Discovery of fairy circles in Australia supports self-organization theory
Vegetation gap patterns in arid grasslands, such as the “fairy circles” of Namibia, are one of nature’s greatest mysteries and subject to a lively debate on their origin. They are characterized by small-scale hexagonal ordering of circular bare-soil gaps that persists uniformly in the landscape scal...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 113; no. 13; pp. 3551 - 3556 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
29.03.2016
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Vegetation gap patterns in arid grasslands, such as the “fairy circles” of Namibia, are one of nature’s greatest mysteries and subject to a lively debate on their origin. They are characterized by small-scale hexagonal ordering of circular bare-soil gaps that persists uniformly in the landscape scale to form a homogeneous distribution. Pattern-formation theory predicts that such highly ordered gap patterns should be found also in other water-limited systems across the globe, even if the mechanisms of their formation are different. Here we report that so far unknown fairy circles with the same spatial structure exist 10,000 km away from Namibia in the remote outback of Australia. Combining fieldwork, remote sensing, spatial pattern analysis, and process-based mathematical modeling, we demonstrate that these patterns emerge by self-organization, with no correlation with termite activity; the driving mechanism is a positive biomass–water feedback associated with water runoff and biomass-dependent infiltration rates. The remarkable match between the patterns of Australian and Namibian fairy circles and model results indicate that both patterns emerge from a nonuniform stationary instability, supporting a central universality principle of pattern-formation theory. Applied to the context of dryland vegetation, this principle predicts that different systems that go through the same instability type will show similar vegetation patterns even if the feedback mechanisms and resulting soil–water distributions are different, as we indeed found by comparing the Australian and the Namibian fairy-circle ecosystems. These results suggest that biomass–water feedbacks and resultant vegetation gap patterns are likely more common in remote drylands than is currently known. |
---|---|
AbstractList | Pattern-formation theory predicts that vegetation gap patterns, such as the fairy circles of Namibia, emerge through the action of pattern-forming biomass–water feedbacks and that such patterns should be found elsewhere in water-limited systems around the world. We report here the exciting discovery of fairy-circle patterns in the remote outback of Australia. Using fieldwork, remote sensing, spatial pattern analysis, mathematical modeling, and pattern-formation theory we show that the Australian gap patterns share with their Namibian counterparts the same characteristics but are driven by a different biomass–water feedback. These observations are in line with a central universality principle of pattern-formation theory and support the applicability of this theory to wider contexts of spatial self-organization in ecology.
Vegetation gap patterns in arid grasslands, such as the “fairy circles” of Namibia, are one of nature’s greatest mysteries and subject to a lively debate on their origin. They are characterized by small-scale hexagonal ordering of circular bare-soil gaps that persists uniformly in the landscape scale to form a homogeneous distribution. Pattern-formation theory predicts that such highly ordered gap patterns should be found also in other water-limited systems across the globe, even if the mechanisms of their formation are different. Here we report that so far unknown fairy circles with the same spatial structure exist 10,000 km away from Namibia in the remote outback of Australia. Combining fieldwork, remote sensing, spatial pattern analysis, and process-based mathematical modeling, we demonstrate that these patterns emerge by self-organization, with no correlation with termite activity; the driving mechanism is a positive biomass–water feedback associated with water runoff and biomass-dependent infiltration rates. The remarkable match between the patterns of Australian and Namibian fairy circles and model results indicate that both patterns emerge from a nonuniform stationary instability, supporting a central universality principle of pattern-formation theory. Applied to the context of dryland vegetation, this principle predicts that different systems that go through the same instability type will show similar vegetation patterns even if the feedback mechanisms and resulting soil–water distributions are different, as we indeed found by comparing the Australian and the Namibian fairy-circle ecosystems. These results suggest that biomass–water feedbacks and resultant vegetation gap patterns are likely more common in remote drylands than is currently known. Vegetation gap patterns in arid grasslands, such as the “fairy circles” of Namibia, are one of nature’s greatest mysteries and subject to a lively debate on their origin. They are characterized by small-scale hexagonal ordering of circular bare-soil gaps that persists uniformly in the landscape scale to form a homogeneous distribution. Pattern-formation theory predicts that such highly ordered gap patterns should be found also in other water-limited systems across the globe, even if the mechanisms of their formation are different. Here we report that so far unknown fairy circles with the same spatial structure exist 10,000 km away from Namibia in the remote outback of Australia. Combining fieldwork, remote sensing, spatial pattern analysis, and process-based mathematical modeling, we demonstrate that these patterns emerge by self-organization, with no correlation with termite activity; the driving mechanism is a positive biomass–water feedback associated with water runoff and biomass-dependent infiltration rates. The remarkable match between the patterns of Australian and Namibian fairy circles and model results indicate that both patterns emerge from a nonuniform stationary instability, supporting a central universality principle of pattern-formation theory. Applied to the context of dryland vegetation, this principle predicts that different systems that go through the same instability type will show similar vegetation patterns even if the feedback mechanisms and resulting soil–water distributions are different, as we indeed found by comparing the Australian and the Namibian fairy-circle ecosystems. These results suggest that biomass–water feedbacks and resultant vegetation gap patterns are likely more common in remote drylands than is currently known. Vegetation gap patterns in arid grasslands, such as the "fairy circles" of Namibia, are one of nature's greatest mysteries and subject to a lively debate on their origin. They are characterized by small-scale hexagonal ordering of circular bare-soil gaps that persists uniformly in the landscape scale to form a homogeneous distribution. Pattern-formation theory predicts that such highly ordered gap patterns should be found also in other water-limited systems across the globe, even if the mechanisms of their formation are different. Here we report that so far unknown fairy circles with the same spatial structure exist 10,000 km away from Namibia in the remote outback of Australia. Combining fieldwork, remote sensing, spatial pattern analysis, and process-based mathematical modeling, we demonstrate that these patterns emerge by self-organization, with no correlation with termite activity; the driving mechanism is a positive biomass-water feedback associated with water runoff and biomass-dependent infiltration rates. The remarkable match between the patterns of Australian and Namibian fairy circles and model results indicate that both patterns emerge from a nonuniform stationary instability, supporting a central universality principle of pattern-formation theory. Applied to the context of dryland vegetation, this principle predicts that different systems that go through the same instability type will show similar vegetation patterns even if the feedback mechanisms and resulting soil-water distributions are different, as we indeed found by comparing the Australian and the Namibian fairy-circle ecosystems. These results suggest that biomass-water feedbacks and resultant vegetation gap patterns are likely more common in remote drylands than is currently known.Vegetation gap patterns in arid grasslands, such as the "fairy circles" of Namibia, are one of nature's greatest mysteries and subject to a lively debate on their origin. They are characterized by small-scale hexagonal ordering of circular bare-soil gaps that persists uniformly in the landscape scale to form a homogeneous distribution. Pattern-formation theory predicts that such highly ordered gap patterns should be found also in other water-limited systems across the globe, even if the mechanisms of their formation are different. Here we report that so far unknown fairy circles with the same spatial structure exist 10,000 km away from Namibia in the remote outback of Australia. Combining fieldwork, remote sensing, spatial pattern analysis, and process-based mathematical modeling, we demonstrate that these patterns emerge by self-organization, with no correlation with termite activity; the driving mechanism is a positive biomass-water feedback associated with water runoff and biomass-dependent infiltration rates. The remarkable match between the patterns of Australian and Namibian fairy circles and model results indicate that both patterns emerge from a nonuniform stationary instability, supporting a central universality principle of pattern-formation theory. Applied to the context of dryland vegetation, this principle predicts that different systems that go through the same instability type will show similar vegetation patterns even if the feedback mechanisms and resulting soil-water distributions are different, as we indeed found by comparing the Australian and the Namibian fairy-circle ecosystems. These results suggest that biomass-water feedbacks and resultant vegetation gap patterns are likely more common in remote drylands than is currently known. |
Author | Postle, Anthony C. Wiegand, Thorsten Tzuk, Omer Yizhaq, Hezi Bell, Bronwyn Zelnik, Yuval R. Wiegand, Kerstin Katra, Itzhak Meron, Ehud Erickson, Todd E. Getzin, Stephan |
Author_xml | – sequence: 1 givenname: Stephan surname: Getzin fullname: Getzin, Stephan organization: Department of Ecological Modelling, Helmholtz Centre for Environmental Research – UFZ, 04318 Leipzig, Germany – sequence: 2 givenname: Hezi surname: Yizhaq fullname: Yizhaq, Hezi organization: The Dead-Sea and Arava Science Center, Tamar Regional Council, Israel – sequence: 3 givenname: Bronwyn surname: Bell fullname: Bell, Bronwyn organization: Environmental Management, Rio Tinto, Perth, WA 6000, Australia – sequence: 4 givenname: Todd E. surname: Erickson fullname: Erickson, Todd E. organization: School of Plant Biology, The University of Western Australia, Crawley, WA 6009, Australia – sequence: 5 givenname: Anthony C. surname: Postle fullname: Postle, Anthony C. organization: P.O. Box 5473, Cairns, QLD 4870, Australia – sequence: 6 givenname: Itzhak surname: Katra fullname: Katra, Itzhak organization: Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel – sequence: 7 givenname: Omer surname: Tzuk fullname: Tzuk, Omer organization: Physics Department, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel – sequence: 8 givenname: Yuval R. surname: Zelnik fullname: Zelnik, Yuval R. organization: Department of Solar Energy and Environmental Physics, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel – sequence: 9 givenname: Kerstin surname: Wiegand fullname: Wiegand, Kerstin organization: Department of Ecosystem Modelling, University of Goettingen, 37077 Goettingen, Germany – sequence: 10 givenname: Thorsten surname: Wiegand fullname: Wiegand, Thorsten organization: German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany – sequence: 11 givenname: Ehud surname: Meron fullname: Meron, Ehud organization: Physics Department, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26976567$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkd1rFDEUxYNU7Lb67JM64Isv0-b740UotdVCwRd9DtnMnTbLbLImM4X1rzfjbmstCEIggfu7h5NzjtBBTBEQek3wCcGKnW6iKydEUEoYJoQ9QwuCDWklN_gALTCmqtWc8kN0VMoKY2yExi_QIZVGSSHVAl19CsWnO8jbJvVN70J9-JD9AKUJsTmbypjdEFxTps0m5bE0BYa-TfnGxfDTjSHFZryFlLcv0fPeDQVe7e9j9P3y4tv5l_b66-er87Pr1gspx9Y5wbjCEsB4o5eip0BIJzrWKy6WlAIHwL7jXDoPkuiO9h2TvcQMCwBYsmP0cae7mZZr6DzE2aHd5LB2eWuTC_bvSQy39ibdWa4pFYZUgQ97gZx-TFBGu64ZwDC4CGkqligz5ySM_A9UKaN5baKi75-gqzTlWJOolMbaKK1ppd4-Nv_g-r6QCogd4HMqJUNvfRh_x1z_EgZLsJ2Lt3Px9k_xde_0yd699L833u2tzIMHmjBbDxNiDurNjliVMeVHXrnUmin2C15DxP4 |
CitedBy_id | crossref_primary_10_1007_s11071_024_10241_6 crossref_primary_10_1002_2016JG003604 crossref_primary_10_3389_fpls_2023_1251441 crossref_primary_10_1016_j_chaos_2023_114025 crossref_primary_10_1007_s12224_020_09374_4 crossref_primary_10_1016_j_ppees_2025_125851 crossref_primary_10_1016_j_scitotenv_2024_175483 crossref_primary_10_1111_sapm_12482 crossref_primary_10_1371_journal_pcbi_1009427 crossref_primary_10_1016_j_jaridenv_2021_104462 crossref_primary_10_1038_nature20801 crossref_primary_10_1038_s41559_023_01994_1 crossref_primary_10_1111_ecog_02461 crossref_primary_10_1016_j_ppees_2022_125698 crossref_primary_10_1111_1365_2745_13980 crossref_primary_10_1016_j_scitotenv_2019_134889 crossref_primary_10_1016_j_envsoft_2020_104892 crossref_primary_10_1063_1_5018925 crossref_primary_10_3390_math7100987 crossref_primary_10_1007_s13131_022_2126_x crossref_primary_10_1016_j_ecolmodel_2024_110722 crossref_primary_10_1007_s00332_023_09963_5 crossref_primary_10_3390_land13020197 crossref_primary_10_1002_eco_2135 crossref_primary_10_1126_sciadv_1603262 crossref_primary_10_1038_s41559_023_02225_3 crossref_primary_10_1111_een_12996 crossref_primary_10_11948_20230290 crossref_primary_10_1016_j_flora_2023_152353 crossref_primary_10_1186_s12862_022_02082_x crossref_primary_10_1016_j_ppees_2023_125745 crossref_primary_10_3390_geosciences12020053 crossref_primary_10_1038_s41563_019_0423_3 crossref_primary_10_1103_PhysRevE_101_052214 crossref_primary_10_1016_j_catena_2024_108174 crossref_primary_10_1016_j_plrev_2022_09_005 crossref_primary_10_1186_s12898_020_00313_7 crossref_primary_10_1016_j_physrep_2022_04_002 crossref_primary_10_1073_pnas_2216024120 crossref_primary_10_1093_imammb_dqae002 crossref_primary_10_1007_s11538_017_0348_4 crossref_primary_10_1007_s00285_018_1215_0 crossref_primary_10_1016_j_apm_2018_04_010 crossref_primary_10_1016_j_jtbi_2017_01_029 crossref_primary_10_1098_rsos_160443 crossref_primary_10_1038_s41563_019_0322_7 crossref_primary_10_1093_pnasnexus_pgac294 crossref_primary_10_1126_sciadv_abe1100 crossref_primary_10_1002_adma_202309999 crossref_primary_10_1073_pnas_1607860113 crossref_primary_10_1016_j_ecolmodel_2025_111034 crossref_primary_10_1098_rspb_2018_2859 crossref_primary_10_1016_j_pedsph_2022_06_043 crossref_primary_10_1073_pnas_1611877113 crossref_primary_10_1002_eco_2199 crossref_primary_10_1007_s00332_024_10046_2 crossref_primary_10_1016_j_flora_2020_151664 crossref_primary_10_1038_ncomms12093 crossref_primary_10_1103_PhysRevResearch_6_023023 crossref_primary_10_1146_annurev_conmatphys_033117_053959 crossref_primary_10_1007_s11071_022_08197_6 crossref_primary_10_1016_j_cnsns_2023_107802 crossref_primary_10_1016_j_sajb_2021_04_008 crossref_primary_10_1073_pnas_2314908120 crossref_primary_10_1088_1367_2630_aad457 crossref_primary_10_1098_rsif_2024_0454 crossref_primary_10_7554_eLife_73819 crossref_primary_10_1002_2017JG003855 crossref_primary_10_1103_PhysRevLett_122_048101 crossref_primary_10_1016_j_amc_2018_09_039 crossref_primary_10_1073_pnas_2304032120 crossref_primary_10_1007_s10980_021_01358_9 crossref_primary_10_1088_1361_6544_ad2221 crossref_primary_10_3934_dcdsb_2021127 crossref_primary_10_1016_j_isci_2022_105819 crossref_primary_10_3390_rs12203377 crossref_primary_10_1063_5_0211536 crossref_primary_10_1134_S2079086418030064 crossref_primary_10_1140_epjst_e2016_60178_1 crossref_primary_10_1071_BT20122 crossref_primary_10_1016_j_physd_2020_132695 crossref_primary_10_1016_j_ppees_2018_09_002 crossref_primary_10_1038_s42003_020_01431_0 crossref_primary_10_3389_fphy_2022_827929 crossref_primary_10_1016_j_foreco_2017_11_056 crossref_primary_10_1016_j_amc_2022_127061 crossref_primary_10_1016_j_scitotenv_2020_141416 crossref_primary_10_1103_PhysRevResearch_2_023402 crossref_primary_10_1007_s11356_020_08883_1 crossref_primary_10_1063_5_0206880 crossref_primary_10_1016_j_cnsns_2023_107461 crossref_primary_10_3389_fphy_2021_721115 crossref_primary_10_3389_fevo_2019_00102 crossref_primary_10_1016_j_amc_2020_125158 crossref_primary_10_1111_1365_2745_13493 crossref_primary_10_1098_rstb_2017_0113 crossref_primary_10_1007_s00285_023_01954_0 crossref_primary_10_1002_ecm_1503 crossref_primary_10_1016_j_scitotenv_2022_158969 crossref_primary_10_1186_s12862_021_01834_5 crossref_primary_10_1016_j_ecolmodel_2020_108973 crossref_primary_10_1021_acsomega_9b00802 crossref_primary_10_1080_01490451_2023_2286505 crossref_primary_10_1111_jvs_13092 crossref_primary_10_1137_24M1644328 crossref_primary_10_3934_dcdsb_2021189 crossref_primary_10_1016_j_jaridenv_2020_104197 crossref_primary_10_1016_j_plrev_2021_07_002 crossref_primary_10_1073_pnas_2202683120 crossref_primary_10_3934_mbe_2024297 crossref_primary_10_1073_pnas_2311528120 crossref_primary_10_1016_j_ecocom_2017_06_002 crossref_primary_10_1073_pnas_2306514120 crossref_primary_10_1016_j_catena_2016_05_009 crossref_primary_10_1029_2019JG005393 crossref_primary_10_1146_annurev_ento_031616_035413 crossref_primary_10_1016_j_jde_2022_05_009 crossref_primary_10_1016_j_physd_2020_132637 crossref_primary_10_1007_s00792_019_01122_7 crossref_primary_10_1016_j_physd_2019_03_006 crossref_primary_10_1039_D2SM01287A crossref_primary_10_1063_PT_3_4340 crossref_primary_10_1063_5_0133576 crossref_primary_10_1111_oik_07880 crossref_primary_10_1002_2016JG003717 crossref_primary_10_1002_ecs2_2620 |
Cites_doi | 10.1007/s11258-006-9133-4 10.1016/j.jtbi.2006.08.006 10.1071/BT07156 10.1890/07-0365.1 10.1103/PhysRevLett.87.198101 10.1371/journal.pone.0070876 10.1073/pnas.1504289112 10.1029/2007RG000256 10.1371/journal.pone.0140099 10.1201/b18360 10.1029/2011JG001870 10.1098/rspb.2009.2208 10.1016/j.ecolmodel.2011.05.035 10.1126/science.1261487 10.1371/journal.pone.0038056 10.1111/j.1466-8238.2008.00413.x 10.1093/beheco/ars143 10.1016/j.ejsobi.2011.05.005 10.1016/j.sajb.2015.01.019 10.1111/een.12267 10.1103/PhysRevLett.112.078701 10.1016/S1360-1385(00)01797-0 10.1017/CBO9780511627200 10.1098/rstb.1952.0012 10.1016/j.tree.2007.10.013 10.1007/BF02462004 10.1071/WF10150 10.1098/rsta.2012.0358 10.1111/j.1365-2745.2008.01377.x 10.1016/j.gexplo.2014.02.011 10.1016/j.jaridenv.2010.12.018 10.1086/342078 10.1111/een.12266 10.1111/ecog.00911 10.1016/j.ecocom.2007.06.008 10.1126/science.1222999 10.1023/A:1008128214176 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Mar 29, 2016 |
Copyright_xml | – notice: Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Mar 29, 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7ST SOI 5PM |
DOI | 10.1073/pnas.1522130113 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Environment Abstracts Environment Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic Environment Abstracts |
DatabaseTitleList | MEDLINE Virology and AIDS Abstracts MEDLINE - Academic Entomology Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Australian fairy circles and pattern formation |
EISSN | 1091-6490 |
EndPage | 3556 |
ExternalDocumentID | PMC4822591 4021754791 26976567 10_1073_pnas_1522130113 113_13_3551 26468837 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GeographicLocations | Western Australia Namibia Australia |
GeographicLocations_xml | – name: Western Australia – name: Namibia – name: Australia |
GrantInformation_xml | – fundername: Israel Science Foundation (ISF) grantid: 305/13 – fundername: EC | European Research Council (ERC) grantid: 233066 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX AFOSN CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7ST SOI 5PM |
ID | FETCH-LOGICAL-c566t-aa534706ee9c98b5f2e11d5d3f745b22e4ee0cd446ace618d2fd36f60305eeeb3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:14:30 EDT 2025 Fri Jul 11 06:47:22 EDT 2025 Fri Jul 11 12:04:15 EDT 2025 Mon Jun 30 07:42:13 EDT 2025 Thu Apr 03 07:04:03 EDT 2025 Tue Jul 01 01:53:42 EDT 2025 Thu Apr 24 23:06:02 EDT 2025 Wed Nov 11 00:29:21 EST 2020 Sun Aug 24 12:10:31 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | Triodia grass vegetation gap drylands Turing instability spatial pattern |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c566t-aa534706ee9c98b5f2e11d5d3f745b22e4ee0cd446ace618d2fd36f60305eeeb3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Edited by Alan Hastings, University of California, Davis, CA, and approved February 18, 2016 (received for review November 9, 2015) Author contributions: S.G., H.Y., and B.B. designed research; S.G., H.Y., and T.E.E. performed research; H.Y., O.T., Y.R.Z., and E.M. contributed new analytic tools; S.G., H.Y., A.C.P., I.K., K.W., T.W., and E.M. analyzed data; and S.G. and E.M. wrote the paper. |
OpenAccessLink | https://www.pnas.org/content/pnas/113/13/3551.full.pdf |
PMID | 26976567 |
PQID | 1780897882 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4822591 proquest_journals_1780897882 crossref_primary_10_1073_pnas_1522130113 pnas_primary_113_13_3551 jstor_primary_26468837 proquest_miscellaneous_1777984073 crossref_citationtrail_10_1073_pnas_1522130113 proquest_miscellaneous_1790958596 pubmed_primary_26976567 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-03-29 |
PublicationDateYYYYMMDD | 2016-03-29 |
PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-29 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2016 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Abensperg-Traun M (e_1_3_3_36_2) 1998; 81 McGrath GS (e_1_3_3_12_2) 2012; 117 Noble J (e_1_3_3_37_2) 1989; 10 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 Fernandez-Oto C (e_1_3_3_17_2) 2014; 372 e_1_3_3_6_2 Illian J (e_1_3_3_42_2) 2008 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 Wiegand T (e_1_3_3_44_2) 2014 e_1_3_3_26_2 e_1_3_3_25_2 Watson JAL (e_1_3_3_38_2) 1973; 7 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 11690457 - Phys Rev Lett. 2001 Nov 5;87(19):198101 22761663 - PLoS One. 2012;7(6):e38056 27588901 - Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):E5365-7 23539605 - Science. 2013 Mar 29;339(6127):1618-21 17007886 - J Theor Biol. 2007 Feb 21;244(4):680-91 25246685 - Philos Trans A Math Phys Eng Sci. 2014 Oct 28;372(2027). pii: 20140009. doi: 10.1098/rsta.2014.0009 25657247 - Science. 2015 Feb 6;347(6222):651-5 20133355 - Proc Biol Sci. 2010 Jun 7;277(1688):1771-6 18707527 - Am Nat. 2002 Oct;160(4):524-30 26362787 - Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):12327-31 24579640 - Phys Rev Lett. 2014 Feb 21;112(7):078701 11120476 - Trends Plant Sci. 2000 Dec;5(12):537-42 23976962 - PLoS One. 2013;8(8):e70876 26510015 - PLoS One. 2015;10(10):e0140099 18589517 - Ecology. 2008 Jun;89(6):1521-31 18255188 - Trends Ecol Evol. 2008 Mar;23(3):169-75 24191112 - Philos Trans A Math Phys Eng Sci. 2013;371(2004):20120358 |
References_xml | – ident: e_1_3_3_43_2 doi: 10.1007/s11258-006-9133-4 – ident: e_1_3_3_31_2 doi: 10.1016/j.jtbi.2006.08.006 – ident: e_1_3_3_32_2 doi: 10.1071/BT07156 – ident: e_1_3_3_23_2 doi: 10.1890/07-0365.1 – ident: e_1_3_3_26_2 – ident: e_1_3_3_6_2 doi: 10.1103/PhysRevLett.87.198101 – ident: e_1_3_3_13_2 doi: 10.1371/journal.pone.0070876 – ident: e_1_3_3_21_2 doi: 10.1073/pnas.1504289112 – ident: e_1_3_3_3_2 doi: 10.1029/2007RG000256 – ident: e_1_3_3_34_2 doi: 10.1371/journal.pone.0140099 – ident: e_1_3_3_8_2 doi: 10.1201/b18360 – volume-title: Statistical Analysis and Modelling of Spatial Point Patterns year: 2008 ident: e_1_3_3_42_2 – volume: 117 start-page: G03021 year: 2012 ident: e_1_3_3_12_2 article-title: Microtopography alters self-organized vegetation patterns in water-limited ecosystems publication-title: J Geophys Res doi: 10.1029/2011JG001870 – ident: e_1_3_3_9_2 doi: 10.1098/rspb.2009.2208 – ident: e_1_3_3_22_2 doi: 10.1016/j.ecolmodel.2011.05.035 – ident: e_1_3_3_33_2 doi: 10.1126/science.1261487 – ident: e_1_3_3_14_2 doi: 10.1371/journal.pone.0038056 – ident: e_1_3_3_4_2 doi: 10.1111/j.1466-8238.2008.00413.x – ident: e_1_3_3_40_2 doi: 10.1093/beheco/ars143 – ident: e_1_3_3_35_2 doi: 10.1016/j.ejsobi.2011.05.005 – ident: e_1_3_3_19_2 doi: 10.1016/j.sajb.2015.01.019 – ident: e_1_3_3_16_2 doi: 10.1111/een.12267 – ident: e_1_3_3_7_2 doi: 10.1103/PhysRevLett.112.078701 – ident: e_1_3_3_10_2 doi: 10.1016/S1360-1385(00)01797-0 – volume: 10 start-page: 355 year: 1989 ident: e_1_3_3_37_2 article-title: The spatial distributions of termite pavements and hummock feeding sites in a semi-arid woodland in eastern Australia publication-title: Acta Oecol-Oec Gen – volume: 7 start-page: 121 year: 1973 ident: e_1_3_3_38_2 article-title: Termites in mulga lands publication-title: Trop Grassl – ident: e_1_3_3_1_2 doi: 10.1017/CBO9780511627200 – ident: e_1_3_3_2_2 doi: 10.1098/rstb.1952.0012 – ident: e_1_3_3_5_2 doi: 10.1016/j.tree.2007.10.013 – ident: e_1_3_3_11_2 doi: 10.1007/BF02462004 – ident: e_1_3_3_30_2 doi: 10.1071/WF10150 – ident: e_1_3_3_28_2 doi: 10.1098/rsta.2012.0358 – ident: e_1_3_3_41_2 doi: 10.1111/j.1365-2745.2008.01377.x – ident: e_1_3_3_39_2 doi: 10.1016/j.gexplo.2014.02.011 – ident: e_1_3_3_20_2 doi: 10.1016/j.jaridenv.2010.12.018 – volume: 372 year: 2014 ident: e_1_3_3_17_2 article-title: Strong interaction between plants induces circular barren patches: Fairy circles publication-title: Philos T Roy Soc A – ident: e_1_3_3_24_2 doi: 10.1086/342078 – ident: e_1_3_3_25_2 doi: 10.1111/een.12266 – ident: e_1_3_3_15_2 doi: 10.1111/ecog.00911 – ident: e_1_3_3_27_2 doi: 10.1016/j.ecocom.2007.06.008 – ident: e_1_3_3_18_2 doi: 10.1126/science.1222999 – ident: e_1_3_3_29_2 doi: 10.1023/A:1008128214176 – volume: 81 start-page: 191 year: 1998 ident: e_1_3_3_36_2 article-title: Distribution and characteristics of mound-building termites (Isoptera) in Western Australia publication-title: J R Soc West Aust – volume-title: Handbook of Spatial Point Pattern Analysis year: 2014 ident: e_1_3_3_44_2 – reference: 24191112 - Philos Trans A Math Phys Eng Sci. 2013;371(2004):20120358 – reference: 25246685 - Philos Trans A Math Phys Eng Sci. 2014 Oct 28;372(2027). pii: 20140009. doi: 10.1098/rsta.2014.0009 – reference: 26362787 - Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):12327-31 – reference: 25657247 - Science. 2015 Feb 6;347(6222):651-5 – reference: 18589517 - Ecology. 2008 Jun;89(6):1521-31 – reference: 17007886 - J Theor Biol. 2007 Feb 21;244(4):680-91 – reference: 22761663 - PLoS One. 2012;7(6):e38056 – reference: 11120476 - Trends Plant Sci. 2000 Dec;5(12):537-42 – reference: 27588901 - Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):E5365-7 – reference: 23976962 - PLoS One. 2013;8(8):e70876 – reference: 11690457 - Phys Rev Lett. 2001 Nov 5;87(19):198101 – reference: 26510015 - PLoS One. 2015;10(10):e0140099 – reference: 23539605 - Science. 2013 Mar 29;339(6127):1618-21 – reference: 18255188 - Trends Ecol Evol. 2008 Mar;23(3):169-75 – reference: 18707527 - Am Nat. 2002 Oct;160(4):524-30 – reference: 20133355 - Proc Biol Sci. 2010 Jun 7;277(1688):1771-6 – reference: 24579640 - Phys Rev Lett. 2014 Feb 21;112(7):078701 |
SSID | ssj0009580 |
Score | 2.554533 |
Snippet | Vegetation gap patterns in arid grasslands, such as the “fairy circles” of Namibia, are one of nature’s greatest mysteries and subject to a lively debate on... Pattern-formation theory predicts that vegetation gap patterns, such as the fairy circles of Namibia, emerge through the action of pattern-forming... Vegetation gap patterns in arid grasslands, such as the "fairy circles" of Namibia, are one of nature's greatest mysteries and subject to a lively debate on... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3551 |
SubjectTerms | Arid zones Biological Sciences Biomass Feedback, Physiological Fieldwork Grassland Grasslands Infiltration rate Isoptera Models, Biological Moisture content Namibia Physical Sciences Plant Development Poaceae - growth & development Rain Remote sensing Runoff Soil water Spatial analysis Vegetation Vegetation patterns Western Australia |
Title | Discovery of fairy circles in Australia supports self-organization theory |
URI | https://www.jstor.org/stable/26468837 http://www.pnas.org/content/113/13/3551.abstract https://www.ncbi.nlm.nih.gov/pubmed/26976567 https://www.proquest.com/docview/1780897882 https://www.proquest.com/docview/1777984073 https://www.proquest.com/docview/1790958596 https://pubmed.ncbi.nlm.nih.gov/PMC4822591 |
Volume | 113 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuHBBDBgLDGQkDkNVRhJ_JceJr8Gh2qGTximKHUeLNJLStELrX89z7Hy0bAiQqqiKn53I75fnZ78vhN6EOpcJ1dIXAYt8WCGkLxWjPieUsyLIaJ61Xr4zfnZBv16yy8lkMfJaWq_kidrcGlfyP1yFe8BXEyX7D5ztB4Ub8B_4C1fgMFz_iscfykYZF8zWSm4sMzdTVS6Nn9vWMca0WS-sZaDR14Vfj8IvbSDjlmn3vF_Sms6BYNadGJ4O8SdOKDRTf3o-G6oZf9arjU1L0PqPDdj7Vm6ush92pduU_SlAZ_ZY1tXPm8GTxCTrd7Fg8zrPXbyEO50IuXHPckcY2kpUUEh8Tm1N0F7k2vjTDltkJEFB_wlvFe0gi0w94iprTM2mKDSSiYwpgTeL7y2nIw5KFrNlPnayaXdN99D9CDYWUSvKx2ma46BLACXIu52nmczRrv-WGmM9WU16XKC_bauy63E7UmHmj9BDt_fApxZI-2iiq8dov2MkPnYpyN8-QV96ZOG6wC2ysEMWLivcIwt3yMK_IQtbZD1FF58-zt-f-a7ohq9As1_5WcYIFQHXOlFJLFkR6TDMWU4KQZmMIk21DlROKc-U5mGcR0VOeMHNwqG1luQA7VV1pQ8RVhrke5EHiSYZ6KkylqB8RiDwFU-YyAsPnXRzmCqXkd4URrlOW88IQVIzn-kw_x467jssbDKWu0kPWqb0dKD48zgmwkOHLWnfPyQp_AzsPHTUcS51XzkMKeIgTgRsRD30um8GGWwMa1ml67WhESKJKbzGn2gSgy6WcA89s2AYvZsFlYfEFkx6ApMDfrulKq_aXPAUFHyWhM_vHPMFejB8l0dob7Vc65egR6_kqxb6vwAEYckQ |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discovery+of+fairy+circles+in+Australia+supports+self-organization+theory&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Getzin%2C+Stephan&rft.au=Yizhaq%2C+Hezi&rft.au=Bell%2C+Bronwyn&rft.au=Erickson%2C+Todd+E&rft.date=2016-03-29&rft.eissn=1091-6490&rft.volume=113&rft.issue=13&rft.spage=3551&rft_id=info:doi/10.1073%2Fpnas.1522130113&rft_id=info%3Apmid%2F26976567&rft.externalDocID=26976567 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F113%2F13.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F113%2F13.cover.gif |