Mechanical fatigue performance of PCL-chondroprogenitor constructs after cell culture under bioreactor mechanical stimulus

In tissue engineering of cartilage, polymeric scaffolds are implanted in the damaged tissue and subjected to repeated compression loading cycles. The possibility of failure due to mechanical fatigue has not been properly addressed in these scaffolds. Nevertheless, the macroporous scaffold is suscept...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical materials research. Part B, Applied biomaterials Vol. 104; no. 2; pp. 330 - 338
Main Authors Panadero, Juan Alberto, Sencadas, Vitor, Silva, Sonia C. M., Ribeiro, Clarisse, Correia, Vitor, Gama, Francisco M., Gomez Ribelles, José Luis, Lanceros-Mendez, Senentxu
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.02.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In tissue engineering of cartilage, polymeric scaffolds are implanted in the damaged tissue and subjected to repeated compression loading cycles. The possibility of failure due to mechanical fatigue has not been properly addressed in these scaffolds. Nevertheless, the macroporous scaffold is susceptible to failure after repeated loading-unloading cycles. This is related to inherent discontinuities in the material due to the micropore structure of the macro-pore walls that act as stress concentration points. In this work, chondrogenic precursor cells have been seeded in poly-ε-caprolactone (PCL) scaffolds with fibrin and some were submitted to free swelling culture and others to cyclic loading in a bioreactor. After cell culture, all the samples were analyzed for fatigue behavior under repeated loading-unloading cycles. Moreover, some components of the extracellular matrix (ECM) were identified. No differences were observed between samples undergoing free swelling or bioreactor loading conditions, neither respect to matrix components nor to mechanical performance to fatigue. The ECM did not achieve the desired preponderance of collagen type II over collagen type I which is considered the main characteristic of hyaline cartilage ECM. However, prediction in PCL with ECM constructs was possible up to 600 cycles, an enhanced performance when compared to previous works. PCL after cell culture presents an improved fatigue resistance, despite the fact that the measured elastic modulus at the first cycle was similar to PCL with poly(vinyl alcohol) samples. This finding suggests that fatigue analysis in tissue engineering constructs can provide additional information missed with traditional mechanical measurements.
Bibliography:COST Action - No. MP1206; No. MP1301
Matepro-Optimizing Materials and Processes - No. NORTE-07-0124-FEDER-00037
VI National R&D&i Plan 2008-2011
Iniciativa Ingenio 2010
Consolider Program
ark:/67375/WNG-GDQXSZFX-C
FEDER Funds; Programa Operacional Regional do Norte (ON.2 - O Novo Norte)
ArticleID:JBMB33386
Fundo Europeu de Desenvolvimento Regional (FEDER)
Quadro de Referência Estratégico Nacional (QREN)
National Funds (FCT-Fundação para a Ciência e a Tecnologia) - No. PEST-C/FIS/UI607/2014; No. SFRH/BD/64586/2009; No. SFRH/BPD/63148/2009; No. SFRH/BPD/90870/2012; No. SFRH/BPD/97739/2013
CIBER Actions
Spanish Ministry of Economy and Competitiveness (MINECO) - No. MAT2013-46467-C4-1-R
istex:6E3B76ED05E033BDABC280E81F4386AC240AB021
Instituto de Salud Carlos III with assistance from the European Regional Development Fund
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1552-4973
1552-4981
DOI:10.1002/jbm.b.33386