Discovery of fairy circles in Australia supports self-organization theory

Vegetation gap patterns in arid grasslands, such as the “fairy circles” of Namibia, are one of nature’s greatest mysteries and subject to a lively debate on their origin. They are characterized by small-scale hexagonal ordering of circular bare-soil gaps that persists uniformly in the landscape scal...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 113; no. 13; pp. 3551 - 3556
Main Authors Getzin, Stephan, Yizhaq, Hezi, Bell, Bronwyn, Erickson, Todd E., Postle, Anthony C., Katra, Itzhak, Tzuk, Omer, Zelnik, Yuval R., Wiegand, Kerstin, Wiegand, Thorsten, Meron, Ehud
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 29.03.2016
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Vegetation gap patterns in arid grasslands, such as the “fairy circles” of Namibia, are one of nature’s greatest mysteries and subject to a lively debate on their origin. They are characterized by small-scale hexagonal ordering of circular bare-soil gaps that persists uniformly in the landscape scale to form a homogeneous distribution. Pattern-formation theory predicts that such highly ordered gap patterns should be found also in other water-limited systems across the globe, even if the mechanisms of their formation are different. Here we report that so far unknown fairy circles with the same spatial structure exist 10,000 km away from Namibia in the remote outback of Australia. Combining fieldwork, remote sensing, spatial pattern analysis, and process-based mathematical modeling, we demonstrate that these patterns emerge by self-organization, with no correlation with termite activity; the driving mechanism is a positive biomass–water feedback associated with water runoff and biomass-dependent infiltration rates. The remarkable match between the patterns of Australian and Namibian fairy circles and model results indicate that both patterns emerge from a nonuniform stationary instability, supporting a central universality principle of pattern-formation theory. Applied to the context of dryland vegetation, this principle predicts that different systems that go through the same instability type will show similar vegetation patterns even if the feedback mechanisms and resulting soil–water distributions are different, as we indeed found by comparing the Australian and the Namibian fairy-circle ecosystems. These results suggest that biomass–water feedbacks and resultant vegetation gap patterns are likely more common in remote drylands than is currently known.
AbstractList Pattern-formation theory predicts that vegetation gap patterns, such as the fairy circles of Namibia, emerge through the action of pattern-forming biomass–water feedbacks and that such patterns should be found elsewhere in water-limited systems around the world. We report here the exciting discovery of fairy-circle patterns in the remote outback of Australia. Using fieldwork, remote sensing, spatial pattern analysis, mathematical modeling, and pattern-formation theory we show that the Australian gap patterns share with their Namibian counterparts the same characteristics but are driven by a different biomass–water feedback. These observations are in line with a central universality principle of pattern-formation theory and support the applicability of this theory to wider contexts of spatial self-organization in ecology. Vegetation gap patterns in arid grasslands, such as the “fairy circles” of Namibia, are one of nature’s greatest mysteries and subject to a lively debate on their origin. They are characterized by small-scale hexagonal ordering of circular bare-soil gaps that persists uniformly in the landscape scale to form a homogeneous distribution. Pattern-formation theory predicts that such highly ordered gap patterns should be found also in other water-limited systems across the globe, even if the mechanisms of their formation are different. Here we report that so far unknown fairy circles with the same spatial structure exist 10,000 km away from Namibia in the remote outback of Australia. Combining fieldwork, remote sensing, spatial pattern analysis, and process-based mathematical modeling, we demonstrate that these patterns emerge by self-organization, with no correlation with termite activity; the driving mechanism is a positive biomass–water feedback associated with water runoff and biomass-dependent infiltration rates. The remarkable match between the patterns of Australian and Namibian fairy circles and model results indicate that both patterns emerge from a nonuniform stationary instability, supporting a central universality principle of pattern-formation theory. Applied to the context of dryland vegetation, this principle predicts that different systems that go through the same instability type will show similar vegetation patterns even if the feedback mechanisms and resulting soil–water distributions are different, as we indeed found by comparing the Australian and the Namibian fairy-circle ecosystems. These results suggest that biomass–water feedbacks and resultant vegetation gap patterns are likely more common in remote drylands than is currently known.
Vegetation gap patterns in arid grasslands, such as the “fairy circles” of Namibia, are one of nature’s greatest mysteries and subject to a lively debate on their origin. They are characterized by small-scale hexagonal ordering of circular bare-soil gaps that persists uniformly in the landscape scale to form a homogeneous distribution. Pattern-formation theory predicts that such highly ordered gap patterns should be found also in other water-limited systems across the globe, even if the mechanisms of their formation are different. Here we report that so far unknown fairy circles with the same spatial structure exist 10,000 km away from Namibia in the remote outback of Australia. Combining fieldwork, remote sensing, spatial pattern analysis, and process-based mathematical modeling, we demonstrate that these patterns emerge by self-organization, with no correlation with termite activity; the driving mechanism is a positive biomass–water feedback associated with water runoff and biomass-dependent infiltration rates. The remarkable match between the patterns of Australian and Namibian fairy circles and model results indicate that both patterns emerge from a nonuniform stationary instability, supporting a central universality principle of pattern-formation theory. Applied to the context of dryland vegetation, this principle predicts that different systems that go through the same instability type will show similar vegetation patterns even if the feedback mechanisms and resulting soil–water distributions are different, as we indeed found by comparing the Australian and the Namibian fairy-circle ecosystems. These results suggest that biomass–water feedbacks and resultant vegetation gap patterns are likely more common in remote drylands than is currently known.
Vegetation gap patterns in arid grasslands, such as the "fairy circles" of Namibia, are one of nature's greatest mysteries and subject to a lively debate on their origin. They are characterized by small-scale hexagonal ordering of circular bare-soil gaps that persists uniformly in the landscape scale to form a homogeneous distribution. Pattern-formation theory predicts that such highly ordered gap patterns should be found also in other water-limited systems across the globe, even if the mechanisms of their formation are different. Here we report that so far unknown fairy circles with the same spatial structure exist 10,000 km away from Namibia in the remote outback of Australia. Combining fieldwork, remote sensing, spatial pattern analysis, and process-based mathematical modeling, we demonstrate that these patterns emerge by self-organization, with no correlation with termite activity; the driving mechanism is a positive biomass-water feedback associated with water runoff and biomass-dependent infiltration rates. The remarkable match between the patterns of Australian and Namibian fairy circles and model results indicate that both patterns emerge from a nonuniform stationary instability, supporting a central universality principle of pattern-formation theory. Applied to the context of dryland vegetation, this principle predicts that different systems that go through the same instability type will show similar vegetation patterns even if the feedback mechanisms and resulting soil-water distributions are different, as we indeed found by comparing the Australian and the Namibian fairy-circle ecosystems. These results suggest that biomass-water feedbacks and resultant vegetation gap patterns are likely more common in remote drylands than is currently known.Vegetation gap patterns in arid grasslands, such as the "fairy circles" of Namibia, are one of nature's greatest mysteries and subject to a lively debate on their origin. They are characterized by small-scale hexagonal ordering of circular bare-soil gaps that persists uniformly in the landscape scale to form a homogeneous distribution. Pattern-formation theory predicts that such highly ordered gap patterns should be found also in other water-limited systems across the globe, even if the mechanisms of their formation are different. Here we report that so far unknown fairy circles with the same spatial structure exist 10,000 km away from Namibia in the remote outback of Australia. Combining fieldwork, remote sensing, spatial pattern analysis, and process-based mathematical modeling, we demonstrate that these patterns emerge by self-organization, with no correlation with termite activity; the driving mechanism is a positive biomass-water feedback associated with water runoff and biomass-dependent infiltration rates. The remarkable match between the patterns of Australian and Namibian fairy circles and model results indicate that both patterns emerge from a nonuniform stationary instability, supporting a central universality principle of pattern-formation theory. Applied to the context of dryland vegetation, this principle predicts that different systems that go through the same instability type will show similar vegetation patterns even if the feedback mechanisms and resulting soil-water distributions are different, as we indeed found by comparing the Australian and the Namibian fairy-circle ecosystems. These results suggest that biomass-water feedbacks and resultant vegetation gap patterns are likely more common in remote drylands than is currently known.
Author Postle, Anthony C.
Wiegand, Thorsten
Tzuk, Omer
Yizhaq, Hezi
Bell, Bronwyn
Zelnik, Yuval R.
Wiegand, Kerstin
Katra, Itzhak
Meron, Ehud
Erickson, Todd E.
Getzin, Stephan
Author_xml – sequence: 1
  givenname: Stephan
  surname: Getzin
  fullname: Getzin, Stephan
  organization: Department of Ecological Modelling, Helmholtz Centre for Environmental Research – UFZ, 04318 Leipzig, Germany
– sequence: 2
  givenname: Hezi
  surname: Yizhaq
  fullname: Yizhaq, Hezi
  organization: The Dead-Sea and Arava Science Center, Tamar Regional Council, Israel
– sequence: 3
  givenname: Bronwyn
  surname: Bell
  fullname: Bell, Bronwyn
  organization: Environmental Management, Rio Tinto, Perth, WA 6000, Australia
– sequence: 4
  givenname: Todd E.
  surname: Erickson
  fullname: Erickson, Todd E.
  organization: School of Plant Biology, The University of Western Australia, Crawley, WA 6009, Australia
– sequence: 5
  givenname: Anthony C.
  surname: Postle
  fullname: Postle, Anthony C.
  organization: P.O. Box 5473, Cairns, QLD 4870, Australia
– sequence: 6
  givenname: Itzhak
  surname: Katra
  fullname: Katra, Itzhak
  organization: Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
– sequence: 7
  givenname: Omer
  surname: Tzuk
  fullname: Tzuk, Omer
  organization: Physics Department, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
– sequence: 8
  givenname: Yuval R.
  surname: Zelnik
  fullname: Zelnik, Yuval R.
  organization: Department of Solar Energy and Environmental Physics, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
– sequence: 9
  givenname: Kerstin
  surname: Wiegand
  fullname: Wiegand, Kerstin
  organization: Department of Ecosystem Modelling, University of Goettingen, 37077 Goettingen, Germany
– sequence: 10
  givenname: Thorsten
  surname: Wiegand
  fullname: Wiegand, Thorsten
  organization: German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
– sequence: 11
  givenname: Ehud
  surname: Meron
  fullname: Meron, Ehud
  organization: Physics Department, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26976567$$D View this record in MEDLINE/PubMed
BookMark eNqNkd1rFDEUxYNU7Lb67JM64Isv0-b740UotdVCwRd9DtnMnTbLbLImM4X1rzfjbmstCEIggfu7h5NzjtBBTBEQek3wCcGKnW6iKydEUEoYJoQ9QwuCDWklN_gALTCmqtWc8kN0VMoKY2yExi_QIZVGSSHVAl19CsWnO8jbJvVN70J9-JD9AKUJsTmbypjdEFxTps0m5bE0BYa-TfnGxfDTjSHFZryFlLcv0fPeDQVe7e9j9P3y4tv5l_b66-er87Pr1gspx9Y5wbjCEsB4o5eip0BIJzrWKy6WlAIHwL7jXDoPkuiO9h2TvcQMCwBYsmP0cae7mZZr6DzE2aHd5LB2eWuTC_bvSQy39ibdWa4pFYZUgQ97gZx-TFBGu64ZwDC4CGkqligz5ySM_A9UKaN5baKi75-gqzTlWJOolMbaKK1ppd4-Nv_g-r6QCogd4HMqJUNvfRh_x1z_EgZLsJ2Lt3Px9k_xde_0yd699L833u2tzIMHmjBbDxNiDurNjliVMeVHXrnUmin2C15DxP4
CitedBy_id crossref_primary_10_1007_s11071_024_10241_6
crossref_primary_10_1002_2016JG003604
crossref_primary_10_3389_fpls_2023_1251441
crossref_primary_10_1016_j_chaos_2023_114025
crossref_primary_10_1007_s12224_020_09374_4
crossref_primary_10_1016_j_ppees_2025_125851
crossref_primary_10_1016_j_scitotenv_2024_175483
crossref_primary_10_1111_sapm_12482
crossref_primary_10_1371_journal_pcbi_1009427
crossref_primary_10_1016_j_jaridenv_2021_104462
crossref_primary_10_1038_nature20801
crossref_primary_10_1038_s41559_023_01994_1
crossref_primary_10_1111_ecog_02461
crossref_primary_10_1016_j_ppees_2022_125698
crossref_primary_10_1111_1365_2745_13980
crossref_primary_10_1016_j_scitotenv_2019_134889
crossref_primary_10_1016_j_envsoft_2020_104892
crossref_primary_10_1063_1_5018925
crossref_primary_10_3390_math7100987
crossref_primary_10_1007_s13131_022_2126_x
crossref_primary_10_1016_j_ecolmodel_2024_110722
crossref_primary_10_1007_s00332_023_09963_5
crossref_primary_10_3390_land13020197
crossref_primary_10_1002_eco_2135
crossref_primary_10_1126_sciadv_1603262
crossref_primary_10_1038_s41559_023_02225_3
crossref_primary_10_1111_een_12996
crossref_primary_10_11948_20230290
crossref_primary_10_1016_j_flora_2023_152353
crossref_primary_10_1186_s12862_022_02082_x
crossref_primary_10_1016_j_ppees_2023_125745
crossref_primary_10_3390_geosciences12020053
crossref_primary_10_1038_s41563_019_0423_3
crossref_primary_10_1103_PhysRevE_101_052214
crossref_primary_10_1016_j_catena_2024_108174
crossref_primary_10_1016_j_plrev_2022_09_005
crossref_primary_10_1186_s12898_020_00313_7
crossref_primary_10_1016_j_physrep_2022_04_002
crossref_primary_10_1073_pnas_2216024120
crossref_primary_10_1093_imammb_dqae002
crossref_primary_10_1007_s11538_017_0348_4
crossref_primary_10_1007_s00285_018_1215_0
crossref_primary_10_1016_j_apm_2018_04_010
crossref_primary_10_1016_j_jtbi_2017_01_029
crossref_primary_10_1098_rsos_160443
crossref_primary_10_1038_s41563_019_0322_7
crossref_primary_10_1093_pnasnexus_pgac294
crossref_primary_10_1126_sciadv_abe1100
crossref_primary_10_1002_adma_202309999
crossref_primary_10_1073_pnas_1607860113
crossref_primary_10_1016_j_ecolmodel_2025_111034
crossref_primary_10_1098_rspb_2018_2859
crossref_primary_10_1016_j_pedsph_2022_06_043
crossref_primary_10_1073_pnas_1611877113
crossref_primary_10_1002_eco_2199
crossref_primary_10_1007_s00332_024_10046_2
crossref_primary_10_1016_j_flora_2020_151664
crossref_primary_10_1038_ncomms12093
crossref_primary_10_1103_PhysRevResearch_6_023023
crossref_primary_10_1146_annurev_conmatphys_033117_053959
crossref_primary_10_1007_s11071_022_08197_6
crossref_primary_10_1016_j_cnsns_2023_107802
crossref_primary_10_1016_j_sajb_2021_04_008
crossref_primary_10_1073_pnas_2314908120
crossref_primary_10_1088_1367_2630_aad457
crossref_primary_10_1098_rsif_2024_0454
crossref_primary_10_7554_eLife_73819
crossref_primary_10_1002_2017JG003855
crossref_primary_10_1103_PhysRevLett_122_048101
crossref_primary_10_1016_j_amc_2018_09_039
crossref_primary_10_1073_pnas_2304032120
crossref_primary_10_1007_s10980_021_01358_9
crossref_primary_10_1088_1361_6544_ad2221
crossref_primary_10_3934_dcdsb_2021127
crossref_primary_10_1016_j_isci_2022_105819
crossref_primary_10_3390_rs12203377
crossref_primary_10_1063_5_0211536
crossref_primary_10_1134_S2079086418030064
crossref_primary_10_1140_epjst_e2016_60178_1
crossref_primary_10_1071_BT20122
crossref_primary_10_1016_j_physd_2020_132695
crossref_primary_10_1016_j_ppees_2018_09_002
crossref_primary_10_1038_s42003_020_01431_0
crossref_primary_10_3389_fphy_2022_827929
crossref_primary_10_1016_j_foreco_2017_11_056
crossref_primary_10_1016_j_amc_2022_127061
crossref_primary_10_1016_j_scitotenv_2020_141416
crossref_primary_10_1103_PhysRevResearch_2_023402
crossref_primary_10_1007_s11356_020_08883_1
crossref_primary_10_1063_5_0206880
crossref_primary_10_1016_j_cnsns_2023_107461
crossref_primary_10_3389_fphy_2021_721115
crossref_primary_10_3389_fevo_2019_00102
crossref_primary_10_1016_j_amc_2020_125158
crossref_primary_10_1111_1365_2745_13493
crossref_primary_10_1098_rstb_2017_0113
crossref_primary_10_1007_s00285_023_01954_0
crossref_primary_10_1002_ecm_1503
crossref_primary_10_1016_j_scitotenv_2022_158969
crossref_primary_10_1186_s12862_021_01834_5
crossref_primary_10_1016_j_ecolmodel_2020_108973
crossref_primary_10_1021_acsomega_9b00802
crossref_primary_10_1080_01490451_2023_2286505
crossref_primary_10_1111_jvs_13092
crossref_primary_10_1137_24M1644328
crossref_primary_10_3934_dcdsb_2021189
crossref_primary_10_1016_j_jaridenv_2020_104197
crossref_primary_10_1016_j_plrev_2021_07_002
crossref_primary_10_1073_pnas_2202683120
crossref_primary_10_3934_mbe_2024297
crossref_primary_10_1073_pnas_2311528120
crossref_primary_10_1016_j_ecocom_2017_06_002
crossref_primary_10_1073_pnas_2306514120
crossref_primary_10_1016_j_catena_2016_05_009
crossref_primary_10_1029_2019JG005393
crossref_primary_10_1146_annurev_ento_031616_035413
crossref_primary_10_1016_j_jde_2022_05_009
crossref_primary_10_1016_j_physd_2020_132637
crossref_primary_10_1007_s00792_019_01122_7
crossref_primary_10_1016_j_physd_2019_03_006
crossref_primary_10_1039_D2SM01287A
crossref_primary_10_1063_PT_3_4340
crossref_primary_10_1063_5_0133576
crossref_primary_10_1111_oik_07880
crossref_primary_10_1002_2016JG003717
crossref_primary_10_1002_ecs2_2620
Cites_doi 10.1007/s11258-006-9133-4
10.1016/j.jtbi.2006.08.006
10.1071/BT07156
10.1890/07-0365.1
10.1103/PhysRevLett.87.198101
10.1371/journal.pone.0070876
10.1073/pnas.1504289112
10.1029/2007RG000256
10.1371/journal.pone.0140099
10.1201/b18360
10.1029/2011JG001870
10.1098/rspb.2009.2208
10.1016/j.ecolmodel.2011.05.035
10.1126/science.1261487
10.1371/journal.pone.0038056
10.1111/j.1466-8238.2008.00413.x
10.1093/beheco/ars143
10.1016/j.ejsobi.2011.05.005
10.1016/j.sajb.2015.01.019
10.1111/een.12267
10.1103/PhysRevLett.112.078701
10.1016/S1360-1385(00)01797-0
10.1017/CBO9780511627200
10.1098/rstb.1952.0012
10.1016/j.tree.2007.10.013
10.1007/BF02462004
10.1071/WF10150
10.1098/rsta.2012.0358
10.1111/j.1365-2745.2008.01377.x
10.1016/j.gexplo.2014.02.011
10.1016/j.jaridenv.2010.12.018
10.1086/342078
10.1111/een.12266
10.1111/ecog.00911
10.1016/j.ecocom.2007.06.008
10.1126/science.1222999
10.1023/A:1008128214176
ContentType Journal Article
Copyright Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Mar 29, 2016
Copyright_xml – notice: Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Mar 29, 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7ST
SOI
5PM
DOI 10.1073/pnas.1522130113
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Environment Abstracts
Environment Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
Environment Abstracts
DatabaseTitleList

MEDLINE
Virology and AIDS Abstracts
MEDLINE - Academic
Entomology Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Australian fairy circles and pattern formation
EISSN 1091-6490
EndPage 3556
ExternalDocumentID PMC4822591
4021754791
26976567
10_1073_pnas_1522130113
113_13_3551
26468837
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GeographicLocations Western Australia
Namibia
Australia
GeographicLocations_xml – name: Western Australia
– name: Namibia
– name: Australia
GrantInformation_xml – fundername: Israel Science Foundation (ISF)
  grantid: 305/13
– fundername: EC | European Research Council (ERC)
  grantid: 233066
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
AFOSN
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7ST
SOI
5PM
ID FETCH-LOGICAL-c566t-aa534706ee9c98b5f2e11d5d3f745b22e4ee0cd446ace618d2fd36f60305eeeb3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:14:30 EDT 2025
Fri Jul 11 06:47:22 EDT 2025
Fri Jul 11 12:04:15 EDT 2025
Mon Jun 30 07:42:13 EDT 2025
Thu Apr 03 07:04:03 EDT 2025
Tue Jul 01 01:53:42 EDT 2025
Thu Apr 24 23:06:02 EDT 2025
Wed Nov 11 00:29:21 EST 2020
Sun Aug 24 12:10:31 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Triodia grass
vegetation gap
drylands
Turing instability
spatial pattern
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c566t-aa534706ee9c98b5f2e11d5d3f745b22e4ee0cd446ace618d2fd36f60305eeeb3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Edited by Alan Hastings, University of California, Davis, CA, and approved February 18, 2016 (received for review November 9, 2015)
Author contributions: S.G., H.Y., and B.B. designed research; S.G., H.Y., and T.E.E. performed research; H.Y., O.T., Y.R.Z., and E.M. contributed new analytic tools; S.G., H.Y., A.C.P., I.K., K.W., T.W., and E.M. analyzed data; and S.G. and E.M. wrote the paper.
OpenAccessLink https://www.pnas.org/content/pnas/113/13/3551.full.pdf
PMID 26976567
PQID 1780897882
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4822591
proquest_journals_1780897882
crossref_primary_10_1073_pnas_1522130113
pnas_primary_113_13_3551
jstor_primary_26468837
proquest_miscellaneous_1777984073
crossref_citationtrail_10_1073_pnas_1522130113
proquest_miscellaneous_1790958596
pubmed_primary_26976567
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-03-29
PublicationDateYYYYMMDD 2016-03-29
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-29
  day: 29
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2016
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Abensperg-Traun M (e_1_3_3_36_2) 1998; 81
McGrath GS (e_1_3_3_12_2) 2012; 117
Noble J (e_1_3_3_37_2) 1989; 10
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
Fernandez-Oto C (e_1_3_3_17_2) 2014; 372
e_1_3_3_6_2
Illian J (e_1_3_3_42_2) 2008
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
Wiegand T (e_1_3_3_44_2) 2014
e_1_3_3_26_2
e_1_3_3_25_2
Watson JAL (e_1_3_3_38_2) 1973; 7
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
11690457 - Phys Rev Lett. 2001 Nov 5;87(19):198101
22761663 - PLoS One. 2012;7(6):e38056
27588901 - Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):E5365-7
23539605 - Science. 2013 Mar 29;339(6127):1618-21
17007886 - J Theor Biol. 2007 Feb 21;244(4):680-91
25246685 - Philos Trans A Math Phys Eng Sci. 2014 Oct 28;372(2027). pii: 20140009. doi: 10.1098/rsta.2014.0009
25657247 - Science. 2015 Feb 6;347(6222):651-5
20133355 - Proc Biol Sci. 2010 Jun 7;277(1688):1771-6
18707527 - Am Nat. 2002 Oct;160(4):524-30
26362787 - Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):12327-31
24579640 - Phys Rev Lett. 2014 Feb 21;112(7):078701
11120476 - Trends Plant Sci. 2000 Dec;5(12):537-42
23976962 - PLoS One. 2013;8(8):e70876
26510015 - PLoS One. 2015;10(10):e0140099
18589517 - Ecology. 2008 Jun;89(6):1521-31
18255188 - Trends Ecol Evol. 2008 Mar;23(3):169-75
24191112 - Philos Trans A Math Phys Eng Sci. 2013;371(2004):20120358
References_xml – ident: e_1_3_3_43_2
  doi: 10.1007/s11258-006-9133-4
– ident: e_1_3_3_31_2
  doi: 10.1016/j.jtbi.2006.08.006
– ident: e_1_3_3_32_2
  doi: 10.1071/BT07156
– ident: e_1_3_3_23_2
  doi: 10.1890/07-0365.1
– ident: e_1_3_3_26_2
– ident: e_1_3_3_6_2
  doi: 10.1103/PhysRevLett.87.198101
– ident: e_1_3_3_13_2
  doi: 10.1371/journal.pone.0070876
– ident: e_1_3_3_21_2
  doi: 10.1073/pnas.1504289112
– ident: e_1_3_3_3_2
  doi: 10.1029/2007RG000256
– ident: e_1_3_3_34_2
  doi: 10.1371/journal.pone.0140099
– ident: e_1_3_3_8_2
  doi: 10.1201/b18360
– volume-title: Statistical Analysis and Modelling of Spatial Point Patterns
  year: 2008
  ident: e_1_3_3_42_2
– volume: 117
  start-page: G03021
  year: 2012
  ident: e_1_3_3_12_2
  article-title: Microtopography alters self-organized vegetation patterns in water-limited ecosystems
  publication-title: J Geophys Res
  doi: 10.1029/2011JG001870
– ident: e_1_3_3_9_2
  doi: 10.1098/rspb.2009.2208
– ident: e_1_3_3_22_2
  doi: 10.1016/j.ecolmodel.2011.05.035
– ident: e_1_3_3_33_2
  doi: 10.1126/science.1261487
– ident: e_1_3_3_14_2
  doi: 10.1371/journal.pone.0038056
– ident: e_1_3_3_4_2
  doi: 10.1111/j.1466-8238.2008.00413.x
– ident: e_1_3_3_40_2
  doi: 10.1093/beheco/ars143
– ident: e_1_3_3_35_2
  doi: 10.1016/j.ejsobi.2011.05.005
– ident: e_1_3_3_19_2
  doi: 10.1016/j.sajb.2015.01.019
– ident: e_1_3_3_16_2
  doi: 10.1111/een.12267
– ident: e_1_3_3_7_2
  doi: 10.1103/PhysRevLett.112.078701
– ident: e_1_3_3_10_2
  doi: 10.1016/S1360-1385(00)01797-0
– volume: 10
  start-page: 355
  year: 1989
  ident: e_1_3_3_37_2
  article-title: The spatial distributions of termite pavements and hummock feeding sites in a semi-arid woodland in eastern Australia
  publication-title: Acta Oecol-Oec Gen
– volume: 7
  start-page: 121
  year: 1973
  ident: e_1_3_3_38_2
  article-title: Termites in mulga lands
  publication-title: Trop Grassl
– ident: e_1_3_3_1_2
  doi: 10.1017/CBO9780511627200
– ident: e_1_3_3_2_2
  doi: 10.1098/rstb.1952.0012
– ident: e_1_3_3_5_2
  doi: 10.1016/j.tree.2007.10.013
– ident: e_1_3_3_11_2
  doi: 10.1007/BF02462004
– ident: e_1_3_3_30_2
  doi: 10.1071/WF10150
– ident: e_1_3_3_28_2
  doi: 10.1098/rsta.2012.0358
– ident: e_1_3_3_41_2
  doi: 10.1111/j.1365-2745.2008.01377.x
– ident: e_1_3_3_39_2
  doi: 10.1016/j.gexplo.2014.02.011
– ident: e_1_3_3_20_2
  doi: 10.1016/j.jaridenv.2010.12.018
– volume: 372
  year: 2014
  ident: e_1_3_3_17_2
  article-title: Strong interaction between plants induces circular barren patches: Fairy circles
  publication-title: Philos T Roy Soc A
– ident: e_1_3_3_24_2
  doi: 10.1086/342078
– ident: e_1_3_3_25_2
  doi: 10.1111/een.12266
– ident: e_1_3_3_15_2
  doi: 10.1111/ecog.00911
– ident: e_1_3_3_27_2
  doi: 10.1016/j.ecocom.2007.06.008
– ident: e_1_3_3_18_2
  doi: 10.1126/science.1222999
– ident: e_1_3_3_29_2
  doi: 10.1023/A:1008128214176
– volume: 81
  start-page: 191
  year: 1998
  ident: e_1_3_3_36_2
  article-title: Distribution and characteristics of mound-building termites (Isoptera) in Western Australia
  publication-title: J R Soc West Aust
– volume-title: Handbook of Spatial Point Pattern Analysis
  year: 2014
  ident: e_1_3_3_44_2
– reference: 24191112 - Philos Trans A Math Phys Eng Sci. 2013;371(2004):20120358
– reference: 25246685 - Philos Trans A Math Phys Eng Sci. 2014 Oct 28;372(2027). pii: 20140009. doi: 10.1098/rsta.2014.0009
– reference: 26362787 - Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):12327-31
– reference: 25657247 - Science. 2015 Feb 6;347(6222):651-5
– reference: 18589517 - Ecology. 2008 Jun;89(6):1521-31
– reference: 17007886 - J Theor Biol. 2007 Feb 21;244(4):680-91
– reference: 22761663 - PLoS One. 2012;7(6):e38056
– reference: 11120476 - Trends Plant Sci. 2000 Dec;5(12):537-42
– reference: 27588901 - Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):E5365-7
– reference: 23976962 - PLoS One. 2013;8(8):e70876
– reference: 11690457 - Phys Rev Lett. 2001 Nov 5;87(19):198101
– reference: 26510015 - PLoS One. 2015;10(10):e0140099
– reference: 23539605 - Science. 2013 Mar 29;339(6127):1618-21
– reference: 18255188 - Trends Ecol Evol. 2008 Mar;23(3):169-75
– reference: 18707527 - Am Nat. 2002 Oct;160(4):524-30
– reference: 20133355 - Proc Biol Sci. 2010 Jun 7;277(1688):1771-6
– reference: 24579640 - Phys Rev Lett. 2014 Feb 21;112(7):078701
SSID ssj0009580
Score 2.554533
Snippet Vegetation gap patterns in arid grasslands, such as the “fairy circles” of Namibia, are one of nature’s greatest mysteries and subject to a lively debate on...
Pattern-formation theory predicts that vegetation gap patterns, such as the fairy circles of Namibia, emerge through the action of pattern-forming...
Vegetation gap patterns in arid grasslands, such as the "fairy circles" of Namibia, are one of nature's greatest mysteries and subject to a lively debate on...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3551
SubjectTerms Arid zones
Biological Sciences
Biomass
Feedback, Physiological
Fieldwork
Grassland
Grasslands
Infiltration rate
Isoptera
Models, Biological
Moisture content
Namibia
Physical Sciences
Plant Development
Poaceae - growth & development
Rain
Remote sensing
Runoff
Soil water
Spatial analysis
Vegetation
Vegetation patterns
Western Australia
Title Discovery of fairy circles in Australia supports self-organization theory
URI https://www.jstor.org/stable/26468837
http://www.pnas.org/content/113/13/3551.abstract
https://www.ncbi.nlm.nih.gov/pubmed/26976567
https://www.proquest.com/docview/1780897882
https://www.proquest.com/docview/1777984073
https://www.proquest.com/docview/1790958596
https://pubmed.ncbi.nlm.nih.gov/PMC4822591
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuHBBDBgLDGQkDkNVRhJ_JceJr8Gh2qGTximKHUeLNJLStELrX89z7Hy0bAiQqqiKn53I75fnZ78vhN6EOpcJ1dIXAYt8WCGkLxWjPieUsyLIaJ61Xr4zfnZBv16yy8lkMfJaWq_kidrcGlfyP1yFe8BXEyX7D5ztB4Ub8B_4C1fgMFz_iscfykYZF8zWSm4sMzdTVS6Nn9vWMca0WS-sZaDR14Vfj8IvbSDjlmn3vF_Sms6BYNadGJ4O8SdOKDRTf3o-G6oZf9arjU1L0PqPDdj7Vm6ush92pduU_SlAZ_ZY1tXPm8GTxCTrd7Fg8zrPXbyEO50IuXHPckcY2kpUUEh8Tm1N0F7k2vjTDltkJEFB_wlvFe0gi0w94iprTM2mKDSSiYwpgTeL7y2nIw5KFrNlPnayaXdN99D9CDYWUSvKx2ma46BLACXIu52nmczRrv-WGmM9WU16XKC_bauy63E7UmHmj9BDt_fApxZI-2iiq8dov2MkPnYpyN8-QV96ZOG6wC2ysEMWLivcIwt3yMK_IQtbZD1FF58-zt-f-a7ohq9As1_5WcYIFQHXOlFJLFkR6TDMWU4KQZmMIk21DlROKc-U5mGcR0VOeMHNwqG1luQA7VV1pQ8RVhrke5EHiSYZ6KkylqB8RiDwFU-YyAsPnXRzmCqXkd4URrlOW88IQVIzn-kw_x467jssbDKWu0kPWqb0dKD48zgmwkOHLWnfPyQp_AzsPHTUcS51XzkMKeIgTgRsRD30um8GGWwMa1ml67WhESKJKbzGn2gSgy6WcA89s2AYvZsFlYfEFkx6ApMDfrulKq_aXPAUFHyWhM_vHPMFejB8l0dob7Vc65egR6_kqxb6vwAEYckQ
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discovery+of+fairy+circles+in+Australia+supports+self-organization+theory&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Getzin%2C+Stephan&rft.au=Yizhaq%2C+Hezi&rft.au=Bell%2C+Bronwyn&rft.au=Erickson%2C+Todd+E&rft.date=2016-03-29&rft.eissn=1091-6490&rft.volume=113&rft.issue=13&rft.spage=3551&rft_id=info:doi/10.1073%2Fpnas.1522130113&rft_id=info%3Apmid%2F26976567&rft.externalDocID=26976567
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F113%2F13.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F113%2F13.cover.gif