Feature Extraction Using a Residual Deep Convolutional Neural Network (ResNet-152) and Optimized Feature Dimension Reduction for MRI Brain Tumor Classification
One of the top causes of mortality in people globally is a brain tumor. Today, biopsy is regarded as the cornerstone of cancer diagnosis. However, it faces difficulties, including low sensitivity, hazards during biopsy treatment, and a protracted waiting period for findings. In this context, develop...
Saved in:
Published in | Diagnostics (Basel) Vol. 13; no. 4; p. 668 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.02.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | One of the top causes of mortality in people globally is a brain tumor. Today, biopsy is regarded as the cornerstone of cancer diagnosis. However, it faces difficulties, including low sensitivity, hazards during biopsy treatment, and a protracted waiting period for findings. In this context, developing non-invasive and computational methods for identifying and treating brain cancers is crucial. The classification of tumors obtained from an MRI is crucial for making a variety of medical diagnoses. However, MRI analysis typically requires much time. The primary challenge is that the tissues of the brain are comparable. Numerous scientists have created new techniques for identifying and categorizing cancers. However, due to their limitations, the majority of them eventually fail. In that context, this work presents a novel way of classifying multiple types of brain tumors. This work also introduces a segmentation algorithm known as Canny Mayfly. Enhanced chimpanzee optimization algorithm (EChOA) is used to select the features by minimizing the dimension of the retrieved features. ResNet-152 and the softmax classifier are then used to perform the feature classification process. Python is used to carry out the proposed method on the Figshare dataset. The accuracy, specificity, and sensitivity of the proposed cancer classification system are just a few of the characteristics that are used to evaluate its overall performance. According to the final evaluation results, our proposed strategy outperformed, with an accuracy of 98.85%. |
---|---|
AbstractList | One of the top causes of mortality in people globally is a brain tumor. Today, biopsy is regarded as the cornerstone of cancer diagnosis. However, it faces difficulties, including low sensitivity, hazards during biopsy treatment, and a protracted waiting period for findings. In this context, developing non-invasive and computational methods for identifying and treating brain cancers is crucial. The classification of tumors obtained from an MRI is crucial for making a variety of medical diagnoses. However, MRI analysis typically requires much time. The primary challenge is that the tissues of the brain are comparable. Numerous scientists have created new techniques for identifying and categorizing cancers. However, due to their limitations, the majority of them eventually fail. In that context, this work presents a novel way of classifying multiple types of brain tumors. This work also introduces a segmentation algorithm known as Canny Mayfly. Enhanced chimpanzee optimization algorithm (EChOA) is used to select the features by minimizing the dimension of the retrieved features. ResNet-152 and the softmax classifier are then used to perform the feature classification process. Python is used to carry out the proposed method on the Figshare dataset. The accuracy, specificity, and sensitivity of the proposed cancer classification system are just a few of the characteristics that are used to evaluate its overall performance. According to the final evaluation results, our proposed strategy outperformed, with an accuracy of 98.85%.One of the top causes of mortality in people globally is a brain tumor. Today, biopsy is regarded as the cornerstone of cancer diagnosis. However, it faces difficulties, including low sensitivity, hazards during biopsy treatment, and a protracted waiting period for findings. In this context, developing non-invasive and computational methods for identifying and treating brain cancers is crucial. The classification of tumors obtained from an MRI is crucial for making a variety of medical diagnoses. However, MRI analysis typically requires much time. The primary challenge is that the tissues of the brain are comparable. Numerous scientists have created new techniques for identifying and categorizing cancers. However, due to their limitations, the majority of them eventually fail. In that context, this work presents a novel way of classifying multiple types of brain tumors. This work also introduces a segmentation algorithm known as Canny Mayfly. Enhanced chimpanzee optimization algorithm (EChOA) is used to select the features by minimizing the dimension of the retrieved features. ResNet-152 and the softmax classifier are then used to perform the feature classification process. Python is used to carry out the proposed method on the Figshare dataset. The accuracy, specificity, and sensitivity of the proposed cancer classification system are just a few of the characteristics that are used to evaluate its overall performance. According to the final evaluation results, our proposed strategy outperformed, with an accuracy of 98.85%. One of the top causes of mortality in people globally is a brain tumor. Today, biopsy is regarded as the cornerstone of cancer diagnosis. However, it faces difficulties, including low sensitivity, hazards during biopsy treatment, and a protracted waiting period for findings. In this context, developing non-invasive and computational methods for identifying and treating brain cancers is crucial. The classification of tumors obtained from an MRI is crucial for making a variety of medical diagnoses. However, MRI analysis typically requires much time. The primary challenge is that the tissues of the brain are comparable. Numerous scientists have created new techniques for identifying and categorizing cancers. However, due to their limitations, the majority of them eventually fail. In that context, this work presents a novel way of classifying multiple types of brain tumors. This work also introduces a segmentation algorithm known as Canny Mayfly. Enhanced chimpanzee optimization algorithm (EChOA) is used to select the features by minimizing the dimension of the retrieved features. ResNet-152 and the softmax classifier are then used to perform the feature classification process. Python is used to carry out the proposed method on the Figshare dataset. The accuracy, specificity, and sensitivity of the proposed cancer classification system are just a few of the characteristics that are used to evaluate its overall performance. According to the final evaluation results, our proposed strategy outperformed, with an accuracy of 98.85%. |
Audience | Academic |
Author | Antonyswamy, Robert Singh Ravi, Vinayakumar Athisayamani, Suganya Alzamil, Yasser Almeshari, Meshari Sarveshwaran, Velliangiri |
AuthorAffiliation | 4 Center for Artificial Intelligence, Prince Mohammad Bin Fahd University, Khobar 34754, Saudi Arabia 3 Department of Diagnostic Radiology, College of Applied Medical Sciences, University of Ha’il, Ha’il 55476, Saudi Arabia 2 Department of Computational Intelligence, School of Computing, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India 1 School of Computing, Sastra Deemed to be University, Thanjavur 613401, India |
AuthorAffiliation_xml | – name: 1 School of Computing, Sastra Deemed to be University, Thanjavur 613401, India – name: 3 Department of Diagnostic Radiology, College of Applied Medical Sciences, University of Ha’il, Ha’il 55476, Saudi Arabia – name: 2 Department of Computational Intelligence, School of Computing, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India – name: 4 Center for Artificial Intelligence, Prince Mohammad Bin Fahd University, Khobar 34754, Saudi Arabia |
Author_xml | – sequence: 1 givenname: Suganya surname: Athisayamani fullname: Athisayamani, Suganya organization: School of Computing, Sastra Deemed to be University, Thanjavur 613401, India – sequence: 2 givenname: Robert Singh surname: Antonyswamy fullname: Antonyswamy, Robert Singh organization: Department of Computational Intelligence, School of Computing, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India – sequence: 3 givenname: Velliangiri orcidid: 0000-0001-9273-8181 surname: Sarveshwaran fullname: Sarveshwaran, Velliangiri organization: Department of Computational Intelligence, School of Computing, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India – sequence: 4 givenname: Meshari orcidid: 0000-0001-7838-4081 surname: Almeshari fullname: Almeshari, Meshari organization: Department of Diagnostic Radiology, College of Applied Medical Sciences, University of Ha'il, Ha'il 55476, Saudi Arabia – sequence: 5 givenname: Yasser orcidid: 0000-0002-9478-850X surname: Alzamil fullname: Alzamil, Yasser organization: Department of Diagnostic Radiology, College of Applied Medical Sciences, University of Ha'il, Ha'il 55476, Saudi Arabia – sequence: 6 givenname: Vinayakumar orcidid: 0000-0001-6873-6469 surname: Ravi fullname: Ravi, Vinayakumar organization: Center for Artificial Intelligence, Prince Mohammad Bin Fahd University, Khobar 34754, Saudi Arabia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36832156$$D View this record in MEDLINE/PubMed |
BookMark | eNptks1uEzEQx1eoiJbSJ0BClriUQ4q_vb4glbSFSIVKUThbjtcODrt2sHfLx8vwqnibtjSo9sHj8W_-oxnP82ovxGCr6iWCJ4RI-LbxehVi7r3JiEAKOa-fVAcYCjahFNV7D-z96ijnNSxLIlJj9qzaJ7wmGDF-UP25sLofkgXnP_ukTe9jAF-yDyugwdxm3wy6BWfWbsA0huvYDiNRXJ_tkG6O_kdM38BxYYs9QQy_ATo04GrT-87_tg24S3DmOxvyqD-3zbDN5GICn-Yz8D5pH8Bi6Mp92uqcvfNGj8iL6qnTbbZHt-dhtbg4X0w_Ti6vPsymp5cTwzjvJ1LommOOa4chopQ5TiVFtraQi1pSAjVmrGFuCQ3TBAlBsKltY-iSGIMFOaxmW9km6rXaJN_p9EtF7dWNI6aV0qk0u7XKMMuIEBw7hKjkdmmcNpgRBoUwRMqi9W6rtRmWXclhQ-lsuyO6-xL8V7WK10pKxhAfBY5vBVL8Ptjcq85nY9tWBxuHrLCoIRRYirqgr_9D13FI5YNGSkhKBRfoH7XSpQAfXBz_ehRVp6I0hyAsWKFOHqHKbmznTRk_54t_J4BsA0yKOSfr7mtEUI1Tqh6Z0hL16mF77mPuZpL8BVSO5n8 |
CitedBy_id | crossref_primary_10_3390_app132413111 crossref_primary_10_1016_j_asoc_2024_111457 crossref_primary_10_3390_sym15081586 crossref_primary_10_1016_j_bspc_2024_106117 crossref_primary_10_3390_cancers16020300 crossref_primary_10_3390_computers12080151 crossref_primary_10_3390_biomedicines11051354 crossref_primary_10_1002_ima_23008 crossref_primary_10_1007_s10044_024_01236_5 crossref_primary_10_3389_fonc_2024_1335740 |
Cites_doi | 10.1007/s13369-019-03967-8 10.1016/j.neucom.2020.09.016 10.1016/j.iot.2021.100377 10.1016/j.patrec.2019.11.017 10.1016/j.eswa.2020.113338 10.1016/j.compbiomed.2020.103804 10.1109/ICCIKE47802.2019.9004238 10.1016/j.asoc.2020.106348 10.1109/ICEECCOT.2017.8284595 10.1109/ICISCT49550.2020.9079945 10.1016/j.compbiomed.2018.02.004 10.1007/s12652-020-02470-5 10.1109/AiCIS.2018.00021 10.1016/j.jocs.2018.12.003 10.1002/ima.22255 10.1016/j.bspc.2020.102002 10.1016/j.cmpb.2018.09.006 10.1109/ACCESS.2020.3009898 10.1002/jmri.26766 10.31557/APJCP.2019.20.5.1409 10.1016/j.bspc.2018.08.025 10.1007/s10916-019-1368-4 10.1016/j.cie.2020.106559 10.1016/j.ultras.2017.02.003 10.17993/3ctecno.2020.specialissue4.301-311 10.1080/08839514.2018.1530869 10.1007/s00521-017-2869-z 10.1007/s10462-022-10245-x 10.1007/978-981-19-1559-8 10.1007/s11042-020-08636-9 10.1007/s10586-018-1914-8 10.1007/s10586-018-2111-5 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | NPM AAYXX CITATION 3V. 7XB 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO GNUQQ GUQSH M2O MBDVC PIMPY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3390/diagnostics13040668 |
DatabaseName | PubMed CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Korea ProQuest Central Student Research Library Prep Research Library Research Library (Corporate) Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: COVID name: Coronavirus Research Database url: https://proxy.k.utb.cz/login?url=https://search.proquest.com/coronavirus sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2075-4418 |
ExternalDocumentID | oai_doaj_org_article_c5e537762f11496ebcfac2535077c399 A743031275 10_3390_diagnostics13040668 36832156 |
Genre | Journal Article |
GeographicLocations | India |
GeographicLocations_xml | – name: India |
GroupedDBID | 3V. 53G 5VS 8G5 AADQD AAFWJ ABDBF ABUWG ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BCNDV BENPR BPHCQ CCPQU DWQXO EBD ESX GNUQQ GROUPED_DOAJ GUQSH HYE IAO IHR ITC KQ8 M2O M48 MODMG M~E NPM OK1 PGMZT PIMPY PQQKQ PROAC RIG RPM AAYXX AFPKN CITATION 7XB 8FK COVID MBDVC PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c566t-97a862628f201445f64941e8e06789430a255d5fb0c5a317732c8edc4b3cc273 |
IEDL.DBID | RPM |
ISSN | 2075-4418 |
IngestDate | Tue Oct 22 15:09:18 EDT 2024 Tue Sep 17 21:32:18 EDT 2024 Sat Oct 26 03:58:30 EDT 2024 Thu Oct 10 19:21:31 EDT 2024 Fri Feb 23 00:20:18 EST 2024 Fri Feb 02 04:37:51 EST 2024 Thu Sep 26 18:16:13 EDT 2024 Sat Nov 02 12:26:57 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | spatial gray level dependence matrix modified chimp optimization algorithm deep convolutional neural network softmax classifier Canny algorithm |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c566t-97a862628f201445f64941e8e06789430a255d5fb0c5a317732c8edc4b3cc273 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9478-850X 0000-0001-6873-6469 0000-0001-9273-8181 0000-0001-7838-4081 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955169/ |
PMID | 36832156 |
PQID | 2779447671 |
PQPubID | 2032410 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c5e537762f11496ebcfac2535077c399 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9955169 proquest_miscellaneous_2780072978 proquest_journals_2779447671 gale_infotracmisc_A743031275 gale_infotracacademiconefile_A743031275 crossref_primary_10_3390_diagnostics13040668 pubmed_primary_36832156 |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Diagnostics (Basel) |
PublicationTitleAlternate | Diagnostics (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Zhang (ref_28) 2021; 421 Charron (ref_10) 2018; 95 Sajjad (ref_39) 2019; 30 Chandra (ref_11) 2020; 60 Selvapandian (ref_3) 2018; 166 ref_36 Sert (ref_2) 2019; 47 ref_13 ref_35 Rajesh (ref_19) 2019; 22 Yi (ref_22) 2020; 51 ref_30 Konar (ref_27) 2020; 93 Sajid (ref_6) 2019; 44 ref_38 ref_15 ref_37 Parthasarathy (ref_12) 2019; 20 Nanda (ref_18) 2019; 33 Anitha (ref_7) 2018; 28 Saraswat (ref_31) 2021; 25 Kaur (ref_17) 2018; 29 Tandel (ref_40) 2020; 122 Sheela (ref_26) 2020; 79 Rajan (ref_4) 2019; 43 ref_24 Stosic (ref_14) 2018; 3 ref_23 ref_21 Singh (ref_1) 2021; 14 ref_20 Raghavendra (ref_33) 2017; 77 Khishe (ref_34) 2020; 149 ref_29 Said (ref_25) 2020; 8 ref_9 Sharif (ref_16) 2020; 129 ref_5 Aswathy (ref_8) 2019; 22 Zervoudakis (ref_32) 2020; 145 |
References_xml | – ident: ref_9 – volume: 44 start-page: 9249 year: 2019 ident: ref_6 article-title: Brain tumor detection and segmentation in MR images using deep learning publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-019-03967-8 contributor: fullname: Sajid – volume: 421 start-page: 195 year: 2021 ident: ref_28 article-title: Brain tumor segmentation of multi-modality MR images via triple intersecting U-Nets publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.09.016 contributor: fullname: Zhang – volume: 14 start-page: 100377 year: 2021 ident: ref_1 article-title: Deep learning assisted COVID-19 detection using full CT-scans publication-title: Internet Things doi: 10.1016/j.iot.2021.100377 contributor: fullname: Singh – volume: 129 start-page: 150 year: 2020 ident: ref_16 article-title: An integrated design of particle swarm optimization (PSO) with fusion of features for detection of brain tumor publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2019.11.017 contributor: fullname: Sharif – volume: 149 start-page: 113338 year: 2020 ident: ref_34 article-title: Chimp optimization algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113338 contributor: fullname: Khishe – volume: 122 start-page: 103804 year: 2020 ident: ref_40 article-title: Multiclass magnetic resonance imaging brain tumor classification using artificial intelligence paradigm publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103804 contributor: fullname: Tandel – ident: ref_23 doi: 10.1109/ICCIKE47802.2019.9004238 – volume: 93 start-page: 106348 year: 2020 ident: ref_27 article-title: Quantum-Inspired Self-Supervised Network model for automatic segmentation of brain MR images publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106348 contributor: fullname: Konar – ident: ref_35 doi: 10.1109/ICEECCOT.2017.8284595 – ident: ref_13 doi: 10.1109/ICISCT49550.2020.9079945 – volume: 95 start-page: 43 year: 2018 ident: ref_10 article-title: Automatic detection and segmentation of brain metastases on multimodal MR images with a deep convolutional neural network publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.02.004 contributor: fullname: Charron – ident: ref_21 doi: 10.1007/s12652-020-02470-5 – ident: ref_37 – ident: ref_15 doi: 10.1109/AiCIS.2018.00021 – volume: 30 start-page: 174 year: 2019 ident: ref_39 article-title: Multi-grade brain tumor classification using deep CNN with extensive data augmentation publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2018.12.003 contributor: fullname: Sajjad – volume: 28 start-page: 48 year: 2018 ident: ref_7 article-title: Development of computer-aided approach for brain tumor detection using random forest classifier publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22255 contributor: fullname: Anitha – volume: 60 start-page: 102002 year: 2020 ident: ref_11 article-title: Fractional Crank-Nicolson finite difference method for benign brain tumor detection and segmentation publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2020.102002 contributor: fullname: Chandra – volume: 166 start-page: 33 year: 2018 ident: ref_3 article-title: Fusion based glioma brain tumor detection and segmentation using ANFIS classification publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2018.09.006 contributor: fullname: Selvapandian – volume: 8 start-page: 136243 year: 2020 ident: ref_25 article-title: Optimized Edge Detection Technique for brain tumor Detection in MR Images publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3009898 contributor: fullname: Said – volume: 51 start-page: 175 year: 2020 ident: ref_22 article-title: Deep learning enables automatic detection and segmentation brain metastases on multisequence MRI publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.26766 contributor: fullname: Yi – volume: 20 start-page: 1409 year: 2019 ident: ref_12 article-title: Predicting Source and Age of brain tumor Using Canny Edge Detection Algorithm and Threshold Technique publication-title: Asian Pac. J. Cancer Prev. APJCP doi: 10.31557/APJCP.2019.20.5.1409 contributor: fullname: Parthasarathy – volume: 47 start-page: 276 year: 2019 ident: ref_2 article-title: Brain tumor segmentation using neutrosophic expert maximum fuzzy-sure entropy and other approaches publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2018.08.025 contributor: fullname: Sert – volume: 43 start-page: 282 year: 2019 ident: ref_4 article-title: Brain tumor detection and segmentation by intensity adjustment publication-title: J. Med. Syst. doi: 10.1007/s10916-019-1368-4 contributor: fullname: Rajan – ident: ref_29 – volume: 145 start-page: 106559 year: 2020 ident: ref_32 article-title: mayfly optimization algorithm publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.106559 contributor: fullname: Zervoudakis – volume: 25 start-page: 5651 year: 2021 ident: ref_31 article-title: Identification and Classification of brain tumors with Optimized Neural Network and Canny Edge Detection Algorithm publication-title: Ann. Rom. Soc. Cell Biol. contributor: fullname: Saraswat – volume: 77 start-page: 110 year: 2017 ident: ref_33 article-title: Fusion of spatial gray level dependency and fractal texture features for the characterization of thyroid lesions publication-title: Ultrasonics doi: 10.1016/j.ultras.2017.02.003 contributor: fullname: Raghavendra – volume: 3 start-page: 11 year: 2018 ident: ref_14 article-title: An improved canny edge detection algorithm for detecting brain tumors in MRI images publication-title: Int. J. Signal Process. contributor: fullname: Stosic – ident: ref_5 doi: 10.17993/3ctecno.2020.specialissue4.301-311 – volume: 33 start-page: 152 year: 2019 ident: ref_18 article-title: K-means-galactic swarm optimization based clustering algorithm with Otsu’s entropy for brain tumor detection publication-title: Appl. Artif. Intell. doi: 10.1080/08839514.2018.1530869 contributor: fullname: Nanda – ident: ref_38 – ident: ref_36 – volume: 29 start-page: 193 year: 2018 ident: ref_17 article-title: A novel feature selection method for brain tumor MR image classification based on the Fisher criterion and parameter-free Bat optimization publication-title: Neural Comput. Appl. doi: 10.1007/s00521-017-2869-z contributor: fullname: Kaur – ident: ref_24 doi: 10.1007/s10462-022-10245-x – ident: ref_30 doi: 10.1007/978-981-19-1559-8 – ident: ref_20 – volume: 79 start-page: 17483 year: 2020 ident: ref_26 article-title: Morphological edge detection and brain tumor segmentation in Magnetic Resonance (MR) images based on region growing and performance evaluation of modified Fuzzy C-Means (FCM) algorithm publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-020-08636-9 contributor: fullname: Sheela – volume: 22 start-page: 13369 year: 2019 ident: ref_8 article-title: Brain tumor detection and segmentation using a wrapper based genetic algorithm for optimized feature set publication-title: Clust. Comput. doi: 10.1007/s10586-018-1914-8 contributor: fullname: Aswathy – volume: 22 start-page: 13853 year: 2019 ident: ref_19 article-title: Brain tumor detection using optimization classification based on rough set theory publication-title: Clust. Comput. doi: 10.1007/s10586-018-2111-5 contributor: fullname: Rajesh |
SSID | ssj0000913825 |
Score | 2.35324 |
Snippet | One of the top causes of mortality in people globally is a brain tumor. Today, biopsy is regarded as the cornerstone of cancer diagnosis. However, it faces... |
SourceID | doaj pubmedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 668 |
SubjectTerms | Accuracy Algorithms Automation Brain cancer Brain research Brain tumors Canny algorithm Cell division Classification deep convolutional neural network Deep learning Diagnosis Health aspects Machine learning Magnetic resonance imaging Mathematical optimization Medical imaging modified chimp optimization algorithm Neural networks softmax classifier spatial gray level dependence matrix Technology application Tumors X-rays |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1KDqWX0jZN6jQtKhTSQE3WliVZx3ySFpJC2EJuQpYlmkO8YbNbSv9M_2pnJO9i00AuPa3Xkr2WZjTzZj16A_BRSxWco904hQ45Ed7ljXUyF3ziK91aV_iYIHspz79XX6_F9aDUF-WEJXrgNHEHTnjBFS7ZgMhdS9-4YF0pOOIY5dC7Rus70YNgKtpgTdx6ItEMcYzrD9qUuUbcx2i20Y0RuerAFUXG_n_t8sAxjZMmB17o7AU87-EjO0yP_RKe-O4VPL3oX5Bvwh-CdMu5Z6e_FvO0Z4HFrABm2ZW_jzuv2In3d-x41v3s1Q5PEUdH_IhJ4ewT9sXjHN3uPrNdy76hZbm9-e1btvqBEyoLQH-14X3bREHLEACzi6sv7IjqTrDp8ha_x6qblI8UVeA1TM9Op8fneV-DIXcI9Ba5VpZinrIOJcVeIshKV4WvPXk5om63GJO0IjQTJyxiEcVLV-MkVQ13DqHRFmx0s86_AcZDHVTtZaO4ruqmsGUIobBoUGq8QdFm8HklDXOXmDYMRigkPPOA8DI4IomtuxJNdjyBymN65TGPKU8GeyRvQ4uZpGL7PQn4xESLZQ4RX6HVK5XIYHfUExehGzevNMb0RuDelAqNXaWkKjL4sG6mKymxrfOzJfWpI3m7wgFtJwVbD4lLKiMlZAZqpHqjMY9bupsfkSJc6_gCdOd_TNJbeFYiskup6ruwsZgv_TtEYovmfVx0fwGqHTI9 priority: 102 providerName: Directory of Open Access Journals – databaseName: Coronavirus Research Database dbid: COVID link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagkxAvjOvIGMhISIBEtiaO4-QJbe2mDWlMmgram-U4NkxoSWkThPZn-Kuc4zilAcQDT21jN8mRP5-LffwdQl7kqbBa42mcKLchEt6FhdJpyNnYJHmpdGRcguz79PhD8u6CX_gFt6VPq-x1olPUZa1xjXwvFoCcRKQiejv_GmLVKNxd9SU0bpINBnZnPCIbk7OPJ9PVKguyXkIM1NENMYjv98ougw05kEF9gzlDktU1k-SY-__Uz2sGapg8uWaNjjaJ7OXoklC-7LZNsauvf6N4_H9B75I73lGl-x2y7pEbprpPbp36rfgH5Ac6j-3C0MPvzaI7HUFd_gFV9Nws3RkvOjVmTid19c0DHC4hG4j7cOnn9BX0he8hGPjXVFUlPQMddnV5bUraP2CKBQhwUQ_uW3ZktxRcbXp6fkIPsMIFnbVX8NvV98TMJwe2h2R2dDibHIe-2kOowaVswlwojK7izMYY5XGbJnkSmcygPUWSeAXRT8ltMdZcgdcjWKwzGIakYFqDE_aIjKq6Mo8JZTazIjNpIVieZEWkYmttpEB1ZXCDqAzIm3685bzj9JAQCyE85F_gEZADxMSqKxJyuwv14pP081tqbjgTYFksBJh5agptlY45A3dbaHACA_ISESVRbeCoKH_6Ad4YCbjkPnhyoF9jwQOyM-gJ010Pm3vYSK9ulvIXZgLyfNWM_8QUusrULfbJHE28AIG2OgivRGIpFqziaUDEANwDmYct1eVnR0ae526rdfvfr_WE3I7BO-zS3XfIqFm05il4c03xzE_Zn_-ATrU priority: 102 providerName: ProQuest – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3bbtQwEB2VIlV9QdwJFGQkJEAitHHi2H5AqFcVpIJUbaW-WY5jQyWaLekuKvwMv8qMk6w2on3abOw468x45sxmfAbglS5lcI5242Q6pER4l1bWlanIt3yha-syHxNkv5SHJ8XnU3G6AkNV1P4BXl4b2lE9qZP2x_urn78_4oL_QBEnhuybdZeURrTGaJHRQ5XqFtzmxMxFuXw93o-mWRPlHqU1cnSVKUIB1TER3TTOOqzlJRXzoQLXS44r8vv_b8WX3Ng4xXLJZx3chTs92GTbnXbcgxXf3Ie1o_51-gP4SwBw3nq2fzVrux0OLOYQMMuO_WXcp8X2vL9gu9PmV6-keIoYPeJHTCFnb7AvHqfopN8y29TsK9qh87M_vmbDDfaoiAD9MYfj1h1hLUO4zI6OP7EdqlLBJvNz_B5rdFL2UlSYhzA52J_sHqZ9xYbUISycpVpaipC4CpwiNRHKQheZV558IhG9W4xgahGqLScsIheZc6fwIRVV7hwCqUew2kwb_wRYHlSQypeVzHWhqszyEEJm0fwoHCCrE3g3SMNcdLwcBuMZkqO5Ro4J7JDEFl2JVDuemLbfTL9GjRNe5BK9Q8AgUZe-csE6LnKEzNIhkEvgNcnbkDKSVGy_gwF_MZFomW1EY2gjuRQJbIx64pJ14-ZBY8yg8YZLNI2FLGWWwMtFM11JaXCNn86pj4pU7xIn9LhTsMWUBj1NQI5UbzTncUtz9j0SimsdX5c-vXHMZ7DOEdx12eobsDpr5_45grFZ9SIusH8DhzGT priority: 102 providerName: Scholars Portal |
Title | Feature Extraction Using a Residual Deep Convolutional Neural Network (ResNet-152) and Optimized Feature Dimension Reduction for MRI Brain Tumor Classification |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36832156 https://www.proquest.com/docview/2779447671 https://www.proquest.com/docview/2780072978 https://pubmed.ncbi.nlm.nih.gov/PMC9955169 https://doaj.org/article/c5e537762f11496ebcfac2535077c399 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFD60HYy9lN3rrQsaDLbB3NQXWdZjcyntIG0J2eibkWWpDTROSJMx9mf2V3eObIeY9mkvcWzJjpVzdC72p-8AfJKJsFrTapxAWp8I7_xc6cTn0bGJZaF0YBxA9iI5-xF_v-bXO8CbtTAOtK_z6VF5Nzsqp7cOW7mY6W6DE-tejfpSutc73V3YRQXdStGd-ZVEq8crhqEIU_puUYHWiPYYLTZ6sISq9EUJFemhwtVbDsnx9j-0zlvuqQ2d3PJFp89hvw4i2Ul1sy9gx5Qv4emofk3-Cv5SYLdeGjb8vVpWKxeYwwYwxcbm3q2_YgNjFqw_L3_VyoeHiKnDbRw0nH3BvvjdR-f7lamyYJdoX2bTP6ZgzQ8MqDgAPXDD6xYVES3DMJiNxuesR9Un2GQ9w31Xe5NQSU4RXsPkdDjpn_l1JQZfY7i38qVQlPmEqQ0pA-M2iWUcmNSQryMCd4WZScFtfqy5wohERKFO8U-K80hrDJDewF45L80BsMimVqQmyUUk4zQPVGitDRSalRQvEBQefGukkS0qvo0M8xSSY_aIHD3okcQ2XYks2x2YL2-yWmUyzQ2PBFp9i8mfTEyurdIhjzAUFhoDNA8-k7wzmtIkFVWvTMA7JnKs7ASjLLR9oeAeHLZ64lTU7eZGY7LaFNxnoUCTF4tEBB583DTTmQRvK818TX1SR-EucEBvKwXbDKnRUw9ES_VaY2634LxxROH1PHn332e-h2chBnUVSv0Q9lbLtfmAQdgq78CT3vDiaozb_uXP80HHPczAz1GcdtyE_AfjqzhX |
link.rule.ids | 230,315,730,783,787,867,888,2109,2228,21402,24332,27938,27939,33758,33759,38530,43819,43909,53806,53808,74638,74748 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgk4AX7pfAACMhARLZmovj5Alt7aYW1k2ayrQ3y3FsmNCS0iYI7c_wVznHcUoDiAee2sZukiN_Phf7-DuEvMwSbpTC0zhBZnwkvPNzqRKfRQMdZ4VUgbYJskfJ-GP8_oyduQW3pUur7HSiVdRFpXCNfCfkgJyYJzx4N__qY9Uo3F11JTSukk0wrANA9ebw-HQyWq2yIOslxEAt3VAEXXaKNoMNOZBBfYM5Q5LVNZNkmfv_1M9rBqqfPLlmjQ5uEdHJ0SahfNlu6nxbXf5G8fj_gt4mN52jSndbZN0hV3R5l1ybuq34e-QHOo_NQtP97_WiPR1Bbf4BlfREL-0ZLzrSek6HVfnNARwuIRuI_bDp5_Q19IXvPhj4N1SWBT0GHXZxfqkL2j1ghAUIcFEP7lu0ZLcUXG06PZnQPaxwQWfNBfy29T0x88mC7T6ZHezPhmPfVXvwFbiUtZ9xidFVmJoQozxmkjiLA51qtKdIEi8h-imYyQeKSfB6eBSqFIYhziOlwAl7QDbKqtSPCI1Maniqk5xHWZzmgQyNMYEE1ZXCDYLCI2-78RbzltNDQCyE8BB_gYdH9hATq65IyG0vVItPws1voZhmEQfLYiDAzBKdKyNVyCJwt7kCJ9AjrxBRAtUGjop0px_gjZGAS-yCJwf6NeTMI1u9njDdVb-5g41w6mYpfmHGIy9WzfhPTKErddVgn9TSxHMQ6GEL4ZVIUYIFq1jiEd4Dd0_mfkt5_tmSkWeZ3Wp9_O_Xek6uj2fTQ3E4OfrwhNwIwVNsU9-3yEa9aPRT8Ozq_Jmbvj8B5oxRpQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD6CTpp44X4JDDASEiCRdbk6eUJbu2oFtqGpoL1FjmPDNC0pbYLQ_gx_lXMcpzSAeOKpbewmsfLlnO_Yx98BeJ7GXEtJu3G8VLskeOfmQsZuFOyoMC2E9JRJkD2KDz6Gb0-jU5v_tLRplZ1NNIa6qCTNkQ99jsgJecy9obZpER_Gkzfzry5VkKKVVltO4ypsIEUOkwFsjI4_TcerGRdSwMR4qJUeCjDWHxZtNhvpIaMpR9dGgqtr7smo-P9pq9ecVT-Rcs0zTW7AeTemNiHlfLup8215-Zvc4_8Z9E24bgks220RdwuuqPI2bB7aJfo78INIZbNQbP97vWh3TTCTl8AEO1FLs_eLjZWas1FVfrPAx0OkEmI-TFo6e4l98buLjv8VE2XBjtG2XZxdqoJ1FxhTYQKa7MPzFq0ILkMKzg5PpmyPKl-wWXOBv03dT8qIMiC8C7PJ_mx04NoqEK5Eqlm7KRcUdfmJ9in6i3QcpqGnEkV-lsTjBUZFRaTzHRkJZEM88GWCjyTMAymRnN2DQVmV6gGwQCeaJyrOeZCGSe4JX2vtCTRpCZ7AKxx43T37bN5qfWQYIxFUsr9AxYE9wseqKwl1mwPV4nNm3_tMRioKOHocjYFnGqtcaiH9KEAaziWSQwdeELoyMif0VITdFYF3TMJc2S4yPLS7Po8c2Or1RDMg-80dhDJrhpbZL_w48GzVTP-k1LpSVQ31SYx8PMcB3W_hvBpSEFMhqyh2gPeA3htzv6U8-2JEytPULME-_PdtPYVNBHT2fnr07hFc85FAthnxWzCoF416jISvzp_YN_knCupaaA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+Extraction+Using+a+Residual+Deep+Convolutional+Neural+Network+%28ResNet-152%29+and+Optimized+Feature+Dimension+Reduction+for+MRI+Brain+Tumor+Classification&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Athisayamani%2C+Suganya&rft.au=Antonyswamy%2C+Robert+Singh&rft.au=Sarveshwaran%2C+Velliangiri&rft.au=Almeshari%2C+Meshari&rft.date=2023-02-01&rft.issn=2075-4418&rft.eissn=2075-4418&rft.volume=13&rft.issue=4&rft_id=info:doi/10.3390%2Fdiagnostics13040668&rft_id=info%3Apmid%2F36832156&rft.externalDocID=36832156 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon |