Feature Extraction Using a Residual Deep Convolutional Neural Network (ResNet-152) and Optimized Feature Dimension Reduction for MRI Brain Tumor Classification

One of the top causes of mortality in people globally is a brain tumor. Today, biopsy is regarded as the cornerstone of cancer diagnosis. However, it faces difficulties, including low sensitivity, hazards during biopsy treatment, and a protracted waiting period for findings. In this context, develop...

Full description

Saved in:
Bibliographic Details
Published inDiagnostics (Basel) Vol. 13; no. 4; p. 668
Main Authors Athisayamani, Suganya, Antonyswamy, Robert Singh, Sarveshwaran, Velliangiri, Almeshari, Meshari, Alzamil, Yasser, Ravi, Vinayakumar
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.02.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract One of the top causes of mortality in people globally is a brain tumor. Today, biopsy is regarded as the cornerstone of cancer diagnosis. However, it faces difficulties, including low sensitivity, hazards during biopsy treatment, and a protracted waiting period for findings. In this context, developing non-invasive and computational methods for identifying and treating brain cancers is crucial. The classification of tumors obtained from an MRI is crucial for making a variety of medical diagnoses. However, MRI analysis typically requires much time. The primary challenge is that the tissues of the brain are comparable. Numerous scientists have created new techniques for identifying and categorizing cancers. However, due to their limitations, the majority of them eventually fail. In that context, this work presents a novel way of classifying multiple types of brain tumors. This work also introduces a segmentation algorithm known as Canny Mayfly. Enhanced chimpanzee optimization algorithm (EChOA) is used to select the features by minimizing the dimension of the retrieved features. ResNet-152 and the softmax classifier are then used to perform the feature classification process. Python is used to carry out the proposed method on the Figshare dataset. The accuracy, specificity, and sensitivity of the proposed cancer classification system are just a few of the characteristics that are used to evaluate its overall performance. According to the final evaluation results, our proposed strategy outperformed, with an accuracy of 98.85%.
AbstractList One of the top causes of mortality in people globally is a brain tumor. Today, biopsy is regarded as the cornerstone of cancer diagnosis. However, it faces difficulties, including low sensitivity, hazards during biopsy treatment, and a protracted waiting period for findings. In this context, developing non-invasive and computational methods for identifying and treating brain cancers is crucial. The classification of tumors obtained from an MRI is crucial for making a variety of medical diagnoses. However, MRI analysis typically requires much time. The primary challenge is that the tissues of the brain are comparable. Numerous scientists have created new techniques for identifying and categorizing cancers. However, due to their limitations, the majority of them eventually fail. In that context, this work presents a novel way of classifying multiple types of brain tumors. This work also introduces a segmentation algorithm known as Canny Mayfly. Enhanced chimpanzee optimization algorithm (EChOA) is used to select the features by minimizing the dimension of the retrieved features. ResNet-152 and the softmax classifier are then used to perform the feature classification process. Python is used to carry out the proposed method on the Figshare dataset. The accuracy, specificity, and sensitivity of the proposed cancer classification system are just a few of the characteristics that are used to evaluate its overall performance. According to the final evaluation results, our proposed strategy outperformed, with an accuracy of 98.85%.One of the top causes of mortality in people globally is a brain tumor. Today, biopsy is regarded as the cornerstone of cancer diagnosis. However, it faces difficulties, including low sensitivity, hazards during biopsy treatment, and a protracted waiting period for findings. In this context, developing non-invasive and computational methods for identifying and treating brain cancers is crucial. The classification of tumors obtained from an MRI is crucial for making a variety of medical diagnoses. However, MRI analysis typically requires much time. The primary challenge is that the tissues of the brain are comparable. Numerous scientists have created new techniques for identifying and categorizing cancers. However, due to their limitations, the majority of them eventually fail. In that context, this work presents a novel way of classifying multiple types of brain tumors. This work also introduces a segmentation algorithm known as Canny Mayfly. Enhanced chimpanzee optimization algorithm (EChOA) is used to select the features by minimizing the dimension of the retrieved features. ResNet-152 and the softmax classifier are then used to perform the feature classification process. Python is used to carry out the proposed method on the Figshare dataset. The accuracy, specificity, and sensitivity of the proposed cancer classification system are just a few of the characteristics that are used to evaluate its overall performance. According to the final evaluation results, our proposed strategy outperformed, with an accuracy of 98.85%.
One of the top causes of mortality in people globally is a brain tumor. Today, biopsy is regarded as the cornerstone of cancer diagnosis. However, it faces difficulties, including low sensitivity, hazards during biopsy treatment, and a protracted waiting period for findings. In this context, developing non-invasive and computational methods for identifying and treating brain cancers is crucial. The classification of tumors obtained from an MRI is crucial for making a variety of medical diagnoses. However, MRI analysis typically requires much time. The primary challenge is that the tissues of the brain are comparable. Numerous scientists have created new techniques for identifying and categorizing cancers. However, due to their limitations, the majority of them eventually fail. In that context, this work presents a novel way of classifying multiple types of brain tumors. This work also introduces a segmentation algorithm known as Canny Mayfly. Enhanced chimpanzee optimization algorithm (EChOA) is used to select the features by minimizing the dimension of the retrieved features. ResNet-152 and the softmax classifier are then used to perform the feature classification process. Python is used to carry out the proposed method on the Figshare dataset. The accuracy, specificity, and sensitivity of the proposed cancer classification system are just a few of the characteristics that are used to evaluate its overall performance. According to the final evaluation results, our proposed strategy outperformed, with an accuracy of 98.85%.
Audience Academic
Author Antonyswamy, Robert Singh
Ravi, Vinayakumar
Athisayamani, Suganya
Alzamil, Yasser
Almeshari, Meshari
Sarveshwaran, Velliangiri
AuthorAffiliation 4 Center for Artificial Intelligence, Prince Mohammad Bin Fahd University, Khobar 34754, Saudi Arabia
3 Department of Diagnostic Radiology, College of Applied Medical Sciences, University of Ha’il, Ha’il 55476, Saudi Arabia
2 Department of Computational Intelligence, School of Computing, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
1 School of Computing, Sastra Deemed to be University, Thanjavur 613401, India
AuthorAffiliation_xml – name: 1 School of Computing, Sastra Deemed to be University, Thanjavur 613401, India
– name: 3 Department of Diagnostic Radiology, College of Applied Medical Sciences, University of Ha’il, Ha’il 55476, Saudi Arabia
– name: 2 Department of Computational Intelligence, School of Computing, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
– name: 4 Center for Artificial Intelligence, Prince Mohammad Bin Fahd University, Khobar 34754, Saudi Arabia
Author_xml – sequence: 1
  givenname: Suganya
  surname: Athisayamani
  fullname: Athisayamani, Suganya
  organization: School of Computing, Sastra Deemed to be University, Thanjavur 613401, India
– sequence: 2
  givenname: Robert Singh
  surname: Antonyswamy
  fullname: Antonyswamy, Robert Singh
  organization: Department of Computational Intelligence, School of Computing, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
– sequence: 3
  givenname: Velliangiri
  orcidid: 0000-0001-9273-8181
  surname: Sarveshwaran
  fullname: Sarveshwaran, Velliangiri
  organization: Department of Computational Intelligence, School of Computing, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
– sequence: 4
  givenname: Meshari
  orcidid: 0000-0001-7838-4081
  surname: Almeshari
  fullname: Almeshari, Meshari
  organization: Department of Diagnostic Radiology, College of Applied Medical Sciences, University of Ha'il, Ha'il 55476, Saudi Arabia
– sequence: 5
  givenname: Yasser
  orcidid: 0000-0002-9478-850X
  surname: Alzamil
  fullname: Alzamil, Yasser
  organization: Department of Diagnostic Radiology, College of Applied Medical Sciences, University of Ha'il, Ha'il 55476, Saudi Arabia
– sequence: 6
  givenname: Vinayakumar
  orcidid: 0000-0001-6873-6469
  surname: Ravi
  fullname: Ravi, Vinayakumar
  organization: Center for Artificial Intelligence, Prince Mohammad Bin Fahd University, Khobar 34754, Saudi Arabia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36832156$$D View this record in MEDLINE/PubMed
BookMark eNptks1uEzEQx1eoiJbSJ0BClriUQ4q_vb4glbSFSIVKUThbjtcODrt2sHfLx8vwqnibtjSo9sHj8W_-oxnP82ovxGCr6iWCJ4RI-LbxehVi7r3JiEAKOa-fVAcYCjahFNV7D-z96ijnNSxLIlJj9qzaJ7wmGDF-UP25sLofkgXnP_ukTe9jAF-yDyugwdxm3wy6BWfWbsA0huvYDiNRXJ_tkG6O_kdM38BxYYs9QQy_ATo04GrT-87_tg24S3DmOxvyqD-3zbDN5GICn-Yz8D5pH8Bi6Mp92uqcvfNGj8iL6qnTbbZHt-dhtbg4X0w_Ti6vPsymp5cTwzjvJ1LommOOa4chopQ5TiVFtraQi1pSAjVmrGFuCQ3TBAlBsKltY-iSGIMFOaxmW9km6rXaJN_p9EtF7dWNI6aV0qk0u7XKMMuIEBw7hKjkdmmcNpgRBoUwRMqi9W6rtRmWXclhQ-lsuyO6-xL8V7WK10pKxhAfBY5vBVL8Ptjcq85nY9tWBxuHrLCoIRRYirqgr_9D13FI5YNGSkhKBRfoH7XSpQAfXBz_ehRVp6I0hyAsWKFOHqHKbmznTRk_54t_J4BsA0yKOSfr7mtEUI1Tqh6Z0hL16mF77mPuZpL8BVSO5n8
CitedBy_id crossref_primary_10_3390_app132413111
crossref_primary_10_1016_j_asoc_2024_111457
crossref_primary_10_3390_sym15081586
crossref_primary_10_1016_j_bspc_2024_106117
crossref_primary_10_3390_cancers16020300
crossref_primary_10_3390_computers12080151
crossref_primary_10_3390_biomedicines11051354
crossref_primary_10_1002_ima_23008
crossref_primary_10_1007_s10044_024_01236_5
crossref_primary_10_3389_fonc_2024_1335740
Cites_doi 10.1007/s13369-019-03967-8
10.1016/j.neucom.2020.09.016
10.1016/j.iot.2021.100377
10.1016/j.patrec.2019.11.017
10.1016/j.eswa.2020.113338
10.1016/j.compbiomed.2020.103804
10.1109/ICCIKE47802.2019.9004238
10.1016/j.asoc.2020.106348
10.1109/ICEECCOT.2017.8284595
10.1109/ICISCT49550.2020.9079945
10.1016/j.compbiomed.2018.02.004
10.1007/s12652-020-02470-5
10.1109/AiCIS.2018.00021
10.1016/j.jocs.2018.12.003
10.1002/ima.22255
10.1016/j.bspc.2020.102002
10.1016/j.cmpb.2018.09.006
10.1109/ACCESS.2020.3009898
10.1002/jmri.26766
10.31557/APJCP.2019.20.5.1409
10.1016/j.bspc.2018.08.025
10.1007/s10916-019-1368-4
10.1016/j.cie.2020.106559
10.1016/j.ultras.2017.02.003
10.17993/3ctecno.2020.specialissue4.301-311
10.1080/08839514.2018.1530869
10.1007/s00521-017-2869-z
10.1007/s10462-022-10245-x
10.1007/978-981-19-1559-8
10.1007/s11042-020-08636-9
10.1007/s10586-018-1914-8
10.1007/s10586-018-2111-5
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID NPM
AAYXX
CITATION
3V.
7XB
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
GNUQQ
GUQSH
M2O
MBDVC
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3390/diagnostics13040668
DatabaseName PubMed
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
Research Library
Research Library (Corporate)
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database


PubMed
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: COVID
  name: Coronavirus Research Database
  url: https://proxy.k.utb.cz/login?url=https://search.proquest.com/coronavirus
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2075-4418
ExternalDocumentID oai_doaj_org_article_c5e537762f11496ebcfac2535077c399
A743031275
10_3390_diagnostics13040668
36832156
Genre Journal Article
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID 3V.
53G
5VS
8G5
AADQD
AAFWJ
ABDBF
ABUWG
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BCNDV
BENPR
BPHCQ
CCPQU
DWQXO
EBD
ESX
GNUQQ
GROUPED_DOAJ
GUQSH
HYE
IAO
IHR
ITC
KQ8
M2O
M48
MODMG
M~E
NPM
OK1
PGMZT
PIMPY
PQQKQ
PROAC
RIG
RPM
AAYXX
AFPKN
CITATION
7XB
8FK
COVID
MBDVC
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c566t-97a862628f201445f64941e8e06789430a255d5fb0c5a317732c8edc4b3cc273
IEDL.DBID RPM
ISSN 2075-4418
IngestDate Tue Oct 22 15:09:18 EDT 2024
Tue Sep 17 21:32:18 EDT 2024
Sat Oct 26 03:58:30 EDT 2024
Thu Oct 10 19:21:31 EDT 2024
Fri Feb 23 00:20:18 EST 2024
Fri Feb 02 04:37:51 EST 2024
Thu Sep 26 18:16:13 EDT 2024
Sat Nov 02 12:26:57 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords spatial gray level dependence matrix
modified chimp optimization algorithm
deep convolutional neural network
softmax classifier
Canny algorithm
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c566t-97a862628f201445f64941e8e06789430a255d5fb0c5a317732c8edc4b3cc273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9478-850X
0000-0001-6873-6469
0000-0001-9273-8181
0000-0001-7838-4081
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955169/
PMID 36832156
PQID 2779447671
PQPubID 2032410
ParticipantIDs doaj_primary_oai_doaj_org_article_c5e537762f11496ebcfac2535077c399
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9955169
proquest_miscellaneous_2780072978
proquest_journals_2779447671
gale_infotracmisc_A743031275
gale_infotracacademiconefile_A743031275
crossref_primary_10_3390_diagnostics13040668
pubmed_primary_36832156
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Diagnostics (Basel)
PublicationTitleAlternate Diagnostics (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zhang (ref_28) 2021; 421
Charron (ref_10) 2018; 95
Sajjad (ref_39) 2019; 30
Chandra (ref_11) 2020; 60
Selvapandian (ref_3) 2018; 166
ref_36
Sert (ref_2) 2019; 47
ref_13
ref_35
Rajesh (ref_19) 2019; 22
Yi (ref_22) 2020; 51
ref_30
Konar (ref_27) 2020; 93
Sajid (ref_6) 2019; 44
ref_38
ref_15
ref_37
Parthasarathy (ref_12) 2019; 20
Nanda (ref_18) 2019; 33
Anitha (ref_7) 2018; 28
Saraswat (ref_31) 2021; 25
Kaur (ref_17) 2018; 29
Tandel (ref_40) 2020; 122
Sheela (ref_26) 2020; 79
Rajan (ref_4) 2019; 43
ref_24
Stosic (ref_14) 2018; 3
ref_23
ref_21
Singh (ref_1) 2021; 14
ref_20
Raghavendra (ref_33) 2017; 77
Khishe (ref_34) 2020; 149
ref_29
Said (ref_25) 2020; 8
ref_9
Sharif (ref_16) 2020; 129
ref_5
Aswathy (ref_8) 2019; 22
Zervoudakis (ref_32) 2020; 145
References_xml – ident: ref_9
– volume: 44
  start-page: 9249
  year: 2019
  ident: ref_6
  article-title: Brain tumor detection and segmentation in MR images using deep learning
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-019-03967-8
  contributor:
    fullname: Sajid
– volume: 421
  start-page: 195
  year: 2021
  ident: ref_28
  article-title: Brain tumor segmentation of multi-modality MR images via triple intersecting U-Nets
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.09.016
  contributor:
    fullname: Zhang
– volume: 14
  start-page: 100377
  year: 2021
  ident: ref_1
  article-title: Deep learning assisted COVID-19 detection using full CT-scans
  publication-title: Internet Things
  doi: 10.1016/j.iot.2021.100377
  contributor:
    fullname: Singh
– volume: 129
  start-page: 150
  year: 2020
  ident: ref_16
  article-title: An integrated design of particle swarm optimization (PSO) with fusion of features for detection of brain tumor
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2019.11.017
  contributor:
    fullname: Sharif
– volume: 149
  start-page: 113338
  year: 2020
  ident: ref_34
  article-title: Chimp optimization algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113338
  contributor:
    fullname: Khishe
– volume: 122
  start-page: 103804
  year: 2020
  ident: ref_40
  article-title: Multiclass magnetic resonance imaging brain tumor classification using artificial intelligence paradigm
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103804
  contributor:
    fullname: Tandel
– ident: ref_23
  doi: 10.1109/ICCIKE47802.2019.9004238
– volume: 93
  start-page: 106348
  year: 2020
  ident: ref_27
  article-title: Quantum-Inspired Self-Supervised Network model for automatic segmentation of brain MR images
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106348
  contributor:
    fullname: Konar
– ident: ref_35
  doi: 10.1109/ICEECCOT.2017.8284595
– ident: ref_13
  doi: 10.1109/ICISCT49550.2020.9079945
– volume: 95
  start-page: 43
  year: 2018
  ident: ref_10
  article-title: Automatic detection and segmentation of brain metastases on multimodal MR images with a deep convolutional neural network
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.02.004
  contributor:
    fullname: Charron
– ident: ref_21
  doi: 10.1007/s12652-020-02470-5
– ident: ref_37
– ident: ref_15
  doi: 10.1109/AiCIS.2018.00021
– volume: 30
  start-page: 174
  year: 2019
  ident: ref_39
  article-title: Multi-grade brain tumor classification using deep CNN with extensive data augmentation
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2018.12.003
  contributor:
    fullname: Sajjad
– volume: 28
  start-page: 48
  year: 2018
  ident: ref_7
  article-title: Development of computer-aided approach for brain tumor detection using random forest classifier
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22255
  contributor:
    fullname: Anitha
– volume: 60
  start-page: 102002
  year: 2020
  ident: ref_11
  article-title: Fractional Crank-Nicolson finite difference method for benign brain tumor detection and segmentation
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2020.102002
  contributor:
    fullname: Chandra
– volume: 166
  start-page: 33
  year: 2018
  ident: ref_3
  article-title: Fusion based glioma brain tumor detection and segmentation using ANFIS classification
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.09.006
  contributor:
    fullname: Selvapandian
– volume: 8
  start-page: 136243
  year: 2020
  ident: ref_25
  article-title: Optimized Edge Detection Technique for brain tumor Detection in MR Images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3009898
  contributor:
    fullname: Said
– volume: 51
  start-page: 175
  year: 2020
  ident: ref_22
  article-title: Deep learning enables automatic detection and segmentation brain metastases on multisequence MRI
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.26766
  contributor:
    fullname: Yi
– volume: 20
  start-page: 1409
  year: 2019
  ident: ref_12
  article-title: Predicting Source and Age of brain tumor Using Canny Edge Detection Algorithm and Threshold Technique
  publication-title: Asian Pac. J. Cancer Prev. APJCP
  doi: 10.31557/APJCP.2019.20.5.1409
  contributor:
    fullname: Parthasarathy
– volume: 47
  start-page: 276
  year: 2019
  ident: ref_2
  article-title: Brain tumor segmentation using neutrosophic expert maximum fuzzy-sure entropy and other approaches
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2018.08.025
  contributor:
    fullname: Sert
– volume: 43
  start-page: 282
  year: 2019
  ident: ref_4
  article-title: Brain tumor detection and segmentation by intensity adjustment
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-019-1368-4
  contributor:
    fullname: Rajan
– ident: ref_29
– volume: 145
  start-page: 106559
  year: 2020
  ident: ref_32
  article-title: mayfly optimization algorithm
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.106559
  contributor:
    fullname: Zervoudakis
– volume: 25
  start-page: 5651
  year: 2021
  ident: ref_31
  article-title: Identification and Classification of brain tumors with Optimized Neural Network and Canny Edge Detection Algorithm
  publication-title: Ann. Rom. Soc. Cell Biol.
  contributor:
    fullname: Saraswat
– volume: 77
  start-page: 110
  year: 2017
  ident: ref_33
  article-title: Fusion of spatial gray level dependency and fractal texture features for the characterization of thyroid lesions
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2017.02.003
  contributor:
    fullname: Raghavendra
– volume: 3
  start-page: 11
  year: 2018
  ident: ref_14
  article-title: An improved canny edge detection algorithm for detecting brain tumors in MRI images
  publication-title: Int. J. Signal Process.
  contributor:
    fullname: Stosic
– ident: ref_5
  doi: 10.17993/3ctecno.2020.specialissue4.301-311
– volume: 33
  start-page: 152
  year: 2019
  ident: ref_18
  article-title: K-means-galactic swarm optimization based clustering algorithm with Otsu’s entropy for brain tumor detection
  publication-title: Appl. Artif. Intell.
  doi: 10.1080/08839514.2018.1530869
  contributor:
    fullname: Nanda
– ident: ref_38
– ident: ref_36
– volume: 29
  start-page: 193
  year: 2018
  ident: ref_17
  article-title: A novel feature selection method for brain tumor MR image classification based on the Fisher criterion and parameter-free Bat optimization
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-2869-z
  contributor:
    fullname: Kaur
– ident: ref_24
  doi: 10.1007/s10462-022-10245-x
– ident: ref_30
  doi: 10.1007/978-981-19-1559-8
– ident: ref_20
– volume: 79
  start-page: 17483
  year: 2020
  ident: ref_26
  article-title: Morphological edge detection and brain tumor segmentation in Magnetic Resonance (MR) images based on region growing and performance evaluation of modified Fuzzy C-Means (FCM) algorithm
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-08636-9
  contributor:
    fullname: Sheela
– volume: 22
  start-page: 13369
  year: 2019
  ident: ref_8
  article-title: Brain tumor detection and segmentation using a wrapper based genetic algorithm for optimized feature set
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-018-1914-8
  contributor:
    fullname: Aswathy
– volume: 22
  start-page: 13853
  year: 2019
  ident: ref_19
  article-title: Brain tumor detection using optimization classification based on rough set theory
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-018-2111-5
  contributor:
    fullname: Rajesh
SSID ssj0000913825
Score 2.35324
Snippet One of the top causes of mortality in people globally is a brain tumor. Today, biopsy is regarded as the cornerstone of cancer diagnosis. However, it faces...
SourceID doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 668
SubjectTerms Accuracy
Algorithms
Automation
Brain cancer
Brain research
Brain tumors
Canny algorithm
Cell division
Classification
deep convolutional neural network
Deep learning
Diagnosis
Health aspects
Machine learning
Magnetic resonance imaging
Mathematical optimization
Medical imaging
modified chimp optimization algorithm
Neural networks
softmax classifier
spatial gray level dependence matrix
Technology application
Tumors
X-rays
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1KDqWX0jZN6jQtKhTSQE3WliVZx3ySFpJC2EJuQpYlmkO8YbNbSv9M_2pnJO9i00AuPa3Xkr2WZjTzZj16A_BRSxWco904hQ45Ed7ljXUyF3ziK91aV_iYIHspz79XX6_F9aDUF-WEJXrgNHEHTnjBFS7ZgMhdS9-4YF0pOOIY5dC7Rus70YNgKtpgTdx6ItEMcYzrD9qUuUbcx2i20Y0RuerAFUXG_n_t8sAxjZMmB17o7AU87-EjO0yP_RKe-O4VPL3oX5Bvwh-CdMu5Z6e_FvO0Z4HFrABm2ZW_jzuv2In3d-x41v3s1Q5PEUdH_IhJ4ewT9sXjHN3uPrNdy76hZbm9-e1btvqBEyoLQH-14X3bREHLEACzi6sv7IjqTrDp8ha_x6qblI8UVeA1TM9Op8fneV-DIXcI9Ba5VpZinrIOJcVeIshKV4WvPXk5om63GJO0IjQTJyxiEcVLV-MkVQ13DqHRFmx0s86_AcZDHVTtZaO4ruqmsGUIobBoUGq8QdFm8HklDXOXmDYMRigkPPOA8DI4IomtuxJNdjyBymN65TGPKU8GeyRvQ4uZpGL7PQn4xESLZQ4RX6HVK5XIYHfUExehGzevNMb0RuDelAqNXaWkKjL4sG6mKymxrfOzJfWpI3m7wgFtJwVbD4lLKiMlZAZqpHqjMY9bupsfkSJc6_gCdOd_TNJbeFYiskup6ruwsZgv_TtEYovmfVx0fwGqHTI9
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Coronavirus Research Database
  dbid: COVID
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagkxAvjOvIGMhISIBEtiaO4-QJbe2mDWlMmgram-U4NkxoSWkThPZn-Kuc4zilAcQDT21jN8mRP5-LffwdQl7kqbBa42mcKLchEt6FhdJpyNnYJHmpdGRcguz79PhD8u6CX_gFt6VPq-x1olPUZa1xjXwvFoCcRKQiejv_GmLVKNxd9SU0bpINBnZnPCIbk7OPJ9PVKguyXkIM1NENMYjv98ougw05kEF9gzlDktU1k-SY-__Uz2sGapg8uWaNjjaJ7OXoklC-7LZNsauvf6N4_H9B75I73lGl-x2y7pEbprpPbp36rfgH5Ac6j-3C0MPvzaI7HUFd_gFV9Nws3RkvOjVmTid19c0DHC4hG4j7cOnn9BX0he8hGPjXVFUlPQMddnV5bUraP2CKBQhwUQ_uW3ZktxRcbXp6fkIPsMIFnbVX8NvV98TMJwe2h2R2dDibHIe-2kOowaVswlwojK7izMYY5XGbJnkSmcygPUWSeAXRT8ltMdZcgdcjWKwzGIakYFqDE_aIjKq6Mo8JZTazIjNpIVieZEWkYmttpEB1ZXCDqAzIm3685bzj9JAQCyE85F_gEZADxMSqKxJyuwv14pP081tqbjgTYFksBJh5agptlY45A3dbaHACA_ISESVRbeCoKH_6Ad4YCbjkPnhyoF9jwQOyM-gJ010Pm3vYSK9ulvIXZgLyfNWM_8QUusrULfbJHE28AIG2OgivRGIpFqziaUDEANwDmYct1eVnR0ae526rdfvfr_WE3I7BO-zS3XfIqFm05il4c03xzE_Zn_-ATrU
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3bbtQwEB2VIlV9QdwJFGQkJEAitHHi2H5AqFcVpIJUbaW-WY5jQyWaLekuKvwMv8qMk6w2on3abOw468x45sxmfAbglS5lcI5242Q6pER4l1bWlanIt3yha-syHxNkv5SHJ8XnU3G6AkNV1P4BXl4b2lE9qZP2x_urn78_4oL_QBEnhuybdZeURrTGaJHRQ5XqFtzmxMxFuXw93o-mWRPlHqU1cnSVKUIB1TER3TTOOqzlJRXzoQLXS44r8vv_b8WX3Ng4xXLJZx3chTs92GTbnXbcgxXf3Ie1o_51-gP4SwBw3nq2fzVrux0OLOYQMMuO_WXcp8X2vL9gu9PmV6-keIoYPeJHTCFnb7AvHqfopN8y29TsK9qh87M_vmbDDfaoiAD9MYfj1h1hLUO4zI6OP7EdqlLBJvNz_B5rdFL2UlSYhzA52J_sHqZ9xYbUISycpVpaipC4CpwiNRHKQheZV558IhG9W4xgahGqLScsIheZc6fwIRVV7hwCqUew2kwb_wRYHlSQypeVzHWhqszyEEJm0fwoHCCrE3g3SMNcdLwcBuMZkqO5Ro4J7JDEFl2JVDuemLbfTL9GjRNe5BK9Q8AgUZe-csE6LnKEzNIhkEvgNcnbkDKSVGy_gwF_MZFomW1EY2gjuRQJbIx64pJ14-ZBY8yg8YZLNI2FLGWWwMtFM11JaXCNn86pj4pU7xIn9LhTsMWUBj1NQI5UbzTncUtz9j0SimsdX5c-vXHMZ7DOEdx12eobsDpr5_45grFZ9SIusH8DhzGT
  priority: 102
  providerName: Scholars Portal
Title Feature Extraction Using a Residual Deep Convolutional Neural Network (ResNet-152) and Optimized Feature Dimension Reduction for MRI Brain Tumor Classification
URI https://www.ncbi.nlm.nih.gov/pubmed/36832156
https://www.proquest.com/docview/2779447671
https://www.proquest.com/docview/2780072978
https://pubmed.ncbi.nlm.nih.gov/PMC9955169
https://doaj.org/article/c5e537762f11496ebcfac2535077c399
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFD60HYy9lN3rrQsaDLbB3NQXWdZjcyntIG0J2eibkWWpDTROSJMx9mf2V3eObIeY9mkvcWzJjpVzdC72p-8AfJKJsFrTapxAWp8I7_xc6cTn0bGJZaF0YBxA9iI5-xF_v-bXO8CbtTAOtK_z6VF5Nzsqp7cOW7mY6W6DE-tejfpSutc73V3YRQXdStGd-ZVEq8crhqEIU_puUYHWiPYYLTZ6sISq9EUJFemhwtVbDsnx9j-0zlvuqQ2d3PJFp89hvw4i2Ul1sy9gx5Qv4emofk3-Cv5SYLdeGjb8vVpWKxeYwwYwxcbm3q2_YgNjFqw_L3_VyoeHiKnDbRw0nH3BvvjdR-f7lamyYJdoX2bTP6ZgzQ8MqDgAPXDD6xYVES3DMJiNxuesR9Un2GQ9w31Xe5NQSU4RXsPkdDjpn_l1JQZfY7i38qVQlPmEqQ0pA-M2iWUcmNSQryMCd4WZScFtfqy5wohERKFO8U-K80hrDJDewF45L80BsMimVqQmyUUk4zQPVGitDRSalRQvEBQefGukkS0qvo0M8xSSY_aIHD3okcQ2XYks2x2YL2-yWmUyzQ2PBFp9i8mfTEyurdIhjzAUFhoDNA8-k7wzmtIkFVWvTMA7JnKs7ASjLLR9oeAeHLZ64lTU7eZGY7LaFNxnoUCTF4tEBB583DTTmQRvK818TX1SR-EucEBvKwXbDKnRUw9ES_VaY2634LxxROH1PHn332e-h2chBnUVSv0Q9lbLtfmAQdgq78CT3vDiaozb_uXP80HHPczAz1GcdtyE_AfjqzhX
link.rule.ids 230,315,730,783,787,867,888,2109,2228,21402,24332,27938,27939,33758,33759,38530,43819,43909,53806,53808,74638,74748
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgk4AX7pfAACMhARLZmovj5Alt7aYW1k2ayrQ3y3FsmNCS0iYI7c_wVznHcUoDiAee2sZukiN_Phf7-DuEvMwSbpTC0zhBZnwkvPNzqRKfRQMdZ4VUgbYJskfJ-GP8_oyduQW3pUur7HSiVdRFpXCNfCfkgJyYJzx4N__qY9Uo3F11JTSukk0wrANA9ebw-HQyWq2yIOslxEAt3VAEXXaKNoMNOZBBfYM5Q5LVNZNkmfv_1M9rBqqfPLlmjQ5uEdHJ0SahfNlu6nxbXf5G8fj_gt4mN52jSndbZN0hV3R5l1ybuq34e-QHOo_NQtP97_WiPR1Bbf4BlfREL-0ZLzrSek6HVfnNARwuIRuI_bDp5_Q19IXvPhj4N1SWBT0GHXZxfqkL2j1ghAUIcFEP7lu0ZLcUXG06PZnQPaxwQWfNBfy29T0x88mC7T6ZHezPhmPfVXvwFbiUtZ9xidFVmJoQozxmkjiLA51qtKdIEi8h-imYyQeKSfB6eBSqFIYhziOlwAl7QDbKqtSPCI1Maniqk5xHWZzmgQyNMYEE1ZXCDYLCI2-78RbzltNDQCyE8BB_gYdH9hATq65IyG0vVItPws1voZhmEQfLYiDAzBKdKyNVyCJwt7kCJ9AjrxBRAtUGjop0px_gjZGAS-yCJwf6NeTMI1u9njDdVb-5g41w6mYpfmHGIy9WzfhPTKErddVgn9TSxHMQ6GEL4ZVIUYIFq1jiEd4Dd0_mfkt5_tmSkWeZ3Wp9_O_Xek6uj2fTQ3E4OfrwhNwIwVNsU9-3yEa9aPRT8Ozq_Jmbvj8B5oxRpQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD6CTpp44X4JDDASEiCRdbk6eUJbu2oFtqGpoL1FjmPDNC0pbYLQ_gx_lXMcpzSAeOKpbewmsfLlnO_Yx98BeJ7GXEtJu3G8VLskeOfmQsZuFOyoMC2E9JRJkD2KDz6Gb0-jU5v_tLRplZ1NNIa6qCTNkQ99jsgJecy9obZpER_Gkzfzry5VkKKVVltO4ypsIEUOkwFsjI4_TcerGRdSwMR4qJUeCjDWHxZtNhvpIaMpR9dGgqtr7smo-P9pq9ecVT-Rcs0zTW7AeTemNiHlfLup8215-Zvc4_8Z9E24bgks220RdwuuqPI2bB7aJfo78INIZbNQbP97vWh3TTCTl8AEO1FLs_eLjZWas1FVfrPAx0OkEmI-TFo6e4l98buLjv8VE2XBjtG2XZxdqoJ1FxhTYQKa7MPzFq0ILkMKzg5PpmyPKl-wWXOBv03dT8qIMiC8C7PJ_mx04NoqEK5Eqlm7KRcUdfmJ9in6i3QcpqGnEkV-lsTjBUZFRaTzHRkJZEM88GWCjyTMAymRnN2DQVmV6gGwQCeaJyrOeZCGSe4JX2vtCTRpCZ7AKxx43T37bN5qfWQYIxFUsr9AxYE9wseqKwl1mwPV4nNm3_tMRioKOHocjYFnGqtcaiH9KEAaziWSQwdeELoyMif0VITdFYF3TMJc2S4yPLS7Po8c2Or1RDMg-80dhDJrhpbZL_w48GzVTP-k1LpSVQ31SYx8PMcB3W_hvBpSEFMhqyh2gPeA3htzv6U8-2JEytPULME-_PdtPYVNBHT2fnr07hFc85FAthnxWzCoF416jISvzp_YN_knCupaaA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+Extraction+Using+a+Residual+Deep+Convolutional+Neural+Network+%28ResNet-152%29+and+Optimized+Feature+Dimension+Reduction+for+MRI+Brain+Tumor+Classification&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Athisayamani%2C+Suganya&rft.au=Antonyswamy%2C+Robert+Singh&rft.au=Sarveshwaran%2C+Velliangiri&rft.au=Almeshari%2C+Meshari&rft.date=2023-02-01&rft.issn=2075-4418&rft.eissn=2075-4418&rft.volume=13&rft.issue=4&rft_id=info:doi/10.3390%2Fdiagnostics13040668&rft_id=info%3Apmid%2F36832156&rft.externalDocID=36832156
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon