A facile synthesis of graphite/silicon/graphene spherical composite anode for lithium-ion batteries

•Graphite/Silicon@Graphene is synthesized via spray drying and subsequent annealing.•Thermal reduction of graphene oxide was used to obtain graphene.•Graphite and silicon are wrapped by graphene to form a spherical structure.•Graphene acts as a carbon matrix to buffer volume effect of silicon partic...

Full description

Saved in:
Bibliographic Details
Published inElectrochimica acta Vol. 104; pp. 117 - 123
Main Authors Gan, Lei, Guo, Huajun, Wang, Zhixing, Li, Xinhai, Peng, Wenjie, Wang, Jiexi, Huang, Silin, Su, Mingru
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Graphite/Silicon@Graphene is synthesized via spray drying and subsequent annealing.•Thermal reduction of graphene oxide was used to obtain graphene.•Graphite and silicon are wrapped by graphene to form a spherical structure.•Graphene acts as a carbon matrix to buffer volume effect of silicon particles.•A more stable conductivity network is maintained by graphene. The Graphite/Silicon@reGO composite was synthesized via spray drying and subsequent annealing. According to XRD, Raman spectroscopy and FT-IR, graphene was demonstrated to be existed in the composite. Moreover, SEM and TEM were also used to illustrate the morphology of Graphite/Silicon@reGO. Used as anode for lithium-ion battery, it exhibited good cyclability with a high reversible charge capacity of 575.1mAhg−1 and showed a capacity retention ratio of 73.1% after 50 cycles at a current density of 50mAg−1. It also presented good rate capability at different rates of 50–1000mAg−1. EIS test showed that the composite electrode had a lower SEI resistance and charge-transfer resistance due to the existence of graphene.
AbstractList •Graphite/Silicon@Graphene is synthesized via spray drying and subsequent annealing.•Thermal reduction of graphene oxide was used to obtain graphene.•Graphite and silicon are wrapped by graphene to form a spherical structure.•Graphene acts as a carbon matrix to buffer volume effect of silicon particles.•A more stable conductivity network is maintained by graphene. The Graphite/Silicon@reGO composite was synthesized via spray drying and subsequent annealing. According to XRD, Raman spectroscopy and FT-IR, graphene was demonstrated to be existed in the composite. Moreover, SEM and TEM were also used to illustrate the morphology of Graphite/Silicon@reGO. Used as anode for lithium-ion battery, it exhibited good cyclability with a high reversible charge capacity of 575.1mAhg−1 and showed a capacity retention ratio of 73.1% after 50 cycles at a current density of 50mAg−1. It also presented good rate capability at different rates of 50–1000mAg−1. EIS test showed that the composite electrode had a lower SEI resistance and charge-transfer resistance due to the existence of graphene.
The Graphite/SiliconeGO composite was synthesized via spray drying and subsequent annealing. According to XRD, Raman spectroscopy and FT-IR, graphene was demonstrated to be existed in the composite. Moreover, SEM and TEM were also used to illustrate the morphology of Graphite/SiliconeGO. Used as anode for lithium-ion battery, it exhibited good cyclability with a high reversible charge capacity of 575.1 mAh ga1 and showed a capacity retention ratio of 73.1% after 50 cycles at a current density of 50 mA ga1. It also presented good rate capability at different rates of 50a1000 mA ga1. EIS test showed that the composite electrode had a lower SEI resistance and charge-transfer resistance due to the existence of graphene.
The Graphite/SiliconeGO composite was synthesized via spray drying and subsequent annealing. According to XRD, Raman spectroscopy and FT-IR, graphene was demonstrated to be existed in the composite. Moreover, SEM and TEM were also used to illustrate the morphology of Graphite/SiliconeGO. Used as anode for lithium-ion battery, it exhibited good cyclability with a high reversible charge capacity of 575.1 mAng(-1) and showed a capacity retention ratio of 73.1% after 50 cycles at a current density of 50 mA g(-1). It also presented good rate capability at different rates of 50-1000 mA g(-1). EIS test showed that the composite electrode had a lower SEI resistance and charge-transfer resistance due to the existence of graphene.
Author Peng, Wenjie
Guo, Huajun
Wang, Zhixing
Gan, Lei
Li, Xinhai
Huang, Silin
Wang, Jiexi
Su, Mingru
Author_xml – sequence: 1
  givenname: Lei
  surname: Gan
  fullname: Gan, Lei
– sequence: 2
  givenname: Huajun
  surname: Guo
  fullname: Guo, Huajun
  email: hjguo_csu@163.com, 317054068@qq.com
– sequence: 3
  givenname: Zhixing
  surname: Wang
  fullname: Wang, Zhixing
– sequence: 4
  givenname: Xinhai
  surname: Li
  fullname: Li, Xinhai
– sequence: 5
  givenname: Wenjie
  surname: Peng
  fullname: Peng, Wenjie
– sequence: 6
  givenname: Jiexi
  surname: Wang
  fullname: Wang, Jiexi
– sequence: 7
  givenname: Silin
  surname: Huang
  fullname: Huang, Silin
– sequence: 8
  givenname: Mingru
  surname: Su
  fullname: Su, Mingru
BookMark eNqNkU9rGzEQxUVJoM6fz9A99rLr0Wql1R56MKFNC4Fe2rOQpVEtI0uuJBfy7avEpYdeXBgYmPm9d3jvhlzFFJGQdxQGClSs9wMGNFW3GUagbIBpAMnekBWVM-uZ5MsVWUH79JOQ4i25KWUPALOYYUXMpnPa-IBdeY51h8WXLrnuR9bHna-4Lj54k-L69YCxYW1lb3ToTDocU2lQp2Oy2LmUu-Drzp8OvU-x2-paG4rljlw7HQre_9m35Punj98ePvdPXx-_PGyeesOFqL1wfCtgpHKUi5FuaxfDR4ezxcWBRRiBoQHgFtnWWqlHMNZquXBrFzEislvy_ux7zOnnCUtVB18MhqAjplNRVMx04nycl8sop2xaKIPpMjqJZiqbeUPnM2pyKiWjU8fsDzo_KwrqpSy1V3_LUi9lKZhUK6spP_yjNL7q2mKsWfvwH_rNWY8t318esyrGYzRofW68sslf9PgNbOC6OQ
CitedBy_id crossref_primary_10_1039_C6RA15257K
crossref_primary_10_1007_s11581_021_04380_8
crossref_primary_10_1016_j_jpowsour_2016_10_034
crossref_primary_10_1515_hf_2018_0139
crossref_primary_10_3390_ma11071076
crossref_primary_10_1016_j_jelechem_2019_04_072
crossref_primary_10_1016_j_powtec_2016_03_054
crossref_primary_10_3390_cryst12020223
crossref_primary_10_1016_j_cej_2025_159556
crossref_primary_10_1016_j_apsusc_2019_03_116
crossref_primary_10_1016_j_powtec_2017_09_005
crossref_primary_10_1016_j_mssp_2017_11_023
crossref_primary_10_20964_2017_08_81
crossref_primary_10_15826_chimtech_2024_11_1_08
crossref_primary_10_1016_j_electacta_2021_138685
crossref_primary_10_1149_2_0101701jes
crossref_primary_10_1016_j_jpowsour_2018_03_008
crossref_primary_10_1039_C9TA06438A
crossref_primary_10_1149_1945_7111_acfb3f
crossref_primary_10_1039_C7NJ02154B
crossref_primary_10_1016_j_jpowsour_2015_02_020
crossref_primary_10_1016_j_mtcomm_2020_101437
crossref_primary_10_1016_j_surfin_2024_103893
crossref_primary_10_1007_s11814_019_0354_3
crossref_primary_10_1016_j_electacta_2025_145838
crossref_primary_10_1021_acsanm_9b00156
crossref_primary_10_1016_j_powtec_2015_07_007
crossref_primary_10_1007_s11581_015_1391_5
crossref_primary_10_1016_j_jcis_2023_10_051
crossref_primary_10_1016_j_est_2024_113371
crossref_primary_10_1016_j_ssi_2019_03_009
crossref_primary_10_1016_j_jallcom_2019_04_168
crossref_primary_10_1016_j_apsusc_2019_144136
crossref_primary_10_1111_jace_17499
crossref_primary_10_1016_j_apsusc_2021_148944
crossref_primary_10_1016_j_electacta_2014_09_117
crossref_primary_10_1039_C4RA04997G
crossref_primary_10_1039_C4RA07418A
crossref_primary_10_1115_1_4054566
crossref_primary_10_1016_j_memsci_2018_08_066
crossref_primary_10_1002_batt_202100337
crossref_primary_10_1038_s41598_018_19929_3
crossref_primary_10_1002_aenm_201801101
crossref_primary_10_1039_D3TA02641H
crossref_primary_10_1088_1361_6528_ab57f6
crossref_primary_10_1007_s12633_023_02417_3
crossref_primary_10_1016_j_ceramint_2015_03_060
crossref_primary_10_1016_j_jallcom_2020_156201
crossref_primary_10_1016_j_colsurfa_2024_133877
crossref_primary_10_1016_j_jallcom_2016_06_244
crossref_primary_10_1016_j_jpowsour_2019_227697
crossref_primary_10_1007_s10800_020_01484_3
crossref_primary_10_1016_j_electacta_2021_139315
crossref_primary_10_1039_C8CC07375A
crossref_primary_10_1016_j_ensm_2020_11_028
crossref_primary_10_1016_j_jallcom_2014_03_125
crossref_primary_10_1007_s10854_018_0478_y
crossref_primary_10_1002_advs_202407540
crossref_primary_10_1016_j_jechem_2016_06_006
crossref_primary_10_1007_s11581_021_04220_9
crossref_primary_10_1021_acs_iecr_6b01004
crossref_primary_10_1007_s10854_017_6357_0
crossref_primary_10_1038_s41598_018_33405_y
crossref_primary_10_1016_j_jpowsour_2019_227501
crossref_primary_10_1007_s11708_019_0650_y
crossref_primary_10_1007_s10853_021_06369_0
crossref_primary_10_1016_j_jallcom_2024_175873
crossref_primary_10_1016_j_jelechem_2020_114738
crossref_primary_10_1039_C8NJ05098H
crossref_primary_10_1016_j_jallcom_2015_10_217
crossref_primary_10_1007_s10800_019_01356_5
crossref_primary_10_1038_nnano_2016_237
crossref_primary_10_1002_aenm_202301139
crossref_primary_10_1002_anie_201902085
crossref_primary_10_1016_j_electacta_2018_03_039
crossref_primary_10_20964_2020_07_24
crossref_primary_10_1007_s11082_018_1535_8
crossref_primary_10_1038_s41467_018_08233_3
crossref_primary_10_1016_j_electacta_2021_138092
crossref_primary_10_1007_s11581_014_1355_1
crossref_primary_10_1016_j_jssc_2020_121711
crossref_primary_10_1007_s11696_021_01704_w
crossref_primary_10_1016_j_mser_2015_12_003
crossref_primary_10_1016_j_ensm_2021_04_005
crossref_primary_10_1016_j_jallcom_2017_03_019
crossref_primary_10_1016_j_electacta_2017_04_129
crossref_primary_10_1021_acsami_1c06683
crossref_primary_10_1016_j_jallcom_2017_04_171
crossref_primary_10_1016_j_electacta_2014_12_124
crossref_primary_10_1021_acsami_8b12071
crossref_primary_10_7464_ksct_2016_22_4_308
crossref_primary_10_1016_j_jallcom_2019_02_323
crossref_primary_10_1016_j_ijhydene_2019_05_200
crossref_primary_10_1246_cl_170084
crossref_primary_10_1016_j_electacta_2013_10_195
crossref_primary_10_1016_j_jpowsour_2014_10_180
crossref_primary_10_1039_C5RA19943C
crossref_primary_10_1007_s10008_019_04419_x
crossref_primary_10_1039_C6NJ01042C
crossref_primary_10_1016_j_jallcom_2019_05_284
crossref_primary_10_1007_s11581_021_03977_3
crossref_primary_10_1016_j_jpcs_2017_01_011
crossref_primary_10_1016_j_micromeso_2021_111672
crossref_primary_10_1002_aesr_202100198
crossref_primary_10_1016_j_cej_2023_148047
crossref_primary_10_1021_acsaem_2c01446
crossref_primary_10_1142_S1793604720500423
crossref_primary_10_1016_j_est_2023_108715
crossref_primary_10_1039_C8QI00173A
crossref_primary_10_1016_j_mtelec_2024_100089
crossref_primary_10_1016_j_mtcomm_2020_101003
crossref_primary_10_1016_j_apsusc_2017_12_259
crossref_primary_10_1016_j_electacta_2023_142134
crossref_primary_10_3390_batteries11030115
crossref_primary_10_1021_acsaem_0c02621
crossref_primary_10_1016_j_apsusc_2015_01_236
crossref_primary_10_20964_2022_08_47
crossref_primary_10_3390_polym13183126
crossref_primary_10_1016_j_carbon_2014_10_046
crossref_primary_10_1007_s11249_018_1033_y
crossref_primary_10_1007_s11581_021_03902_8
crossref_primary_10_1021_acssuschemeng_3c02027
crossref_primary_10_1007_s10854_024_13140_z
crossref_primary_10_1016_j_ceramint_2015_07_147
crossref_primary_10_1016_j_tsf_2019_137702
crossref_primary_10_1021_acsami_9b12086
crossref_primary_10_1016_j_carbon_2023_118004
crossref_primary_10_1002_ange_201902085
crossref_primary_10_1016_j_cej_2024_155085
crossref_primary_10_1016_j_electacta_2018_01_130
crossref_primary_10_1149_1945_7111_ac91ad
crossref_primary_10_1016_j_est_2022_105093
crossref_primary_10_1016_j_jallcom_2020_157109
crossref_primary_10_1016_j_cej_2016_12_072
crossref_primary_10_1016_j_est_2023_109351
crossref_primary_10_1021_acsaem_0c01132
crossref_primary_10_1016_j_jallcom_2017_06_217
crossref_primary_10_1007_s11814_021_1019_6
crossref_primary_10_1016_j_mtener_2020_100561
crossref_primary_10_1016_j_jallcom_2020_157466
crossref_primary_10_1016_S1872_5805_24_60871_1
crossref_primary_10_1039_C6TA02285E
crossref_primary_10_1002_aenm_201500289
Cites_doi 10.1149/1.3457425
10.1021/cm902876u
10.1016/j.carbon.2006.06.004
10.1002/anie.200804355
10.1039/c0ee00683a
10.1016/S0013-4686(03)00929-0
10.1149/1.1792242
10.1021/jp072778d
10.1016/j.jpowsour.2011.10.131
10.1016/j.elecom.2011.08.001
10.1039/c2nj40151g
10.1149/1.2220849
10.1016/S1359-6454(02)00514-1
10.1016/j.electacta.2006.01.043
10.1021/cr900070d
10.1021/cm2037475
10.1021/nl902058c
10.1021/jp909284g
10.1039/C0EE00281J
10.1021/nn200659w
10.1016/j.elecom.2005.10.035
10.1016/S0378-7753(02)00461-5
10.1016/j.jpowsour.2005.03.009
10.1149/1.1584212
10.1149/1.1652421
10.1039/c2cc17129e
10.1002/aenm.201100426
10.1149/1.1764411
10.1039/c0jm01702g
10.1002/anie.200601676
10.1016/j.carbon.2011.01.002
10.1016/j.elecom.2009.07.035
10.1002/anie.200906287
10.1039/b919738a
10.1016/j.electacta.2011.02.014
10.1016/j.jpowsour.2004.05.012
ContentType Journal Article
Copyright 2013 The Authors
Copyright_xml – notice: 2013 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
7SP
DOI 10.1016/j.electacta.2013.04.083
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
Electronics & Communications Abstracts
DatabaseTitleList
Materials Research Database
Materials Research Database
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-3859
EndPage 123
ExternalDocumentID 10_1016_j_electacta_2013_04_083
S0013468613007408
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADIYS
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSK
SSZ
T5K
TWZ
UPT
WH7
XPP
YK3
ZMT
~02
~G-
29G
41~
53G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIDUJ
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
LPU
R2-
SC5
SCB
SCH
SEW
SSH
T9H
VH1
WUQ
XOL
ZY4
7SR
7TB
7U5
8BQ
8FD
EFKBS
FR3
JG9
L7M
7SP
ID FETCH-LOGICAL-c566t-6f5b60218289c8fbd9c52fe7de9f0de0203ec005de3bdd8a20cdda895dd962ee3
IEDL.DBID .~1
ISSN 0013-4686
IngestDate Mon Jul 21 09:30:39 EDT 2025
Tue Aug 05 11:06:57 EDT 2025
Tue Aug 05 10:05:50 EDT 2025
Thu Apr 24 22:51:34 EDT 2025
Tue Jul 01 01:52:36 EDT 2025
Fri Feb 23 02:17:35 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Spray drying
Silicon
Anode
Graphene
Language English
License http://creativecommons.org/licenses/by-nc-nd/3.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c566t-6f5b60218289c8fbd9c52fe7de9f0de0203ec005de3bdd8a20cdda895dd962ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0013468613007408
PQID 1464558167
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_1671455279
proquest_miscellaneous_1513491304
proquest_miscellaneous_1464558167
crossref_primary_10_1016_j_electacta_2013_04_083
crossref_citationtrail_10_1016_j_electacta_2013_04_083
elsevier_sciencedirect_doi_10_1016_j_electacta_2013_04_083
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-08-01
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Electrochimica acta
PublicationYear 2013
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yao, Shen, Wang, Liu, Wang (bib0035) 2009; 11
Guo, Sun, Chen, Wang, Manivannan (bib0010) 2011; 56
Ng, Wang, Wexler, Chew, Liu (bib0085) 2007; 111
Sun, Wu, Shi (bib0120) 2011; 4
Xiang, Zhang, Ji, Lee, Zou, Chen, Wu (bib0105) 2011; 49
Luo, Li, Dahn (bib0005) 2010; 157
Chang, Chen (bib0180) 2011; 5
Ryu, Kim, Sung, Oh (bib0060) 2004; 7
Xiao, Cao, Xiao, Wang, Kovarik, Nie, Liu (bib0030) 2012; 48
Zhang, Zhang, Zhang, Zhao, Li, Liu, Cheng (bib0095) 2006; 51
Limthongkul, Jang, Dudney, Chiang (bib0165) 2003; 51
Lee, Lee (bib0020) 2002; 112
Kim, Seo, Park, Cho (bib0065) 2010; 49
Dimov, Kugino, Yoshio (bib0090) 2004; 136
Obrovac, Christensen (bib0170) 2004; 7
Offeman (bib0125) 1958; 8
Stankovich, Piner, Nguyen, Ruoff (bib0150) 2006; 44
Chen, Wei, Wang, Zhu, Guo (bib0055) 2012; 36
Allen, Tung, Kaner (bib0140) 2010; 110
Liu, Guo, Wang, Konstantinov (bib0045) 2010; 20
Lee, Smith, Hayner, Kung (bib0110) 2010; 46
Park, Kim, Joo, Kim, Kim, Ahn, Cui, Cho (bib0075) 2009; 9
Kim, Blomgren, Kumta (bib0080) 2003; 6
Szczech, Jin (bib0015) 2011; 4
Murugesan, Harris, Korgel, Stevenson (bib0040) 2012; 24
Zhang, Zhang, Zhao, Wu (bib0130) 2010; 22
Ohzawa, Yamanaka, Naga, Nakajima (bib0025) 2005; 146
Tao, Fan, Mei, Qu (bib0145) 2011; 13
Ohzuku (bib0160) 1993; 140
Zhang, Shi (bib0175) 2004; 49
Kim, Han, Choo, Cho (bib0070) 2008; 47
Yang, Song, Chen (bib0185) 2006; 8
Wang, Yao, Liu (bib0100) 2004; 7
Tao, Zai, Wang, Zhang, Xu, Shen, Su, Qian (bib0050) 2012; 202
Gao, Jang, Nagase (bib0135) 2010; 114
Ng, Wang, Wexler, Konstantinov, Guo, Liu (bib0155) 2006; 45
Zhao, Hayner, Kung, Kung (bib0115) 2011; 1
Kim (10.1016/j.electacta.2013.04.083_bib0070) 2008; 47
Gao (10.1016/j.electacta.2013.04.083_bib0135) 2010; 114
Dimov (10.1016/j.electacta.2013.04.083_bib0090) 2004; 136
Chang (10.1016/j.electacta.2013.04.083_bib0180) 2011; 5
Kim (10.1016/j.electacta.2013.04.083_bib0065) 2010; 49
Yao (10.1016/j.electacta.2013.04.083_bib0035) 2009; 11
Ryu (10.1016/j.electacta.2013.04.083_bib0060) 2004; 7
Lee (10.1016/j.electacta.2013.04.083_bib0110) 2010; 46
Szczech (10.1016/j.electacta.2013.04.083_bib0015) 2011; 4
Zhang (10.1016/j.electacta.2013.04.083_bib0130) 2010; 22
Ohzuku (10.1016/j.electacta.2013.04.083_bib0160) 1993; 140
Zhang (10.1016/j.electacta.2013.04.083_bib0095) 2006; 51
Zhao (10.1016/j.electacta.2013.04.083_bib0115) 2011; 1
Liu (10.1016/j.electacta.2013.04.083_bib0045) 2010; 20
Zhang (10.1016/j.electacta.2013.04.083_bib0175) 2004; 49
Kim (10.1016/j.electacta.2013.04.083_bib0080) 2003; 6
Yang (10.1016/j.electacta.2013.04.083_bib0185) 2006; 8
Lee (10.1016/j.electacta.2013.04.083_bib0020) 2002; 112
Sun (10.1016/j.electacta.2013.04.083_bib0120) 2011; 4
Murugesan (10.1016/j.electacta.2013.04.083_bib0040) 2012; 24
Wang (10.1016/j.electacta.2013.04.083_bib0100) 2004; 7
Tao (10.1016/j.electacta.2013.04.083_bib0145) 2011; 13
Guo (10.1016/j.electacta.2013.04.083_bib0010) 2011; 56
Limthongkul (10.1016/j.electacta.2013.04.083_bib0165) 2003; 51
Offeman (10.1016/j.electacta.2013.04.083_bib0125) 1958; 8
Luo (10.1016/j.electacta.2013.04.083_bib0005) 2010; 157
Xiang (10.1016/j.electacta.2013.04.083_bib0105) 2011; 49
Stankovich (10.1016/j.electacta.2013.04.083_bib0150) 2006; 44
Ng (10.1016/j.electacta.2013.04.083_bib0085) 2007; 111
Ohzawa (10.1016/j.electacta.2013.04.083_bib0025) 2005; 146
Tao (10.1016/j.electacta.2013.04.083_bib0050) 2012; 202
Ng (10.1016/j.electacta.2013.04.083_bib0155) 2006; 45
Chen (10.1016/j.electacta.2013.04.083_bib0055) 2012; 36
Park (10.1016/j.electacta.2013.04.083_bib0075) 2009; 9
Allen (10.1016/j.electacta.2013.04.083_bib0140) 2010; 110
Xiao (10.1016/j.electacta.2013.04.083_bib0030) 2012; 48
Obrovac (10.1016/j.electacta.2013.04.083_bib0170) 2004; 7
References_xml – volume: 20
  start-page: 10055
  year: 2010
  end-page: 10057
  ident: bib0045
  article-title: Si-based anode materials for lithium rechargeable batteries
  publication-title: Journal of Materials Chemistry
– volume: 110
  start-page: 132
  year: 2010
  end-page: 145
  ident: bib0140
  article-title: Honeycomb carbon: a review of graphene
  publication-title: Chemical reviews
– volume: 146
  start-page: 125
  year: 2005
  end-page: 128
  ident: bib0025
  article-title: Pyrocarbon-coating on powdery hard-carbon using chemical vapor infiltration and its electrochemical characteristics
  publication-title: Journal of Power Sources
– volume: 44
  start-page: 3342
  year: 2006
  end-page: 3347
  ident: bib0150
  article-title: Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets
  publication-title: Carbon
– volume: 4
  start-page: 1113
  year: 2011
  ident: bib0120
  article-title: Graphene based new energy materials
  publication-title: Energy & Environmental Science
– volume: 136
  start-page: 108
  year: 2004
  end-page: 114
  ident: bib0090
  article-title: Mixed silicon–graphite composites as anode material for lithium ion batteries
  publication-title: Journal of Power Sources
– volume: 6
  start-page: A157
  year: 2003
  end-page: A161
  ident: bib0080
  article-title: Nanostructured Si/TiB
  publication-title: Electrochemical and Solid-State Letters
– volume: 49
  start-page: 1475
  year: 2004
  end-page: 1482
  ident: bib0175
  article-title: Electrochemical impedance study of lithium intercalation into MCMB electrode in a gel electrolyte
  publication-title: Electrochimica Acta
– volume: 48
  start-page: 3321
  year: 2012
  end-page: 3323
  ident: bib0030
  article-title: High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications
  publication-title: Chemical Communications (Camb)
– volume: 8
  start-page: 137
  year: 2006
  end-page: 142
  ident: bib0185
  article-title: Electrochemical performance of expanded mesocarbon microbeads as anode material for lithium-ion batteries
  publication-title: Electrochemistry Communications
– volume: 56
  start-page: 3981
  year: 2011
  end-page: 3987
  ident: bib0010
  article-title: Cyclability study of silicon–carbon composite anodes for lithium–ion batteries using electrochemical impedance spectroscopy
  publication-title: Electrochimica Acta
– volume: 4
  start-page: 56
  year: 2011
  end-page: 72
  ident: bib0015
  article-title: Nanostructured silicon for high capacity lithium battery anodes
  publication-title: Energy & Environmental Science
– volume: 46
  start-page: 2025
  year: 2010
  end-page: 2027
  ident: bib0110
  article-title: Silicon nanoparticles-graphene paper composites for Li ion battery anodes
  publication-title: Chemical Communications (Camb)
– volume: 7
  start-page: A250
  year: 2004
  end-page: A253
  ident: bib0100
  article-title: Characterization of nanocrystalline Si-MCMB composite anode materials
  publication-title: Electrochemical and Solid–State Letters
– volume: 51
  start-page: 1103
  year: 2003
  end-page: 1113
  ident: bib0165
  article-title: Electrochemically-driven solid–state amorphization in lithium–silicon alloys and implications for lithium storage
  publication-title: Acta Materialia
– volume: 11
  start-page: 1849
  year: 2009
  end-page: 1852
  ident: bib0035
  article-title: In situ chemical synthesis of SnO
  publication-title: Electrochemistry Communications
– volume: 13
  start-page: 1332
  year: 2011
  end-page: 1335
  ident: bib0145
  article-title: Self-supporting Si/reduced graphene oxide nanocomposite films as anode for lithium ion batteries
  publication-title: Electrochemistry Communications
– volume: 49
  start-page: 1787
  year: 2011
  end-page: 1796
  ident: bib0105
  article-title: Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability
  publication-title: Carbon
– volume: 140
  start-page: 2490
  year: 1993
  end-page: 2498
  ident: bib0160
  article-title: Formation of lithium–graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (Shuttlecock) cell
  publication-title: Journal of The Electrochemical Society
– volume: 36
  start-page: 1589
  year: 2012
  end-page: 1595
  ident: bib0055
  article-title: α-Fe
  publication-title: New Journal of Chemistry
– volume: 7
  start-page: A93
  year: 2004
  end-page: A96
  ident: bib0170
  article-title: Structural changes in silicon anodes during lithium insertion/extraction
  publication-title: Electrochemical and Solid-State Letters
– volume: 9
  start-page: 3844
  year: 2009
  end-page: 3847
  ident: bib0075
  article-title: Silicon nanotube battery anodes
  publication-title: Nano Letters
– volume: 47
  start-page: 10151
  year: 2008
  end-page: 10154
  ident: bib0070
  article-title: Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries
  publication-title: Angewandte Chemie International Edition
– volume: 24
  start-page: 1306
  year: 2012
  end-page: 1315
  ident: bib0040
  article-title: Copper-coated amorphous silicon particles as an anode material for Lithium–ion batteries
  publication-title: Chemistry of Materials
– volume: 7
  start-page: A306
  year: 2004
  end-page: A309
  ident: bib0060
  article-title: Failure Modes of silicon powder negative electrode in lithium secondary batteries
  publication-title: Electrochemical and Solid-State Letters
– volume: 202
  start-page: 230
  year: 2012
  end-page: 235
  ident: bib0050
  article-title: Co
  publication-title: Journal of Power Sources
– volume: 114
  start-page: 832
  year: 2010
  end-page: 842
  ident: bib0135
  article-title: Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design
  publication-title: The Journal of Physical Chemistry C
– volume: 111
  start-page: 11131
  year: 2007
  end-page: 11138
  ident: bib0085
  article-title: Amorphous Carbon-coated silicon nanocomposites: a low-temperature synthesis via spray pyrolysis and their application as high-capacity anodes for lithium–ion batteries
  publication-title: The Journal of Physical Chemistry C
– volume: 8
  start-page: 1339
  year: 1958
  ident: bib0125
  article-title: Preparation of graphitic oxide
  publication-title: Journal of the American Chemical Society
– volume: 51
  start-page: 4994
  year: 2006
  end-page: 5000
  ident: bib0095
  article-title: Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries
  publication-title: Electrochimica Acta
– volume: 45
  start-page: 6896
  year: 2006
  end-page: 6899
  ident: bib0155
  article-title: Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries
  publication-title: Angewandte Chemie International Edition
– volume: 49
  start-page: 2146
  year: 2010
  end-page: 2149
  ident: bib0065
  article-title: A critical size of silicon nano-anodes for lithium rechargeable batteries
  publication-title: Angewandte Chemie International Edition
– volume: 112
  start-page: 649
  year: 2002
  end-page: 654
  ident: bib0020
  article-title: Graphite–FeSi alloy composites as anode materials for rechargeable lithium batteries
  publication-title: Journal of Power Sources
– volume: 22
  start-page: 1392
  year: 2010
  end-page: 1401
  ident: bib0130
  article-title: Graphene/polyaniline nanofiber composites as supercapacitor electrodes
  publication-title: Chemistry of Materials
– volume: 1
  start-page: 1079
  year: 2011
  end-page: 1084
  ident: bib0115
  article-title: In-plane vacancy-enabled high-power Si–graphene composite electrode for lithium–ion batteries
  publication-title: Advanced Energy Materials
– volume: 157
  start-page: A993
  year: 2010
  end-page: A1001
  ident: bib0005
  article-title: Synthesis, characterization, and thermal stability of LiCo
  publication-title: Journal of The Electrochemical Society
– volume: 5
  start-page: 4720
  year: 2011
  end-page: 4728
  ident: bib0180
  article-title: -Cysteine-assisted synthesis of layered MoS
  publication-title: ACS nano
– volume: 157
  start-page: A993
  year: 2010
  ident: 10.1016/j.electacta.2013.04.083_bib0005
  article-title: Synthesis, characterization, and thermal stability of LiCo1−z[MnMg]z/2O2
  publication-title: Journal of The Electrochemical Society
  doi: 10.1149/1.3457425
– volume: 22
  start-page: 1392
  year: 2010
  ident: 10.1016/j.electacta.2013.04.083_bib0130
  article-title: Graphene/polyaniline nanofiber composites as supercapacitor electrodes
  publication-title: Chemistry of Materials
  doi: 10.1021/cm902876u
– volume: 44
  start-page: 3342
  year: 2006
  ident: 10.1016/j.electacta.2013.04.083_bib0150
  article-title: Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets
  publication-title: Carbon
  doi: 10.1016/j.carbon.2006.06.004
– volume: 47
  start-page: 10151
  year: 2008
  ident: 10.1016/j.electacta.2013.04.083_bib0070
  article-title: Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries
  publication-title: Angewandte Chemie International Edition
  doi: 10.1002/anie.200804355
– volume: 4
  start-page: 1113
  year: 2011
  ident: 10.1016/j.electacta.2013.04.083_bib0120
  article-title: Graphene based new energy materials
  publication-title: Energy & Environmental Science
  doi: 10.1039/c0ee00683a
– volume: 49
  start-page: 1475
  year: 2004
  ident: 10.1016/j.electacta.2013.04.083_bib0175
  article-title: Electrochemical impedance study of lithium intercalation into MCMB electrode in a gel electrolyte
  publication-title: Electrochimica Acta
  doi: 10.1016/S0013-4686(03)00929-0
– volume: 7
  start-page: A306
  year: 2004
  ident: 10.1016/j.electacta.2013.04.083_bib0060
  article-title: Failure Modes of silicon powder negative electrode in lithium secondary batteries
  publication-title: Electrochemical and Solid-State Letters
  doi: 10.1149/1.1792242
– volume: 111
  start-page: 11131
  year: 2007
  ident: 10.1016/j.electacta.2013.04.083_bib0085
  article-title: Amorphous Carbon-coated silicon nanocomposites: a low-temperature synthesis via spray pyrolysis and their application as high-capacity anodes for lithium–ion batteries
  publication-title: The Journal of Physical Chemistry C
  doi: 10.1021/jp072778d
– volume: 202
  start-page: 230
  year: 2012
  ident: 10.1016/j.electacta.2013.04.083_bib0050
  article-title: Co3O4 nanorods/graphene nanosheets nanocomposites for lithium ion batteries with improved reversible capacity and cycle stability
  publication-title: Journal of Power Sources
  doi: 10.1016/j.jpowsour.2011.10.131
– volume: 13
  start-page: 1332
  year: 2011
  ident: 10.1016/j.electacta.2013.04.083_bib0145
  article-title: Self-supporting Si/reduced graphene oxide nanocomposite films as anode for lithium ion batteries
  publication-title: Electrochemistry Communications
  doi: 10.1016/j.elecom.2011.08.001
– volume: 36
  start-page: 1589
  year: 2012
  ident: 10.1016/j.electacta.2013.04.083_bib0055
  article-title: α-Fe2O3 nanoparticles anchored on graphene with 3D quasi-laminated architecture: in situ wet chemistry synthesis and enhanced electrochemical performance for lithium ion batteries
  publication-title: New Journal of Chemistry
  doi: 10.1039/c2nj40151g
– volume: 140
  start-page: 2490
  year: 1993
  ident: 10.1016/j.electacta.2013.04.083_bib0160
  article-title: Formation of lithium–graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (Shuttlecock) cell
  publication-title: Journal of The Electrochemical Society
  doi: 10.1149/1.2220849
– volume: 51
  start-page: 1103
  year: 2003
  ident: 10.1016/j.electacta.2013.04.083_bib0165
  article-title: Electrochemically-driven solid–state amorphization in lithium–silicon alloys and implications for lithium storage
  publication-title: Acta Materialia
  doi: 10.1016/S1359-6454(02)00514-1
– volume: 51
  start-page: 4994
  year: 2006
  ident: 10.1016/j.electacta.2013.04.083_bib0095
  article-title: Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries
  publication-title: Electrochimica Acta
  doi: 10.1016/j.electacta.2006.01.043
– volume: 110
  start-page: 132
  year: 2010
  ident: 10.1016/j.electacta.2013.04.083_bib0140
  article-title: Honeycomb carbon: a review of graphene
  publication-title: Chemical reviews
  doi: 10.1021/cr900070d
– volume: 24
  start-page: 1306
  year: 2012
  ident: 10.1016/j.electacta.2013.04.083_bib0040
  article-title: Copper-coated amorphous silicon particles as an anode material for Lithium–ion batteries
  publication-title: Chemistry of Materials
  doi: 10.1021/cm2037475
– volume: 9
  start-page: 3844
  year: 2009
  ident: 10.1016/j.electacta.2013.04.083_bib0075
  article-title: Silicon nanotube battery anodes
  publication-title: Nano Letters
  doi: 10.1021/nl902058c
– volume: 114
  start-page: 832
  year: 2010
  ident: 10.1016/j.electacta.2013.04.083_bib0135
  article-title: Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design
  publication-title: The Journal of Physical Chemistry C
  doi: 10.1021/jp909284g
– volume: 4
  start-page: 56
  year: 2011
  ident: 10.1016/j.electacta.2013.04.083_bib0015
  article-title: Nanostructured silicon for high capacity lithium battery anodes
  publication-title: Energy & Environmental Science
  doi: 10.1039/C0EE00281J
– volume: 5
  start-page: 4720
  year: 2011
  ident: 10.1016/j.electacta.2013.04.083_bib0180
  article-title: l-Cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries
  publication-title: ACS nano
  doi: 10.1021/nn200659w
– volume: 8
  start-page: 137
  year: 2006
  ident: 10.1016/j.electacta.2013.04.083_bib0185
  article-title: Electrochemical performance of expanded mesocarbon microbeads as anode material for lithium-ion batteries
  publication-title: Electrochemistry Communications
  doi: 10.1016/j.elecom.2005.10.035
– volume: 112
  start-page: 649
  year: 2002
  ident: 10.1016/j.electacta.2013.04.083_bib0020
  article-title: Graphite–FeSi alloy composites as anode materials for rechargeable lithium batteries
  publication-title: Journal of Power Sources
  doi: 10.1016/S0378-7753(02)00461-5
– volume: 146
  start-page: 125
  year: 2005
  ident: 10.1016/j.electacta.2013.04.083_bib0025
  article-title: Pyrocarbon-coating on powdery hard-carbon using chemical vapor infiltration and its electrochemical characteristics
  publication-title: Journal of Power Sources
  doi: 10.1016/j.jpowsour.2005.03.009
– volume: 8
  start-page: 1339
  year: 1958
  ident: 10.1016/j.electacta.2013.04.083_bib0125
  article-title: Preparation of graphitic oxide
  publication-title: Journal of the American Chemical Society
– volume: 6
  start-page: A157
  year: 2003
  ident: 10.1016/j.electacta.2013.04.083_bib0080
  article-title: Nanostructured Si/TiB2 composite anodes for Li-ion batteries
  publication-title: Electrochemical and Solid-State Letters
  doi: 10.1149/1.1584212
– volume: 7
  start-page: A93
  year: 2004
  ident: 10.1016/j.electacta.2013.04.083_bib0170
  article-title: Structural changes in silicon anodes during lithium insertion/extraction
  publication-title: Electrochemical and Solid-State Letters
  doi: 10.1149/1.1652421
– volume: 48
  start-page: 3321
  year: 2012
  ident: 10.1016/j.electacta.2013.04.083_bib0030
  article-title: High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications
  publication-title: Chemical Communications (Camb)
  doi: 10.1039/c2cc17129e
– volume: 1
  start-page: 1079
  year: 2011
  ident: 10.1016/j.electacta.2013.04.083_bib0115
  article-title: In-plane vacancy-enabled high-power Si–graphene composite electrode for lithium–ion batteries
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.201100426
– volume: 7
  start-page: A250
  year: 2004
  ident: 10.1016/j.electacta.2013.04.083_bib0100
  article-title: Characterization of nanocrystalline Si-MCMB composite anode materials
  publication-title: Electrochemical and Solid–State Letters
  doi: 10.1149/1.1764411
– volume: 20
  start-page: 10055
  year: 2010
  ident: 10.1016/j.electacta.2013.04.083_bib0045
  article-title: Si-based anode materials for lithium rechargeable batteries
  publication-title: Journal of Materials Chemistry
  doi: 10.1039/c0jm01702g
– volume: 45
  start-page: 6896
  year: 2006
  ident: 10.1016/j.electacta.2013.04.083_bib0155
  article-title: Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries
  publication-title: Angewandte Chemie International Edition
  doi: 10.1002/anie.200601676
– volume: 49
  start-page: 1787
  year: 2011
  ident: 10.1016/j.electacta.2013.04.083_bib0105
  article-title: Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.01.002
– volume: 11
  start-page: 1849
  year: 2009
  ident: 10.1016/j.electacta.2013.04.083_bib0035
  article-title: In situ chemical synthesis of SnO2–graphene nanocomposite as anode materials for lithium–ion batteries
  publication-title: Electrochemistry Communications
  doi: 10.1016/j.elecom.2009.07.035
– volume: 49
  start-page: 2146
  year: 2010
  ident: 10.1016/j.electacta.2013.04.083_bib0065
  article-title: A critical size of silicon nano-anodes for lithium rechargeable batteries
  publication-title: Angewandte Chemie International Edition
  doi: 10.1002/anie.200906287
– volume: 46
  start-page: 2025
  year: 2010
  ident: 10.1016/j.electacta.2013.04.083_bib0110
  article-title: Silicon nanoparticles-graphene paper composites for Li ion battery anodes
  publication-title: Chemical Communications (Camb)
  doi: 10.1039/b919738a
– volume: 56
  start-page: 3981
  year: 2011
  ident: 10.1016/j.electacta.2013.04.083_bib0010
  article-title: Cyclability study of silicon–carbon composite anodes for lithium–ion batteries using electrochemical impedance spectroscopy
  publication-title: Electrochimica Acta
  doi: 10.1016/j.electacta.2011.02.014
– volume: 136
  start-page: 108
  year: 2004
  ident: 10.1016/j.electacta.2013.04.083_bib0090
  article-title: Mixed silicon–graphite composites as anode material for lithium ion batteries
  publication-title: Journal of Power Sources
  doi: 10.1016/j.jpowsour.2004.05.012
SSID ssj0007670
Score 2.478423
Snippet •Graphite/Silicon@Graphene is synthesized via spray drying and subsequent annealing.•Thermal reduction of graphene oxide was used to obtain graphene.•Graphite...
The Graphite/SiliconeGO composite was synthesized via spray drying and subsequent annealing. According to XRD, Raman spectroscopy and FT-IR, graphene was...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 117
SubjectTerms Anode
Anodes
Charge density
Electrodes
Graphene
Graphite
Lithium batteries
Lithium-ion batteries
Silicon
Spray drying
Transmission electron microscopy
Title A facile synthesis of graphite/silicon/graphene spherical composite anode for lithium-ion batteries
URI https://dx.doi.org/10.1016/j.electacta.2013.04.083
https://www.proquest.com/docview/1464558167
https://www.proquest.com/docview/1513491304
https://www.proquest.com/docview/1671455279
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaq9gAcUCkgWqAyEtew3mTsxNxWq1YLiJ5aqTfLTxFUslWze-iF386MN-kDifaAlEssW7JmxjOf5ZlvGPtok9fJB1_IKrkCGgeF0yAL0LF0IKdR5Cr-7ydqcQZfz-X5FpuPtTCUVjn4_o1Pz956GJkM0pxcti3V-E4rUA0BYIyDueAXoCYr__T7Ns2jVrUYuxjQ7Hs5XrnVjMWPcryqzHnaVP-KUH_56hyAjnfZ8wE58tlmcy_YVuz22JP52LBtjz27wy34kvkZT9bjmef9dYcor297vkw8E1QjzJz07QUaQTfJA-jweE8EA6QyTmnmlMsVue2WIXLEtRzR-o92_atANXKXOTnxiv2KnR0fnc4XxdBRofAI21aFStKpTNreaN8kF7SXZYp1iDqJEOlVMno8lyFWLoTGlsKHYBstQ9CqjLF6zba7ZRffMC5dJawINmqdQNtkAZIVtcdgFwCc3mdqlKLxA904db24MGNe2U9zI35D4jcCDIp_n4mbhZcbxo3Hl3we1WTuGY_BuPD44g-jYg0qjN5LbBeX655uRSBlM1X1A3Mk8TuiCcIDc1RNdPBlrQ_-Z6Nv2VP6o0LIqXzHtldX6_geEdHKHWaTP2Q7sy_fFid_AAw6D1A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELZQONAeEKWtyqsYqddVnF3bu-YWRaBQICeQuFl-qlvRDeomB_49M85uBJWAQyWfLI9kzdgzn-WZbwj5YaJT0XmXiSLajFeWZ1ZxkXEVcsvFKLBUxX89k9Nb_vNO3G2QSV8Lg2mVne9f-fTkrbuZYafN4UNdY43vqOCyQgAMcRALfjeRnUoMyOb44nI6WzvkUpasb2SAAi_SvFK3GQMD07yKRHtaFa8FqX_cdYpB5ztkuwOPdLza3yeyEZpdsjXpe7btko_P6AU_Ezem0Ti49rR9bADotXVL55EmjmpAmsO2vodz0AzTBPg82iLHAFqNYqY5pnMFapq5DxSgLQXA_qte_snAktQmWk54ZX8ht-dnN5Np1jVVyBwgt0Umo7Ay8bZXylXReuVEHkPpg4rMB_yYDA6upg-F9b4yOXPem0oJ75XMQyi-kkEzb8I3QoUtmGHeBKUiVyYazqNhpYN45zm3ao_IXovadYzj2PjiXvepZb_1Wv0a1a8Z16D-PcLWgg8r0o33RU57M-kX50dDaHhf-KQ3rAaD4ZeJacJ82eLDiAtRjWT5xhqBFI9wCvkba2SJjPB5qfb_Z6PHZGt6c32lry5mlwfkQ55ac2Ay4iEZLP4uwxEApIX93l2AJ0KrEgI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+facile+synthesis+of+graphite%2Fsilicon%2Fgraphene+spherical+composite+anode+for+lithium-ion+batteries&rft.jtitle=Electrochimica+acta&rft.au=Gan%2C+Lei&rft.au=Guo%2C+Huajun&rft.au=Wang%2C+Zhixing&rft.au=Li%2C+Xinhai&rft.date=2013-08-01&rft.pub=Elsevier+Ltd&rft.issn=0013-4686&rft.eissn=1873-3859&rft.volume=104&rft.spage=117&rft.epage=123&rft_id=info:doi/10.1016%2Fj.electacta.2013.04.083&rft.externalDocID=S0013468613007408
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon