Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming
Harnessing beneficial microbes presents a promising strategy to optimize plant growth and agricultural sustainability. Little is known to which extent and how specifically soil and plant microbiomes can be manipulated through different cropping practices. Here, we investigated soil and wheat root mi...
Saved in:
Published in | Microbiome Vol. 6; no. 1; p. 14 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
16.01.2018
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Harnessing beneficial microbes presents a promising strategy to optimize plant growth and agricultural sustainability. Little is known to which extent and how specifically soil and plant microbiomes can be manipulated through different cropping practices. Here, we investigated soil and wheat root microbial communities in a cropping system experiment consisting of conventional and organic managements, both with different tillage intensities.
While microbial richness was marginally affected, we found pronounced cropping effects on community composition, which were specific for the respective microbiomes. Soil bacterial communities were primarily structured by tillage, whereas soil fungal communities responded mainly to management type with additional effects by tillage. In roots, management type was also the driving factor for bacteria but not for fungi, which were generally determined by changes in tillage intensity. To quantify an "effect size" for microbiota manipulation, we found that about 10% of variation in microbial communities was explained by the tested cropping practices. Cropping sensitive microbes were taxonomically diverse, and they responded in guilds of taxa to the specific practices. These microbes also included frequent community members or members co-occurring with many other microbes in the community, suggesting that cropping practices may allow manipulation of influential community members.
Understanding the abundance patterns of cropping sensitive microbes presents the basis towards developing microbiota management strategies for smart farming. For future targeted microbiota management-e.g., to foster certain microbes with specific agricultural practices-a next step will be to identify the functional traits of the cropping sensitive microbes. |
---|---|
AbstractList | Harnessing beneficial microbes presents a promising strategy to optimize plant growth and agricultural sustainability. Little is known to which extent and how specifically soil and plant microbiomes can be manipulated through different cropping practices. Here, we investigated soil and wheat root microbial communities in a cropping system experiment consisting of conventional and organic managements, both with different tillage intensities.BACKGROUNDHarnessing beneficial microbes presents a promising strategy to optimize plant growth and agricultural sustainability. Little is known to which extent and how specifically soil and plant microbiomes can be manipulated through different cropping practices. Here, we investigated soil and wheat root microbial communities in a cropping system experiment consisting of conventional and organic managements, both with different tillage intensities.While microbial richness was marginally affected, we found pronounced cropping effects on community composition, which were specific for the respective microbiomes. Soil bacterial communities were primarily structured by tillage, whereas soil fungal communities responded mainly to management type with additional effects by tillage. In roots, management type was also the driving factor for bacteria but not for fungi, which were generally determined by changes in tillage intensity. To quantify an "effect size" for microbiota manipulation, we found that about 10% of variation in microbial communities was explained by the tested cropping practices. Cropping sensitive microbes were taxonomically diverse, and they responded in guilds of taxa to the specific practices. These microbes also included frequent community members or members co-occurring with many other microbes in the community, suggesting that cropping practices may allow manipulation of influential community members.RESULTSWhile microbial richness was marginally affected, we found pronounced cropping effects on community composition, which were specific for the respective microbiomes. Soil bacterial communities were primarily structured by tillage, whereas soil fungal communities responded mainly to management type with additional effects by tillage. In roots, management type was also the driving factor for bacteria but not for fungi, which were generally determined by changes in tillage intensity. To quantify an "effect size" for microbiota manipulation, we found that about 10% of variation in microbial communities was explained by the tested cropping practices. Cropping sensitive microbes were taxonomically diverse, and they responded in guilds of taxa to the specific practices. These microbes also included frequent community members or members co-occurring with many other microbes in the community, suggesting that cropping practices may allow manipulation of influential community members.Understanding the abundance patterns of cropping sensitive microbes presents the basis towards developing microbiota management strategies for smart farming. For future targeted microbiota management-e.g., to foster certain microbes with specific agricultural practices-a next step will be to identify the functional traits of the cropping sensitive microbes.CONCLUSIONSUnderstanding the abundance patterns of cropping sensitive microbes presents the basis towards developing microbiota management strategies for smart farming. For future targeted microbiota management-e.g., to foster certain microbes with specific agricultural practices-a next step will be to identify the functional traits of the cropping sensitive microbes. Harnessing beneficial microbes presents a promising strategy to optimize plant growth and agricultural sustainability. Little is known to which extent and how specifically soil and plant microbiomes can be manipulated through different cropping practices. Here, we investigated soil and wheat root microbial communities in a cropping system experiment consisting of conventional and organic managements, both with different tillage intensities. While microbial richness was marginally affected, we found pronounced cropping effects on community composition, which were specific for the respective microbiomes. Soil bacterial communities were primarily structured by tillage, whereas soil fungal communities responded mainly to management type with additional effects by tillage. In roots, management type was also the driving factor for bacteria but not for fungi, which were generally determined by changes in tillage intensity. To quantify an "effect size" for microbiota manipulation, we found that about 10% of variation in microbial communities was explained by the tested cropping practices. Cropping sensitive microbes were taxonomically diverse, and they responded in guilds of taxa to the specific practices. These microbes also included frequent community members or members co-occurring with many other microbes in the community, suggesting that cropping practices may allow manipulation of influential community members. Understanding the abundance patterns of cropping sensitive microbes presents the basis towards developing microbiota management strategies for smart farming. For future targeted microbiota management-e.g., to foster certain microbes with specific agricultural practices-a next step will be to identify the functional traits of the cropping sensitive microbes. Abstract Background Harnessing beneficial microbes presents a promising strategy to optimize plant growth and agricultural sustainability. Little is known to which extent and how specifically soil and plant microbiomes can be manipulated through different cropping practices. Here, we investigated soil and wheat root microbial communities in a cropping system experiment consisting of conventional and organic managements, both with different tillage intensities. Results While microbial richness was marginally affected, we found pronounced cropping effects on community composition, which were specific for the respective microbiomes. Soil bacterial communities were primarily structured by tillage, whereas soil fungal communities responded mainly to management type with additional effects by tillage. In roots, management type was also the driving factor for bacteria but not for fungi, which were generally determined by changes in tillage intensity. To quantify an “effect size” for microbiota manipulation, we found that about 10% of variation in microbial communities was explained by the tested cropping practices. Cropping sensitive microbes were taxonomically diverse, and they responded in guilds of taxa to the specific practices. These microbes also included frequent community members or members co-occurring with many other microbes in the community, suggesting that cropping practices may allow manipulation of influential community members. Conclusions Understanding the abundance patterns of cropping sensitive microbes presents the basis towards developing microbiota management strategies for smart farming. For future targeted microbiota management—e.g., to foster certain microbes with specific agricultural practices—a next step will be to identify the functional traits of the cropping sensitive microbes. |
ArticleNumber | 14 |
Audience | Academic |
Author | van der Heijden, Marcel G. A. Banerjee, Samiran Wittwer, Raphaël A. Hartman, Kyle Schlaeppi, Klaus Walser, Jean-Claude |
Author_xml | – sequence: 1 givenname: Kyle surname: Hartman fullname: Hartman, Kyle – sequence: 2 givenname: Marcel G. A. surname: van der Heijden fullname: van der Heijden, Marcel G. A. – sequence: 3 givenname: Raphaël A. surname: Wittwer fullname: Wittwer, Raphaël A. – sequence: 4 givenname: Samiran surname: Banerjee fullname: Banerjee, Samiran – sequence: 5 givenname: Jean-Claude surname: Walser fullname: Walser, Jean-Claude – sequence: 6 givenname: Klaus orcidid: 0000-0003-3620-0875 surname: Schlaeppi fullname: Schlaeppi, Klaus |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29338764$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kt1v1SAYxhsz4-bcH-CNIfFGLzpLSyncmCwnfpxkiYkf1-QtfTljaaECne6_l3o2s2MULiDwPD_eNzxPiyPnHRbFc1qdUyr4m8gqykVZ0a6sGiFL-ag4qSsmy5pTcfRgf1ycxXhd5SEp65h4UhzXsmlEx9lJkTbBz7N1OzIH0MlqjGQCZ-dlhIQE-sUN4DSSGVLC4CLxhgTvEwE3kOjtSCarg--tn5BMOPUYYhbfrMh0heQH3JLkSZwgJGIgTPniWfHYwBjx7G49Lb69f_d187G8_PRhu7m4LHXLeSo7wXpRm67XjFHDQULe8dpUsjVt1QkJQHmjpWCNMcIAk8xgL7isB20075vTYrvnDh6u1RxsLuJWebDq94EPO5WrsnpEVUNTUehhaOWQXxVSACCiMEMt6hbazHq7Z81LP-Gg0aUA4wH08MbZK7XzN6rtOlrVTQa8ugME_33BmNRko8ZxBId-iYpKIVvZdHKVvtxLd5BLs874TNSrXF20jDeyqfla0fk_VHkOmL8kh8XYfH5geH1gyJqEP9MOlhjV9svnQ-2Lh-3-6fM-OVnQ7QX582MMaJS2CZL1a_d2VLRSa0zVPqYqx1StMVUyO-lfznv4_z2_AOsr6tU |
CitedBy_id | crossref_primary_10_1038_s41396_018_0323_6 crossref_primary_10_3390_microorganisms9091803 crossref_primary_10_1111_1365_2745_70020 crossref_primary_10_1099_mic_0_001188 crossref_primary_10_1016_j_scitotenv_2024_177424 crossref_primary_10_1128_msystems_01107_21 crossref_primary_10_1016_j_soilbio_2021_108534 crossref_primary_10_1016_j_cosust_2020_08_010 crossref_primary_10_1016_j_jenvman_2022_115013 crossref_primary_10_1016_j_scitotenv_2021_148944 crossref_primary_10_1016_j_scitotenv_2024_174276 crossref_primary_10_1016_j_scitotenv_2021_149118 crossref_primary_10_1128_AEM_01064_19 crossref_primary_10_1128_msystems_00361_22 crossref_primary_10_1002_ldr_4708 crossref_primary_10_1111_1758_2229_13126 crossref_primary_10_1016_j_tplants_2019_12_024 crossref_primary_10_1016_j_tplants_2024_07_017 crossref_primary_10_3390_bacteria3040018 crossref_primary_10_1016_j_apsoil_2020_103853 crossref_primary_10_1016_j_apsoil_2021_104302 crossref_primary_10_1016_j_ecoenv_2021_113006 crossref_primary_10_3389_fmicb_2021_783334 crossref_primary_10_1094_PBIOMES_10_22_0068_R crossref_primary_10_1016_j_agee_2024_109190 crossref_primary_10_1016_j_geoderma_2023_116516 crossref_primary_10_1007_s42832_023_0180_8 crossref_primary_10_3389_fmicb_2024_1366814 crossref_primary_10_1016_j_ejsobi_2024_103628 crossref_primary_10_1186_s40168_023_01726_4 crossref_primary_10_3390_foods12142767 crossref_primary_10_1007_s13593_024_00987_z crossref_primary_10_3390_microorganisms11041026 crossref_primary_10_1371_journal_pone_0214089 crossref_primary_10_1016_j_jhazmat_2021_128126 crossref_primary_10_1371_journal_pone_0298237 crossref_primary_10_1007_s11104_023_06315_w crossref_primary_10_3390_agronomy10111623 crossref_primary_10_1016_j_plaphy_2021_09_040 crossref_primary_10_3390_applmicrobiol4040113 crossref_primary_10_1016_j_envpol_2022_120344 crossref_primary_10_1186_s40793_021_00396_9 crossref_primary_10_1016_j_agee_2024_109186 crossref_primary_10_1016_j_apsoil_2020_103603 crossref_primary_10_1016_j_apsoil_2020_103724 crossref_primary_10_1016_j_soilbio_2021_108309 crossref_primary_10_3390_agronomy11040772 crossref_primary_10_1007_s00248_023_02254_2 crossref_primary_10_1016_j_jhazmat_2024_133567 crossref_primary_10_1007_s11104_022_05809_3 crossref_primary_10_1007_s11368_023_03477_z crossref_primary_10_1016_j_jembe_2024_152047 crossref_primary_10_3389_fmicb_2021_715758 crossref_primary_10_3390_microorganisms13010041 crossref_primary_10_1016_j_jare_2019_03_004 crossref_primary_10_1186_s40168_018_0456_x crossref_primary_10_1016_j_agee_2023_108702 crossref_primary_10_1111_jam_14751 crossref_primary_10_3390_agronomy15030655 crossref_primary_10_3389_fmicb_2021_623799 crossref_primary_10_4236_abb_2023_141002 crossref_primary_10_1016_j_tibtech_2020_04_015 crossref_primary_10_3389_fmicb_2021_716196 crossref_primary_10_1016_j_soilbio_2020_107863 crossref_primary_10_1128_spectrum_02260_22 crossref_primary_10_3390_jof8030284 crossref_primary_10_1111_tpj_15656 crossref_primary_10_1128_spectrum_00101_22 crossref_primary_10_1016_j_jenvman_2023_119232 crossref_primary_10_1088_1755_1315_624_1_012220 crossref_primary_10_1094_MPMI_12_21_0294_FI crossref_primary_10_1002_ldr_4122 crossref_primary_10_1128_mbio_03016_23 crossref_primary_10_3389_fnut_2021_706148 crossref_primary_10_1007_s00253_021_11555_w crossref_primary_10_1016_j_tree_2024_05_013 crossref_primary_10_3390_microorganisms12050869 crossref_primary_10_1186_s40168_020_00855_4 crossref_primary_10_1038_s41598_020_63173_7 crossref_primary_10_1016_j_apsoil_2023_105191 crossref_primary_10_1016_j_soilbio_2024_109484 crossref_primary_10_3390_agronomy14061297 crossref_primary_10_1007_s00374_024_01871_4 crossref_primary_10_3389_fgene_2019_01344 crossref_primary_10_1016_j_agee_2025_109589 crossref_primary_10_1016_j_envint_2022_107133 crossref_primary_10_1016_j_jenvman_2023_117722 crossref_primary_10_1111_nph_18642 crossref_primary_10_1016_j_apsoil_2024_105355 crossref_primary_10_1007_s11104_023_05892_0 crossref_primary_10_1111_1462_2920_15161 crossref_primary_10_1186_s42238_021_00082_0 crossref_primary_10_1016_j_scitotenv_2024_174143 crossref_primary_10_1038_s41598_020_74193_8 crossref_primary_10_3389_fsufs_2021_624203 crossref_primary_10_3390_microorganisms12071254 crossref_primary_10_1094_PBIOMES_6_1 crossref_primary_10_1016_j_gfs_2018_04_001 crossref_primary_10_1128_spectrum_00907_21 crossref_primary_10_1007_s42832_024_0268_9 crossref_primary_10_3389_fpls_2020_00136 crossref_primary_10_1016_j_jenvman_2024_121395 crossref_primary_10_1038_s41598_022_24892_1 crossref_primary_10_1038_s41477_020_00830_9 crossref_primary_10_1038_s41522_022_00321_z crossref_primary_10_1111_nph_17319 crossref_primary_10_3389_fmicb_2022_864619 crossref_primary_10_1093_femsec_fiaa026 crossref_primary_10_1128_spectrum_03572_22 crossref_primary_10_1038_s41598_021_88784_6 crossref_primary_10_1111_1751_7915_13391 crossref_primary_10_3389_fsoil_2022_838595 crossref_primary_10_1021_acs_est_4c01203 crossref_primary_10_1111_1758_2229_13205 crossref_primary_10_1007_s00374_022_01675_4 crossref_primary_10_1016_j_still_2022_105476 crossref_primary_10_1016_j_catena_2025_108822 crossref_primary_10_1016_j_soilbio_2022_108573 crossref_primary_10_3168_jds_2021_20490 crossref_primary_10_3389_fmicb_2023_1242217 crossref_primary_10_1007_s00374_021_01594_w crossref_primary_10_1128_mSystems_00344_21 crossref_primary_10_1007_s42773_023_00273_3 crossref_primary_10_1016_j_pedsph_2023_12_016 crossref_primary_10_1016_j_scitotenv_2024_176808 crossref_primary_10_1093_femsec_fiaa032 crossref_primary_10_3389_fmicb_2022_868307 crossref_primary_10_1016_j_jenvman_2023_118714 crossref_primary_10_1128_AEM_01744_19 crossref_primary_10_3389_fmicb_2022_824681 crossref_primary_10_1126_sciadv_abg6995 crossref_primary_10_3389_fmicb_2018_02920 crossref_primary_10_3389_fbioe_2022_1062351 crossref_primary_10_1016_j_apsoil_2020_103807 crossref_primary_10_1002_ece3_70957 crossref_primary_10_1016_j_scitotenv_2021_147945 crossref_primary_10_1111_nph_18582 crossref_primary_10_3390_land11122259 crossref_primary_10_1016_j_agee_2024_109384 crossref_primary_10_1016_j_envres_2024_118383 crossref_primary_10_3389_fmicb_2024_1487323 crossref_primary_10_1007_s11274_022_03347_9 crossref_primary_10_1016_j_envpol_2021_118684 crossref_primary_10_1111_1758_2229_12929 crossref_primary_10_3390_w15203664 crossref_primary_10_1016_j_geoderma_2022_115910 crossref_primary_10_1002_ldr_4579 crossref_primary_10_1186_s12870_025_06395_z crossref_primary_10_1016_j_agee_2021_107535 crossref_primary_10_1016_j_envpol_2023_121724 crossref_primary_10_1007_s11104_019_04055_4 crossref_primary_10_1016_j_scitotenv_2020_144252 crossref_primary_10_1016_j_mib_2019_10_003 crossref_primary_10_1016_j_scitotenv_2024_171007 crossref_primary_10_1016_j_mib_2019_10_006 crossref_primary_10_1016_j_micres_2024_127706 crossref_primary_10_1111_gcb_16452 crossref_primary_10_1016_j_scitotenv_2024_172554 crossref_primary_10_1007_s13165_020_00295_2 crossref_primary_10_3390_agronomy10071019 crossref_primary_10_1093_femsle_fnaa016 crossref_primary_10_3389_fmicb_2022_946537 crossref_primary_10_1016_j_tplants_2023_10_012 crossref_primary_10_1016_j_jhazmat_2020_123107 crossref_primary_10_1186_s12866_019_1548_x crossref_primary_10_1016_j_soilbio_2023_108956 crossref_primary_10_1111_nph_17928 crossref_primary_10_1002_ldr_4563 crossref_primary_10_1007_s00374_022_01626_z crossref_primary_10_1016_j_jenvman_2020_110456 crossref_primary_10_3389_fenvs_2024_1378926 crossref_primary_10_1371_journal_pone_0222048 crossref_primary_10_1016_j_cej_2024_151739 crossref_primary_10_3389_fmicb_2023_1190650 crossref_primary_10_3390_ijerph16214221 crossref_primary_10_3389_fpls_2023_1211758 crossref_primary_10_1111_1462_2920_16175 crossref_primary_10_1007_s11274_024_03926_y crossref_primary_10_1016_j_agee_2022_108117 crossref_primary_10_3389_fmicb_2022_968551 crossref_primary_10_3389_fmicb_2023_1223723 crossref_primary_10_1128_spectrum_01254_24 crossref_primary_10_1371_journal_pone_0236796 crossref_primary_10_1002_ece3_4346 crossref_primary_10_3390_jof9010095 crossref_primary_10_1016_j_agee_2024_109002 crossref_primary_10_1128_spectrum_01424_24 crossref_primary_10_3390_agriculture13101979 crossref_primary_10_3390_ijms24129879 crossref_primary_10_1007_s11104_023_06445_1 crossref_primary_10_1016_j_still_2021_105169 crossref_primary_10_22207_JPAM_18_3_37 crossref_primary_10_1016_j_still_2022_105588 crossref_primary_10_1016_j_scitotenv_2020_141687 crossref_primary_10_1016_j_soilbio_2024_109317 crossref_primary_10_1016_S2095_3119_21_63772_3 crossref_primary_10_1094_PBIOMES_4_3 crossref_primary_10_1016_j_agee_2023_108647 crossref_primary_10_1111_jipb_13863 crossref_primary_10_1128_AEM_03132_20 crossref_primary_10_1016_j_jare_2025_01_018 crossref_primary_10_1089_ind_2020_29222_lpw crossref_primary_10_1111_nph_16890 crossref_primary_10_1128_spectrum_02204_21 crossref_primary_10_1002_ece3_10685 crossref_primary_10_1080_00103624_2024_2404649 crossref_primary_10_1093_femsec_fiaa067 crossref_primary_10_1007_s11816_020_00594_w crossref_primary_10_1007_s00374_019_01350_1 crossref_primary_10_1016_j_apsoil_2023_105003 crossref_primary_10_1016_j_jhazmat_2020_122954 crossref_primary_10_3390_agriculture13112163 crossref_primary_10_1186_s40168_024_01811_2 crossref_primary_10_1016_j_apsoil_2023_104956 crossref_primary_10_3389_fagro_2024_1446404 crossref_primary_10_1016_j_scitotenv_2023_162972 crossref_primary_10_1016_j_agee_2021_107688 crossref_primary_10_1038_s41598_018_34736_6 crossref_primary_10_1186_s40168_021_01133_7 crossref_primary_10_34133_ehs_0231 crossref_primary_10_3390_w12082316 crossref_primary_10_1186_s40168_021_01118_6 crossref_primary_10_1002_jsfa_10035 crossref_primary_10_1186_s12302_021_00528_5 crossref_primary_10_1016_j_jhazmat_2021_125496 crossref_primary_10_1016_j_scitotenv_2024_170522 crossref_primary_10_1016_j_apsoil_2022_104682 crossref_primary_10_1128_spectrum_00807_24 crossref_primary_10_1146_annurev_genet_120116_024846 crossref_primary_10_1016_j_aquaculture_2021_736895 crossref_primary_10_1016_j_still_2021_105262 crossref_primary_10_3390_agronomy12123179 crossref_primary_10_3390_agronomy13030750 crossref_primary_10_1038_s41396_019_0383_2 crossref_primary_10_1016_j_apsoil_2020_103569 crossref_primary_10_1016_j_soilbio_2022_108881 crossref_primary_10_1038_s41598_024_64138_w crossref_primary_10_1094_PBIOMES_3_2 crossref_primary_10_1038_s41522_024_00537_1 crossref_primary_10_1094_PBIOMES_01_20_0004_R crossref_primary_10_1007_s11104_022_05297_5 crossref_primary_10_1094_PBIOMES_3_4 crossref_primary_10_1007_s11104_018_3674_x crossref_primary_10_1016_j_jhazmat_2022_130697 crossref_primary_10_3389_fevo_2022_887787 crossref_primary_10_1093_femsec_fiaa062 crossref_primary_10_3389_fmicb_2024_1500260 crossref_primary_10_1186_s13059_019_1825_x crossref_primary_10_1007_s00374_023_01774_w crossref_primary_10_1016_j_jenvman_2025_125070 crossref_primary_10_1016_j_agsy_2023_103721 crossref_primary_10_1111_1462_2920_15900 crossref_primary_10_1016_j_jclepro_2022_134960 crossref_primary_10_1111_1365_2664_70028 crossref_primary_10_1111_1462_2920_15675 crossref_primary_10_1016_j_apsoil_2019_04_014 crossref_primary_10_1016_j_rhisph_2021_100449 crossref_primary_10_1016_j_csbj_2021_01_045 crossref_primary_10_1016_j_ecoenv_2023_115047 crossref_primary_10_1016_j_catena_2021_105805 crossref_primary_10_1002_ldr_4888 crossref_primary_10_1016_j_tplants_2018_12_004 crossref_primary_10_1016_j_apsoil_2023_104930 crossref_primary_10_1016_j_scitotenv_2024_173681 crossref_primary_10_1128_msphere_00803_23 crossref_primary_10_1146_annurev_phyto_021021_041457 crossref_primary_10_1038_s41598_023_42291_y crossref_primary_10_3389_fpls_2023_1301698 crossref_primary_10_3390_agronomy14010103 crossref_primary_10_1016_j_micres_2021_126729 crossref_primary_10_3390_agriculture11040372 crossref_primary_10_1111_nph_18816 crossref_primary_10_1111_nph_19697 crossref_primary_10_1186_s12866_024_03238_z crossref_primary_10_1016_j_isci_2023_106028 crossref_primary_10_1038_s41522_024_00539_z crossref_primary_10_1128_spectrum_03003_22 crossref_primary_10_14302_issn_2639_3166_jar_19_2780 crossref_primary_10_3389_fpls_2023_1205451 crossref_primary_10_3389_fmicb_2020_597944 crossref_primary_10_1079_cabireviews_2024_0048 crossref_primary_10_3390_microorganisms10051056 crossref_primary_10_1016_j_apsoil_2025_105934 crossref_primary_10_1016_j_pedsph_2025_01_011 crossref_primary_10_1016_j_jclepro_2024_143091 crossref_primary_10_1016_j_soilbio_2024_109514 crossref_primary_10_1016_j_agee_2020_106841 crossref_primary_10_1038_s42003_024_07059_8 crossref_primary_10_3390_ijms23094860 crossref_primary_10_3389_fsoil_2022_835849 crossref_primary_10_1128_spectrum_05333_22 crossref_primary_10_3390_plants11162129 crossref_primary_10_1590_1678_992x_2019_0005 crossref_primary_10_3389_fmicb_2023_1257905 crossref_primary_10_1021_acs_est_2c07136 crossref_primary_10_1093_femsec_fiz042 crossref_primary_10_1111_nph_17661 crossref_primary_10_3389_fmicb_2021_666982 crossref_primary_10_1016_j_scitotenv_2024_174911 crossref_primary_10_1038_s43705_022_00144_1 crossref_primary_10_1007_s11104_019_04037_6 crossref_primary_10_1007_s11104_021_04851_x crossref_primary_10_1128_spectrum_01834_21 crossref_primary_10_3389_fpls_2022_962246 crossref_primary_10_1002_agg2_20031 crossref_primary_10_3390_agronomy13010153 crossref_primary_10_1016_j_pbi_2020_02_010 crossref_primary_10_1007_s13593_021_00742_8 crossref_primary_10_1139_cjm_2018_0134 crossref_primary_10_1002_sae2_12043 crossref_primary_10_1186_s40168_019_0758_7 crossref_primary_10_3389_fmicb_2022_933722 crossref_primary_10_1016_j_jenvman_2023_119092 crossref_primary_10_1007_s11104_023_06109_0 crossref_primary_10_1016_j_chemosphere_2022_134811 crossref_primary_10_1128_spectrum_02785_21 crossref_primary_10_1007_s13593_018_0545_z crossref_primary_10_1002_ldr_4183 crossref_primary_10_1016_j_scitotenv_2022_155706 crossref_primary_10_3390_su16083349 crossref_primary_10_3389_fimmu_2018_02868 crossref_primary_10_1111_1758_2229_70003 crossref_primary_10_1128_AEM_02345_20 crossref_primary_10_3390_plants12142736 crossref_primary_10_1007_s00253_023_12676_0 crossref_primary_10_3389_fmicb_2022_1047041 crossref_primary_10_3389_fpls_2018_01205 crossref_primary_10_1038_s41598_023_33195_y crossref_primary_10_3390_agriculture12030371 crossref_primary_10_1007_s11104_025_07214_y crossref_primary_10_1016_j_ejsobi_2021_103314 crossref_primary_10_3389_fpls_2022_997768 crossref_primary_10_1016_j_catena_2024_108252 crossref_primary_10_1093_ismeco_ycae021 crossref_primary_10_3389_fsoil_2022_869136 crossref_primary_10_3390_agronomy14030429 crossref_primary_10_1016_j_csbj_2021_09_035 crossref_primary_10_1016_j_scitotenv_2021_147794 crossref_primary_10_1094_PBIOMES_02_19_0010_RVW crossref_primary_10_3390_agriculture12111955 crossref_primary_10_1016_j_apsoil_2024_105423 crossref_primary_10_1016_j_csbj_2019_05_003 crossref_primary_10_1016_S2095_3119_21_63633_X crossref_primary_10_1128_msystems_01490_21 crossref_primary_10_1016_j_apsoil_2022_104411 crossref_primary_10_1016_j_agee_2021_107475 crossref_primary_10_1016_j_apsoil_2022_104413 crossref_primary_10_1002_ldr_4607 crossref_primary_10_1021_acs_est_3c07717 crossref_primary_10_3389_fmicb_2022_1020175 crossref_primary_10_1016_j_micres_2024_127698 crossref_primary_10_1016_j_soilbio_2022_108830 crossref_primary_10_1016_j_soilbio_2020_108113 crossref_primary_10_1080_03650340_2022_2033734 crossref_primary_10_1111_pce_14694 crossref_primary_10_1016_j_apsoil_2021_104241 crossref_primary_10_1071_SR19067 crossref_primary_10_1016_j_scitotenv_2023_162070 crossref_primary_10_1371_journal_pone_0280516 crossref_primary_10_1007_s11356_022_23962_1 crossref_primary_10_1038_s41396_022_01238_3 crossref_primary_10_1186_s42483_021_00090_1 crossref_primary_10_1094_PBIOMES_07_23_0060_R crossref_primary_10_1128_aem_01003_22 crossref_primary_10_1016_j_jplph_2022_153666 crossref_primary_10_3389_fmicb_2020_597745 crossref_primary_10_1186_s40793_023_00500_1 crossref_primary_10_1016_j_agee_2022_108078 crossref_primary_10_1007_s11104_021_05060_2 crossref_primary_10_1094_PBIOMES_04_21_0029_R crossref_primary_10_3389_fpls_2018_01467 crossref_primary_10_1002_sae2_12055 crossref_primary_10_3390_agronomy14010131 crossref_primary_10_1016_j_apsoil_2021_104016 crossref_primary_10_1038_s41477_018_0139_4 crossref_primary_10_3389_fmicb_2024_1401794 crossref_primary_10_1007_s00248_021_01717_8 crossref_primary_10_1002_ldr_4030 crossref_primary_10_3390_agronomy8070119 crossref_primary_10_1016_j_scitotenv_2024_172714 crossref_primary_10_1186_s13717_024_00568_8 crossref_primary_10_3390_applmicrobiol1020025 |
Cites_doi | 10.1093/nar/gku950 10.3389/fmicb.2012.00417 10.1111/mec.12821 10.1186/s40168-016-0220-z 10.1016/j.tree.2012.10.012 10.1126/science.277.5325.504 10.1371/journal.pbio.2001793 10.1038/ismej.2015.261 10.1073/pnas.1414592112 10.1016/j.soilbio.2016.03.017 10.1890/09-0666.1 10.1038/nplants.2015.51 10.1093/nar/gks1219 10.1371/journal.pbio.1002378 10.1016/j.apsoil.2010.06.017 10.1038/nrmicro2832 10.1128/AEM.01464-06 10.1073/pnas.96.11.5995 10.1128/AEM.02988-10 10.1126/science.267.5201.1117 10.1038/nplants.2015.221 10.1080/07352689.2011.554355 10.1038/nmeth.f.303 10.1111/nph.13312 10.1111/j.1365-3059.2006.01391.x 10.1006/jema.2001.0473 10.1038/nature11336 10.1093/bioinformatics/btr507 10.1038/ismej.2014.210 10.1038/ismej.2015.235 10.1038/srep41911 10.1038/ismej.2011.119 10.1007/s002480000087 10.1111/j.1461-0248.2007.01139.x 10.1111/j.1600-0706.2010.18334.x 10.2307/2680220 10.1098/rstb.2007.2169 10.1016/j.chom.2015.01.011 10.1073/pnas.1302837110 10.1016/j.funeco.2009.10.006 10.1094/MPMI-10-14-0334-FI 10.1016/j.agsy.2017.01.023 10.1371/journal.pone.0056329 10.1016/j.apsoil.2016.02.002 10.14806/ej.17.1.200 10.1093/bioinformatics/btr026 10.1016/S0038-0717(00)00060-2 10.1016/j.tree.2016.02.016 10.1046/j.1351-0754.2003.0556.x 10.1007/978-3-642-30120-9_205 10.1126/science.1071148 10.1016/j.tplants.2012.04.001 10.1128/mBio.02527-14 10.1111/j.1574-6941.2007.00318.x 10.3389/fmicb.2016.01446 10.1111/1462-2920.12925 10.3389/fmicb.2014.00219 10.1890/0012-9658(2003)084[0511:CAOPCA]2.0.CO;2 10.1038/ismej.2013.196 10.1371/journal.pbio.1002352 10.1146/annurev-arplant-050312-120106 10.1137/S003614450342480 10.1038/nmeth.2604 10.1126/science.1185383 10.1371/journal.pone.0108555 10.1071/SR05125 10.1038/nature11237 10.1093/bioinformatics/btp616 10.1073/pnas.96.11.5952 10.1016/j.soilbio.2007.06.027 10.1038/nature08058 10.1093/bioinformatics/btr381 10.1128/AEM.70.3.1475-1482.2004 10.1016/j.soilbio.2006.11.024 10.1126/science.277.5325.494 10.1111/j.1364-3703.2004.00252.x 10.1111/mec.12819 10.1007/s00248-012-0025-y 10.1103/PhysRevE.70.066111 10.1038/nbt.2676 10.1371/journal.pone.0061217 10.1111/j.1574-6941.2012.01437.x 10.1111/j.1469-8137.2009.03160.x 10.1094/PDIS-02-10-0090 10.1128/AEM.03016-13 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2018 BioMed Central Ltd. The Author(s). 2018 |
Copyright_xml | – notice: COPYRIGHT 2018 BioMed Central Ltd. – notice: The Author(s). 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 5PM DOA |
DOI | 10.1186/s40168-017-0389-9 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2049-2618 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_2a301abad59d4b8898aaeee8fd2825a5 PMC5771023 A546393265 29338764 10_1186_s40168_017_0389_9 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung grantid: PDFMP3_137136 – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung grantid: 31003A_165891 – fundername: ; grantid: PDFMP3_137136; 31003A_165891 |
GroupedDBID | 0R~ 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML AAYXX ABUWG ACGFS ADBBV ADRAZ ADUKV AENEX AFKRA AFPKN AHBYD AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS ASPBG BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION DIK EBLON EBS EJD FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAG IAO IEP IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ ROL RPM RSV SOJ UKHRP CGR CUY CVF ECM EIF NPM PMFND 7X8 PPXIY PQGLB 5PM PJZUB PUEGO |
ID | FETCH-LOGICAL-c566t-784b82f7bc441f6a9abc462f095f50789aa163c9843ff8fa494feb8692dcfc6b3 |
IEDL.DBID | M48 |
ISSN | 2049-2618 |
IngestDate | Wed Aug 27 01:07:45 EDT 2025 Thu Aug 21 14:36:20 EDT 2025 Thu Jul 10 23:38:54 EDT 2025 Tue Jun 17 21:01:52 EDT 2025 Tue Jun 10 20:29:07 EDT 2025 Fri Jun 27 04:40:10 EDT 2025 Thu Apr 03 06:59:39 EDT 2025 Thu Apr 24 23:11:15 EDT 2025 Tue Jul 01 04:16:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Smart farming Microbial co-occurrence Microbiota management Network analysis Cropping practices Soil and root microbiomes |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c566t-784b82f7bc441f6a9abc462f095f50789aa163c9843ff8fa494feb8692dcfc6b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3620-0875 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s40168-017-0389-9 |
PMID | 29338764 |
PQID | 1989593793 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2a301abad59d4b8898aaeee8fd2825a5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5771023 proquest_miscellaneous_1989593793 gale_infotracmisc_A546393265 gale_infotracacademiconefile_A546393265 gale_incontextgauss_ISR_A546393265 pubmed_primary_29338764 crossref_citationtrail_10_1186_s40168_017_0389_9 crossref_primary_10_1186_s40168_017_0389_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-16 |
PublicationDateYYYYMMDD | 2018-01-16 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Microbiome |
PublicationTitleAlternate | Microbiome |
PublicationYear | 2018 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | MEJ Newman (389_CR34) 2003; 45 P Mäder (389_CR11) 2002; 296 M Hartmann (389_CR36) 2014; 9 MT Agler (389_CR37) 2016; 14 OC Shanks (389_CR60) 2011; 77 RA Drijber (389_CR46) 2000; 32 PE Busby (389_CR71) 2017; 15 D Bulgarelli (389_CR24) 2012; 488 R Upchurch (389_CR45) 2008; 40 389_CR25 389_CR69 P Matson (389_CR3) 1997; 277 R Bommarco (389_CR7) 2013; 28 389_CR21 M Hervé (389_CR90) 2016 J Edwards (389_CR27) 2015; 112 SF Bender (389_CR12) 2016; 31 YK Yeoh (389_CR28) 2015; 18 T White (389_CR75) 1990 RL Berendsen (389_CR22) 2012; 17 389_CR18 DS Lundberg (389_CR23) 2012; 488 M De Cáceres (389_CR91) 2010; 119 PR Hobbs (389_CR10) 2008; 363 R Schmieder (389_CR76) 2011; 27 MD Robinson (389_CR41) 2010; 26 Z Zhen (389_CR49) 2014; 9 JG Caporaso (389_CR83) 2010; 7 JP Reganold (389_CR9) 2016; 2 JM Chaparro (389_CR52) 2014; 8 D Mercado Vergnes (389_CR63) 2006; 55 C Quast (389_CR82) 2013; 41 D Pimentel (389_CR4) 1995; 267 MGI Langille (389_CR64) 2013; 31 PM Vitousek (389_CR5) 1997; 277 JC Faria (389_CR86) 2016 MGA van der Heijden (389_CR19) 2008; 11 D Seghers (389_CR30) 2004; 70 T Gomiero (389_CR13) 2011; 30 Z Wang (389_CR47) 2016; 101 J Esperschütz (389_CR16) 2007; 61 P Nannipieri (389_CR31) 2003; 54 MK Chelius (389_CR72) 2001; 41 RC Edgar (389_CR80) 2011; 27 C Stoate (389_CR6) 2001; 63 B Ma (389_CR68) 2016; 10 JA Fuhrman (389_CR32) 2009; 459 CJ Ziemer (389_CR59) 2014; 80 SKM Ernest (389_CR56) 2001; 82 PJ McMurdie (389_CR87) 2013; 8 K Faust (389_CR33) 2012; 10 A Clauset (389_CR93) 2004; 70 T Wu (389_CR58) 2007; 39 389_CR48 K Schlaeppi (389_CR65) 2015; 28 R Core Team (389_CR85) 2015 M Martin (389_CR78) 2011; 17 A Jumpponen (389_CR55) 2005; 97 MJ Anderson (389_CR89) 2003; 84 S Banerjee (389_CR39) 2016; 97 K Ihrmark (389_CR74) 2012; 82 J Oksanen (389_CR88) 2015 V Chaudhry (389_CR43) 2012; 64 HCJ Godfray (389_CR2) 2012; 327 A Sugiyama (389_CR42) 2010; 94 I Zarraonaindia (389_CR29) 2015; 6 CH Haney (389_CR53) 2015; 1 T Magoč (389_CR77) 2011; 21 D Berry (389_CR67) 2014; 5 KG Cassman (389_CR8) 1999; 96 MJ Anderson (389_CR40) 2001; 26 N Bodenhausen (389_CR73) 2013; 8 G Bonito (389_CR54) 2014; 23 S Schneider (389_CR44) 2010; 3 EK Bünemann (389_CR14) 2006; 44 A Shade (389_CR66) 2012; 3 MGA van der Heijden (389_CR38) 2016; 14 D Bulgarelli (389_CR20) 2013; 64 JA Peiffer (389_CR26) 2013; 110 RS Goswami (389_CR62) 2004; 5 389_CR92 D Tilman (389_CR1) 1999; 96 TBK Reddy (389_CR81) 2015; 43 S Wolfert (389_CR70) 2017; 153 K Abarenkov (389_CR84) 2010; 186 AM Treonis (389_CR17) 2010; 46 RC Edgar (389_CR79) 2013; 10 D Bulgarelli (389_CR51) 2015; 17 A Barberan (389_CR35) 2012; 6 M Hartmann (389_CR57) 2006; 72 S Verbarg (389_CR61) 2014 G Lentendu (389_CR50) 2014; 23 M Postma-Blaauw (389_CR15) 2010; 91 29690923 - Microbiome. 2018 Apr 24;6(1):74 32418544 - Microbiome. 2020 May 17;8(1):66 |
References_xml | – volume: 43 start-page: D1099 year: 2015 ident: 389_CR81 publication-title: Nucleic Acids Res doi: 10.1093/nar/gku950 – volume: 3 start-page: 1 year: 2012 ident: 389_CR66 publication-title: Front Microbiol doi: 10.3389/fmicb.2012.00417 – volume: 23 start-page: 3356 year: 2014 ident: 389_CR54 publication-title: Mol Ecol doi: 10.1111/mec.12821 – volume-title: R: a language and environment for statistical computing year: 2015 ident: 389_CR85 – ident: 389_CR25 doi: 10.1186/s40168-016-0220-z – volume: 28 start-page: 230 year: 2013 ident: 389_CR7 publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2012.10.012 – volume: 26 start-page: 32 year: 2001 ident: 389_CR40 publication-title: Austral Ecol – volume: 277 start-page: 504 year: 1997 ident: 389_CR3 publication-title: Science doi: 10.1126/science.277.5325.504 – volume: 15 start-page: e2001793 year: 2017 ident: 389_CR71 publication-title: PLoS Biol doi: 10.1371/journal.pbio.2001793 – volume: 10 start-page: 1891 year: 2016 ident: 389_CR68 publication-title: ISME J doi: 10.1038/ismej.2015.261 – volume: 112 start-page: E911 year: 2015 ident: 389_CR27 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1414592112 – volume: 97 start-page: 188 year: 2016 ident: 389_CR39 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2016.03.017 – volume: 91 start-page: 460 year: 2010 ident: 389_CR15 publication-title: Ecology doi: 10.1890/09-0666.1 – volume: 1 start-page: 1 year: 2015 ident: 389_CR53 publication-title: Nat Plants doi: 10.1038/nplants.2015.51 – volume: 41 start-page: D590 year: 2013 ident: 389_CR82 publication-title: Nucleic Acids Res doi: 10.1093/nar/gks1219 – volume: 14 start-page: e1002378 year: 2016 ident: 389_CR38 publication-title: PLoS Biol doi: 10.1371/journal.pbio.1002378 – volume: 46 start-page: 103 year: 2010 ident: 389_CR17 publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2010.06.017 – volume: 10 start-page: 538 year: 2012 ident: 389_CR33 publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2832 – volume: 72 start-page: 7804 year: 2006 ident: 389_CR57 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01464-06 – volume: 96 start-page: 5995 year: 1999 ident: 389_CR1 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.96.11.5995 – volume: 77 start-page: 2992 year: 2011 ident: 389_CR60 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02988-10 – volume: 267 start-page: 1117 year: 1995 ident: 389_CR4 publication-title: Science doi: 10.1126/science.267.5201.1117 – volume: 2 start-page: 15221 year: 2016 ident: 389_CR9 publication-title: Nat Plants doi: 10.1038/nplants.2015.221 – volume: 30 start-page: 95 year: 2011 ident: 389_CR13 publication-title: CRC Crit Rev Plant Sci doi: 10.1080/07352689.2011.554355 – volume: 7 start-page: 335 year: 2010 ident: 389_CR83 publication-title: Nat Methods doi: 10.1038/nmeth.f.303 – ident: 389_CR21 doi: 10.1111/nph.13312 – volume: 55 start-page: 585 year: 2006 ident: 389_CR63 publication-title: Plant Pathol doi: 10.1111/j.1365-3059.2006.01391.x – volume-title: RVAideMemoire: diverse basic statistical and graphical functions year: 2016 ident: 389_CR90 – volume: 63 start-page: 337 year: 2001 ident: 389_CR6 publication-title: J Environ Manag doi: 10.1006/jema.2001.0473 – volume: 488 start-page: 91 year: 2012 ident: 389_CR24 publication-title: Nature doi: 10.1038/nature11336 – volume: 21 start-page: 2957 year: 2011 ident: 389_CR77 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr507 – volume: 9 start-page: 1177 year: 2014 ident: 389_CR36 publication-title: ISME J. doi: 10.1038/ismej.2014.210 – ident: 389_CR69 doi: 10.1038/ismej.2015.235 – ident: 389_CR18 doi: 10.1038/srep41911 – volume: 6 start-page: 343 year: 2012 ident: 389_CR35 publication-title: ISME J. doi: 10.1038/ismej.2011.119 – volume: 41 start-page: 252 year: 2001 ident: 389_CR72 publication-title: Microb Ecol doi: 10.1007/s002480000087 – volume: 11 start-page: 296 year: 2008 ident: 389_CR19 publication-title: Ecol Lett doi: 10.1111/j.1461-0248.2007.01139.x – volume: 119 start-page: 1674 year: 2010 ident: 389_CR91 publication-title: Oikos doi: 10.1111/j.1600-0706.2010.18334.x – volume: 82 start-page: 2118 year: 2001 ident: 389_CR56 publication-title: Ecology doi: 10.2307/2680220 – ident: 389_CR92 – volume: 363 start-page: 543 year: 2008 ident: 389_CR10 publication-title: Philos Trans R Soc London B Biol Sci doi: 10.1098/rstb.2007.2169 – volume: 17 start-page: 392 year: 2015 ident: 389_CR51 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.01.011 – volume: 110 start-page: 6548 year: 2013 ident: 389_CR26 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1302837110 – volume: 3 start-page: 215 year: 2010 ident: 389_CR44 publication-title: Fungal Ecol doi: 10.1016/j.funeco.2009.10.006 – volume-title: TukeyC: conventional Tukey test year: 2016 ident: 389_CR86 – volume: 28 start-page: 212 year: 2015 ident: 389_CR65 publication-title: Mol Plant-Microbe Interact doi: 10.1094/MPMI-10-14-0334-FI – volume: 153 start-page: 69 year: 2017 ident: 389_CR70 publication-title: Agric Syst doi: 10.1016/j.agsy.2017.01.023 – volume: 8 start-page: e56329 year: 2013 ident: 389_CR73 publication-title: PLoS One doi: 10.1371/journal.pone.0056329 – volume: 101 start-page: 132 year: 2016 ident: 389_CR47 publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2016.02.002 – volume: 17 start-page: 10 year: 2011 ident: 389_CR78 publication-title: EMBnet J doi: 10.14806/ej.17.1.200 – volume: 27 start-page: 863 year: 2011 ident: 389_CR76 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr026 – volume: 32 start-page: 1419 year: 2000 ident: 389_CR46 publication-title: Soil Biol Biochem doi: 10.1016/S0038-0717(00)00060-2 – volume: 31 start-page: 440 year: 2016 ident: 389_CR12 publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2016.02.016 – volume-title: Vegan: community ecology package year: 2015 ident: 389_CR88 – volume: 54 start-page: 655 year: 2003 ident: 389_CR31 publication-title: Eur J Soil Sci doi: 10.1046/j.1351-0754.2003.0556.x – start-page: 79 volume-title: The prokaryotes: Firmicutes and Tenericutes year: 2014 ident: 389_CR61 doi: 10.1007/978-3-642-30120-9_205 – volume: 296 start-page: 1694 year: 2002 ident: 389_CR11 publication-title: Science doi: 10.1126/science.1071148 – volume: 17 start-page: 478 year: 2012 ident: 389_CR22 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2012.04.001 – volume: 6 start-page: e02527 year: 2015 ident: 389_CR29 publication-title: MBio doi: 10.1128/mBio.02527-14 – volume: 61 start-page: 26 year: 2007 ident: 389_CR16 publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2007.00318.x – ident: 389_CR48 doi: 10.3389/fmicb.2016.01446 – volume: 18 start-page: 1338 year: 2015 ident: 389_CR28 publication-title: Environ Microbiol doi: 10.1111/1462-2920.12925 – volume: 5 start-page: 1 year: 2014 ident: 389_CR67 publication-title: Front Microbiol doi: 10.3389/fmicb.2014.00219 – volume: 84 start-page: 511 year: 2003 ident: 389_CR89 publication-title: Ecology doi: 10.1890/0012-9658(2003)084[0511:CAOPCA]2.0.CO;2 – volume: 8 start-page: 790 year: 2014 ident: 389_CR52 publication-title: ISME J doi: 10.1038/ismej.2013.196 – volume: 14 start-page: e1002352 year: 2016 ident: 389_CR37 publication-title: PLoS Biol doi: 10.1371/journal.pbio.1002352 – volume: 64 start-page: 807 year: 2013 ident: 389_CR20 publication-title: Annu Rev Plant Biol doi: 10.1146/annurev-arplant-050312-120106 – volume: 45 start-page: 167 year: 2003 ident: 389_CR34 publication-title: SIAM Rev doi: 10.1137/S003614450342480 – start-page: 315 volume-title: PCR Protoc. A Guid. To Methods Appl year: 1990 ident: 389_CR75 – volume: 10 start-page: 996 year: 2013 ident: 389_CR79 publication-title: Nat Methods doi: 10.1038/nmeth.2604 – volume: 327 start-page: 812 year: 2012 ident: 389_CR2 publication-title: Science doi: 10.1126/science.1185383 – volume: 9 start-page: e108555 year: 2014 ident: 389_CR49 publication-title: PLoS One doi: 10.1371/journal.pone.0108555 – volume: 44 start-page: 379 year: 2006 ident: 389_CR14 publication-title: Aust J Soil Res doi: 10.1071/SR05125 – volume: 488 start-page: 86 year: 2012 ident: 389_CR23 publication-title: Nature doi: 10.1038/nature11237 – volume: 26 start-page: 139 year: 2010 ident: 389_CR41 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – volume: 96 start-page: 5952 year: 1999 ident: 389_CR8 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.96.11.5952 – volume: 40 start-page: 1294 year: 2008 ident: 389_CR45 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2007.06.027 – volume: 459 start-page: 193 year: 2009 ident: 389_CR32 publication-title: Nature doi: 10.1038/nature08058 – volume: 27 start-page: 2194 year: 2011 ident: 389_CR80 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr381 – volume: 70 start-page: 1475 year: 2004 ident: 389_CR30 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.70.3.1475-1482.2004 – volume: 39 start-page: 1139 year: 2007 ident: 389_CR58 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2006.11.024 – volume: 277 start-page: 494 year: 1997 ident: 389_CR5 publication-title: Science doi: 10.1126/science.277.5325.494 – volume: 5 start-page: 515 year: 2004 ident: 389_CR62 publication-title: Mol Plant Pathol doi: 10.1111/j.1364-3703.2004.00252.x – volume: 23 start-page: 3341 year: 2014 ident: 389_CR50 publication-title: Mol Ecol doi: 10.1111/mec.12819 – volume: 64 start-page: 450 year: 2012 ident: 389_CR43 publication-title: Microb Ecol doi: 10.1007/s00248-012-0025-y – volume: 70 start-page: 66111 year: 2004 ident: 389_CR93 publication-title: Phys Rev E doi: 10.1103/PhysRevE.70.066111 – volume: 31 start-page: 814 year: 2013 ident: 389_CR64 publication-title: Nat Biotechnol doi: 10.1038/nbt.2676 – volume: 8 start-page: e61217 year: 2013 ident: 389_CR87 publication-title: PLoS One doi: 10.1371/journal.pone.0061217 – volume: 97 start-page: 1177 year: 2005 ident: 389_CR55 publication-title: Mycologia – volume: 82 start-page: 666 year: 2012 ident: 389_CR74 publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2012.01437.x – volume: 186 start-page: 281 year: 2010 ident: 389_CR84 publication-title: New Phytol doi: 10.1111/j.1469-8137.2009.03160.x – volume: 94 start-page: 1329 year: 2010 ident: 389_CR42 publication-title: Plant Dis doi: 10.1094/PDIS-02-10-0090 – volume: 80 start-page: 574 year: 2014 ident: 389_CR59 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.03016-13 – reference: 29690923 - Microbiome. 2018 Apr 24;6(1):74 – reference: 32418544 - Microbiome. 2020 May 17;8(1):66 |
SSID | ssj0000914748 |
Score | 2.6125498 |
Snippet | Harnessing beneficial microbes presents a promising strategy to optimize plant growth and agricultural sustainability. Little is known to which extent and how... Abstract Background Harnessing beneficial microbes presents a promising strategy to optimize plant growth and agricultural sustainability. Little is known to... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 14 |
SubjectTerms | Analysis Bacteria - classification Bacteria - genetics Bacteria - isolation & purification Crop Production - methods Cropping practices Cropping systems Fungi - classification Fungi - genetics Fungi - isolation & purification Growth (Plants) Methods Microbial co-occurrence Microbiota Microbiota management Network analysis Phylogeny Plant Roots - microbiology Smart farming Soil and root microbiomes Soil Microbiology Sustainable agriculture Tillage Triticum - microbiology |
SummonAdditionalLinks | – databaseName: Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yIPgiftvzlCiCIITbtmmaPJ6Hxynog3pwb2HytS7ctse1i9x_70zbXbYI-uJbaaa0mZlkfkknv2HsLWCYqUJYiIUvnJAepIAq1CJVOil0mjxPtDXw5as6v5CfL6vLvVJflBM20gOPijsuAF0QHITKBOm0NhogxqhToFOXMLCXYszbW0wNc7DJZS319Bsz1-q4w_cqytuqBXHKCTMLRANf_5-z8l5YmqdM7sWgswfs_gQe-cn40Q_Zndg8YnfHcpK3j1l_etMS3cKSb88-dZzoLYYSXZGDo1MfaGR-PZBqNh1vE0fk3HNoAu_a1RVfr0ZipnXk60i1QjoUpj0HjkCR_4Jb3re8W6PaeAJKo1k-YRdnH3-cnoupqoLwCN16UWtUY5Fq5xEJJQUG8EoVCbFWqoh8HgAxmjdalinpBNLIFJ1Wpgg-eeXKp-ygaZv4nHHpMO7hCsvHpKUvwdEjOEnUIU-FTCFji62KrZ8ox6nyxZUdlh5a2dEqFq1iySrWZOz97pHrkW_jb8IfyG47QaLKHm6gA9nJgey_HChjb8jqlsgwGsq2WcKm6-yn79_sCdUKIICLQu8modRiDzxMhxdQD8SfNZM8mkniaPWz5tdb57LURCluTWw3naXktQrBoikz9mx0tl3HEJOVGLZkxuqZG856Pm9pVj8HsvCqJgxZHv4PVb1g9xAv0iASuTpiB_3NJr5ETNa7V8Pw-w2sQTZG priority: 102 providerName: Directory of Open Access Journals |
Title | Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29338764 https://www.proquest.com/docview/1989593793 https://pubmed.ncbi.nlm.nih.gov/PMC5771023 https://doaj.org/article/2a301abad59d4b8898aaeee8fd2825a5 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBf9YLCXse9m64I2BoOBttiWLflhjLa06wYto1sgb0LWRxZI7C522PLf7052Qs3K2EsI0dlwujvdT8rpd4S81pBmUmtHbGTignGjOdOpFcyn0mfgNFHk8Wjg4jI7H_Mvk3SyQzbtrboJrG_d2mE_qfFy_u73z_VHCPgPIeBl9r6GV2ZYkiUY0sWxfJfsQ2IS2NDgokP7YWHOIy5CP60YcDGDvYPs_ue89S29TBUI_f9etm_krX5N5Y0kdXaf3OvQJT1q3eEB2XHlQ3Kn7Te5fkSak2WFfAxTurkcVVPkvwg9vBzVBV4LAS-g14F1s6xp5SlA64bq0tK6ms3pYtYyNy0cXThsJlKDMB5KUECS9Jde06ai9QIcknqNdTbTx2R8dvr95Jx1bReYAWzXMCF5IWMvCgNQyWc61_Atiz2AMZ8iO73WAOJMLnnivfSa59y7QmZ5bI03WZE8IXtlVboDQnkBiRG2YMZ5yU2iC3wEVhFhIx9zbwdktJliZTpOcmyNMVdhbyIz1VpFgVUUWkXlA_J2-8h1S8jxL-FjtNtWELm0ww_Vcqq60FSxhkVOF9qmuQXNZS61ds5Jb_Fer04H5BVaXSFbRonlOFO9qmv1-duVOsJmAoiAQehNJ-Qr0MDo7nYDzAMSbPUkD3uSEM6mN_xy41wKh7AGrnTVqlZY3ZYCmsyTAXnaOttWMQBtCeQ1PiCi54Y9zfsj5exHYBNPBYLM5Nn_aPmc3AXAiEHCouyQ7DXLlXsBoKwphmRXTMSQ7B-fXn69GoajDfj8NImGIQj_ALanN-I |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cropping+practices+manipulate+abundance+patterns+of+root+and+soil+microbiome+members+paving+the+way+to+smart+farming&rft.jtitle=Microbiome&rft.au=Hartman%2C+Kyle&rft.au=van+der+Heijden%2C+Marcel+G.+A&rft.au=Wittwer%2C+RaphaA%27l+A&rft.au=Banerjee%2C+Samiran&rft.date=2018-01-16&rft.pub=BioMed+Central+Ltd&rft.issn=2049-2618&rft.eissn=2049-2618&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1186%2Fs40168-017-0389-9&rft.externalDBID=ISR&rft.externalDocID=A546393265 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2049-2618&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2049-2618&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2049-2618&client=summon |