Modeling of lattice parameters of cubic perovskite oxides and halides

Perovskites having the chemical formulae of ABX3 are promising candidates for various electronic, magnetic, and thermal applications. One of the important structural factors is a (the lattice constant), which represents the unit cell size. The variation in the lattice constant is a combined result o...

Full description

Saved in:
Bibliographic Details
Published inHeliyon Vol. 7; no. 7; p. e07601
Main Authors Zhang, Yun, Xu, Xiaojie
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.07.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Perovskites having the chemical formulae of ABX3 are promising candidates for various electronic, magnetic, and thermal applications. One of the important structural factors is a (the lattice constant), which represents the unit cell size. The variation in the lattice constant is a combined result of interactions between different ions, determined by valence electrons and ionic radii. The size and stability of unit cells have important influences on structural stabilities, bandgap structures, and therefore performance of materials. To obtain the lattice constant of cubic perovskites without going through experimental efforts such as synthesis and measurements, we construct a model based on Gaussian process regressions for cubic perovskite lattice constant predictions. The model utilizes the number of valence electrons as well as ionic radii of alloying elements as predictors. A total of 149 cubic perovskites containing fluorides, chlorides, and bromides with cation combinations of A1+B2+, as well as oxides with cation combinations of A1+B5+, A2+B4+, and A3+B3+ are explored. The model demonstrates good performance in terms of stabilities and accuracy, and thus could be a rapid approach to estimate lattice constants. Perovskite; Crystal structure; Oxide; Halide; Machine learning
AbstractList Perovskites having the chemical formulae of ABX3 are promising candidates for various electronic, magnetic, and thermal applications. One of the important structural factors is a (the lattice constant), which represents the unit cell size. The variation in the lattice constant is a combined result of interactions between different ions, determined by valence electrons and ionic radii. The size and stability of unit cells have important influences on structural stabilities, bandgap structures, and therefore performance of materials. To obtain the lattice constant of cubic perovskites without going through experimental efforts such as synthesis and measurements, we construct a model based on Gaussian process regressions for cubic perovskite lattice constant predictions. The model utilizes the number of valence electrons as well as ionic radii of alloying elements as predictors. A total of 149 cubic perovskites containing fluorides, chlorides, and bromides with cation combinations of A1+B2+, as well as oxides with cation combinations of A1+B5+, A2+B4+, and A3+B3+ are explored. The model demonstrates good performance in terms of stabilities and accuracy, and thus could be a rapid approach to estimate lattice constants.
Perovskites having the chemical formulae of ABX are promising candidates for various electronic, magnetic, and thermal applications. One of the important structural factors is (the lattice constant), which represents the unit cell size. The variation in the lattice constant is a combined result of interactions between different ions, determined by valence electrons and ionic radii. The size and stability of unit cells have important influences on structural stabilities, bandgap structures, and therefore performance of materials. To obtain the lattice constant of cubic perovskites without going through experimental efforts such as synthesis and measurements, we construct a model based on Gaussian process regressions for cubic perovskite lattice constant predictions. The model utilizes the number of valence electrons as well as ionic radii of alloying elements as predictors. A total of 149 cubic perovskites containing fluorides, chlorides, and bromides with cation combinations of A B , as well as oxides with cation combinations of A B , A B , and A B are explored. The model demonstrates good performance in terms of stabilities and accuracy, and thus could be a rapid approach to estimate lattice constants.
Perovskites having the chemical formulae of ABX3 are promising candidates for various electronic, magnetic, and thermal applications. One of the important structural factors is a (the lattice constant), which represents the unit cell size. The variation in the lattice constant is a combined result of interactions between different ions, determined by valence electrons and ionic radii. The size and stability of unit cells have important influences on structural stabilities, bandgap structures, and therefore performance of materials. To obtain the lattice constant of cubic perovskites without going through experimental efforts such as synthesis and measurements, we construct a model based on Gaussian process regressions for cubic perovskite lattice constant predictions. The model utilizes the number of valence electrons as well as ionic radii of alloying elements as predictors. A total of 149 cubic perovskites containing fluorides, chlorides, and bromides with cation combinations of A1+B2+, as well as oxides with cation combinations of A1+B5+, A2+B4+, and A3+B3+ are explored. The model demonstrates good performance in terms of stabilities and accuracy, and thus could be a rapid approach to estimate lattice constants.Perovskites having the chemical formulae of ABX3 are promising candidates for various electronic, magnetic, and thermal applications. One of the important structural factors is a (the lattice constant), which represents the unit cell size. The variation in the lattice constant is a combined result of interactions between different ions, determined by valence electrons and ionic radii. The size and stability of unit cells have important influences on structural stabilities, bandgap structures, and therefore performance of materials. To obtain the lattice constant of cubic perovskites without going through experimental efforts such as synthesis and measurements, we construct a model based on Gaussian process regressions for cubic perovskite lattice constant predictions. The model utilizes the number of valence electrons as well as ionic radii of alloying elements as predictors. A total of 149 cubic perovskites containing fluorides, chlorides, and bromides with cation combinations of A1+B2+, as well as oxides with cation combinations of A1+B5+, A2+B4+, and A3+B3+ are explored. The model demonstrates good performance in terms of stabilities and accuracy, and thus could be a rapid approach to estimate lattice constants.
Perovskites having the chemical formulae of ABX 3 are promising candidates for various electronic, magnetic, and thermal applications. One of the important structural factors is a (the lattice constant), which represents the unit cell size. The variation in the lattice constant is a combined result of interactions between different ions, determined by valence electrons and ionic radii. The size and stability of unit cells have important influences on structural stabilities, bandgap structures, and therefore performance of materials. To obtain the lattice constant of cubic perovskites without going through experimental efforts such as synthesis and measurements, we construct a model based on Gaussian process regressions for cubic perovskite lattice constant predictions. The model utilizes the number of valence electrons as well as ionic radii of alloying elements as predictors. A total of 149 cubic perovskites containing fluorides, chlorides, and bromides with cation combinations of A 1+ B 2+ , as well as oxides with cation combinations of A 1+ B 5+ , A 2+ B 4+ , and A 3+ B 3+ are explored. The model demonstrates good performance in terms of stabilities and accuracy, and thus could be a rapid approach to estimate lattice constants. Perovskite; Crystal structure; Oxide; Halide; Machine learning
Perovskites having the chemical formulae of ABX₃ are promising candidates for various electronic, magnetic, and thermal applications. One of the important structural factors is a (the lattice constant), which represents the unit cell size. The variation in the lattice constant is a combined result of interactions between different ions, determined by valence electrons and ionic radii. The size and stability of unit cells have important influences on structural stabilities, bandgap structures, and therefore performance of materials. To obtain the lattice constant of cubic perovskites without going through experimental efforts such as synthesis and measurements, we construct a model based on Gaussian process regressions for cubic perovskite lattice constant predictions. The model utilizes the number of valence electrons as well as ionic radii of alloying elements as predictors. A total of 149 cubic perovskites containing fluorides, chlorides, and bromides with cation combinations of A¹⁺B²⁺, as well as oxides with cation combinations of A¹⁺B⁵⁺, A²⁺B⁴⁺, and A³⁺B³⁺ are explored. The model demonstrates good performance in terms of stabilities and accuracy, and thus could be a rapid approach to estimate lattice constants.
Perovskites having the chemical formulae of ABX3 are promising candidates for various electronic, magnetic, and thermal applications. One of the important structural factors is a (the lattice constant), which represents the unit cell size. The variation in the lattice constant is a combined result of interactions between different ions, determined by valence electrons and ionic radii. The size and stability of unit cells have important influences on structural stabilities, bandgap structures, and therefore performance of materials. To obtain the lattice constant of cubic perovskites without going through experimental efforts such as synthesis and measurements, we construct a model based on Gaussian process regressions for cubic perovskite lattice constant predictions. The model utilizes the number of valence electrons as well as ionic radii of alloying elements as predictors. A total of 149 cubic perovskites containing fluorides, chlorides, and bromides with cation combinations of A1+B2+, as well as oxides with cation combinations of A1+B5+, A2+B4+, and A3+B3+ are explored. The model demonstrates good performance in terms of stabilities and accuracy, and thus could be a rapid approach to estimate lattice constants. Perovskite; Crystal structure; Oxide; Halide; Machine learning
ArticleNumber e07601
Author Xu, Xiaojie
Zhang, Yun
Author_xml – sequence: 1
  givenname: Yun
  orcidid: 0000-0002-9464-1751
  surname: Zhang
  fullname: Zhang, Yun
  email: yzhang43@ncsu.edu
– sequence: 2
  givenname: Xiaojie
  surname: Xu
  fullname: Xu, Xiaojie
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34355095$$D View this record in MEDLINE/PubMed
BookMark eNqFkk9vEzEQxS1UREvpRwDtkUuC_413V0igqiqlUhEXOFuOPU4cNutgOxH99ux2Q9Vyyckj-72fZjzvNTnpY4-EvGV0zihTH9bzFXbhPvZzTjmbI60VZS_IGZcUZo2U9ORJfUoucl5TShk0qq3FK3IqpACgLZyR62_RDah-WUVfdaaUYLHammQ2WDDl8dbuFsFWW0xxn3-FglX8ExzmyvSuWplurN-Ql950GS8O5zn5-eX6x9XX2d33m9ury7uZBaXKzPDG15476SWzwlNsvBPc1goUtwswXjTIPQBXyjfSAkVGKXouGslkK2txTm4nrotmrbcpbEy619EE_XAR01KbNIzQoW5Nq1AI67h3snat4VQ466BeeASHdGB9mljb3WKDzmJfkumeQZ-_9GGll3GvG8FZy5sB8P4ASPH3DnPRm5Atdp3pMe6y5kooqSQTcFwK0EoOCsYR3z1t67GffysbBDAJbIo5J_SPEkb1mA691od06DEdekrH4Pv4n8-GYkqI43ShO-r-PLlxWO8-YNLZBuwtupDQluH_wxHCXxLX2bc
CitedBy_id crossref_primary_10_1007_s10854_024_12581_w
crossref_primary_10_1007_s13563_024_00457_8
crossref_primary_10_1142_S2737599425500021
crossref_primary_10_1007_s10854_023_10069_7
crossref_primary_10_1016_j_cplett_2024_141455
crossref_primary_10_1016_j_chemphys_2022_111511
crossref_primary_10_1021_acs_jpcc_4c08125
crossref_primary_10_1142_S2737599424500130
crossref_primary_10_1177_03019233241254891
crossref_primary_10_1177_03019233241297720
crossref_primary_10_1016_j_ijleo_2024_171717
crossref_primary_10_1016_j_jssc_2025_125254
crossref_primary_10_1111_jace_19433
crossref_primary_10_1007_s42824_024_00123_y
crossref_primary_10_1016_j_eij_2025_100632
crossref_primary_10_1140_epjp_s13360_024_04898_6
crossref_primary_10_1007_s13563_024_00483_6
crossref_primary_10_1007_s43674_024_00075_5
crossref_primary_10_1088_1402_4896_ad4070
crossref_primary_10_1142_S2811034X24500060
crossref_primary_10_1007_s10854_024_12384_z
crossref_primary_10_1016_j_physc_2022_1354031
crossref_primary_10_1007_s10854_022_09650_3
crossref_primary_10_1007_s10854_024_12610_8
crossref_primary_10_1007_s10854_024_12613_5
crossref_primary_10_1016_j_optmat_2022_113421
crossref_primary_10_1016_j_engappai_2024_109747
crossref_primary_10_1177_03019233241265194
crossref_primary_10_1016_j_chemphys_2023_111978
crossref_primary_10_1063_5_0235541
crossref_primary_10_1108_JM2_12_2023_0315
crossref_primary_10_1007_s00521_024_10270_7
crossref_primary_10_1007_s10854_023_10365_2
crossref_primary_10_1007_s00521_024_09531_2
crossref_primary_10_1007_s00521_024_10726_w
crossref_primary_10_1088_1402_4896_ad9ae2
crossref_primary_10_1007_s10854_024_13672_4
crossref_primary_10_1007_s13563_024_00477_4
crossref_primary_10_1016_j_engappai_2024_109391
Cites_doi 10.1111/j.1551-2916.2011.04659.x
10.1007/s10948-020-05682-0
10.1002/pssa.201228278
10.1007/s10765-020-02734-4
10.1002/slct.202002532
10.1134/1.1643959
10.1107/S0108768108032734
10.1021/acsomega.0c01438
10.1007/s40830-020-00303-0
10.1016/j.jpcs.2006.02.004
10.1063/1.4915903
10.1063/1.4794056
10.1039/D0NJ03868G
10.1007/s10853-018-03258-x
10.1016/j.heliyon.2020.e05055
10.1007/s12540-020-00883-7
10.1103/PhysRevB.75.245209
10.1007/s00339-020-03503-8
10.1107/S0567739476001551
10.1016/j.actamat.2012.09.003
10.1007/s10909-020-02545-9
10.1109/TASC.2009.2017914
10.1088/1361-6463/ab1e2c
10.1039/D0CE00928H
10.1016/j.commatsci.2020.109583
10.1063/1.5144241
10.1038/s41598-019-46629-3
10.1007/s00269-020-01108-4
10.1016/j.jallcom.2009.06.001
10.1016/j.jpcs.2007.03.050
10.1038/nmat1804
10.1088/0953-2048/29/9/095012
10.1002/qua.26480
10.1016/j.physc.2020.1353633
10.1016/j.cplett.2020.137993
10.1088/0953-8984/20/26/264001
10.1515/ijmr-2020-7986
10.1103/PhysRevB.76.165103
10.1088/0953-2048/27/5/055016
10.1039/D0RA03031G
10.1016/j.physleta.2020.126500
10.1007/s11665-020-05146-5
10.1109/TUFFC.2013.2686
10.1016/j.jmmm.2020.166998
10.1109/LSENS.2017.2752216
10.1016/j.ijleo.2020.164808
10.1016/j.commatsci.2007.09.008
10.1088/0953-2048/29/12/125005
ContentType Journal Article
Copyright 2021 The Authors
2021 The Authors.
2021 The Authors 2021
Copyright_xml – notice: 2021 The Authors
– notice: 2021 The Authors.
– notice: 2021 The Authors 2021
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOA
DOI 10.1016/j.heliyon.2021.e07601
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic

AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2405-8440
ExternalDocumentID oai_doaj_org_article_9a96e33cd2fd47d9a203dcd57bfe5de0
PMC8321928
34355095
10_1016_j_heliyon_2021_e07601
S2405844021017047
Genre Journal Article
GroupedDBID 0R~
457
53G
5VS
6I.
AAEDW
AAFTH
AAFWJ
AALRI
AAYWO
ABMAC
ACGFS
ACLIJ
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPKN
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
IPNFZ
KQ8
M~E
O9-
OK1
RIG
ROL
RPM
SSZ
AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c566t-a28f7f2d4f41c3f0e8fd32c76562cb5af38e2f55266f84c50e100ef2384149473
IEDL.DBID DOA
ISSN 2405-8440
IngestDate Wed Aug 27 01:07:35 EDT 2025
Thu Aug 21 14:35:45 EDT 2025
Fri Aug 22 20:28:27 EDT 2025
Thu Jul 10 19:25:31 EDT 2025
Mon Jul 21 05:25:05 EDT 2025
Thu Jul 10 10:08:45 EDT 2025
Thu Apr 24 22:57:59 EDT 2025
Sat Aug 09 17:32:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Oxide
Perovskite
Halide
Machine learning
Crystal structure
Language English
License This is an open access article under the CC BY-NC-ND license.
2021 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c566t-a28f7f2d4f41c3f0e8fd32c76562cb5af38e2f55266f84c50e100ef2384149473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9464-1751
OpenAccessLink https://doaj.org/article/9a96e33cd2fd47d9a203dcd57bfe5de0
PMID 34355095
PQID 2559425657
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_9a96e33cd2fd47d9a203dcd57bfe5de0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8321928
proquest_miscellaneous_2636464135
proquest_miscellaneous_2559425657
pubmed_primary_34355095
crossref_primary_10_1016_j_heliyon_2021_e07601
crossref_citationtrail_10_1016_j_heliyon_2021_e07601
elsevier_sciencedirect_doi_10_1016_j_heliyon_2021_e07601
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Heliyon
PublicationTitleAlternate Heliyon
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Zhang, Xu (br0420) 2021; 121
Zhang, Xu (br0430) 2021; 202
Albina, Mrovec, Meyer, Elsässer (br0550) 2007; 76
Zhang, Koch, Schwartz (br0080) 2016; 29
Moreira, Dias (br0530) 2007; 68
Shannon (br0540) 1976; 32
Cheong, Mostovoy (br0200) 2007; 6
Zhang, Xu (br0400) 2020; 47
Wang, Wang, Li, Zhu, Wang, Woo (br0560) 2007; 75
Zhang, Xu (br0500) 2020; 44
Jiang, Guo, Liu, Zhu, Zhou, Wu, Li (br0510) 2006; 67
Zhang, Xu (br0290) 2020; 126
Zhang, Xu (br0410) 2020; 6
Zhang, Xu (br0490) 2020; 760
Zhang, Xu (br0440) 2020; 29
Shen, Bosque, Davis, Jiang, White, Zhang, Higley, Turqueti, Huang, Miao, Trociewitz (br0030) 2019; 9
Qiu, Wu, Pan, Xu, Zhang, Li, Li, Wang, Wang, Zhao, Zhang (br0110) 2017; 27
Lin, Gu, Zhu, Ye, Jiang, Wang, Liao, Yang, Zeng, Sheng, Guo (br0210) 2019; 54
Johnsson, Lemmens (br0010) 2008; 20
Verma, Jindal (br0250) 2009; 485
Jiang, Bradford, Hossain, Brown, Cooper, Miller, Huang, Miao, Parrell, White, Hunt, Sengupta, Revur, Shen, Kametani, Trociewitz, Hellstrom, Larbalestier (br0020) 2019; 29
Li, Lu, Ding, Feng, Gao, Guo (br0240) 2008; 64
Zhang, Xu (br0330) 2020; 217
Zhang, Xu (br0370) 2020; 5
Zhang, Xu (br0380) 2020; 41
Zhang, Xu (br0320) 2020; 10
Zhang, Xu (br0300) 2020; 10
Pan, Sheng, Wu, Wang, Zeng, Zhao, Zhang, Li, Hong, Jin (br0140) 2017; 27
Wang, Hasanyan, Li, Gao, Li, Viehland (br0170) 2013; 60
Zhang, Xu (br0270) 2020; 573
Zhang, Xu (br0310) 2020; 384
Zhang, Xu (br0450) 2021; 112
Zhang, Xu (br0360) 2020; 22
Zhang, Johnson, Naderi, Chaubal, Hunt, Schwartz (br0070) 2016; 29
Li, Berry, Das, Gray, Li, Viehland (br0190) 2011; 94
Song, Hunte, Schwartz (br0040) 2012; 60
Yang, Liu, Sheng, Guo, Zeng, Gao, Ye (br0220) 2017; 7
Geguzina, Sakhnenko (br0580) 2004; 49
Zhang, Koch, Schwartz (br0090) 2014; 27
Guo, Kirste, Bryan, Bryan, Gerhold, Collazo, Sitar (br0230) 2015; 117
Zhang, Xu (br0350) 2020; 5
Li, Wang, Wang, Li, Viehland (br0150) 2013; 102
Zhang, Xu (br0460) 2020; 6
Wang, Zheng, Zhu, Zhang, Yuan (br0100) 2019; 52
Schwartz, Koch, Zhang, Liu (br0060) September 26, 2017
Zhang, Xu (br0260) 2020; 179
Yang, Li, Wang, Wang, Wu, Huang, Hong, Jiang, Jin (br0120) 2019; 29
Zhang, Xu (br0280) 2020; 512
Yang, Wang, Qiu, Chang, Ma, Zhu, Jin, Hong (br0130) 2018; 28
Thieme, Gagnon, Coulter, Song, Schwartz (br0050) 2009; 19
Zhang, Xu (br0390) 2021; 27
Zhang, Xu (br0470) 2021; 34
Li, Yang, Dong, Hu (br0520) 2020
Wang, Hasanyan, Li, Gao, Viswan, Li, Viehland (br0180) 2012; 209
Zhang, Xu (br0480) 2020
Li, Dong, Zhou, Wang, Wang, Liang, Lin, Sun (br0160) 2017; 1
Zhang, Xu (br0340) 2020; 10
Li, Wang, Wang, Wang, Lu (br0570) 2008; 42
Zhang (10.1016/j.heliyon.2021.e07601_br0320) 2020; 10
Zhang (10.1016/j.heliyon.2021.e07601_br0440) 2020; 29
Zhang (10.1016/j.heliyon.2021.e07601_br0480) 2020
Verma (10.1016/j.heliyon.2021.e07601_br0250) 2009; 485
Zhang (10.1016/j.heliyon.2021.e07601_br0370) 2020; 5
Moreira (10.1016/j.heliyon.2021.e07601_br0530) 2007; 68
Zhang (10.1016/j.heliyon.2021.e07601_br0380) 2020; 41
Jiang (10.1016/j.heliyon.2021.e07601_br0510) 2006; 67
Jiang (10.1016/j.heliyon.2021.e07601_br0020) 2019; 29
Zhang (10.1016/j.heliyon.2021.e07601_br0080) 2016; 29
Zhang (10.1016/j.heliyon.2021.e07601_br0400) 2020; 47
Zhang (10.1016/j.heliyon.2021.e07601_br0500) 2020; 44
Zhang (10.1016/j.heliyon.2021.e07601_br0430) 2021; 202
Li (10.1016/j.heliyon.2021.e07601_br0240) 2008; 64
Wang (10.1016/j.heliyon.2021.e07601_br0560) 2007; 75
Li (10.1016/j.heliyon.2021.e07601_br0570) 2008; 42
Li (10.1016/j.heliyon.2021.e07601_br0160) 2017; 1
Cheong (10.1016/j.heliyon.2021.e07601_br0200) 2007; 6
Yang (10.1016/j.heliyon.2021.e07601_br0130) 2018; 28
Zhang (10.1016/j.heliyon.2021.e07601_br0410) 2020; 6
Song (10.1016/j.heliyon.2021.e07601_br0040) 2012; 60
Lin (10.1016/j.heliyon.2021.e07601_br0210) 2019; 54
Yang (10.1016/j.heliyon.2021.e07601_br0220) 2017; 7
Zhang (10.1016/j.heliyon.2021.e07601_br0470) 2021; 34
Albina (10.1016/j.heliyon.2021.e07601_br0550) 2007; 76
Zhang (10.1016/j.heliyon.2021.e07601_br0390) 2021; 27
Li (10.1016/j.heliyon.2021.e07601_br0190) 2011; 94
Li (10.1016/j.heliyon.2021.e07601_br0520)
Zhang (10.1016/j.heliyon.2021.e07601_br0340) 2020; 10
Zhang (10.1016/j.heliyon.2021.e07601_br0350) 2020; 5
Shannon (10.1016/j.heliyon.2021.e07601_br0540) 1976; 32
Guo (10.1016/j.heliyon.2021.e07601_br0230) 2015; 117
Schwartz (10.1016/j.heliyon.2021.e07601_br0060)
Geguzina (10.1016/j.heliyon.2021.e07601_br0580) 2004; 49
Thieme (10.1016/j.heliyon.2021.e07601_br0050) 2009; 19
Yang (10.1016/j.heliyon.2021.e07601_br0120) 2019; 29
Zhang (10.1016/j.heliyon.2021.e07601_br0450) 2021; 112
Qiu (10.1016/j.heliyon.2021.e07601_br0110) 2017; 27
Wang (10.1016/j.heliyon.2021.e07601_br0180) 2012; 209
Zhang (10.1016/j.heliyon.2021.e07601_br0280) 2020; 512
Wang (10.1016/j.heliyon.2021.e07601_br0170) 2013; 60
Zhang (10.1016/j.heliyon.2021.e07601_br0090) 2014; 27
Pan (10.1016/j.heliyon.2021.e07601_br0140) 2017; 27
Johnsson (10.1016/j.heliyon.2021.e07601_br0010) 2008; 20
Zhang (10.1016/j.heliyon.2021.e07601_br0420) 2021; 121
Li (10.1016/j.heliyon.2021.e07601_br0150) 2013; 102
Zhang (10.1016/j.heliyon.2021.e07601_br0460) 2020; 6
Wang (10.1016/j.heliyon.2021.e07601_br0100) 2019; 52
Shen (10.1016/j.heliyon.2021.e07601_br0030) 2019; 9
Zhang (10.1016/j.heliyon.2021.e07601_br0490) 2020; 760
Zhang (10.1016/j.heliyon.2021.e07601_br0290) 2020; 126
Zhang (10.1016/j.heliyon.2021.e07601_br0070) 2016; 29
Zhang (10.1016/j.heliyon.2021.e07601_br0260) 2020; 179
Zhang (10.1016/j.heliyon.2021.e07601_br0310) 2020; 384
Zhang (10.1016/j.heliyon.2021.e07601_br0270) 2020; 573
Zhang (10.1016/j.heliyon.2021.e07601_br0300) 2020; 10
Zhang (10.1016/j.heliyon.2021.e07601_br0330) 2020; 217
Zhang (10.1016/j.heliyon.2021.e07601_br0360) 2020; 22
References_xml – volume: 9
  start-page: 1
  year: 2019
  end-page: 9
  ident: br0030
  article-title: Stable, predictable and training-free operation of superconducting Bi-2212 Rutherford cable racetrack coils at the wire current density of 1000 A/mm
  publication-title: Sci. Rep.
– volume: 20
  year: 2008
  ident: br0010
  article-title: Perovskites and thin films—crystallography and chemistry
  publication-title: J. Phys. Condens. Matter
– volume: 10
  start-page: 20646
  year: 2020
  end-page: 20653
  ident: br0340
  article-title: Relative cooling power modeling of lanthanum manganites using Gaussian process regression
  publication-title: RSC Adv.
– volume: 29
  start-page: 1
  year: 2019
  end-page: 5
  ident: br0020
  article-title: High-performance Bi-2212 round wires made with recent powders
  publication-title: IEEE Trans. Appl. Supercond.
– volume: 5
  start-page: 15344
  year: 2020
  end-page: 15352
  ident: br0350
  article-title: Machine learning band gaps of doped-TiO
  publication-title: ACS Omega
– volume: 75
  year: 2007
  ident: br0560
  article-title: First-principles study of the cubic perovskites
  publication-title: Phys. Rev. B
– volume: 32
  start-page: 751
  year: 1976
  end-page: 767
  ident: br0540
  article-title: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
  publication-title: Acta Crystallogr., Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr.
– volume: 102
  year: 2013
  ident: br0150
  article-title: Giant magnetoelectric effect in self-biased laminates under zero magnetic field
  publication-title: Appl. Phys. Lett.
– volume: 27
  start-page: 235
  year: 2021
  end-page: 253
  ident: br0390
  article-title: Lattice misfit predictions via the Gaussian process regression for Ni-based single crystal superalloys
  publication-title: Met. Mater. Int.
– volume: 121
  year: 2021
  ident: br0420
  article-title: Machine learning lattice parameters of monoclinic double perovskites
  publication-title: Int. J. Quant. Chem.
– volume: 202
  start-page: 205
  year: 2021
  end-page: 218
  ident: br0430
  article-title: Fe-based superconducting transition temperature modeling through Gaussian process regression
  publication-title: J. Low Temp. Phys.
– volume: 28
  start-page: 1
  year: 2018
  end-page: 5
  ident: br0130
  article-title: Design and fabrication of a 1-MW high-temperature superconductor DC induction heater
  publication-title: IEEE Trans. Appl. Supercond.
– volume: 47
  start-page: 39
  year: 2020
  ident: br0400
  article-title: Machine learning lattice constants from ionic radii and electronegativities for cubic perovskite
  publication-title: Phys. Chem. Miner.
– volume: 29
  year: 2016
  ident: br0080
  article-title: Formation of Bi
  publication-title: Supercond. Sci. Technol.
– volume: 179
  year: 2020
  ident: br0260
  article-title: Yttrium barium copper oxide superconducting transition temperature modeling through Gaussian process regression
  publication-title: Comput. Mater. Sci.
– volume: 68
  start-page: 1617
  year: 2007
  end-page: 1622
  ident: br0530
  article-title: Comment on ‘Prediction of lattice constant in cubic perovskites’
  publication-title: J. Phys. Chem. Solids
– volume: 29
  start-page: 6605
  year: 2020
  end-page: 6616
  ident: br0440
  article-title: Machine learning decomposition onset temperature of lubricant additives
  publication-title: J. Mater. Eng. Perform.
– volume: 22
  start-page: 6385
  year: 2020
  end-page: 6397
  ident: br0360
  article-title: Machine learning lattice constants for cubic perovskite
  publication-title: CrystEngComm
– volume: 34
  start-page: 63
  year: 2021
  end-page: 73
  ident: br0470
  article-title: Machine learning F-doped Bi(Pb)–Sr–Ca–Cu–O superconducting transition temperature
  publication-title: J. Supercond. Nov. Magn.
– volume: 64
  start-page: 702
  year: 2008
  end-page: 707
  ident: br0240
  article-title: Formability of
  publication-title: Acta Crystallogr., Sect. B, Struct. Sci.
– volume: 60
  start-page: 6991
  year: 2012
  end-page: 7000
  ident: br0040
  article-title: On the role of pre-existing defects and magnetic flux avalanches in the degradation of YBa
  publication-title: Acta Mater.
– volume: 29
  start-page: 1
  year: 2019
  end-page: 6
  ident: br0120
  article-title: Quench protection system of a 1 MW high temperature superconductor DC induction heater
  publication-title: IEEE Trans. Appl. Supercond.
– volume: 760
  year: 2020
  ident: br0490
  article-title: Machine learning lattice constants for spinel compounds
  publication-title: Chem. Phys. Lett.
– volume: 29
  year: 2016
  ident: br0070
  article-title: High critical current density Bi
  publication-title: Supercond. Sci. Technol.
– volume: 384
  year: 2020
  ident: br0310
  article-title: Predicting the thermal conductivity enhancement of nanofluids using computational intelligence
  publication-title: Phys. Lett. A
– volume: 209
  start-page: 2059
  year: 2012
  end-page: 2062
  ident: br0180
  article-title: Magnetic field dependence of the effective permittivity in multiferroic composites
  publication-title: Phys. Status Solidi (a)
– volume: 6
  start-page: 374
  year: 2020
  end-page: 386
  ident: br0410
  article-title: Transformation temperature predictions through computational intelligence for NiTi-based shape memory alloys
  publication-title: Shape Mem. Superelast.
– volume: 27
  year: 2014
  ident: br0090
  article-title: Synthesis of Bi
  publication-title: Supercond. Sci. Technol.
– volume: 67
  start-page: 1531
  year: 2006
  end-page: 1536
  ident: br0510
  article-title: Prediction of lattice constant in cubic perovskites
  publication-title: J. Phys. Chem. Solids
– volume: 42
  start-page: 614
  year: 2008
  end-page: 618
  ident: br0570
  article-title: First-principles study of structural, elastic, electronic, and optical properties of orthorhombic BiGaO
  publication-title: Comput. Mater. Sci.
– year: 2020
  ident: br0480
  article-title: Machine learning the central magnetic flux density of superconducting solenoids
  publication-title: Mater. Technol.
– volume: 19
  start-page: 1626
  year: 2009
  end-page: 1632
  ident: br0050
  article-title: Stability of second generation HTS pancake coils at 4.2 K for high heat flux applications
  publication-title: IEEE Trans. Appl. Supercond.
– volume: 10
  year: 2020
  ident: br0320
  article-title: Machine learning modeling of lattice constants for half-Heusler alloys
  publication-title: AIP Adv.
– volume: 44
  start-page: 20544
  year: 2020
  end-page: 20567
  ident: br0500
  article-title: Solubility predictions through LSBoost for supercritical carbon dioxide in ionic liquids
  publication-title: New J. Chem.
– year: 2020
  ident: br0520
  article-title: MLatticeABC: generic lattice constant prediction of crystal materials using machine learning
– volume: 10
  year: 2020
  ident: br0300
  article-title: Machine learning the magnetocaloric effect in manganites from compositions and structural parameters
  publication-title: AIP Adv.
– volume: 94
  start-page: 3738
  year: 2011
  end-page: 3741
  ident: br0190
  article-title: Enhanced sensitivity and reduced noise floor in magnetoelectric laminate sensors by an improved lamination process
  publication-title: J. Am. Ceram. Soc.
– volume: 6
  year: 2020
  ident: br0460
  article-title: Machine learning glass transition temperature of polymers
  publication-title: Heliyon
– volume: 52
  year: 2019
  ident: br0100
  article-title: Quench behavior of high-temperature superconductor (RE) Ba2Cu3O × CORC cable
  publication-title: J. Phys. D, Appl. Phys.
– volume: 60
  start-page: 1227
  year: 2013
  end-page: 1233
  ident: br0170
  article-title: Equivalent magnetic noise in multi-push-pull configuration magnetoelectric composites: model and experiment
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 126
  start-page: 341
  year: 2020
  ident: br0290
  article-title: Machine learning the magnetocaloric effect in manganites from lattice parameters
  publication-title: Appl. Phys. A
– year: September 26, 2017
  ident: br0060
  article-title: Formation of bismuth strontium calcium copper oxide superconductors
– volume: 27
  start-page: 1
  year: 2017
  end-page: 5
  ident: br0140
  article-title: Numerical study on simplified resistive joints of coated conductors: is there a lower limit of the joint resistance?
  publication-title: IEEE Trans. Appl. Supercond.
– volume: 1
  start-page: 1
  year: 2017
  end-page: 4
  ident: br0160
  article-title: Highly sensitive DC magnetic field sensor based on nonlinear ME effect
  publication-title: IEEE Sens. Lett.
– volume: 6
  start-page: 13
  year: 2007
  end-page: 20
  ident: br0200
  article-title: Multiferroics: a magnetic twist for ferroelectricity
  publication-title: Nat. Mater.
– volume: 49
  start-page: 15
  year: 2004
  end-page: 19
  ident: br0580
  article-title: Correlation between the lattice parameters of crystals with perovskite structure
  publication-title: Crystallogr. Rep.
– volume: 217
  year: 2020
  ident: br0330
  article-title: Machine learning optical band gaps of doped-ZnO films
  publication-title: Optik
– volume: 41
  start-page: 149
  year: 2020
  ident: br0380
  article-title: Predicting As
  publication-title: Int. J. Thermophys.
– volume: 54
  start-page: 7789
  year: 2019
  end-page: 7797
  ident: br0210
  article-title: Engineering of hole-selective contact for high-performance perovskite solar cell featuring silver back-electrode
  publication-title: J. Mater. Sci.
– volume: 76
  year: 2007
  ident: br0550
  article-title: Structure, stability, and electronic properties of SrTiO
  publication-title: Phys. Rev. B
– volume: 5
  start-page: 9999
  year: 2020
  end-page: 10009
  ident: br0370
  article-title: Machine learning lattice constants for cubic perovskite
  publication-title: ChemistrySelect
– volume: 112
  start-page: 2
  year: 2021
  end-page: 9
  ident: br0450
  article-title: Predicting doped Fe-based superconductor critical temperature from structural and topological parameters using machine learning
  publication-title: Int. J. Mater. Res.
– volume: 7
  start-page: 1
  year: 2017
  end-page: 9
  ident: br0220
  article-title: Opto-electric investigation for Si/organic heterojunction single-nanowire solar cells
  publication-title: Sci. Rep.
– volume: 485
  start-page: 514
  year: 2009
  end-page: 518
  ident: br0250
  article-title: Lattice constant of cubic perovskites
  publication-title: J. Alloys Compd.
– volume: 117
  year: 2015
  ident: br0230
  article-title: Nanostructure surface patterning of GaN thin films and application to AlGaN/AlN multiple quantum wells: a way towards light extraction efficiency enhancement of III-nitride based light emitting diodes
  publication-title: J. Appl. Phys.
– volume: 573
  year: 2020
  ident: br0270
  article-title: Predicting doped MgB
  publication-title: Physica C, Supercond. Appl.
– volume: 512
  year: 2020
  ident: br0280
  article-title: Curie temperature modeling of magnetocaloric lanthanum manganites using Gaussian process regression
  publication-title: J. Magn. Magn. Mater.
– volume: 27
  start-page: 1
  year: 2017
  end-page: 5
  ident: br0110
  article-title: Experiment and numerical analysis on magnetic field stability of persistent current mode coil made of HTS-coated conductors
  publication-title: IEEE Trans. Appl. Supercond.
– volume: 94
  start-page: 3738
  issue: 11
  year: 2011
  ident: 10.1016/j.heliyon.2021.e07601_br0190
  article-title: Enhanced sensitivity and reduced noise floor in magnetoelectric laminate sensors by an improved lamination process
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2011.04659.x
– volume: 34
  start-page: 63
  issue: 1
  year: 2021
  ident: 10.1016/j.heliyon.2021.e07601_br0470
  article-title: Machine learning F-doped Bi(Pb)–Sr–Ca–Cu–O superconducting transition temperature
  publication-title: J. Supercond. Nov. Magn.
  doi: 10.1007/s10948-020-05682-0
– volume: 209
  start-page: 2059
  issue: 10
  year: 2012
  ident: 10.1016/j.heliyon.2021.e07601_br0180
  article-title: Magnetic field dependence of the effective permittivity in multiferroic composites
  publication-title: Phys. Status Solidi (a)
  doi: 10.1002/pssa.201228278
– volume: 41
  start-page: 149
  year: 2020
  ident: 10.1016/j.heliyon.2021.e07601_br0380
  article-title: Predicting AsxSe1−x glass transition onset temperature
  publication-title: Int. J. Thermophys.
  doi: 10.1007/s10765-020-02734-4
– volume: 29
  start-page: 1
  issue: 5
  year: 2019
  ident: 10.1016/j.heliyon.2021.e07601_br0120
  article-title: Quench protection system of a 1 MW high temperature superconductor DC induction heater
  publication-title: IEEE Trans. Appl. Supercond.
– volume: 5
  start-page: 9999
  year: 2020
  ident: 10.1016/j.heliyon.2021.e07601_br0370
  article-title: Machine learning lattice constants for cubic perovskite ABX3 compounds
  publication-title: ChemistrySelect
  doi: 10.1002/slct.202002532
– volume: 49
  start-page: 15
  issue: 1
  year: 2004
  ident: 10.1016/j.heliyon.2021.e07601_br0580
  article-title: Correlation between the lattice parameters of crystals with perovskite structure
  publication-title: Crystallogr. Rep.
  doi: 10.1134/1.1643959
– volume: 64
  start-page: 702
  issue: 6
  year: 2008
  ident: 10.1016/j.heliyon.2021.e07601_br0240
  article-title: Formability of ABX3 (X= F, Cl, Br, I) halide perovskites
  publication-title: Acta Crystallogr., Sect. B, Struct. Sci.
  doi: 10.1107/S0108768108032734
– volume: 5
  start-page: 15344
  year: 2020
  ident: 10.1016/j.heliyon.2021.e07601_br0350
  article-title: Machine learning band gaps of doped-TiO2 photocatalysts from structural and morphological parameters
  publication-title: ACS Omega
  doi: 10.1021/acsomega.0c01438
– volume: 6
  start-page: 374
  year: 2020
  ident: 10.1016/j.heliyon.2021.e07601_br0410
  article-title: Transformation temperature predictions through computational intelligence for NiTi-based shape memory alloys
  publication-title: Shape Mem. Superelast.
  doi: 10.1007/s40830-020-00303-0
– volume: 67
  start-page: 1531
  issue: 7
  year: 2006
  ident: 10.1016/j.heliyon.2021.e07601_br0510
  article-title: Prediction of lattice constant in cubic perovskites
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2006.02.004
– ident: 10.1016/j.heliyon.2021.e07601_br0520
– volume: 117
  issue: 11
  year: 2015
  ident: 10.1016/j.heliyon.2021.e07601_br0230
  article-title: Nanostructure surface patterning of GaN thin films and application to AlGaN/AlN multiple quantum wells: a way towards light extraction efficiency enhancement of III-nitride based light emitting diodes
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4915903
– volume: 102
  issue: 8
  year: 2013
  ident: 10.1016/j.heliyon.2021.e07601_br0150
  article-title: Giant magnetoelectric effect in self-biased laminates under zero magnetic field
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4794056
– volume: 44
  start-page: 20544
  year: 2020
  ident: 10.1016/j.heliyon.2021.e07601_br0500
  article-title: Solubility predictions through LSBoost for supercritical carbon dioxide in ionic liquids
  publication-title: New J. Chem.
  doi: 10.1039/D0NJ03868G
– volume: 54
  start-page: 7789
  issue: 10
  year: 2019
  ident: 10.1016/j.heliyon.2021.e07601_br0210
  article-title: Engineering of hole-selective contact for high-performance perovskite solar cell featuring silver back-electrode
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-018-03258-x
– volume: 6
  year: 2020
  ident: 10.1016/j.heliyon.2021.e07601_br0460
  article-title: Machine learning glass transition temperature of polymers
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2020.e05055
– volume: 27
  start-page: 235
  issue: 2
  year: 2021
  ident: 10.1016/j.heliyon.2021.e07601_br0390
  article-title: Lattice misfit predictions via the Gaussian process regression for Ni-based single crystal superalloys
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-020-00883-7
– volume: 29
  start-page: 1
  issue: 5
  year: 2019
  ident: 10.1016/j.heliyon.2021.e07601_br0020
  article-title: High-performance Bi-2212 round wires made with recent powders
  publication-title: IEEE Trans. Appl. Supercond.
– volume: 75
  issue: 24
  year: 2007
  ident: 10.1016/j.heliyon.2021.e07601_br0560
  article-title: First-principles study of the cubic perovskites BiMO3 (M= Al, Ga, In, and Sc)
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.245209
– volume: 126
  start-page: 341
  year: 2020
  ident: 10.1016/j.heliyon.2021.e07601_br0290
  article-title: Machine learning the magnetocaloric effect in manganites from lattice parameters
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-020-03503-8
– volume: 32
  start-page: 751
  issue: 5
  year: 1976
  ident: 10.1016/j.heliyon.2021.e07601_br0540
  article-title: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
  publication-title: Acta Crystallogr., Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr.
  doi: 10.1107/S0567739476001551
– ident: 10.1016/j.heliyon.2021.e07601_br0060
– volume: 60
  start-page: 6991
  issue: 20
  year: 2012
  ident: 10.1016/j.heliyon.2021.e07601_br0040
  article-title: On the role of pre-existing defects and magnetic flux avalanches in the degradation of YBa2Cu3O7−x coated conductors by quenching
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2012.09.003
– volume: 202
  start-page: 205
  year: 2021
  ident: 10.1016/j.heliyon.2021.e07601_br0430
  article-title: Fe-based superconducting transition temperature modeling through Gaussian process regression
  publication-title: J. Low Temp. Phys.
  doi: 10.1007/s10909-020-02545-9
– volume: 19
  start-page: 1626
  issue: 3
  year: 2009
  ident: 10.1016/j.heliyon.2021.e07601_br0050
  article-title: Stability of second generation HTS pancake coils at 4.2 K for high heat flux applications
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/TASC.2009.2017914
– volume: 52
  issue: 34
  year: 2019
  ident: 10.1016/j.heliyon.2021.e07601_br0100
  article-title: Quench behavior of high-temperature superconductor (RE) Ba2Cu3O × CORC cable
  publication-title: J. Phys. D, Appl. Phys.
  doi: 10.1088/1361-6463/ab1e2c
– volume: 22
  start-page: 6385
  year: 2020
  ident: 10.1016/j.heliyon.2021.e07601_br0360
  article-title: Machine learning lattice constants for cubic perovskite A22+BB′O6 compounds
  publication-title: CrystEngComm
  doi: 10.1039/D0CE00928H
– volume: 179
  year: 2020
  ident: 10.1016/j.heliyon.2021.e07601_br0260
  article-title: Yttrium barium copper oxide superconducting transition temperature modeling through Gaussian process regression
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2020.109583
– volume: 10
  issue: 3
  year: 2020
  ident: 10.1016/j.heliyon.2021.e07601_br0300
  article-title: Machine learning the magnetocaloric effect in manganites from compositions and structural parameters
  publication-title: AIP Adv.
  doi: 10.1063/1.5144241
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.heliyon.2021.e07601_br0030
  article-title: Stable, predictable and training-free operation of superconducting Bi-2212 Rutherford cable racetrack coils at the wire current density of 1000 A/mm2
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-46629-3
– volume: 10
  year: 2020
  ident: 10.1016/j.heliyon.2021.e07601_br0320
  article-title: Machine learning modeling of lattice constants for half-Heusler alloys
  publication-title: AIP Adv.
– volume: 47
  start-page: 39
  year: 2020
  ident: 10.1016/j.heliyon.2021.e07601_br0400
  article-title: Machine learning lattice constants from ionic radii and electronegativities for cubic perovskite A2XY6 compounds
  publication-title: Phys. Chem. Miner.
  doi: 10.1007/s00269-020-01108-4
– volume: 485
  start-page: 514
  issue: 1–2
  year: 2009
  ident: 10.1016/j.heliyon.2021.e07601_br0250
  article-title: Lattice constant of cubic perovskites
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2009.06.001
– volume: 68
  start-page: 1617
  issue: 8
  year: 2007
  ident: 10.1016/j.heliyon.2021.e07601_br0530
  article-title: Comment on ‘Prediction of lattice constant in cubic perovskites’
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2007.03.050
– volume: 6
  start-page: 13
  issue: 1
  year: 2007
  ident: 10.1016/j.heliyon.2021.e07601_br0200
  article-title: Multiferroics: a magnetic twist for ferroelectricity
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1804
– volume: 27
  start-page: 1
  issue: 4
  year: 2017
  ident: 10.1016/j.heliyon.2021.e07601_br0140
  article-title: Numerical study on simplified resistive joints of coated conductors: is there a lower limit of the joint resistance?
  publication-title: IEEE Trans. Appl. Supercond.
– volume: 29
  issue: 9
  year: 2016
  ident: 10.1016/j.heliyon.2021.e07601_br0070
  article-title: High critical current density Bi2Sr2CaCu2O x/Ag wire containing oxide precursor synthesized from nano-oxides
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/29/9/095012
– volume: 121
  issue: 5
  year: 2021
  ident: 10.1016/j.heliyon.2021.e07601_br0420
  article-title: Machine learning lattice parameters of monoclinic double perovskites
  publication-title: Int. J. Quant. Chem.
  doi: 10.1002/qua.26480
– volume: 573
  year: 2020
  ident: 10.1016/j.heliyon.2021.e07601_br0270
  article-title: Predicting doped MgB2 superconductor critical temperature from lattice parameters using Gaussian process regression
  publication-title: Physica C, Supercond. Appl.
  doi: 10.1016/j.physc.2020.1353633
– volume: 760
  year: 2020
  ident: 10.1016/j.heliyon.2021.e07601_br0490
  article-title: Machine learning lattice constants for spinel compounds
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2020.137993
– volume: 20
  issue: 26
  year: 2008
  ident: 10.1016/j.heliyon.2021.e07601_br0010
  article-title: Perovskites and thin films—crystallography and chemistry
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/20/26/264001
– volume: 27
  start-page: 1
  issue: 4
  year: 2017
  ident: 10.1016/j.heliyon.2021.e07601_br0110
  article-title: Experiment and numerical analysis on magnetic field stability of persistent current mode coil made of HTS-coated conductors
  publication-title: IEEE Trans. Appl. Supercond.
– volume: 112
  start-page: 2
  issue: 1
  year: 2021
  ident: 10.1016/j.heliyon.2021.e07601_br0450
  article-title: Predicting doped Fe-based superconductor critical temperature from structural and topological parameters using machine learning
  publication-title: Int. J. Mater. Res.
  doi: 10.1515/ijmr-2020-7986
– volume: 76
  issue: 16
  year: 2007
  ident: 10.1016/j.heliyon.2021.e07601_br0550
  article-title: Structure, stability, and electronic properties of SrTiO3/LaAlO3 and SrTiO3/SrRuO3 interfaces
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.76.165103
– volume: 27
  issue: 5
  year: 2014
  ident: 10.1016/j.heliyon.2021.e07601_br0090
  article-title: Synthesis of Bi2Sr2CaCu2Ox superconductors via direct oxidation of metallic precursors
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/27/5/055016
– volume: 10
  start-page: 20646
  year: 2020
  ident: 10.1016/j.heliyon.2021.e07601_br0340
  article-title: Relative cooling power modeling of lanthanum manganites using Gaussian process regression
  publication-title: RSC Adv.
  doi: 10.1039/D0RA03031G
– volume: 384
  year: 2020
  ident: 10.1016/j.heliyon.2021.e07601_br0310
  article-title: Predicting the thermal conductivity enhancement of nanofluids using computational intelligence
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2020.126500
– volume: 29
  start-page: 6605
  year: 2020
  ident: 10.1016/j.heliyon.2021.e07601_br0440
  article-title: Machine learning decomposition onset temperature of lubricant additives
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-020-05146-5
– volume: 60
  start-page: 1227
  issue: 6
  year: 2013
  ident: 10.1016/j.heliyon.2021.e07601_br0170
  article-title: Equivalent magnetic noise in multi-push-pull configuration magnetoelectric composites: model and experiment
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2013.2686
– volume: 512
  year: 2020
  ident: 10.1016/j.heliyon.2021.e07601_br0280
  article-title: Curie temperature modeling of magnetocaloric lanthanum manganites using Gaussian process regression
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2020.166998
– volume: 1
  start-page: 1
  issue: 6
  year: 2017
  ident: 10.1016/j.heliyon.2021.e07601_br0160
  article-title: Highly sensitive DC magnetic field sensor based on nonlinear ME effect
  publication-title: IEEE Sens. Lett.
  doi: 10.1109/LSENS.2017.2752216
– volume: 217
  year: 2020
  ident: 10.1016/j.heliyon.2021.e07601_br0330
  article-title: Machine learning optical band gaps of doped-ZnO films
  publication-title: Optik
  doi: 10.1016/j.ijleo.2020.164808
– volume: 42
  start-page: 614
  issue: 4
  year: 2008
  ident: 10.1016/j.heliyon.2021.e07601_br0570
  article-title: First-principles study of structural, elastic, electronic, and optical properties of orthorhombic BiGaO3
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2007.09.008
– year: 2020
  ident: 10.1016/j.heliyon.2021.e07601_br0480
  article-title: Machine learning the central magnetic flux density of superconducting solenoids
  publication-title: Mater. Technol.
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.heliyon.2021.e07601_br0220
  article-title: Opto-electric investigation for Si/organic heterojunction single-nanowire solar cells
  publication-title: Sci. Rep.
– volume: 29
  issue: 12
  year: 2016
  ident: 10.1016/j.heliyon.2021.e07601_br0080
  article-title: Formation of Bi2Sr2CaCu2O x/Ag multifilamentary metallic precursor powder-in-tube wires
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/29/12/125005
– volume: 28
  start-page: 1
  issue: 4
  year: 2018
  ident: 10.1016/j.heliyon.2021.e07601_br0130
  article-title: Design and fabrication of a 1-MW high-temperature superconductor DC induction heater
  publication-title: IEEE Trans. Appl. Supercond.
SSID ssj0001586973
Score 2.4228454
Snippet Perovskites having the chemical formulae of ABX3 are promising candidates for various electronic, magnetic, and thermal applications. One of the important...
Perovskites having the chemical formulae of ABX are promising candidates for various electronic, magnetic, and thermal applications. One of the important...
Perovskites having the chemical formulae of ABX₃ are promising candidates for various electronic, magnetic, and thermal applications. One of the important...
Perovskites having the chemical formulae of ABX 3 are promising candidates for various electronic, magnetic, and thermal applications. One of the important...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e07601
SubjectTerms cations
Crystal structure
Halide
Machine learning
magnetism
normal distribution
Oxide
Perovskite
Title Modeling of lattice parameters of cubic perovskite oxides and halides
URI https://dx.doi.org/10.1016/j.heliyon.2021.e07601
https://www.ncbi.nlm.nih.gov/pubmed/34355095
https://www.proquest.com/docview/2559425657
https://www.proquest.com/docview/2636464135
https://pubmed.ncbi.nlm.nih.gov/PMC8321928
https://doaj.org/article/9a96e33cd2fd47d9a203dcd57bfe5de0
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQHlZcVssCS3msjMQ1bepH7BwB7apCWk6s1Jvl-KGmKslq2yL498zEaWlYiV64RX5FHo8z38Tjbwj5AEbFVpGXGXOVzYQKPgM3QmfOs9xhpvdK40Xh26_F7E58mcv5QaovjAlL9MBJcJPSlkXgHPpGL5QvLcu5d16qKgbpQ-etg807cKbS_WBdlN3xMlgsCa8X-Z_rO5PleBFW9a8W-U_ZdBzwdGo6MEwdf__APj3Gn3-HUR7YpZtzctYDSvoxTeQZeRKaC3J62x-ZPyfXmO0M75zTNtKV3WCwG0XC7-8YCLPGUretakeRMfzHGn_m0vZn7cOa2sbTBeB0eH5B7m6uv32eZX3uhMwBQNtklumoIvMiiqnjMQ86es6cAvgGqyJt5DqwKCXY56iFk3mY5nmIYMAF-ExC8ZfkpGmb8IrQXCirLfhlMKQoI6u0ZR6BjeVl0IUcEbETnHE9sTjmt1iZXQTZ0vTyNihvk-Q9IuN9t_vErHGswydclX1jJMbuCkBdTK8u5pi6jIjeranpMUbCDjBUfez973c6YGAP4sGKbUK7XRt0y-DbV0j1jzYFL0QBkAHkdZn0Zj8TDpgVgBvUqIFGDaY6rGnqRccFjommYGFe_w_ZvCFPcbopGPktOdk8bMM7gFyb6qrbXb8BGRIq7A
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+of+lattice+parameters+of+cubic+perovskite+oxides+and+halides&rft.jtitle=Heliyon&rft.au=Zhang%2C+Yun&rft.au=Xu%2C+Xiaojie&rft.date=2021-07-01&rft.issn=2405-8440&rft.eissn=2405-8440&rft.volume=7&rft.issue=7&rft.spage=e07601&rft_id=info:doi/10.1016%2Fj.heliyon.2021.e07601&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_heliyon_2021_e07601
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8440&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8440&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8440&client=summon