Modeling of lattice parameters of cubic perovskite oxides and halides
Perovskites having the chemical formulae of ABX3 are promising candidates for various electronic, magnetic, and thermal applications. One of the important structural factors is a (the lattice constant), which represents the unit cell size. The variation in the lattice constant is a combined result o...
Saved in:
Published in | Heliyon Vol. 7; no. 7; p. e07601 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.07.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Perovskites having the chemical formulae of ABX3 are promising candidates for various electronic, magnetic, and thermal applications. One of the important structural factors is a (the lattice constant), which represents the unit cell size. The variation in the lattice constant is a combined result of interactions between different ions, determined by valence electrons and ionic radii. The size and stability of unit cells have important influences on structural stabilities, bandgap structures, and therefore performance of materials. To obtain the lattice constant of cubic perovskites without going through experimental efforts such as synthesis and measurements, we construct a model based on Gaussian process regressions for cubic perovskite lattice constant predictions. The model utilizes the number of valence electrons as well as ionic radii of alloying elements as predictors. A total of 149 cubic perovskites containing fluorides, chlorides, and bromides with cation combinations of A1+B2+, as well as oxides with cation combinations of A1+B5+, A2+B4+, and A3+B3+ are explored. The model demonstrates good performance in terms of stabilities and accuracy, and thus could be a rapid approach to estimate lattice constants.
Perovskite; Crystal structure; Oxide; Halide; Machine learning |
---|---|
AbstractList | Perovskites having the chemical formulae of ABX3 are promising candidates for various electronic, magnetic, and thermal applications. One of the important structural factors is a (the lattice constant), which represents the unit cell size. The variation in the lattice constant is a combined result of interactions between different ions, determined by valence electrons and ionic radii. The size and stability of unit cells have important influences on structural stabilities, bandgap structures, and therefore performance of materials. To obtain the lattice constant of cubic perovskites without going through experimental efforts such as synthesis and measurements, we construct a model based on Gaussian process regressions for cubic perovskite lattice constant predictions. The model utilizes the number of valence electrons as well as ionic radii of alloying elements as predictors. A total of 149 cubic perovskites containing fluorides, chlorides, and bromides with cation combinations of A1+B2+, as well as oxides with cation combinations of A1+B5+, A2+B4+, and A3+B3+ are explored. The model demonstrates good performance in terms of stabilities and accuracy, and thus could be a rapid approach to estimate lattice constants. Perovskites having the chemical formulae of ABX are promising candidates for various electronic, magnetic, and thermal applications. One of the important structural factors is (the lattice constant), which represents the unit cell size. The variation in the lattice constant is a combined result of interactions between different ions, determined by valence electrons and ionic radii. The size and stability of unit cells have important influences on structural stabilities, bandgap structures, and therefore performance of materials. To obtain the lattice constant of cubic perovskites without going through experimental efforts such as synthesis and measurements, we construct a model based on Gaussian process regressions for cubic perovskite lattice constant predictions. The model utilizes the number of valence electrons as well as ionic radii of alloying elements as predictors. A total of 149 cubic perovskites containing fluorides, chlorides, and bromides with cation combinations of A B , as well as oxides with cation combinations of A B , A B , and A B are explored. The model demonstrates good performance in terms of stabilities and accuracy, and thus could be a rapid approach to estimate lattice constants. Perovskites having the chemical formulae of ABX3 are promising candidates for various electronic, magnetic, and thermal applications. One of the important structural factors is a (the lattice constant), which represents the unit cell size. The variation in the lattice constant is a combined result of interactions between different ions, determined by valence electrons and ionic radii. The size and stability of unit cells have important influences on structural stabilities, bandgap structures, and therefore performance of materials. To obtain the lattice constant of cubic perovskites without going through experimental efforts such as synthesis and measurements, we construct a model based on Gaussian process regressions for cubic perovskite lattice constant predictions. The model utilizes the number of valence electrons as well as ionic radii of alloying elements as predictors. A total of 149 cubic perovskites containing fluorides, chlorides, and bromides with cation combinations of A1+B2+, as well as oxides with cation combinations of A1+B5+, A2+B4+, and A3+B3+ are explored. The model demonstrates good performance in terms of stabilities and accuracy, and thus could be a rapid approach to estimate lattice constants.Perovskites having the chemical formulae of ABX3 are promising candidates for various electronic, magnetic, and thermal applications. One of the important structural factors is a (the lattice constant), which represents the unit cell size. The variation in the lattice constant is a combined result of interactions between different ions, determined by valence electrons and ionic radii. The size and stability of unit cells have important influences on structural stabilities, bandgap structures, and therefore performance of materials. To obtain the lattice constant of cubic perovskites without going through experimental efforts such as synthesis and measurements, we construct a model based on Gaussian process regressions for cubic perovskite lattice constant predictions. The model utilizes the number of valence electrons as well as ionic radii of alloying elements as predictors. A total of 149 cubic perovskites containing fluorides, chlorides, and bromides with cation combinations of A1+B2+, as well as oxides with cation combinations of A1+B5+, A2+B4+, and A3+B3+ are explored. The model demonstrates good performance in terms of stabilities and accuracy, and thus could be a rapid approach to estimate lattice constants. Perovskites having the chemical formulae of ABX 3 are promising candidates for various electronic, magnetic, and thermal applications. One of the important structural factors is a (the lattice constant), which represents the unit cell size. The variation in the lattice constant is a combined result of interactions between different ions, determined by valence electrons and ionic radii. The size and stability of unit cells have important influences on structural stabilities, bandgap structures, and therefore performance of materials. To obtain the lattice constant of cubic perovskites without going through experimental efforts such as synthesis and measurements, we construct a model based on Gaussian process regressions for cubic perovskite lattice constant predictions. The model utilizes the number of valence electrons as well as ionic radii of alloying elements as predictors. A total of 149 cubic perovskites containing fluorides, chlorides, and bromides with cation combinations of A 1+ B 2+ , as well as oxides with cation combinations of A 1+ B 5+ , A 2+ B 4+ , and A 3+ B 3+ are explored. The model demonstrates good performance in terms of stabilities and accuracy, and thus could be a rapid approach to estimate lattice constants. Perovskite; Crystal structure; Oxide; Halide; Machine learning Perovskites having the chemical formulae of ABX₃ are promising candidates for various electronic, magnetic, and thermal applications. One of the important structural factors is a (the lattice constant), which represents the unit cell size. The variation in the lattice constant is a combined result of interactions between different ions, determined by valence electrons and ionic radii. The size and stability of unit cells have important influences on structural stabilities, bandgap structures, and therefore performance of materials. To obtain the lattice constant of cubic perovskites without going through experimental efforts such as synthesis and measurements, we construct a model based on Gaussian process regressions for cubic perovskite lattice constant predictions. The model utilizes the number of valence electrons as well as ionic radii of alloying elements as predictors. A total of 149 cubic perovskites containing fluorides, chlorides, and bromides with cation combinations of A¹⁺B²⁺, as well as oxides with cation combinations of A¹⁺B⁵⁺, A²⁺B⁴⁺, and A³⁺B³⁺ are explored. The model demonstrates good performance in terms of stabilities and accuracy, and thus could be a rapid approach to estimate lattice constants. Perovskites having the chemical formulae of ABX3 are promising candidates for various electronic, magnetic, and thermal applications. One of the important structural factors is a (the lattice constant), which represents the unit cell size. The variation in the lattice constant is a combined result of interactions between different ions, determined by valence electrons and ionic radii. The size and stability of unit cells have important influences on structural stabilities, bandgap structures, and therefore performance of materials. To obtain the lattice constant of cubic perovskites without going through experimental efforts such as synthesis and measurements, we construct a model based on Gaussian process regressions for cubic perovskite lattice constant predictions. The model utilizes the number of valence electrons as well as ionic radii of alloying elements as predictors. A total of 149 cubic perovskites containing fluorides, chlorides, and bromides with cation combinations of A1+B2+, as well as oxides with cation combinations of A1+B5+, A2+B4+, and A3+B3+ are explored. The model demonstrates good performance in terms of stabilities and accuracy, and thus could be a rapid approach to estimate lattice constants. Perovskite; Crystal structure; Oxide; Halide; Machine learning |
ArticleNumber | e07601 |
Author | Xu, Xiaojie Zhang, Yun |
Author_xml | – sequence: 1 givenname: Yun orcidid: 0000-0002-9464-1751 surname: Zhang fullname: Zhang, Yun email: yzhang43@ncsu.edu – sequence: 2 givenname: Xiaojie surname: Xu fullname: Xu, Xiaojie |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34355095$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk9vEzEQxS1UREvpRwDtkUuC_413V0igqiqlUhEXOFuOPU4cNutgOxH99ux2Q9Vyyckj-72fZjzvNTnpY4-EvGV0zihTH9bzFXbhPvZzTjmbI60VZS_IGZcUZo2U9ORJfUoucl5TShk0qq3FK3IqpACgLZyR62_RDah-WUVfdaaUYLHammQ2WDDl8dbuFsFWW0xxn3-FglX8ExzmyvSuWplurN-Ql950GS8O5zn5-eX6x9XX2d33m9ury7uZBaXKzPDG15476SWzwlNsvBPc1goUtwswXjTIPQBXyjfSAkVGKXouGslkK2txTm4nrotmrbcpbEy619EE_XAR01KbNIzQoW5Nq1AI67h3snat4VQ466BeeASHdGB9mljb3WKDzmJfkumeQZ-_9GGll3GvG8FZy5sB8P4ASPH3DnPRm5Atdp3pMe6y5kooqSQTcFwK0EoOCsYR3z1t67GffysbBDAJbIo5J_SPEkb1mA691od06DEdekrH4Pv4n8-GYkqI43ShO-r-PLlxWO8-YNLZBuwtupDQluH_wxHCXxLX2bc |
CitedBy_id | crossref_primary_10_1007_s10854_024_12581_w crossref_primary_10_1007_s13563_024_00457_8 crossref_primary_10_1142_S2737599425500021 crossref_primary_10_1007_s10854_023_10069_7 crossref_primary_10_1016_j_cplett_2024_141455 crossref_primary_10_1016_j_chemphys_2022_111511 crossref_primary_10_1021_acs_jpcc_4c08125 crossref_primary_10_1142_S2737599424500130 crossref_primary_10_1177_03019233241254891 crossref_primary_10_1177_03019233241297720 crossref_primary_10_1016_j_ijleo_2024_171717 crossref_primary_10_1016_j_jssc_2025_125254 crossref_primary_10_1111_jace_19433 crossref_primary_10_1007_s42824_024_00123_y crossref_primary_10_1016_j_eij_2025_100632 crossref_primary_10_1140_epjp_s13360_024_04898_6 crossref_primary_10_1007_s13563_024_00483_6 crossref_primary_10_1007_s43674_024_00075_5 crossref_primary_10_1088_1402_4896_ad4070 crossref_primary_10_1142_S2811034X24500060 crossref_primary_10_1007_s10854_024_12384_z crossref_primary_10_1016_j_physc_2022_1354031 crossref_primary_10_1007_s10854_022_09650_3 crossref_primary_10_1007_s10854_024_12610_8 crossref_primary_10_1007_s10854_024_12613_5 crossref_primary_10_1016_j_optmat_2022_113421 crossref_primary_10_1016_j_engappai_2024_109747 crossref_primary_10_1177_03019233241265194 crossref_primary_10_1016_j_chemphys_2023_111978 crossref_primary_10_1063_5_0235541 crossref_primary_10_1108_JM2_12_2023_0315 crossref_primary_10_1007_s00521_024_10270_7 crossref_primary_10_1007_s10854_023_10365_2 crossref_primary_10_1007_s00521_024_09531_2 crossref_primary_10_1007_s00521_024_10726_w crossref_primary_10_1088_1402_4896_ad9ae2 crossref_primary_10_1007_s10854_024_13672_4 crossref_primary_10_1007_s13563_024_00477_4 crossref_primary_10_1016_j_engappai_2024_109391 |
Cites_doi | 10.1111/j.1551-2916.2011.04659.x 10.1007/s10948-020-05682-0 10.1002/pssa.201228278 10.1007/s10765-020-02734-4 10.1002/slct.202002532 10.1134/1.1643959 10.1107/S0108768108032734 10.1021/acsomega.0c01438 10.1007/s40830-020-00303-0 10.1016/j.jpcs.2006.02.004 10.1063/1.4915903 10.1063/1.4794056 10.1039/D0NJ03868G 10.1007/s10853-018-03258-x 10.1016/j.heliyon.2020.e05055 10.1007/s12540-020-00883-7 10.1103/PhysRevB.75.245209 10.1007/s00339-020-03503-8 10.1107/S0567739476001551 10.1016/j.actamat.2012.09.003 10.1007/s10909-020-02545-9 10.1109/TASC.2009.2017914 10.1088/1361-6463/ab1e2c 10.1039/D0CE00928H 10.1016/j.commatsci.2020.109583 10.1063/1.5144241 10.1038/s41598-019-46629-3 10.1007/s00269-020-01108-4 10.1016/j.jallcom.2009.06.001 10.1016/j.jpcs.2007.03.050 10.1038/nmat1804 10.1088/0953-2048/29/9/095012 10.1002/qua.26480 10.1016/j.physc.2020.1353633 10.1016/j.cplett.2020.137993 10.1088/0953-8984/20/26/264001 10.1515/ijmr-2020-7986 10.1103/PhysRevB.76.165103 10.1088/0953-2048/27/5/055016 10.1039/D0RA03031G 10.1016/j.physleta.2020.126500 10.1007/s11665-020-05146-5 10.1109/TUFFC.2013.2686 10.1016/j.jmmm.2020.166998 10.1109/LSENS.2017.2752216 10.1016/j.ijleo.2020.164808 10.1016/j.commatsci.2007.09.008 10.1088/0953-2048/29/12/125005 |
ContentType | Journal Article |
Copyright | 2021 The Authors 2021 The Authors. 2021 The Authors 2021 |
Copyright_xml | – notice: 2021 The Authors – notice: 2021 The Authors. – notice: 2021 The Authors 2021 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 7S9 L.6 5PM DOA |
DOI | 10.1016/j.heliyon.2021.e07601 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2405-8440 |
ExternalDocumentID | oai_doaj_org_article_9a96e33cd2fd47d9a203dcd57bfe5de0 PMC8321928 34355095 10_1016_j_heliyon_2021_e07601 S2405844021017047 |
Genre | Journal Article |
GroupedDBID | 0R~ 457 53G 5VS 6I. AAEDW AAFTH AAFWJ AALRI AAYWO ABMAC ACGFS ACLIJ ACVFH ADBBV ADCNI ADEZE ADVLN AEUPX AEXQZ AFJKZ AFPKN AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE IPNFZ KQ8 M~E O9- OK1 RIG ROL RPM SSZ AAYXX CITATION NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c566t-a28f7f2d4f41c3f0e8fd32c76562cb5af38e2f55266f84c50e100ef2384149473 |
IEDL.DBID | DOA |
ISSN | 2405-8440 |
IngestDate | Wed Aug 27 01:07:35 EDT 2025 Thu Aug 21 14:35:45 EDT 2025 Fri Aug 22 20:28:27 EDT 2025 Thu Jul 10 19:25:31 EDT 2025 Mon Jul 21 05:25:05 EDT 2025 Thu Jul 10 10:08:45 EDT 2025 Thu Apr 24 22:57:59 EDT 2025 Sat Aug 09 17:32:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Oxide Perovskite Halide Machine learning Crystal structure |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2021 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c566t-a28f7f2d4f41c3f0e8fd32c76562cb5af38e2f55266f84c50e100ef2384149473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9464-1751 |
OpenAccessLink | https://doaj.org/article/9a96e33cd2fd47d9a203dcd57bfe5de0 |
PMID | 34355095 |
PQID | 2559425657 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9a96e33cd2fd47d9a203dcd57bfe5de0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8321928 proquest_miscellaneous_2636464135 proquest_miscellaneous_2559425657 pubmed_primary_34355095 crossref_primary_10_1016_j_heliyon_2021_e07601 crossref_citationtrail_10_1016_j_heliyon_2021_e07601 elsevier_sciencedirect_doi_10_1016_j_heliyon_2021_e07601 |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Heliyon |
PublicationTitleAlternate | Heliyon |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Zhang, Xu (br0420) 2021; 121 Zhang, Xu (br0430) 2021; 202 Albina, Mrovec, Meyer, Elsässer (br0550) 2007; 76 Zhang, Koch, Schwartz (br0080) 2016; 29 Moreira, Dias (br0530) 2007; 68 Shannon (br0540) 1976; 32 Cheong, Mostovoy (br0200) 2007; 6 Zhang, Xu (br0400) 2020; 47 Wang, Wang, Li, Zhu, Wang, Woo (br0560) 2007; 75 Zhang, Xu (br0500) 2020; 44 Jiang, Guo, Liu, Zhu, Zhou, Wu, Li (br0510) 2006; 67 Zhang, Xu (br0290) 2020; 126 Zhang, Xu (br0410) 2020; 6 Zhang, Xu (br0490) 2020; 760 Zhang, Xu (br0440) 2020; 29 Shen, Bosque, Davis, Jiang, White, Zhang, Higley, Turqueti, Huang, Miao, Trociewitz (br0030) 2019; 9 Qiu, Wu, Pan, Xu, Zhang, Li, Li, Wang, Wang, Zhao, Zhang (br0110) 2017; 27 Lin, Gu, Zhu, Ye, Jiang, Wang, Liao, Yang, Zeng, Sheng, Guo (br0210) 2019; 54 Johnsson, Lemmens (br0010) 2008; 20 Verma, Jindal (br0250) 2009; 485 Jiang, Bradford, Hossain, Brown, Cooper, Miller, Huang, Miao, Parrell, White, Hunt, Sengupta, Revur, Shen, Kametani, Trociewitz, Hellstrom, Larbalestier (br0020) 2019; 29 Li, Lu, Ding, Feng, Gao, Guo (br0240) 2008; 64 Zhang, Xu (br0330) 2020; 217 Zhang, Xu (br0370) 2020; 5 Zhang, Xu (br0380) 2020; 41 Zhang, Xu (br0320) 2020; 10 Zhang, Xu (br0300) 2020; 10 Pan, Sheng, Wu, Wang, Zeng, Zhao, Zhang, Li, Hong, Jin (br0140) 2017; 27 Wang, Hasanyan, Li, Gao, Li, Viehland (br0170) 2013; 60 Zhang, Xu (br0270) 2020; 573 Zhang, Xu (br0310) 2020; 384 Zhang, Xu (br0450) 2021; 112 Zhang, Xu (br0360) 2020; 22 Zhang, Johnson, Naderi, Chaubal, Hunt, Schwartz (br0070) 2016; 29 Li, Berry, Das, Gray, Li, Viehland (br0190) 2011; 94 Song, Hunte, Schwartz (br0040) 2012; 60 Yang, Liu, Sheng, Guo, Zeng, Gao, Ye (br0220) 2017; 7 Geguzina, Sakhnenko (br0580) 2004; 49 Zhang, Koch, Schwartz (br0090) 2014; 27 Guo, Kirste, Bryan, Bryan, Gerhold, Collazo, Sitar (br0230) 2015; 117 Zhang, Xu (br0350) 2020; 5 Li, Wang, Wang, Li, Viehland (br0150) 2013; 102 Zhang, Xu (br0460) 2020; 6 Wang, Zheng, Zhu, Zhang, Yuan (br0100) 2019; 52 Schwartz, Koch, Zhang, Liu (br0060) September 26, 2017 Zhang, Xu (br0260) 2020; 179 Yang, Li, Wang, Wang, Wu, Huang, Hong, Jiang, Jin (br0120) 2019; 29 Zhang, Xu (br0280) 2020; 512 Yang, Wang, Qiu, Chang, Ma, Zhu, Jin, Hong (br0130) 2018; 28 Thieme, Gagnon, Coulter, Song, Schwartz (br0050) 2009; 19 Zhang, Xu (br0390) 2021; 27 Zhang, Xu (br0470) 2021; 34 Li, Yang, Dong, Hu (br0520) 2020 Wang, Hasanyan, Li, Gao, Viswan, Li, Viehland (br0180) 2012; 209 Zhang, Xu (br0480) 2020 Li, Dong, Zhou, Wang, Wang, Liang, Lin, Sun (br0160) 2017; 1 Zhang, Xu (br0340) 2020; 10 Li, Wang, Wang, Wang, Lu (br0570) 2008; 42 Zhang (10.1016/j.heliyon.2021.e07601_br0320) 2020; 10 Zhang (10.1016/j.heliyon.2021.e07601_br0440) 2020; 29 Zhang (10.1016/j.heliyon.2021.e07601_br0480) 2020 Verma (10.1016/j.heliyon.2021.e07601_br0250) 2009; 485 Zhang (10.1016/j.heliyon.2021.e07601_br0370) 2020; 5 Moreira (10.1016/j.heliyon.2021.e07601_br0530) 2007; 68 Zhang (10.1016/j.heliyon.2021.e07601_br0380) 2020; 41 Jiang (10.1016/j.heliyon.2021.e07601_br0510) 2006; 67 Jiang (10.1016/j.heliyon.2021.e07601_br0020) 2019; 29 Zhang (10.1016/j.heliyon.2021.e07601_br0080) 2016; 29 Zhang (10.1016/j.heliyon.2021.e07601_br0400) 2020; 47 Zhang (10.1016/j.heliyon.2021.e07601_br0500) 2020; 44 Zhang (10.1016/j.heliyon.2021.e07601_br0430) 2021; 202 Li (10.1016/j.heliyon.2021.e07601_br0240) 2008; 64 Wang (10.1016/j.heliyon.2021.e07601_br0560) 2007; 75 Li (10.1016/j.heliyon.2021.e07601_br0570) 2008; 42 Li (10.1016/j.heliyon.2021.e07601_br0160) 2017; 1 Cheong (10.1016/j.heliyon.2021.e07601_br0200) 2007; 6 Yang (10.1016/j.heliyon.2021.e07601_br0130) 2018; 28 Zhang (10.1016/j.heliyon.2021.e07601_br0410) 2020; 6 Song (10.1016/j.heliyon.2021.e07601_br0040) 2012; 60 Lin (10.1016/j.heliyon.2021.e07601_br0210) 2019; 54 Yang (10.1016/j.heliyon.2021.e07601_br0220) 2017; 7 Zhang (10.1016/j.heliyon.2021.e07601_br0470) 2021; 34 Albina (10.1016/j.heliyon.2021.e07601_br0550) 2007; 76 Zhang (10.1016/j.heliyon.2021.e07601_br0390) 2021; 27 Li (10.1016/j.heliyon.2021.e07601_br0190) 2011; 94 Li (10.1016/j.heliyon.2021.e07601_br0520) Zhang (10.1016/j.heliyon.2021.e07601_br0340) 2020; 10 Zhang (10.1016/j.heliyon.2021.e07601_br0350) 2020; 5 Shannon (10.1016/j.heliyon.2021.e07601_br0540) 1976; 32 Guo (10.1016/j.heliyon.2021.e07601_br0230) 2015; 117 Schwartz (10.1016/j.heliyon.2021.e07601_br0060) Geguzina (10.1016/j.heliyon.2021.e07601_br0580) 2004; 49 Thieme (10.1016/j.heliyon.2021.e07601_br0050) 2009; 19 Yang (10.1016/j.heliyon.2021.e07601_br0120) 2019; 29 Zhang (10.1016/j.heliyon.2021.e07601_br0450) 2021; 112 Qiu (10.1016/j.heliyon.2021.e07601_br0110) 2017; 27 Wang (10.1016/j.heliyon.2021.e07601_br0180) 2012; 209 Zhang (10.1016/j.heliyon.2021.e07601_br0280) 2020; 512 Wang (10.1016/j.heliyon.2021.e07601_br0170) 2013; 60 Zhang (10.1016/j.heliyon.2021.e07601_br0090) 2014; 27 Pan (10.1016/j.heliyon.2021.e07601_br0140) 2017; 27 Johnsson (10.1016/j.heliyon.2021.e07601_br0010) 2008; 20 Zhang (10.1016/j.heliyon.2021.e07601_br0420) 2021; 121 Li (10.1016/j.heliyon.2021.e07601_br0150) 2013; 102 Zhang (10.1016/j.heliyon.2021.e07601_br0460) 2020; 6 Wang (10.1016/j.heliyon.2021.e07601_br0100) 2019; 52 Shen (10.1016/j.heliyon.2021.e07601_br0030) 2019; 9 Zhang (10.1016/j.heliyon.2021.e07601_br0490) 2020; 760 Zhang (10.1016/j.heliyon.2021.e07601_br0290) 2020; 126 Zhang (10.1016/j.heliyon.2021.e07601_br0070) 2016; 29 Zhang (10.1016/j.heliyon.2021.e07601_br0260) 2020; 179 Zhang (10.1016/j.heliyon.2021.e07601_br0310) 2020; 384 Zhang (10.1016/j.heliyon.2021.e07601_br0270) 2020; 573 Zhang (10.1016/j.heliyon.2021.e07601_br0300) 2020; 10 Zhang (10.1016/j.heliyon.2021.e07601_br0330) 2020; 217 Zhang (10.1016/j.heliyon.2021.e07601_br0360) 2020; 22 |
References_xml | – volume: 9 start-page: 1 year: 2019 end-page: 9 ident: br0030 article-title: Stable, predictable and training-free operation of superconducting Bi-2212 Rutherford cable racetrack coils at the wire current density of 1000 A/mm publication-title: Sci. Rep. – volume: 20 year: 2008 ident: br0010 article-title: Perovskites and thin films—crystallography and chemistry publication-title: J. Phys. Condens. Matter – volume: 10 start-page: 20646 year: 2020 end-page: 20653 ident: br0340 article-title: Relative cooling power modeling of lanthanum manganites using Gaussian process regression publication-title: RSC Adv. – volume: 29 start-page: 1 year: 2019 end-page: 5 ident: br0020 article-title: High-performance Bi-2212 round wires made with recent powders publication-title: IEEE Trans. Appl. Supercond. – volume: 5 start-page: 15344 year: 2020 end-page: 15352 ident: br0350 article-title: Machine learning band gaps of doped-TiO publication-title: ACS Omega – volume: 75 year: 2007 ident: br0560 article-title: First-principles study of the cubic perovskites publication-title: Phys. Rev. B – volume: 32 start-page: 751 year: 1976 end-page: 767 ident: br0540 article-title: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides publication-title: Acta Crystallogr., Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. – volume: 102 year: 2013 ident: br0150 article-title: Giant magnetoelectric effect in self-biased laminates under zero magnetic field publication-title: Appl. Phys. Lett. – volume: 27 start-page: 235 year: 2021 end-page: 253 ident: br0390 article-title: Lattice misfit predictions via the Gaussian process regression for Ni-based single crystal superalloys publication-title: Met. Mater. Int. – volume: 121 year: 2021 ident: br0420 article-title: Machine learning lattice parameters of monoclinic double perovskites publication-title: Int. J. Quant. Chem. – volume: 202 start-page: 205 year: 2021 end-page: 218 ident: br0430 article-title: Fe-based superconducting transition temperature modeling through Gaussian process regression publication-title: J. Low Temp. Phys. – volume: 28 start-page: 1 year: 2018 end-page: 5 ident: br0130 article-title: Design and fabrication of a 1-MW high-temperature superconductor DC induction heater publication-title: IEEE Trans. Appl. Supercond. – volume: 47 start-page: 39 year: 2020 ident: br0400 article-title: Machine learning lattice constants from ionic radii and electronegativities for cubic perovskite publication-title: Phys. Chem. Miner. – volume: 29 year: 2016 ident: br0080 article-title: Formation of Bi publication-title: Supercond. Sci. Technol. – volume: 179 year: 2020 ident: br0260 article-title: Yttrium barium copper oxide superconducting transition temperature modeling through Gaussian process regression publication-title: Comput. Mater. Sci. – volume: 68 start-page: 1617 year: 2007 end-page: 1622 ident: br0530 article-title: Comment on ‘Prediction of lattice constant in cubic perovskites’ publication-title: J. Phys. Chem. Solids – volume: 29 start-page: 6605 year: 2020 end-page: 6616 ident: br0440 article-title: Machine learning decomposition onset temperature of lubricant additives publication-title: J. Mater. Eng. Perform. – volume: 22 start-page: 6385 year: 2020 end-page: 6397 ident: br0360 article-title: Machine learning lattice constants for cubic perovskite publication-title: CrystEngComm – volume: 34 start-page: 63 year: 2021 end-page: 73 ident: br0470 article-title: Machine learning F-doped Bi(Pb)–Sr–Ca–Cu–O superconducting transition temperature publication-title: J. Supercond. Nov. Magn. – volume: 64 start-page: 702 year: 2008 end-page: 707 ident: br0240 article-title: Formability of publication-title: Acta Crystallogr., Sect. B, Struct. Sci. – volume: 60 start-page: 6991 year: 2012 end-page: 7000 ident: br0040 article-title: On the role of pre-existing defects and magnetic flux avalanches in the degradation of YBa publication-title: Acta Mater. – volume: 29 start-page: 1 year: 2019 end-page: 6 ident: br0120 article-title: Quench protection system of a 1 MW high temperature superconductor DC induction heater publication-title: IEEE Trans. Appl. Supercond. – volume: 760 year: 2020 ident: br0490 article-title: Machine learning lattice constants for spinel compounds publication-title: Chem. Phys. Lett. – volume: 29 year: 2016 ident: br0070 article-title: High critical current density Bi publication-title: Supercond. Sci. Technol. – volume: 384 year: 2020 ident: br0310 article-title: Predicting the thermal conductivity enhancement of nanofluids using computational intelligence publication-title: Phys. Lett. A – volume: 209 start-page: 2059 year: 2012 end-page: 2062 ident: br0180 article-title: Magnetic field dependence of the effective permittivity in multiferroic composites publication-title: Phys. Status Solidi (a) – volume: 6 start-page: 374 year: 2020 end-page: 386 ident: br0410 article-title: Transformation temperature predictions through computational intelligence for NiTi-based shape memory alloys publication-title: Shape Mem. Superelast. – volume: 27 year: 2014 ident: br0090 article-title: Synthesis of Bi publication-title: Supercond. Sci. Technol. – volume: 67 start-page: 1531 year: 2006 end-page: 1536 ident: br0510 article-title: Prediction of lattice constant in cubic perovskites publication-title: J. Phys. Chem. Solids – volume: 42 start-page: 614 year: 2008 end-page: 618 ident: br0570 article-title: First-principles study of structural, elastic, electronic, and optical properties of orthorhombic BiGaO publication-title: Comput. Mater. Sci. – year: 2020 ident: br0480 article-title: Machine learning the central magnetic flux density of superconducting solenoids publication-title: Mater. Technol. – volume: 19 start-page: 1626 year: 2009 end-page: 1632 ident: br0050 article-title: Stability of second generation HTS pancake coils at 4.2 K for high heat flux applications publication-title: IEEE Trans. Appl. Supercond. – volume: 10 year: 2020 ident: br0320 article-title: Machine learning modeling of lattice constants for half-Heusler alloys publication-title: AIP Adv. – volume: 44 start-page: 20544 year: 2020 end-page: 20567 ident: br0500 article-title: Solubility predictions through LSBoost for supercritical carbon dioxide in ionic liquids publication-title: New J. Chem. – year: 2020 ident: br0520 article-title: MLatticeABC: generic lattice constant prediction of crystal materials using machine learning – volume: 10 year: 2020 ident: br0300 article-title: Machine learning the magnetocaloric effect in manganites from compositions and structural parameters publication-title: AIP Adv. – volume: 94 start-page: 3738 year: 2011 end-page: 3741 ident: br0190 article-title: Enhanced sensitivity and reduced noise floor in magnetoelectric laminate sensors by an improved lamination process publication-title: J. Am. Ceram. Soc. – volume: 6 year: 2020 ident: br0460 article-title: Machine learning glass transition temperature of polymers publication-title: Heliyon – volume: 52 year: 2019 ident: br0100 article-title: Quench behavior of high-temperature superconductor (RE) Ba2Cu3O × CORC cable publication-title: J. Phys. D, Appl. Phys. – volume: 60 start-page: 1227 year: 2013 end-page: 1233 ident: br0170 article-title: Equivalent magnetic noise in multi-push-pull configuration magnetoelectric composites: model and experiment publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 126 start-page: 341 year: 2020 ident: br0290 article-title: Machine learning the magnetocaloric effect in manganites from lattice parameters publication-title: Appl. Phys. A – year: September 26, 2017 ident: br0060 article-title: Formation of bismuth strontium calcium copper oxide superconductors – volume: 27 start-page: 1 year: 2017 end-page: 5 ident: br0140 article-title: Numerical study on simplified resistive joints of coated conductors: is there a lower limit of the joint resistance? publication-title: IEEE Trans. Appl. Supercond. – volume: 1 start-page: 1 year: 2017 end-page: 4 ident: br0160 article-title: Highly sensitive DC magnetic field sensor based on nonlinear ME effect publication-title: IEEE Sens. Lett. – volume: 6 start-page: 13 year: 2007 end-page: 20 ident: br0200 article-title: Multiferroics: a magnetic twist for ferroelectricity publication-title: Nat. Mater. – volume: 49 start-page: 15 year: 2004 end-page: 19 ident: br0580 article-title: Correlation between the lattice parameters of crystals with perovskite structure publication-title: Crystallogr. Rep. – volume: 217 year: 2020 ident: br0330 article-title: Machine learning optical band gaps of doped-ZnO films publication-title: Optik – volume: 41 start-page: 149 year: 2020 ident: br0380 article-title: Predicting As publication-title: Int. J. Thermophys. – volume: 54 start-page: 7789 year: 2019 end-page: 7797 ident: br0210 article-title: Engineering of hole-selective contact for high-performance perovskite solar cell featuring silver back-electrode publication-title: J. Mater. Sci. – volume: 76 year: 2007 ident: br0550 article-title: Structure, stability, and electronic properties of SrTiO publication-title: Phys. Rev. B – volume: 5 start-page: 9999 year: 2020 end-page: 10009 ident: br0370 article-title: Machine learning lattice constants for cubic perovskite publication-title: ChemistrySelect – volume: 112 start-page: 2 year: 2021 end-page: 9 ident: br0450 article-title: Predicting doped Fe-based superconductor critical temperature from structural and topological parameters using machine learning publication-title: Int. J. Mater. Res. – volume: 7 start-page: 1 year: 2017 end-page: 9 ident: br0220 article-title: Opto-electric investigation for Si/organic heterojunction single-nanowire solar cells publication-title: Sci. Rep. – volume: 485 start-page: 514 year: 2009 end-page: 518 ident: br0250 article-title: Lattice constant of cubic perovskites publication-title: J. Alloys Compd. – volume: 117 year: 2015 ident: br0230 article-title: Nanostructure surface patterning of GaN thin films and application to AlGaN/AlN multiple quantum wells: a way towards light extraction efficiency enhancement of III-nitride based light emitting diodes publication-title: J. Appl. Phys. – volume: 573 year: 2020 ident: br0270 article-title: Predicting doped MgB publication-title: Physica C, Supercond. Appl. – volume: 512 year: 2020 ident: br0280 article-title: Curie temperature modeling of magnetocaloric lanthanum manganites using Gaussian process regression publication-title: J. Magn. Magn. Mater. – volume: 27 start-page: 1 year: 2017 end-page: 5 ident: br0110 article-title: Experiment and numerical analysis on magnetic field stability of persistent current mode coil made of HTS-coated conductors publication-title: IEEE Trans. Appl. Supercond. – volume: 94 start-page: 3738 issue: 11 year: 2011 ident: 10.1016/j.heliyon.2021.e07601_br0190 article-title: Enhanced sensitivity and reduced noise floor in magnetoelectric laminate sensors by an improved lamination process publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2011.04659.x – volume: 34 start-page: 63 issue: 1 year: 2021 ident: 10.1016/j.heliyon.2021.e07601_br0470 article-title: Machine learning F-doped Bi(Pb)–Sr–Ca–Cu–O superconducting transition temperature publication-title: J. Supercond. Nov. Magn. doi: 10.1007/s10948-020-05682-0 – volume: 209 start-page: 2059 issue: 10 year: 2012 ident: 10.1016/j.heliyon.2021.e07601_br0180 article-title: Magnetic field dependence of the effective permittivity in multiferroic composites publication-title: Phys. Status Solidi (a) doi: 10.1002/pssa.201228278 – volume: 41 start-page: 149 year: 2020 ident: 10.1016/j.heliyon.2021.e07601_br0380 article-title: Predicting AsxSe1−x glass transition onset temperature publication-title: Int. J. Thermophys. doi: 10.1007/s10765-020-02734-4 – volume: 29 start-page: 1 issue: 5 year: 2019 ident: 10.1016/j.heliyon.2021.e07601_br0120 article-title: Quench protection system of a 1 MW high temperature superconductor DC induction heater publication-title: IEEE Trans. Appl. Supercond. – volume: 5 start-page: 9999 year: 2020 ident: 10.1016/j.heliyon.2021.e07601_br0370 article-title: Machine learning lattice constants for cubic perovskite ABX3 compounds publication-title: ChemistrySelect doi: 10.1002/slct.202002532 – volume: 49 start-page: 15 issue: 1 year: 2004 ident: 10.1016/j.heliyon.2021.e07601_br0580 article-title: Correlation between the lattice parameters of crystals with perovskite structure publication-title: Crystallogr. Rep. doi: 10.1134/1.1643959 – volume: 64 start-page: 702 issue: 6 year: 2008 ident: 10.1016/j.heliyon.2021.e07601_br0240 article-title: Formability of ABX3 (X= F, Cl, Br, I) halide perovskites publication-title: Acta Crystallogr., Sect. B, Struct. Sci. doi: 10.1107/S0108768108032734 – volume: 5 start-page: 15344 year: 2020 ident: 10.1016/j.heliyon.2021.e07601_br0350 article-title: Machine learning band gaps of doped-TiO2 photocatalysts from structural and morphological parameters publication-title: ACS Omega doi: 10.1021/acsomega.0c01438 – volume: 6 start-page: 374 year: 2020 ident: 10.1016/j.heliyon.2021.e07601_br0410 article-title: Transformation temperature predictions through computational intelligence for NiTi-based shape memory alloys publication-title: Shape Mem. Superelast. doi: 10.1007/s40830-020-00303-0 – volume: 67 start-page: 1531 issue: 7 year: 2006 ident: 10.1016/j.heliyon.2021.e07601_br0510 article-title: Prediction of lattice constant in cubic perovskites publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2006.02.004 – ident: 10.1016/j.heliyon.2021.e07601_br0520 – volume: 117 issue: 11 year: 2015 ident: 10.1016/j.heliyon.2021.e07601_br0230 article-title: Nanostructure surface patterning of GaN thin films and application to AlGaN/AlN multiple quantum wells: a way towards light extraction efficiency enhancement of III-nitride based light emitting diodes publication-title: J. Appl. Phys. doi: 10.1063/1.4915903 – volume: 102 issue: 8 year: 2013 ident: 10.1016/j.heliyon.2021.e07601_br0150 article-title: Giant magnetoelectric effect in self-biased laminates under zero magnetic field publication-title: Appl. Phys. Lett. doi: 10.1063/1.4794056 – volume: 44 start-page: 20544 year: 2020 ident: 10.1016/j.heliyon.2021.e07601_br0500 article-title: Solubility predictions through LSBoost for supercritical carbon dioxide in ionic liquids publication-title: New J. Chem. doi: 10.1039/D0NJ03868G – volume: 54 start-page: 7789 issue: 10 year: 2019 ident: 10.1016/j.heliyon.2021.e07601_br0210 article-title: Engineering of hole-selective contact for high-performance perovskite solar cell featuring silver back-electrode publication-title: J. Mater. Sci. doi: 10.1007/s10853-018-03258-x – volume: 6 year: 2020 ident: 10.1016/j.heliyon.2021.e07601_br0460 article-title: Machine learning glass transition temperature of polymers publication-title: Heliyon doi: 10.1016/j.heliyon.2020.e05055 – volume: 27 start-page: 235 issue: 2 year: 2021 ident: 10.1016/j.heliyon.2021.e07601_br0390 article-title: Lattice misfit predictions via the Gaussian process regression for Ni-based single crystal superalloys publication-title: Met. Mater. Int. doi: 10.1007/s12540-020-00883-7 – volume: 29 start-page: 1 issue: 5 year: 2019 ident: 10.1016/j.heliyon.2021.e07601_br0020 article-title: High-performance Bi-2212 round wires made with recent powders publication-title: IEEE Trans. Appl. Supercond. – volume: 75 issue: 24 year: 2007 ident: 10.1016/j.heliyon.2021.e07601_br0560 article-title: First-principles study of the cubic perovskites BiMO3 (M= Al, Ga, In, and Sc) publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.245209 – volume: 126 start-page: 341 year: 2020 ident: 10.1016/j.heliyon.2021.e07601_br0290 article-title: Machine learning the magnetocaloric effect in manganites from lattice parameters publication-title: Appl. Phys. A doi: 10.1007/s00339-020-03503-8 – volume: 32 start-page: 751 issue: 5 year: 1976 ident: 10.1016/j.heliyon.2021.e07601_br0540 article-title: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides publication-title: Acta Crystallogr., Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. doi: 10.1107/S0567739476001551 – ident: 10.1016/j.heliyon.2021.e07601_br0060 – volume: 60 start-page: 6991 issue: 20 year: 2012 ident: 10.1016/j.heliyon.2021.e07601_br0040 article-title: On the role of pre-existing defects and magnetic flux avalanches in the degradation of YBa2Cu3O7−x coated conductors by quenching publication-title: Acta Mater. doi: 10.1016/j.actamat.2012.09.003 – volume: 202 start-page: 205 year: 2021 ident: 10.1016/j.heliyon.2021.e07601_br0430 article-title: Fe-based superconducting transition temperature modeling through Gaussian process regression publication-title: J. Low Temp. Phys. doi: 10.1007/s10909-020-02545-9 – volume: 19 start-page: 1626 issue: 3 year: 2009 ident: 10.1016/j.heliyon.2021.e07601_br0050 article-title: Stability of second generation HTS pancake coils at 4.2 K for high heat flux applications publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/TASC.2009.2017914 – volume: 52 issue: 34 year: 2019 ident: 10.1016/j.heliyon.2021.e07601_br0100 article-title: Quench behavior of high-temperature superconductor (RE) Ba2Cu3O × CORC cable publication-title: J. Phys. D, Appl. Phys. doi: 10.1088/1361-6463/ab1e2c – volume: 22 start-page: 6385 year: 2020 ident: 10.1016/j.heliyon.2021.e07601_br0360 article-title: Machine learning lattice constants for cubic perovskite A22+BB′O6 compounds publication-title: CrystEngComm doi: 10.1039/D0CE00928H – volume: 179 year: 2020 ident: 10.1016/j.heliyon.2021.e07601_br0260 article-title: Yttrium barium copper oxide superconducting transition temperature modeling through Gaussian process regression publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2020.109583 – volume: 10 issue: 3 year: 2020 ident: 10.1016/j.heliyon.2021.e07601_br0300 article-title: Machine learning the magnetocaloric effect in manganites from compositions and structural parameters publication-title: AIP Adv. doi: 10.1063/1.5144241 – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.heliyon.2021.e07601_br0030 article-title: Stable, predictable and training-free operation of superconducting Bi-2212 Rutherford cable racetrack coils at the wire current density of 1000 A/mm2 publication-title: Sci. Rep. doi: 10.1038/s41598-019-46629-3 – volume: 10 year: 2020 ident: 10.1016/j.heliyon.2021.e07601_br0320 article-title: Machine learning modeling of lattice constants for half-Heusler alloys publication-title: AIP Adv. – volume: 47 start-page: 39 year: 2020 ident: 10.1016/j.heliyon.2021.e07601_br0400 article-title: Machine learning lattice constants from ionic radii and electronegativities for cubic perovskite A2XY6 compounds publication-title: Phys. Chem. Miner. doi: 10.1007/s00269-020-01108-4 – volume: 485 start-page: 514 issue: 1–2 year: 2009 ident: 10.1016/j.heliyon.2021.e07601_br0250 article-title: Lattice constant of cubic perovskites publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2009.06.001 – volume: 68 start-page: 1617 issue: 8 year: 2007 ident: 10.1016/j.heliyon.2021.e07601_br0530 article-title: Comment on ‘Prediction of lattice constant in cubic perovskites’ publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2007.03.050 – volume: 6 start-page: 13 issue: 1 year: 2007 ident: 10.1016/j.heliyon.2021.e07601_br0200 article-title: Multiferroics: a magnetic twist for ferroelectricity publication-title: Nat. Mater. doi: 10.1038/nmat1804 – volume: 27 start-page: 1 issue: 4 year: 2017 ident: 10.1016/j.heliyon.2021.e07601_br0140 article-title: Numerical study on simplified resistive joints of coated conductors: is there a lower limit of the joint resistance? publication-title: IEEE Trans. Appl. Supercond. – volume: 29 issue: 9 year: 2016 ident: 10.1016/j.heliyon.2021.e07601_br0070 article-title: High critical current density Bi2Sr2CaCu2O x/Ag wire containing oxide precursor synthesized from nano-oxides publication-title: Supercond. Sci. Technol. doi: 10.1088/0953-2048/29/9/095012 – volume: 121 issue: 5 year: 2021 ident: 10.1016/j.heliyon.2021.e07601_br0420 article-title: Machine learning lattice parameters of monoclinic double perovskites publication-title: Int. J. Quant. Chem. doi: 10.1002/qua.26480 – volume: 573 year: 2020 ident: 10.1016/j.heliyon.2021.e07601_br0270 article-title: Predicting doped MgB2 superconductor critical temperature from lattice parameters using Gaussian process regression publication-title: Physica C, Supercond. Appl. doi: 10.1016/j.physc.2020.1353633 – volume: 760 year: 2020 ident: 10.1016/j.heliyon.2021.e07601_br0490 article-title: Machine learning lattice constants for spinel compounds publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2020.137993 – volume: 20 issue: 26 year: 2008 ident: 10.1016/j.heliyon.2021.e07601_br0010 article-title: Perovskites and thin films—crystallography and chemistry publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/20/26/264001 – volume: 27 start-page: 1 issue: 4 year: 2017 ident: 10.1016/j.heliyon.2021.e07601_br0110 article-title: Experiment and numerical analysis on magnetic field stability of persistent current mode coil made of HTS-coated conductors publication-title: IEEE Trans. Appl. Supercond. – volume: 112 start-page: 2 issue: 1 year: 2021 ident: 10.1016/j.heliyon.2021.e07601_br0450 article-title: Predicting doped Fe-based superconductor critical temperature from structural and topological parameters using machine learning publication-title: Int. J. Mater. Res. doi: 10.1515/ijmr-2020-7986 – volume: 76 issue: 16 year: 2007 ident: 10.1016/j.heliyon.2021.e07601_br0550 article-title: Structure, stability, and electronic properties of SrTiO3/LaAlO3 and SrTiO3/SrRuO3 interfaces publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.76.165103 – volume: 27 issue: 5 year: 2014 ident: 10.1016/j.heliyon.2021.e07601_br0090 article-title: Synthesis of Bi2Sr2CaCu2Ox superconductors via direct oxidation of metallic precursors publication-title: Supercond. Sci. Technol. doi: 10.1088/0953-2048/27/5/055016 – volume: 10 start-page: 20646 year: 2020 ident: 10.1016/j.heliyon.2021.e07601_br0340 article-title: Relative cooling power modeling of lanthanum manganites using Gaussian process regression publication-title: RSC Adv. doi: 10.1039/D0RA03031G – volume: 384 year: 2020 ident: 10.1016/j.heliyon.2021.e07601_br0310 article-title: Predicting the thermal conductivity enhancement of nanofluids using computational intelligence publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2020.126500 – volume: 29 start-page: 6605 year: 2020 ident: 10.1016/j.heliyon.2021.e07601_br0440 article-title: Machine learning decomposition onset temperature of lubricant additives publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-020-05146-5 – volume: 60 start-page: 1227 issue: 6 year: 2013 ident: 10.1016/j.heliyon.2021.e07601_br0170 article-title: Equivalent magnetic noise in multi-push-pull configuration magnetoelectric composites: model and experiment publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2013.2686 – volume: 512 year: 2020 ident: 10.1016/j.heliyon.2021.e07601_br0280 article-title: Curie temperature modeling of magnetocaloric lanthanum manganites using Gaussian process regression publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2020.166998 – volume: 1 start-page: 1 issue: 6 year: 2017 ident: 10.1016/j.heliyon.2021.e07601_br0160 article-title: Highly sensitive DC magnetic field sensor based on nonlinear ME effect publication-title: IEEE Sens. Lett. doi: 10.1109/LSENS.2017.2752216 – volume: 217 year: 2020 ident: 10.1016/j.heliyon.2021.e07601_br0330 article-title: Machine learning optical band gaps of doped-ZnO films publication-title: Optik doi: 10.1016/j.ijleo.2020.164808 – volume: 42 start-page: 614 issue: 4 year: 2008 ident: 10.1016/j.heliyon.2021.e07601_br0570 article-title: First-principles study of structural, elastic, electronic, and optical properties of orthorhombic BiGaO3 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2007.09.008 – year: 2020 ident: 10.1016/j.heliyon.2021.e07601_br0480 article-title: Machine learning the central magnetic flux density of superconducting solenoids publication-title: Mater. Technol. – volume: 7 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.heliyon.2021.e07601_br0220 article-title: Opto-electric investigation for Si/organic heterojunction single-nanowire solar cells publication-title: Sci. Rep. – volume: 29 issue: 12 year: 2016 ident: 10.1016/j.heliyon.2021.e07601_br0080 article-title: Formation of Bi2Sr2CaCu2O x/Ag multifilamentary metallic precursor powder-in-tube wires publication-title: Supercond. Sci. Technol. doi: 10.1088/0953-2048/29/12/125005 – volume: 28 start-page: 1 issue: 4 year: 2018 ident: 10.1016/j.heliyon.2021.e07601_br0130 article-title: Design and fabrication of a 1-MW high-temperature superconductor DC induction heater publication-title: IEEE Trans. Appl. Supercond. |
SSID | ssj0001586973 |
Score | 2.4228454 |
Snippet | Perovskites having the chemical formulae of ABX3 are promising candidates for various electronic, magnetic, and thermal applications. One of the important... Perovskites having the chemical formulae of ABX are promising candidates for various electronic, magnetic, and thermal applications. One of the important... Perovskites having the chemical formulae of ABX₃ are promising candidates for various electronic, magnetic, and thermal applications. One of the important... Perovskites having the chemical formulae of ABX 3 are promising candidates for various electronic, magnetic, and thermal applications. One of the important... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e07601 |
SubjectTerms | cations Crystal structure Halide Machine learning magnetism normal distribution Oxide Perovskite |
Title | Modeling of lattice parameters of cubic perovskite oxides and halides |
URI | https://dx.doi.org/10.1016/j.heliyon.2021.e07601 https://www.ncbi.nlm.nih.gov/pubmed/34355095 https://www.proquest.com/docview/2559425657 https://www.proquest.com/docview/2636464135 https://pubmed.ncbi.nlm.nih.gov/PMC8321928 https://doaj.org/article/9a96e33cd2fd47d9a203dcd57bfe5de0 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQHlZcVssCS3msjMQ1bepH7BwB7apCWk6s1Jvl-KGmKslq2yL498zEaWlYiV64RX5FHo8z38Tjbwj5AEbFVpGXGXOVzYQKPgM3QmfOs9xhpvdK40Xh26_F7E58mcv5QaovjAlL9MBJcJPSlkXgHPpGL5QvLcu5d16qKgbpQ-etg807cKbS_WBdlN3xMlgsCa8X-Z_rO5PleBFW9a8W-U_ZdBzwdGo6MEwdf__APj3Gn3-HUR7YpZtzctYDSvoxTeQZeRKaC3J62x-ZPyfXmO0M75zTNtKV3WCwG0XC7-8YCLPGUretakeRMfzHGn_m0vZn7cOa2sbTBeB0eH5B7m6uv32eZX3uhMwBQNtklumoIvMiiqnjMQ86es6cAvgGqyJt5DqwKCXY56iFk3mY5nmIYMAF-ExC8ZfkpGmb8IrQXCirLfhlMKQoI6u0ZR6BjeVl0IUcEbETnHE9sTjmt1iZXQTZ0vTyNihvk-Q9IuN9t_vErHGswydclX1jJMbuCkBdTK8u5pi6jIjeranpMUbCDjBUfez973c6YGAP4sGKbUK7XRt0y-DbV0j1jzYFL0QBkAHkdZn0Zj8TDpgVgBvUqIFGDaY6rGnqRccFjommYGFe_w_ZvCFPcbopGPktOdk8bMM7gFyb6qrbXb8BGRIq7A |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+of+lattice+parameters+of+cubic+perovskite+oxides+and+halides&rft.jtitle=Heliyon&rft.au=Zhang%2C+Yun&rft.au=Xu%2C+Xiaojie&rft.date=2021-07-01&rft.issn=2405-8440&rft.eissn=2405-8440&rft.volume=7&rft.issue=7&rft.spage=e07601&rft_id=info:doi/10.1016%2Fj.heliyon.2021.e07601&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_heliyon_2021_e07601 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8440&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8440&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8440&client=summon |