Maize transposable elements contribute to long non-coding RNAs that are regulatory hubs for abiotic stress response

Several studies have mined short-read RNA sequencing datasets to identify long non-coding RNAs (lncRNAs), and others have focused on the function of individual lncRNAs in abiotic stress response. However, our understanding of the complement, function and origin of lncRNAs - and especially transposon...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 20; no. 1; pp. 864 - 17
Main Authors Lv, Yuanda, Hu, Fengqin, Zhou, Yongfeng, Wu, Feilong, Gaut, Brandon S.
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 15.11.2019
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Several studies have mined short-read RNA sequencing datasets to identify long non-coding RNAs (lncRNAs), and others have focused on the function of individual lncRNAs in abiotic stress response. However, our understanding of the complement, function and origin of lncRNAs - and especially transposon derived lncRNAs (TE-lncRNAs) - in response to abiotic stress is still in its infancy. We utilized a dataset of 127 RNA sequencing samples that included total RNA datasets and PacBio fl-cDNA data to discover lncRNAs in maize. Overall, we identified 23,309 candidate lncRNAs from polyA+ and total RNA samples, with a strong discovery bias within total RNA. The majority (65%) of the 23,309 lncRNAs had sequence similarity to transposable elements (TEs). Most had similarity to long-terminal-repeat retrotransposons from the Copia and Gypsy superfamilies, reflecting a high proportion of these elements in the genome. However, DNA transposons were enriched for lncRNAs relative to their genomic representation by ~ 2-fold. By assessing the fraction of lncRNAs that respond to abiotic stresses like heat, cold, salt and drought, we identified 1077 differentially expressed lncRNA transcripts, including 509 TE-lncRNAs. In general, the expression of these lncRNAs was significantly correlated with their nearest gene. By inferring co-expression networks across our large dataset, we found that 39 lncRNAs are as major hubs in co-expression networks that respond to abiotic stress, and 18 appear to be derived from TEs. Our results show that lncRNAs are enriched in total RNA samples, that most (65%) are derived from TEs, that at least 1077 are differentially expressed during abiotic stress, and that 39 are hubs in co-expression networks, including a small number that are evolutionary conserved. These results suggest that lncRNAs, including TE-lncRNAs, may play key regulatory roles in moderating abiotic responses.
AbstractList Several studies have mined short-read RNA sequencing datasets to identify long non-coding RNAs (lncRNAs), and others have focused on the function of individual lncRNAs in abiotic stress response. However, our understanding of the complement, function and origin of lncRNAs - and especially transposon derived lncRNAs (TE-lncRNAs) - in response to abiotic stress is still in its infancy. We utilized a dataset of 127 RNA sequencing samples that included total RNA datasets and PacBio fl-cDNA data to discover lncRNAs in maize. Overall, we identified 23,309 candidate lncRNAs from polyA+ and total RNA samples, with a strong discovery bias within total RNA. The majority (65%) of the 23,309 lncRNAs had sequence similarity to transposable elements (TEs). Most had similarity to long-terminal-repeat retrotransposons from the Copia and Gypsy superfamilies, reflecting a high proportion of these elements in the genome. However, DNA transposons were enriched for lncRNAs relative to their genomic representation by ~ 2-fold. By assessing the fraction of lncRNAs that respond to abiotic stresses like heat, cold, salt and drought, we identified 1077 differentially expressed lncRNA transcripts, including 509 TE-lncRNAs. In general, the expression of these lncRNAs was significantly correlated with their nearest gene. By inferring co-expression networks across our large dataset, we found that 39 lncRNAs are as major hubs in co-expression networks that respond to abiotic stress, and 18 appear to be derived from TEs. Our results show that lncRNAs are enriched in total RNA samples, that most (65%) are derived from TEs, that at least 1077 are differentially expressed during abiotic stress, and that 39 are hubs in co-expression networks, including a small number that are evolutionary conserved. These results suggest that lncRNAs, including TE-lncRNAs, may play key regulatory roles in moderating abiotic responses.
Abstract Background Several studies have mined short-read RNA sequencing datasets to identify long non-coding RNAs (lncRNAs), and others have focused on the function of individual lncRNAs in abiotic stress response. However, our understanding of the complement, function and origin of lncRNAs – and especially transposon derived lncRNAs (TE-lncRNAs) - in response to abiotic stress is still in its infancy. Results We utilized a dataset of 127 RNA sequencing samples that included total RNA datasets and PacBio fl-cDNA data to discover lncRNAs in maize. Overall, we identified 23,309 candidate lncRNAs from polyA+ and total RNA samples, with a strong discovery bias within total RNA. The majority (65%) of the 23,309 lncRNAs had sequence similarity to transposable elements (TEs). Most had similarity to long-terminal-repeat retrotransposons from the Copia and Gypsy superfamilies, reflecting a high proportion of these elements in the genome. However, DNA transposons were enriched for lncRNAs relative to their genomic representation by ~ 2-fold. By assessing the fraction of lncRNAs that respond to abiotic stresses like heat, cold, salt and drought, we identified 1077 differentially expressed lncRNA transcripts, including 509 TE-lncRNAs. In general, the expression of these lncRNAs was significantly correlated with their nearest gene. By inferring co-expression networks across our large dataset, we found that 39 lncRNAs are as major hubs in co-expression networks that respond to abiotic stress, and 18 appear to be derived from TEs. Conclusions Our results show that lncRNAs are enriched in total RNA samples, that most (65%) are derived from TEs, that at least 1077 are differentially expressed during abiotic stress, and that 39 are hubs in co-expression networks, including a small number that are evolutionary conserved. These results suggest that lncRNAs, including TE-lncRNAs, may play key regulatory roles in moderating abiotic responses.
Several studies have mined short-read RNA sequencing datasets to identify long non-coding RNAs (lncRNAs), and others have focused on the function of individual lncRNAs in abiotic stress response. However, our understanding of the complement, function and origin of lncRNAs - and especially transposon derived lncRNAs (TE-lncRNAs) - in response to abiotic stress is still in its infancy.BACKGROUNDSeveral studies have mined short-read RNA sequencing datasets to identify long non-coding RNAs (lncRNAs), and others have focused on the function of individual lncRNAs in abiotic stress response. However, our understanding of the complement, function and origin of lncRNAs - and especially transposon derived lncRNAs (TE-lncRNAs) - in response to abiotic stress is still in its infancy.We utilized a dataset of 127 RNA sequencing samples that included total RNA datasets and PacBio fl-cDNA data to discover lncRNAs in maize. Overall, we identified 23,309 candidate lncRNAs from polyA+ and total RNA samples, with a strong discovery bias within total RNA. The majority (65%) of the 23,309 lncRNAs had sequence similarity to transposable elements (TEs). Most had similarity to long-terminal-repeat retrotransposons from the Copia and Gypsy superfamilies, reflecting a high proportion of these elements in the genome. However, DNA transposons were enriched for lncRNAs relative to their genomic representation by ~ 2-fold. By assessing the fraction of lncRNAs that respond to abiotic stresses like heat, cold, salt and drought, we identified 1077 differentially expressed lncRNA transcripts, including 509 TE-lncRNAs. In general, the expression of these lncRNAs was significantly correlated with their nearest gene. By inferring co-expression networks across our large dataset, we found that 39 lncRNAs are as major hubs in co-expression networks that respond to abiotic stress, and 18 appear to be derived from TEs.RESULTSWe utilized a dataset of 127 RNA sequencing samples that included total RNA datasets and PacBio fl-cDNA data to discover lncRNAs in maize. Overall, we identified 23,309 candidate lncRNAs from polyA+ and total RNA samples, with a strong discovery bias within total RNA. The majority (65%) of the 23,309 lncRNAs had sequence similarity to transposable elements (TEs). Most had similarity to long-terminal-repeat retrotransposons from the Copia and Gypsy superfamilies, reflecting a high proportion of these elements in the genome. However, DNA transposons were enriched for lncRNAs relative to their genomic representation by ~ 2-fold. By assessing the fraction of lncRNAs that respond to abiotic stresses like heat, cold, salt and drought, we identified 1077 differentially expressed lncRNA transcripts, including 509 TE-lncRNAs. In general, the expression of these lncRNAs was significantly correlated with their nearest gene. By inferring co-expression networks across our large dataset, we found that 39 lncRNAs are as major hubs in co-expression networks that respond to abiotic stress, and 18 appear to be derived from TEs.Our results show that lncRNAs are enriched in total RNA samples, that most (65%) are derived from TEs, that at least 1077 are differentially expressed during abiotic stress, and that 39 are hubs in co-expression networks, including a small number that are evolutionary conserved. These results suggest that lncRNAs, including TE-lncRNAs, may play key regulatory roles in moderating abiotic responses.CONCLUSIONSOur results show that lncRNAs are enriched in total RNA samples, that most (65%) are derived from TEs, that at least 1077 are differentially expressed during abiotic stress, and that 39 are hubs in co-expression networks, including a small number that are evolutionary conserved. These results suggest that lncRNAs, including TE-lncRNAs, may play key regulatory roles in moderating abiotic responses.
Several studies have mined short-read RNA sequencing datasets to identify long non-coding RNAs (lncRNAs), and others have focused on the function of individual lncRNAs in abiotic stress response. However, our understanding of the complement, function and origin of lncRNAs - and especially transposon derived lncRNAs (TE-lncRNAs) - in response to abiotic stress is still in its infancy. We utilized a dataset of 127 RNA sequencing samples that included total RNA datasets and PacBio fl-cDNA data to discover lncRNAs in maize. Overall, we identified 23,309 candidate lncRNAs from polyA+ and total RNA samples, with a strong discovery bias within total RNA. The majority (65%) of the 23,309 lncRNAs had sequence similarity to transposable elements (TEs). Most had similarity to long-terminal-repeat retrotransposons from the Copia and Gypsy superfamilies, reflecting a high proportion of these elements in the genome. However, DNA transposons were enriched for lncRNAs relative to their genomic representation by ~ 2-fold. By assessing the fraction of lncRNAs that respond to abiotic stresses like heat, cold, salt and drought, we identified 1077 differentially expressed lncRNA transcripts, including 509 TE-lncRNAs. In general, the expression of these lncRNAs was significantly correlated with their nearest gene. By inferring co-expression networks across our large dataset, we found that 39 lncRNAs are as major hubs in co-expression networks that respond to abiotic stress, and 18 appear to be derived from TEs. Our results show that lncRNAs are enriched in total RNA samples, that most (65%) are derived from TEs, that at least 1077 are differentially expressed during abiotic stress, and that 39 are hubs in co-expression networks, including a small number that are evolutionary conserved. These results suggest that lncRNAs, including TE-lncRNAs, may play key regulatory roles in moderating abiotic responses.
Background Several studies have mined short-read RNA sequencing datasets to identify long non-coding RNAs (lncRNAs), and others have focused on the function of individual lncRNAs in abiotic stress response. However, our understanding of the complement, function and origin of lncRNAs - and especially transposon derived lncRNAs (TE-lncRNAs) - in response to abiotic stress is still in its infancy. Results We utilized a dataset of 127 RNA sequencing samples that included total RNA datasets and PacBio fl-cDNA data to discover lncRNAs in maize. Overall, we identified 23,309 candidate lncRNAs from polyA+ and total RNA samples, with a strong discovery bias within total RNA. The majority (65%) of the 23,309 lncRNAs had sequence similarity to transposable elements (TEs). Most had similarity to long-terminal-repeat retrotransposons from the Copia and Gypsy superfamilies, reflecting a high proportion of these elements in the genome. However, DNA transposons were enriched for lncRNAs relative to their genomic representation by ~ 2-fold. By assessing the fraction of lncRNAs that respond to abiotic stresses like heat, cold, salt and drought, we identified 1077 differentially expressed lncRNA transcripts, including 509 TE-lncRNAs. In general, the expression of these lncRNAs was significantly correlated with their nearest gene. By inferring co-expression networks across our large dataset, we found that 39 lncRNAs are as major hubs in co-expression networks that respond to abiotic stress, and 18 appear to be derived from TEs. Conclusions Our results show that lncRNAs are enriched in total RNA samples, that most (65%) are derived from TEs, that at least 1077 are differentially expressed during abiotic stress, and that 39 are hubs in co-expression networks, including a small number that are evolutionary conserved. These results suggest that lncRNAs, including TE-lncRNAs, may play key regulatory roles in moderating abiotic responses. Keywords: Long non-coding RNA, Transposable elements, Abiotic stress, Co-expression network
ArticleNumber 864
Audience Academic
Author Hu, Fengqin
Gaut, Brandon S.
Lv, Yuanda
Zhou, Yongfeng
Wu, Feilong
Author_xml – sequence: 1
  givenname: Yuanda
  surname: Lv
  fullname: Lv, Yuanda
– sequence: 2
  givenname: Fengqin
  surname: Hu
  fullname: Hu, Fengqin
– sequence: 3
  givenname: Yongfeng
  surname: Zhou
  fullname: Zhou, Yongfeng
– sequence: 4
  givenname: Feilong
  surname: Wu
  fullname: Wu, Feilong
– sequence: 5
  givenname: Brandon S.
  orcidid: 0000-0002-1334-5556
  surname: Gaut
  fullname: Gaut, Brandon S.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31729949$$D View this record in MEDLINE/PubMed
BookMark eNp9kl2P1CAUhhuzxv3QH-CNIfFGL7pyaKH0xmSy8WOSVZNVrwmlhw6bThmBGtdfL3XWzY4xhgQIPOflnMN7WhxNfsKieAr0HECKVxGYFHVJoS0Fq3nJHxQnUDdQMhD10b39cXEa4zWl0EjGHxXHFTSsbev2pIgftPuJJAU9xZ2PuhuR4IhbnFIkxk8puG5OGfBk9NNAcgal8b3L26uPq0jSRieiA5KAwzzq5MMN2cxdJNYHojvnkzMkpoAxZiQ_MUV8XDy0eoz45HY9K76-ffPl4n15-end-mJ1WRouRCqFxRq6GpCD0D3wBixKYC2tZc9soy30rDVatFLzDqDqpdHSmq5vbEuNsNVZsd7r9l5fq11wWx1ulNdO_T7wYVA65PxGVJxR1jNoaVXVtQHdGY62slYCWk5Fk7Ve77V2c7fF3uT-BD0eiB7eTG6jBv9dCcmlEDwLvLgVCP7bjDGprYsGx1FP6OeoWAWcyoyyjD7fo4POqbnJ-qxoFlytBG0qkSeZqfN_UHn0uHX559C6fH4Q8PIgYPld_JEGPceo1p-vDtln98u9q_OPcTIAe8AEH2NAe4cAVYs51d6cKptTLeZUSwuav2KMSzq5xWXajf-J_AVodOj9
CitedBy_id crossref_primary_10_1007_s00497_020_00400_1
crossref_primary_10_3390_agronomy14081722
crossref_primary_10_3390_ijms23158594
crossref_primary_10_1080_15476286_2022_2144609
crossref_primary_10_3390_horticulturae7080235
crossref_primary_10_1186_s13100_023_00305_6
crossref_primary_10_1002_iub_2712
crossref_primary_10_1007_s00239_024_10198_5
crossref_primary_10_1080_15476286_2021_2024032
crossref_primary_10_3389_fpls_2021_779597
crossref_primary_10_1016_j_tplants_2025_02_005
crossref_primary_10_1186_s12864_021_08286_7
crossref_primary_10_3389_fpls_2023_1080427
crossref_primary_10_3389_fpls_2022_915056
crossref_primary_10_1016_j_plaphy_2022_10_030
crossref_primary_10_1016_j_plaphy_2023_107940
crossref_primary_10_1111_ppl_13492
crossref_primary_10_1016_j_indcrop_2024_118108
crossref_primary_10_1016_j_plaphy_2023_107823
crossref_primary_10_3390_genes11040366
crossref_primary_10_3390_cells12050729
crossref_primary_10_3390_plants12203531
crossref_primary_10_3390_ijms22168618
crossref_primary_10_1016_j_biosystems_2022_104669
crossref_primary_10_3389_fgene_2022_857143
crossref_primary_10_1007_s13562_024_00923_y
crossref_primary_10_3390_ijms23116247
crossref_primary_10_1016_j_plaphy_2023_108165
crossref_primary_10_3389_fpls_2022_988845
crossref_primary_10_3390_ijms22136980
crossref_primary_10_1016_j_jplph_2021_153365
crossref_primary_10_3390_ijms222212519
crossref_primary_10_3389_fpls_2022_915569
crossref_primary_10_1093_jxb_erab073
crossref_primary_10_1111_tpj_15748
crossref_primary_10_1007_s11738_022_03387_6
crossref_primary_10_1093_hr_uhae041
crossref_primary_10_3389_fgene_2020_00792
crossref_primary_10_3389_fpls_2022_917840
crossref_primary_10_3390_plants9121794
crossref_primary_10_1146_annurev_genet_072920_015534
crossref_primary_10_3389_fpls_2022_777308
crossref_primary_10_3390_ijms21082659
crossref_primary_10_1016_j_ygeno_2022_110505
crossref_primary_10_3389_fpls_2022_826473
crossref_primary_10_3389_fpls_2020_603246
crossref_primary_10_1186_s13059_020_02164_3
Cites_doi 10.1105/tpc.16.00886
10.1016/j.tplants.2005.11.002
10.1093/bioinformatics/btp352
10.1186/gb-2011-12-2-r16
10.1371/journal.pgen.0020062
10.1111/tpj.13804
10.1016/j.copbio.2006.02.002
10.1073/pnas.97.13.7008
10.1093/nar/gkh131
10.1089/omi.2014.0125
10.1093/nar/25.17.3389
10.1038/nrg.2016.139
10.1016/j.gde.2017.07.009
10.3390/ijms140713307
10.1093/bioinformatics/bty191
10.1186/s12864-016-2650-1
10.1186/1741-7007-11-59
10.1016/S1369-5266(02)00289-3
10.3390/genes3010176
10.1093/bioinformatics/btt656
10.1534/genetics.112.146704
10.1111/j.1744-7909.2012.01118.x
10.1093/jxb/ert437
10.1093/nar/gkt646
10.1371/journal.pgen.1004915
10.1038/nrg1272
10.1073/pnas.1721487115
10.1186/s13059-014-0550-8
10.1016/j.cell.2016.08.029
10.1371/journal.pcbi.1002955
10.1093/molbev/msv117
10.1089/152791600459894
10.1371/journal.pone.0098958
10.1038/nbt.3122
10.1111/tpj.12679
10.1371/journal.pgen.1003470
10.1016/j.pbi.2016.02.009
10.1038/ncomms11708
10.1104/pp.109.136028
10.1016/j.cell.2018.01.011
10.1371/journal.pone.0043047
10.1609/icwsm.v3i1.13937
10.1105/tpc.16.00600
10.1016/j.tig.2016.08.004
10.1101/gr.165555.113
10.1146/annurev-biochem-051410-092902
10.1016/j.copbio.2005.02.001
10.1101/456749
10.1093/nar/gkx866
10.1186/1471-2105-11-485
10.1371/journal.pgen.1000732
10.1104/pp.17.01657
10.1046/j.1469-8137.2002.00352.x
10.1038/nprot.2016.095
10.1186/s13059-014-0512-1
10.1093/jxb/eru473
10.1093/aob/mcr053
10.1105/tpc.112.102855
10.1093/bioinformatics/bts635
10.1093/jxb/erx384
10.1093/bib/bbw139
10.1101/gr.132159.111
10.1186/1471-2105-9-559
10.1126/science.1178534
10.1038/nrg2521
10.1101/gr.218149.116
10.1111/nph.13429
10.1038/35075138
10.1101/gr.080275.108
10.1186/gb-2012-13-11-r107
10.1007/s10535-010-0038-7
10.1186/gb-2014-15-2-r40
10.1016/j.devcel.2016.12.021
10.1186/s12864-016-2570-0
10.1261/rna.044560.114
10.1111/tpj.13481
10.1186/1471-2105-11-431
10.1038/srep21623
10.1186/s13059-014-0570-4
10.1126/science.aad5497
10.3389/fpls.2016.00444
10.3389/fpls.2018.00600
10.1093/nar/gkx382
10.1038/srep09998
ContentType Journal Article
Copyright COPYRIGHT 2019 BioMed Central Ltd.
The Author(s). 2019
Copyright_xml – notice: COPYRIGHT 2019 BioMed Central Ltd.
– notice: The Author(s). 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
5PM
DOA
DOI 10.1186/s12864-019-6245-5
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
EndPage 17
ExternalDocumentID oai_doaj_org_article_5202d21903344c1abc5ef3ff81ef5067
PMC6858665
A607366078
31729949
10_1186_s12864_019_6245_5
Genre Journal Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: DEB-1655808
– fundername: National Natural Science Foundation of China
  grantid: 31771813
– fundername: JAAS Exploratory and Disruptive Innovation Program
  grantid: ZX(17)2015
– fundername: ;
  grantid: DEB-1655808
– fundername: ;
  grantid: ZX(17)2015
– fundername: ;
  grantid: 31771813
GroupedDBID ---
0R~
23N
2WC
2XV
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7X8
PPXIY
PQGLB
5PM
PJZUB
PUEGO
ID FETCH-LOGICAL-c566t-6fe41b41e516ad1571fe8129048d2f7af1d29ca698a5b113d8ca8fcbd7f90c6f3
IEDL.DBID M48
ISSN 1471-2164
IngestDate Wed Aug 27 01:23:17 EDT 2025
Thu Aug 21 13:30:00 EDT 2025
Fri Jul 11 04:29:56 EDT 2025
Tue Jun 17 21:30:13 EDT 2025
Tue Jun 10 20:37:49 EDT 2025
Fri Jun 27 04:37:50 EDT 2025
Thu Apr 03 06:57:53 EDT 2025
Tue Jul 01 00:39:05 EDT 2025
Thu Apr 24 22:53:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Abiotic stress
Co-expression network
Transposable elements
Long non-coding RNA
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c566t-6fe41b41e516ad1571fe8129048d2f7af1d29ca698a5b113d8ca8fcbd7f90c6f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1334-5556
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12864-019-6245-5
PMID 31729949
PQID 2315088662
PQPubID 23479
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_5202d21903344c1abc5ef3ff81ef5067
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6858665
proquest_miscellaneous_2315088662
gale_infotracmisc_A607366078
gale_infotracacademiconefile_A607366078
gale_incontextgauss_ISR_A607366078
pubmed_primary_31729949
crossref_primary_10_1186_s12864_019_6245_5
crossref_citationtrail_10_1186_s12864_019_6245_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-15
PublicationDateYYYYMMDD 2019-11-15
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2019
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References N Maeda (6245_CR2) 2006; 2
P Yan (6245_CR55) 2017; 46
F Gaiti (6245_CR50) 2015; 32
L Li (6245_CR8) 2014; 15
H Zhang (6245_CR9) 2016; 17
EAR Serin (6245_CR40) 2016; 7
MP Cox (6245_CR70) 2010; 11
Y-C Zhang (6245_CR5) 2014; 15
H Wang (6245_CR11) 2014; 24
K Varala (6245_CR42) 2018; 115
S Boerner (6245_CR51) 2012; 7
Y Liao (6245_CR79) 2014; 30
D Kelley (6245_CR35) 2012; 13
G Wang (6245_CR38) 2014; 65
6245_CR86
6245_CR41
C Di (6245_CR23) 2014; 80
J Liu (6245_CR24) 2012; 24
D Wang (6245_CR74) 2017; 90
JL Rinn (6245_CR16) 2012; 81
S Altschul (6245_CR84) 1997; 25
LS Johnson (6245_CR76) 2010; 11
A Kapusta (6245_CR7) 2013; 9
U Singh (6245_CR31) 2017; 45
R Apweiler (6245_CR83) 2004; 32
M Pertea (6245_CR72) 2015; 33
J Liu (6245_CR4) 2012; 24
T Derrien (6245_CR3) 2012; 22
P Mukhopadhyay (6245_CR43) 2015; 5
EB Chuong (6245_CR63) 2017; 18
M Trizzino (6245_CR64) 2017; 27
T Tian (6245_CR85) 2017; 45
RS Baucom (6245_CR53) 2009; 5
AA Golicz (6245_CR12) 2018; 176
A Dobin (6245_CR71) 2013; 29
T Umezawa (6245_CR46) 2006; 17
T Wang (6245_CR17) 2017; 68
A Bousios (6245_CR54) 2016; 30
Q-H Zhu (6245_CR52) 2012; 3
D Amar (6245_CR39) 2013; 9
H Li (6245_CR78) 2009; 25
JTY Kung (6245_CR21) 2013; 193
H Li (6245_CR73) 2018; 34
M Hadjiargyrou (6245_CR15) 2013; 14
B Ben Amor (6245_CR22) 2009; 19
J-K Zhu (6245_CR25) 2016; 167
L Chen (6245_CR44) 2016; 6
EB Chuong (6245_CR65) 2016; 351
PK Agarwal (6245_CR61) 2010; 54
D Lawlor (6245_CR62) 2011; 107
A-L Barabási (6245_CR59) 2004; 5
B Vinocur (6245_CR45) 2005; 16
W Zhang (6245_CR30) 2014; 9
PS Schnable (6245_CR32) 2009; 326
Y Lv (6245_CR6) 2016; 17
BS Gaut (6245_CR48) 2000; 97
R Johnson (6245_CR36) 2014; 20
B Wang (6245_CR66) 2016; 7
R Mittler (6245_CR26) 2006; 11
I Makarevitch (6245_CR69) 2015; 11
KB Singh (6245_CR60) 2002; 5
TR Mercer (6245_CR1) 2009; 10
D-H Kim (6245_CR18) 2017; 40
J Cho (6245_CR14) 2018; 9
LC Tsoi (6245_CR37) 2015; 16
Liang Sun (6245_CR75) 2013; 41
F Gong (6245_CR28) 2014; 18
H Jeong (6245_CR58) 2001; 411
M Pertea (6245_CR77) 2016; 11
MI Love (6245_CR80) 2014; 15
6245_CR10
JS Seo (6245_CR19) 2017; 29
K Vandepoele (6245_CR57) 2009; 150
P Langfelder (6245_CR81) 2008; 9
J Yuan (6245_CR13) 2018; 93
L Yang (6245_CR49) 2011; 12
M Mimura (6245_CR68) 2016; 28
F Kopp (6245_CR20) 2018; 172
B Signal (6245_CR34) 2016; 32
S van Dam (6245_CR33) 2017; 19
AE Kornienko (6245_CR56) 2013; 11
M Bastian (6245_CR82) 2009; 8
NG Halford (6245_CR29) 2015; 66
BS Gaut (6245_CR47) 2002; 154
B Masuka (6245_CR27) 2012; 54
P Li (6245_CR67) 2017; 8
References_xml – volume: 29
  start-page: 1024
  year: 2017
  ident: 6245_CR19
  publication-title: Plant Cell
  doi: 10.1105/tpc.16.00886
– volume: 11
  start-page: 15
  year: 2006
  ident: 6245_CR26
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2005.11.002
– volume: 25
  start-page: 2078
  year: 2009
  ident: 6245_CR78
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btp352
– volume: 12
  start-page: R16
  year: 2011
  ident: 6245_CR49
  publication-title: Genome Biol
  doi: 10.1186/gb-2011-12-2-r16
– volume: 2
  start-page: e62
  year: 2006
  ident: 6245_CR2
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.0020062
– volume: 93
  start-page: 814
  year: 2018
  ident: 6245_CR13
  publication-title: Plant J
  doi: 10.1111/tpj.13804
– volume: 17
  start-page: 113
  year: 2006
  ident: 6245_CR46
  publication-title: Curr Opin Biotechnol
  doi: 10.1016/j.copbio.2006.02.002
– volume: 97
  start-page: 7008
  year: 2000
  ident: 6245_CR48
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.97.13.7008
– volume: 32
  start-page: 115D
  year: 2004
  ident: 6245_CR83
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkh131
– volume: 18
  start-page: 714
  year: 2014
  ident: 6245_CR28
  publication-title: Omics.
  doi: 10.1089/omi.2014.0125
– volume: 25
  start-page: 3389
  year: 1997
  ident: 6245_CR84
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/25.17.3389
– volume: 18
  start-page: 71
  year: 2017
  ident: 6245_CR63
  publication-title: Nat Rev Genet.
  doi: 10.1038/nrg.2016.139
– volume: 46
  start-page: 170
  year: 2017
  ident: 6245_CR55
  publication-title: Curr Opin Genet Dev
  doi: 10.1016/j.gde.2017.07.009
– volume: 14
  start-page: 13307
  year: 2013
  ident: 6245_CR15
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms140713307
– volume: 8
  start-page: 290
  year: 2017
  ident: 6245_CR67
  publication-title: Plant Sci
– volume: 34
  start-page: 3094
  year: 2018
  ident: 6245_CR73
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/bty191
– volume: 17
  start-page: 350
  year: 2016
  ident: 6245_CR6
  publication-title: BMC Genomics
  doi: 10.1186/s12864-016-2650-1
– volume: 11
  start-page: 59
  year: 2013
  ident: 6245_CR56
  publication-title: BMC Biol
  doi: 10.1186/1741-7007-11-59
– volume: 5
  start-page: 430
  year: 2002
  ident: 6245_CR60
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/S1369-5266(02)00289-3
– volume: 3
  start-page: 176
  year: 2012
  ident: 6245_CR52
  publication-title: Genes (Basel)
  doi: 10.3390/genes3010176
– volume: 30
  start-page: 923
  year: 2014
  ident: 6245_CR79
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btt656
– volume: 193
  start-page: 651
  year: 2013
  ident: 6245_CR21
  publication-title: Genetics.
  doi: 10.1534/genetics.112.146704
– volume: 54
  start-page: 238
  year: 2012
  ident: 6245_CR27
  publication-title: J Integr Plant Biol
  doi: 10.1111/j.1744-7909.2012.01118.x
– volume: 65
  start-page: 923
  year: 2014
  ident: 6245_CR38
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ert437
– volume: 41
  start-page: e166
  issue: 17
  year: 2013
  ident: 6245_CR75
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkt646
– volume: 11
  start-page: e1004915
  year: 2015
  ident: 6245_CR69
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1004915
– volume: 5
  start-page: 101
  year: 2004
  ident: 6245_CR59
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg1272
– volume: 115
  start-page: 6494
  year: 2018
  ident: 6245_CR42
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1721487115
– volume: 15
  start-page: 550
  year: 2014
  ident: 6245_CR80
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0550-8
– volume: 167
  start-page: 313
  year: 2016
  ident: 6245_CR25
  publication-title: Cell.
  doi: 10.1016/j.cell.2016.08.029
– volume: 9
  start-page: e1002955
  year: 2013
  ident: 6245_CR39
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002955
– volume: 32
  start-page: 2367
  year: 2015
  ident: 6245_CR50
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msv117
– ident: 6245_CR86
  doi: 10.1089/152791600459894
– volume: 9
  start-page: e98958
  year: 2014
  ident: 6245_CR30
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0098958
– volume: 33
  start-page: 290
  issue: 3
  year: 2015
  ident: 6245_CR72
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3122
– volume: 80
  start-page: 848
  year: 2014
  ident: 6245_CR23
  publication-title: Plant J
  doi: 10.1111/tpj.12679
– volume: 9
  start-page: e1003470
  year: 2013
  ident: 6245_CR7
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1003470
– volume: 30
  start-page: 123
  year: 2016
  ident: 6245_CR54
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2016.02.009
– volume: 7
  start-page: 11708
  year: 2016
  ident: 6245_CR66
  publication-title: Nat Commun
  doi: 10.1038/ncomms11708
– volume: 150
  start-page: 535
  year: 2009
  ident: 6245_CR57
  publication-title: Plant Physiol
  doi: 10.1104/pp.109.136028
– volume: 172
  start-page: 393
  year: 2018
  ident: 6245_CR20
  publication-title: Cell.
  doi: 10.1016/j.cell.2018.01.011
– volume: 7
  start-page: e43047
  year: 2012
  ident: 6245_CR51
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0043047
– volume: 8
  start-page: 361
  year: 2009
  ident: 6245_CR82
  publication-title: Icwsm.
  doi: 10.1609/icwsm.v3i1.13937
– volume: 28
  start-page: 2683
  year: 2016
  ident: 6245_CR68
  publication-title: Plant Cell
  doi: 10.1105/tpc.16.00600
– volume: 32
  start-page: 620
  year: 2016
  ident: 6245_CR34
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2016.08.004
– volume: 24
  start-page: 444
  year: 2014
  ident: 6245_CR11
  publication-title: Genome Res
  doi: 10.1101/gr.165555.113
– volume: 81
  start-page: 145
  year: 2012
  ident: 6245_CR16
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev-biochem-051410-092902
– volume: 16
  start-page: 123
  year: 2005
  ident: 6245_CR45
  publication-title: Curr Opin Biotechnol
  doi: 10.1016/j.copbio.2005.02.001
– ident: 6245_CR41
  doi: 10.1101/456749
– volume: 45
  start-page: e183
  year: 2017
  ident: 6245_CR31
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx866
– volume: 11
  start-page: 485
  year: 2010
  ident: 6245_CR70
  publication-title: BMC Bioinformatics.
  doi: 10.1186/1471-2105-11-485
– volume: 5
  start-page: e1000732
  year: 2009
  ident: 6245_CR53
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000732
– volume: 176
  start-page: 2133
  year: 2018
  ident: 6245_CR12
  publication-title: Plant Physiol
  doi: 10.1104/pp.17.01657
– volume: 154
  start-page: 15
  year: 2002
  ident: 6245_CR47
  publication-title: New Phytol
  doi: 10.1046/j.1469-8137.2002.00352.x
– volume: 11
  start-page: 1650
  year: 2016
  ident: 6245_CR77
  publication-title: StringTie and Ballgown Nat Protoc
  doi: 10.1038/nprot.2016.095
– volume: 15
  start-page: 512
  year: 2014
  ident: 6245_CR5
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0512-1
– volume: 66
  start-page: 1145
  year: 2015
  ident: 6245_CR29
  publication-title: J Exp Bot
  doi: 10.1093/jxb/eru473
– volume: 107
  start-page: vii
  year: 2011
  ident: 6245_CR62
  publication-title: Ann Bot
  doi: 10.1093/aob/mcr053
– volume: 24
  start-page: 4333
  year: 2012
  ident: 6245_CR4
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.102855
– volume: 29
  start-page: 15
  year: 2013
  ident: 6245_CR71
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/bts635
– volume: 68
  start-page: 5937
  year: 2017
  ident: 6245_CR17
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erx384
– volume: 19
  start-page: bbw139
  year: 2017
  ident: 6245_CR33
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbw139
– volume: 22
  start-page: 1775
  year: 2012
  ident: 6245_CR3
  publication-title: Genome Res
  doi: 10.1101/gr.132159.111
– volume: 9
  start-page: 559
  year: 2008
  ident: 6245_CR81
  publication-title: BMC Bioinformatics.
  doi: 10.1186/1471-2105-9-559
– volume: 326
  start-page: 1112
  year: 2009
  ident: 6245_CR32
  publication-title: Science.
  doi: 10.1126/science.1178534
– volume: 10
  start-page: 155
  year: 2009
  ident: 6245_CR1
  publication-title: Nat Rev Genet.
  doi: 10.1038/nrg2521
– volume: 27
  start-page: 1623
  year: 2017
  ident: 6245_CR64
  publication-title: Genome Res
  doi: 10.1101/gr.218149.116
– ident: 6245_CR10
  doi: 10.1111/nph.13429
– volume: 411
  start-page: 41
  year: 2001
  ident: 6245_CR58
  publication-title: Nature.
  doi: 10.1038/35075138
– volume: 19
  start-page: 57
  year: 2009
  ident: 6245_CR22
  publication-title: Genome Res
  doi: 10.1101/gr.080275.108
– volume: 13
  start-page: R107
  year: 2012
  ident: 6245_CR35
  publication-title: Genome Biol
  doi: 10.1186/gb-2012-13-11-r107
– volume: 54
  start-page: 201
  year: 2010
  ident: 6245_CR61
  publication-title: Biol Plant
  doi: 10.1007/s10535-010-0038-7
– volume: 15
  start-page: R40
  year: 2014
  ident: 6245_CR8
  publication-title: Genome Biol
  doi: 10.1186/gb-2014-15-2-r40
– volume: 40
  start-page: 302
  year: 2017
  ident: 6245_CR18
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2016.12.021
– volume: 17
  start-page: 238
  year: 2016
  ident: 6245_CR9
  publication-title: BMC Genomics
  doi: 10.1186/s12864-016-2570-0
– volume: 20
  start-page: 959
  year: 2014
  ident: 6245_CR36
  publication-title: RNA.
  doi: 10.1261/rna.044560.114
– volume: 90
  start-page: 133
  year: 2017
  ident: 6245_CR74
  publication-title: Plant J
  doi: 10.1111/tpj.13481
– volume: 11
  start-page: 431
  year: 2010
  ident: 6245_CR76
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-431
– volume: 6
  start-page: 21623
  year: 2016
  ident: 6245_CR44
  publication-title: Sci Rep
  doi: 10.1038/srep21623
– volume: 24
  start-page: 4333
  year: 2012
  ident: 6245_CR24
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.102855
– volume: 16
  start-page: 24
  year: 2015
  ident: 6245_CR37
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0570-4
– volume: 351
  start-page: 1083
  year: 2016
  ident: 6245_CR65
  publication-title: Science.
  doi: 10.1126/science.aad5497
– volume: 7
  start-page: 444
  year: 2016
  ident: 6245_CR40
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2016.00444
– volume: 9
  start-page: 600
  year: 2018
  ident: 6245_CR14
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.00600
– volume: 45
  start-page: W122
  year: 2017
  ident: 6245_CR85
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx382
– volume: 5
  start-page: 9998
  year: 2015
  ident: 6245_CR43
  publication-title: Sci Rep
  doi: 10.1038/srep09998
SSID ssj0017825
Score 2.5007734
Snippet Several studies have mined short-read RNA sequencing datasets to identify long non-coding RNAs (lncRNAs), and others have focused on the function of individual...
Background Several studies have mined short-read RNA sequencing datasets to identify long non-coding RNAs (lncRNAs), and others have focused on the function of...
Abstract Background Several studies have mined short-read RNA sequencing datasets to identify long non-coding RNAs (lncRNAs), and others have focused on the...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 864
SubjectTerms Abiotic stress
Adaptation, Physiological - genetics
Co-expression network
Cold Temperature
Corn
DNA
DNA Transposable Elements
Droughts
Gene Expression Regulation, Plant
Gene Regulatory Networks
Genes
Genome, Plant
Genomics
Hot Temperature
Long non-coding RNA
RNA
RNA sequencing
RNA, Long Noncoding - classification
RNA, Long Noncoding - genetics
RNA, Long Noncoding - metabolism
RNA, Plant - classification
RNA, Plant - genetics
RNA, Plant - metabolism
Salinity
Sequence Analysis, RNA
Stress, Physiological - genetics
Transposable elements
Transposons
Zea mays - genetics
Zea mays - metabolism
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9F23aVFKoVAwWVkPy8dNaEgDySFtIDchyVJ2Idhh7T2kv74zlndZU2guuRhjjbGlGc18sj_NEPKV17ywoea5tlLnovARzrTLQ6mdnkUOCAU3J59fqNMrcXYtr3dKfSEnLKUHTgN3KGF1XsO0mnEuhGfWeRkij1GzECW4WvS-EPM2i6nx_wHEPTn-w2RaHXbghRWyLapcFULmchKFhmT9_7rknZg05UvuBKCTF-T5iBzpPL3xS_IkNK_I01RL8v416c7t8k-gfUpW3uGOKBoSN7yjAyEdK1uBQEtv2-aGwrI_9y1GLnp5Me9ov7A9tatAV6k6fbu6pwvwKhRQLbVu2cJjadpZAiIDsTa8IVcnP34fn-ZjRYXcA2zrcxWDYE6wIJmyNZMli0Hjlyih6yKWNrK6qLxVFWjOMcZr7a2O3tVlrGZeRf6W7MHrhfeEgizomXsfvRIxMMeFDLUrICByYbXNyGwzwsaP6cax6sWtGZYdWpmkFANKMagUIzPyfXvLXcq18T_hI1TbVhDTZA8XwHjMaDzmIePJyBdUusFEGA0ybW7suuvMz1-XZq7A-Sk46Ix8G4ViCz3wdty4AOOAubMmkvsTSZipftJ8sLEtg01Ib2tCu-4MgGwEykoVGXmXbG3bMQB4ABlElZFyYoWTnk9bmuViSBSOtQWUkh8eY6g-kmcFzh9kQMp9stev1uET4LHefR6m3l8eATN0
  priority: 102
  providerName: Directory of Open Access Journals
Title Maize transposable elements contribute to long non-coding RNAs that are regulatory hubs for abiotic stress response
URI https://www.ncbi.nlm.nih.gov/pubmed/31729949
https://www.proquest.com/docview/2315088662
https://pubmed.ncbi.nlm.nih.gov/PMC6858665
https://doaj.org/article/5202d21903344c1abc5ef3ff81ef5067
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFB72grIv4t3oWkYRBCHaZC6ZPoh0ZZdVaJFqoW_DZDLTFkqiSQvWX-85SVobXHzwpZTOGZqZc_lOkjPfIeQVy1hsXMZCZYQKeWw9fFNp6BKVqr5nkKHg4eTRWF5P-eeZmB2RXXurdgOrG2_tsJ_UtFy9_flj-wEc_n3t8Eq-qyDGSqylGIQy5iIUx-QUgClBPx3xPy8VAAxF-2Lzxmln5DagKcRnJNY8QKmazP_vkH2AWd16ygOAurpL7rSZJR02pnCPHLn8PrnV9JrcPiDVyCx_ObpuyMwrPDFFXVM7XtG6YB07X4FAQVdFPqd5kYe2QGSjk_GwouuFWVNTOlo23euLcksXEHUoZL3UpMsC_pY2J09ApC68dQ_J9Ory28frsO24EFpI69ah9I5HKY-ciKTJIpFE3il8UsVVFvvE-CiLB9bIAWg2jSKWKWuUt2mW-EHfSs8ekRO4PPeEUJAFO2DWeiu5d1HKuHBZGgNgMm6UCUh_t8PatnTk2BVjpevbEiV1ox8N-tGoHy0C8mY_5XvDxfEv4QtU214QabTrH4pyrluv1CLuxxnE7D5jnNvIpFY4z7xXkfMCcDwgL1HpGokycqzEmZtNVelPXyd6KCE4SvhQAXndCvkCVmBNe7AB9gG5tTqS5x1J8GTbGX6xsy2NQ1j-lrtiU2lIwjGRljIOyOPG1vYL25lsQJKOFXZW3h3Jl4uaSBx7D0gpnv73zGfkLEb_wbJIcU5O1uXGPYckbZ32yHEyS3rk9OJy_GXSqx919Gp3_A12RT81
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maize+transposable+elements+contribute+to+long+non-coding+RNAs+that+are+regulatory+hubs+for+abiotic+stress+response&rft.jtitle=BMC+genomics&rft.au=Lv%2C+Yuanda&rft.au=Hu%2C+Fengqin&rft.au=Zhou%2C+Yongfeng&rft.au=Wu%2C+Feilong&rft.date=2019-11-15&rft.pub=BioMed+Central&rft.eissn=1471-2164&rft.volume=20&rft_id=info:doi/10.1186%2Fs12864-019-6245-5&rft_id=info%3Apmid%2F31729949&rft.externalDocID=PMC6858665
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon