1996; 11
JG Caporaso (2033_CR42) 2010; 7
H Sokol (2033_CR40) 2008; 105
S Min (2033_CR5) 2016; 18
E Pruesse (2033_CR49) 2007; 35
Boogaart van den (2033_CR52) 2008; 34
XC Morgan (2033_CR39) 2012; 13
G Ditzler (2033_CR6) 2015; 14
2033_CR10
2033_CR53
P Mamoshina (2033_CR2) 2016; 13
JJ Egozcue (2033_CR51) 2003; 35
2033_CR7
D McDonald (2033_CR44) 2012; 6
2033_CR29
M De Borda (2033_CR36) 1781; 1781
2033_CR4
2033_CR3
2033_CR23
C Angermueller (2033_CR55) 2016; 12
2033_CR22
2033_CR1
J Aitchison (2033_CR50) 1986
H Shen (2033_CR18) 2007; 99
J Fukuyama (2033_CR12) 2017; 13
BW Matthews (2033_CR25) 1975; 405
A Krizhevsky (2033_CR14) 2012
Y LeCun (2033_CR13) 1998; 86
G Jurman (2033_CR38) 2008; 24
D Albanese (2033_CR11) 2015; 11
G Jurman (2033_CR24) 2012; 7
D Roy (2033_CR60) 2015
2033_CR62
2033_CR21
2033_CR34
2033_CR33
Y Li (2033_CR61) 2016; 23
J Qin (2033_CR9) 2010; 464
F Pedregosa (2033_CR58) 2011; 12
H Sokol (2033_CR28) 2017; 66
A Stamatakis (2033_CR47) 2014; 30
J Fan (2033_CR19) 2001; 96
P Baldi (2033_CR26) 2000; 16
DM de Vienne (2033_CR17) 2011; 60
2033_CR30
DG Saari (2033_CR37) 2001
TF Cox (2033_CR16) 2001
TF Stuessy (2033_CR15) 2008; 57
H Fang (2033_CR8) 2017; 24
JTZ DeSantis (2033_CR45) 2006; 34
RC Edgar (2033_CR43) 2010; 26
K St John (2033_CR31) 2017; 66
JG Caporaso (2033_CR46) 2009; 26
MN Price (2033_CR48) 2010; 5
RC Entringer (2033_CR32) 1997; 24
2033_CR41
G Hinton (2033_CR57) 2008; 9
A Sczyrba (2033_CR20) 2017; 14
G Jurman (2033_CR27) 2012; 7
CM Bishop (2033_CR54) 1995
References_xml – ident: 2033_CR3
  doi: 10.1101/114892
– volume: 35
  start-page: 7188
  issue: 21
  year: 2007
  ident: 2033_CR49
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm864
– volume: 5
  start-page: e9490
  issue: 3
  year: 2010
  ident: 2033_CR48
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0009490
– ident: 2033_CR7
  doi: 10.1101/149328
– volume: 24
  start-page: 699
  issue: 7
  year: 2017
  ident: 2033_CR8
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2017.0054
– volume: 23
  start-page: 322
  issue: 5
  year: 2016
  ident: 2033_CR61
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2015.0189
– volume-title: Advances in Neural Information Processing Systems vol. 25
  year: 2012
  ident: 2033_CR14
– volume: 12
  start-page: 878
  issue: 7
  year: 2016
  ident: 2033_CR55
  publication-title: Mol Syst Biol
  doi: 10.15252/msb.20156651
– volume: 60
  start-page: 826
  issue: 6
  year: 2011
  ident: 2033_CR17
  publication-title: Syst Biol
  doi: 10.1093/sysbio/syr066
– ident: 2033_CR59
  doi: 10.1109/BIBM.2016.7822569
– volume: 96
  start-page: 1348
  year: 2001
  ident: 2033_CR19
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214501753382273
– volume-title: The Statistical Analysis of Compositional Data
  year: 1986
  ident: 2033_CR50
  doi: 10.1007/978-94-009-4109-0
– volume: 28
  start-page: 367
  year: 2004
  ident: 2033_CR35
  publication-title: Comput Biol Chem
  doi: 10.1016/j.compbiolchem.2004.09.006
– volume: 34
  start-page: 320
  issue: 4
  year: 2008
  ident: 2033_CR52
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2006.11.017
– volume: 14
  start-page: 1063
  year: 2017
  ident: 2033_CR20
  publication-title: Nat Methods.
  doi: 10.1038/nmeth.4458
– ident: 2033_CR62
– volume: 30
  start-page: 1312
  issue: 9
  year: 2014
  ident: 2033_CR47
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu033
– volume: 11
  start-page: e1004186
  issue: 3
  year: 2015
  ident: 2033_CR11
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1004186
– ident: 2033_CR10
– ident: 2033_CR41
– ident: 2033_CR22
  doi: 10.1038/nbt.1665
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 2033_CR13
  publication-title: Proc IEEE
  doi: 10.1109/5.726791
– volume: 99
  start-page: 1015
  year: 2007
  ident: 2033_CR18
  publication-title: J Multivar Anal
  doi: 10.1016/j.jmva.2007.06.007
– ident: 2033_CR4
  doi: 10.7717/peerj-cs.124
– volume: 18
  start-page: 542
  issue: 5
  year: 2016
  ident: 2033_CR5
  publication-title: Brief Bioinform
– volume-title: Neural Networks for Pattern Recognition
  year: 1995
  ident: 2033_CR54
  doi: 10.1093/oso/9780198538493.001.0001
– ident: 2033_CR1
  doi: 10.1101/142760
– volume: 66
  start-page: 1039
  issue: 6
  year: 2017
  ident: 2033_CR28
  publication-title: Gut
  doi: 10.1136/gutjnl-2015-310746
– volume: 26
  start-page: 266
  issue: 2
  year: 2009
  ident: 2033_CR46
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp636
– volume: 6
  start-page: 610
  issue: 3
  year: 2012
  ident: 2033_CR44
  publication-title: ISME J
  doi: 10.1038/ismej.2011.139
– ident: 2033_CR34
– volume: 35
  start-page: 279
  issue: 3
  year: 2003
  ident: 2033_CR51
  publication-title: Math Geol
  doi: 10.1023/A:1023818214614
– volume: 12
  start-page: 2825
  year: 2011
  ident: 2033_CR58
  publication-title: J Mach Learn Res
– ident: 2033_CR30
– volume: 7
  start-page: e36540
  issue: 5
  year: 2012
  ident: 2033_CR24
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0036540
– volume: 1781
  start-page: 657
  year: 1781
  ident: 2033_CR36
  publication-title: Hist de l’Acadé,mie Royale des Sci
– ident: 2033_CR23
  doi: 10.1038/nbt.2957
– volume: 16
  start-page: 412
  issue: 5
  year: 2000
  ident: 2033_CR26
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/16.5.412
– volume-title: International Joint Conference on Neural Networks (IJCNN)
  year: 2015
  ident: 2033_CR60
– ident: 2033_CR21
– volume: 7
  start-page: e41882
  issue: 8
  year: 2012
  ident: 2033_CR27
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0041882
– volume: 405
  start-page: 442
  issue: 2
  year: 1975
  ident: 2033_CR25
  publication-title: Biochim Biophys Acta Protein Struct
  doi: 10.1016/0005-2795(75)90109-9
– volume: 13
  start-page: R79
  issue: 9
  year: 2012
  ident: 2033_CR39
  publication-title: Genome Biol
  doi: 10.1186/gb-2012-13-9-r79
– volume: 24
  start-page: 65
  year: 1997
  ident: 2033_CR32
  publication-title: J Comb Math Comb Comput
– volume: 11
  start-page: 189
  year: 1996
  ident: 2033_CR56
  publication-title: Stat Sci
  doi: 10.1214/ss/1032280214
– ident: 2033_CR29
  doi: 10.1038/sdata.2017.93
– volume: 105
  start-page: 16731
  issue: 43
  year: 2008
  ident: 2033_CR40
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0804812105
– ident: 2033_CR33
– volume: 13
  start-page: e1005706
  issue: 8
  year: 2017
  ident: 2033_CR12
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005706
– volume: 464
  start-page: 59
  issue: 7285
  year: 2010
  ident: 2033_CR9
  publication-title: Nature
  doi: 10.1038/nature08821
– volume-title: Multidimensional Scaling
  year: 2001
  ident: 2033_CR16
– volume: 57
  start-page: 594
  issue: 2
  year: 2008
  ident: 2033_CR15
  publication-title: Taxonomy
  doi: 10.1002/tax.572002
– volume: 34
  start-page: W394
  issue: suppl 2
  year: 2006
  ident: 2033_CR45
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl244
– ident: 2033_CR53
  doi: 10.32614/RJ-2009-001
– volume: 9
  start-page: 2579
  issue: Nov
  year: 2008
  ident: 2033_CR57
  publication-title: J Mach Learn Res
– volume-title: Chaotic Elections! A Mathematician Looks at Voting
  year: 2001
  ident: 2033_CR37
– volume: 13
  start-page: 1445
  issue: 5
  year: 2016
  ident: 2033_CR2
  publication-title: Mol Pharm
  doi: 10.1021/acs.molpharmaceut.5b00982
– volume: 24
  start-page: 258
  issue: 2
  year: 2008
  ident: 2033_CR38
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm550
– volume: 7
  start-page: 335
  issue: 5
  year: 2010
  ident: 2033_CR42
  publication-title: Nat Methods
  doi: 10.1038/nmeth.f.303
– volume: 26
  start-page: 2460
  issue: 19
  year: 2010
  ident: 2033_CR43
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq461
– volume: 14
  start-page: 608
  issue: 6
  year: 2015
  ident: 2033_CR6
  publication-title: IEEE Trans NanoBioscience
  doi: 10.1109/TNB.2015.2461219
– volume: 66
  start-page: e83
  issue: 1
  year: 2017
  ident: 2033_CR31
  publication-title: Syst Biol
SSID ssj0017805
Score 2.5084314
Snippet Convolutional Neural Networks can be effectively used only when data are endowed with an intrinsic concept of neighbourhood in the input space, as is the case...
Abstract Background Convolutional Neural Networks can be effectively used only when data are endowed with an intrinsic concept of neighbourhood in the input...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 49
SubjectTerms Algorithms
Analysis
Computational biology
Convolutional neural networks
Data Analysis
Databases, Genetic
Deep learning
Genomics
Humans
Inflammatory Bowel Diseases - genetics
Innovations
Metagenomics
Neural Networks (Computer)
Phylogenetic trees
Phylogeny
Principal Component Analysis
Reproducibility of Results
Support Vector Machine
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEB5KQeiLWK26tspaBEFYmt1ksznfarFUH0pRC30Lk2zWHtg9ce8e_O-dyeaOWwT74tPCZhY2Xybzg0y-AXjjjaoCdrJQvlGFIvtXuIoWpOkarTFQ0IGR7fNSX1yrzzf1zVarL64JG-mBR-BOAoXwwQvfaZwp2plONEE1AlWJQvras_Uln7dOptL5ATP1pzPM0uiToWSeNkqbWSukLOqJF4pk_X-b5C2fNK2X3HJA54_gYYoc89Pxj_dhJ_SP4cHYS_L3E3h_dUu5N6kD30rMuZg8KRV9w6SV8RFLvod83ud3YYnMz3o398MBXJ9__HZ2UaTGCIWn6GtZYCtQklMRpmudrwie1sXGLVKH0tcOK6lCKTC0zqi2m_mZoxy4E8Z5UYYS5VPY7Rd9eA65QFE5JdrKSaRMrTHkwRUZHTS1lg1iBmINlPWJNZybV_ywMXsw2o7YWsLWMra2zuDd5pOfI2XGv4Q_MPobQWa7ji9IB2zSAXufDmRwzGtnmc-i54KZ77gaBvvp6xd7WkvmwJdGZPA2CXULmoHHdP-AcGAKrInk0USSNpyfDL9eq4jlIa5S68NiNdCUSskGUKsMno0qs5lYxefkFI1l0EyUaTLz6Ug_v41835TRMSvgi_8B1SHsVbwNuIrOHMHu8tcqvKSwaulexR30B1o1HWE
  priority: 102
  providerName: Directory of Open Access Journals
Title Phylogenetic convolutional neural networks in metagenomics
URI https://www.ncbi.nlm.nih.gov/pubmed/29536822
https://www.proquest.com/docview/2013787064
https://pubmed.ncbi.nlm.nih.gov/PMC5850953
https://doaj.org/article/e149ec0cf6a94911b07e470a41a03c5c
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ra9swED_6YLAvY-9664I3BoOBN9mSLWUwRjuadYOV0i2Qb0KS5TbQOm2cwPrf7052spqVfkkgOofc6Z7R6XcAb50SmTcVT4STIhHo_xKb4YbIShaF8Zh0mID2eVQcjsWPST7ZgNV4q06Aza2lHc2TGs_PP_y5uv6CBv85GLwqPjYpobBhUUx7znmSb8I2BiZJdvpT_DtUIPj-cNlIpglWOnl3yHnrV_TCVEDz_99n3wha_YbKGxFq9BAedKllvNfqwiPY8PVjuNcOm7x-Ap-Oz7A4R32ha4sxdZt3WofPEKpleAs94U08reMLvzAE4Hoxdc1TGI8Ofn89TLrJCYnD9GyRmJIZjlGHqaq0LvOOlTZMduGFT11uTcaFT5nxpVWirIZuaLFIrpiyjqU-NfwZbNWz2u9AzAzLrGBlZrnBUk4qDPECvZJRecGlMRGwlaC062DFabrFuQ7lhSp0K1uNstUkW51H8H79yGWLqXEX8T5Jf01IcNjhg9n8VHfWpT3WecikqwozFOi-LZNeSGZEahh3uYvgDe2dJsCLmjpqTs2yafT3Xyd6L-cEks8Vi-BdR1TNkANnugsKKAfCyOpR7vYo0SJdb_n1SkU0LVEbW-1nywZZSjl5yEJE8LxVmTVjGR2kY7oWgewpU4_z_ko9PQuA4FjyEWzgi7t_1ku4n5GCUwOd2oWtxXzpX2FGtbAD2JQTia9q9G0A2_sHR8cng_DvxCBY0F-rkh3E
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phylogenetic+convolutional+neural+networks+in+metagenomics&rft.jtitle=BMC+bioinformatics&rft.au=Fioravanti%2C+Diego&rft.au=Giarratano%2C+Ylenia&rft.au=Maggio%2C+Valerio&rft.au=Agostinelli%2C+Claudio&rft.date=2018-03-08&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=19&rft.issue=Suppl+2&rft_id=info:doi/10.1186%2Fs12859-018-2033-5&rft.externalDocID=A530391380
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon