A facile synthesis of graphite/silicon/graphene spherical composite anode for lithium-ion batteries
•Graphite/Silicon@Graphene is synthesized via spray drying and subsequent annealing.•Thermal reduction of graphene oxide was used to obtain graphene.•Graphite and silicon are wrapped by graphene to form a spherical structure.•Graphene acts as a carbon matrix to buffer volume effect of silicon partic...
Saved in:
Published in | Electrochimica acta Vol. 104; pp. 117 - 123 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Graphite/Silicon@Graphene is synthesized via spray drying and subsequent annealing.•Thermal reduction of graphene oxide was used to obtain graphene.•Graphite and silicon are wrapped by graphene to form a spherical structure.•Graphene acts as a carbon matrix to buffer volume effect of silicon particles.•A more stable conductivity network is maintained by graphene.
The Graphite/Silicon@reGO composite was synthesized via spray drying and subsequent annealing. According to XRD, Raman spectroscopy and FT-IR, graphene was demonstrated to be existed in the composite. Moreover, SEM and TEM were also used to illustrate the morphology of Graphite/Silicon@reGO. Used as anode for lithium-ion battery, it exhibited good cyclability with a high reversible charge capacity of 575.1mAhg−1 and showed a capacity retention ratio of 73.1% after 50 cycles at a current density of 50mAg−1. It also presented good rate capability at different rates of 50–1000mAg−1. EIS test showed that the composite electrode had a lower SEI resistance and charge-transfer resistance due to the existence of graphene. |
---|---|
AbstractList | •Graphite/Silicon@Graphene is synthesized via spray drying and subsequent annealing.•Thermal reduction of graphene oxide was used to obtain graphene.•Graphite and silicon are wrapped by graphene to form a spherical structure.•Graphene acts as a carbon matrix to buffer volume effect of silicon particles.•A more stable conductivity network is maintained by graphene.
The Graphite/Silicon@reGO composite was synthesized via spray drying and subsequent annealing. According to XRD, Raman spectroscopy and FT-IR, graphene was demonstrated to be existed in the composite. Moreover, SEM and TEM were also used to illustrate the morphology of Graphite/Silicon@reGO. Used as anode for lithium-ion battery, it exhibited good cyclability with a high reversible charge capacity of 575.1mAhg−1 and showed a capacity retention ratio of 73.1% after 50 cycles at a current density of 50mAg−1. It also presented good rate capability at different rates of 50–1000mAg−1. EIS test showed that the composite electrode had a lower SEI resistance and charge-transfer resistance due to the existence of graphene. The Graphite/SiliconeGO composite was synthesized via spray drying and subsequent annealing. According to XRD, Raman spectroscopy and FT-IR, graphene was demonstrated to be existed in the composite. Moreover, SEM and TEM were also used to illustrate the morphology of Graphite/SiliconeGO. Used as anode for lithium-ion battery, it exhibited good cyclability with a high reversible charge capacity of 575.1 mAh ga1 and showed a capacity retention ratio of 73.1% after 50 cycles at a current density of 50 mA ga1. It also presented good rate capability at different rates of 50a1000 mA ga1. EIS test showed that the composite electrode had a lower SEI resistance and charge-transfer resistance due to the existence of graphene. The Graphite/SiliconeGO composite was synthesized via spray drying and subsequent annealing. According to XRD, Raman spectroscopy and FT-IR, graphene was demonstrated to be existed in the composite. Moreover, SEM and TEM were also used to illustrate the morphology of Graphite/SiliconeGO. Used as anode for lithium-ion battery, it exhibited good cyclability with a high reversible charge capacity of 575.1 mAng(-1) and showed a capacity retention ratio of 73.1% after 50 cycles at a current density of 50 mA g(-1). It also presented good rate capability at different rates of 50-1000 mA g(-1). EIS test showed that the composite electrode had a lower SEI resistance and charge-transfer resistance due to the existence of graphene. |
Author | Peng, Wenjie Guo, Huajun Wang, Zhixing Gan, Lei Li, Xinhai Huang, Silin Wang, Jiexi Su, Mingru |
Author_xml | – sequence: 1 givenname: Lei surname: Gan fullname: Gan, Lei – sequence: 2 givenname: Huajun surname: Guo fullname: Guo, Huajun email: hjguo_csu@163.com, 317054068@qq.com – sequence: 3 givenname: Zhixing surname: Wang fullname: Wang, Zhixing – sequence: 4 givenname: Xinhai surname: Li fullname: Li, Xinhai – sequence: 5 givenname: Wenjie surname: Peng fullname: Peng, Wenjie – sequence: 6 givenname: Jiexi surname: Wang fullname: Wang, Jiexi – sequence: 7 givenname: Silin surname: Huang fullname: Huang, Silin – sequence: 8 givenname: Mingru surname: Su fullname: Su, Mingru |
BookMark | eNqNkU9rGzEQxUVJoM6fz9A99rLr0Wql1R56MKFNC4Fe2rOQpVEtI0uuJBfy7avEpYdeXBgYmPm9d3jvhlzFFJGQdxQGClSs9wMGNFW3GUagbIBpAMnekBWVM-uZ5MsVWUH79JOQ4i25KWUPALOYYUXMpnPa-IBdeY51h8WXLrnuR9bHna-4Lj54k-L69YCxYW1lb3ToTDocU2lQp2Oy2LmUu-Drzp8OvU-x2-paG4rljlw7HQre_9m35Punj98ePvdPXx-_PGyeesOFqL1wfCtgpHKUi5FuaxfDR4ezxcWBRRiBoQHgFtnWWqlHMNZquXBrFzEislvy_ux7zOnnCUtVB18MhqAjplNRVMx04nycl8sop2xaKIPpMjqJZiqbeUPnM2pyKiWjU8fsDzo_KwrqpSy1V3_LUi9lKZhUK6spP_yjNL7q2mKsWfvwH_rNWY8t318esyrGYzRofW68sslf9PgNbOC6OQ |
CitedBy_id | crossref_primary_10_1039_C6RA15257K crossref_primary_10_1007_s11581_021_04380_8 crossref_primary_10_1016_j_jpowsour_2016_10_034 crossref_primary_10_1515_hf_2018_0139 crossref_primary_10_3390_ma11071076 crossref_primary_10_1016_j_jelechem_2019_04_072 crossref_primary_10_1016_j_powtec_2016_03_054 crossref_primary_10_3390_cryst12020223 crossref_primary_10_1016_j_cej_2025_159556 crossref_primary_10_1016_j_apsusc_2019_03_116 crossref_primary_10_1016_j_powtec_2017_09_005 crossref_primary_10_1016_j_mssp_2017_11_023 crossref_primary_10_20964_2017_08_81 crossref_primary_10_15826_chimtech_2024_11_1_08 crossref_primary_10_1016_j_electacta_2021_138685 crossref_primary_10_1149_2_0101701jes crossref_primary_10_1016_j_jpowsour_2018_03_008 crossref_primary_10_1039_C9TA06438A crossref_primary_10_1149_1945_7111_acfb3f crossref_primary_10_1039_C7NJ02154B crossref_primary_10_1016_j_jpowsour_2015_02_020 crossref_primary_10_1016_j_mtcomm_2020_101437 crossref_primary_10_1016_j_surfin_2024_103893 crossref_primary_10_1007_s11814_019_0354_3 crossref_primary_10_1016_j_electacta_2025_145838 crossref_primary_10_1021_acsanm_9b00156 crossref_primary_10_1016_j_powtec_2015_07_007 crossref_primary_10_1007_s11581_015_1391_5 crossref_primary_10_1016_j_jcis_2023_10_051 crossref_primary_10_1016_j_est_2024_113371 crossref_primary_10_1016_j_ssi_2019_03_009 crossref_primary_10_1016_j_jallcom_2019_04_168 crossref_primary_10_1016_j_apsusc_2019_144136 crossref_primary_10_1111_jace_17499 crossref_primary_10_1016_j_apsusc_2021_148944 crossref_primary_10_1016_j_electacta_2014_09_117 crossref_primary_10_1039_C4RA04997G crossref_primary_10_1039_C4RA07418A crossref_primary_10_1115_1_4054566 crossref_primary_10_1016_j_memsci_2018_08_066 crossref_primary_10_1002_batt_202100337 crossref_primary_10_1038_s41598_018_19929_3 crossref_primary_10_1002_aenm_201801101 crossref_primary_10_1039_D3TA02641H crossref_primary_10_1088_1361_6528_ab57f6 crossref_primary_10_1007_s12633_023_02417_3 crossref_primary_10_1016_j_ceramint_2015_03_060 crossref_primary_10_1016_j_jallcom_2020_156201 crossref_primary_10_1016_j_colsurfa_2024_133877 crossref_primary_10_1016_j_jallcom_2016_06_244 crossref_primary_10_1016_j_jpowsour_2019_227697 crossref_primary_10_1007_s10800_020_01484_3 crossref_primary_10_1016_j_electacta_2021_139315 crossref_primary_10_1039_C8CC07375A crossref_primary_10_1016_j_ensm_2020_11_028 crossref_primary_10_1016_j_jallcom_2014_03_125 crossref_primary_10_1007_s10854_018_0478_y crossref_primary_10_1002_advs_202407540 crossref_primary_10_1016_j_jechem_2016_06_006 crossref_primary_10_1007_s11581_021_04220_9 crossref_primary_10_1021_acs_iecr_6b01004 crossref_primary_10_1007_s10854_017_6357_0 crossref_primary_10_1038_s41598_018_33405_y crossref_primary_10_1016_j_jpowsour_2019_227501 crossref_primary_10_1007_s11708_019_0650_y crossref_primary_10_1007_s10853_021_06369_0 crossref_primary_10_1016_j_jallcom_2024_175873 crossref_primary_10_1016_j_jelechem_2020_114738 crossref_primary_10_1039_C8NJ05098H crossref_primary_10_1016_j_jallcom_2015_10_217 crossref_primary_10_1007_s10800_019_01356_5 crossref_primary_10_1038_nnano_2016_237 crossref_primary_10_1002_aenm_202301139 crossref_primary_10_1002_anie_201902085 crossref_primary_10_1016_j_electacta_2018_03_039 crossref_primary_10_20964_2020_07_24 crossref_primary_10_1007_s11082_018_1535_8 crossref_primary_10_1038_s41467_018_08233_3 crossref_primary_10_1016_j_electacta_2021_138092 crossref_primary_10_1007_s11581_014_1355_1 crossref_primary_10_1016_j_jssc_2020_121711 crossref_primary_10_1007_s11696_021_01704_w crossref_primary_10_1016_j_mser_2015_12_003 crossref_primary_10_1016_j_ensm_2021_04_005 crossref_primary_10_1016_j_jallcom_2017_03_019 crossref_primary_10_1016_j_electacta_2017_04_129 crossref_primary_10_1021_acsami_1c06683 crossref_primary_10_1016_j_jallcom_2017_04_171 crossref_primary_10_1016_j_electacta_2014_12_124 crossref_primary_10_1021_acsami_8b12071 crossref_primary_10_7464_ksct_2016_22_4_308 crossref_primary_10_1016_j_jallcom_2019_02_323 crossref_primary_10_1016_j_ijhydene_2019_05_200 crossref_primary_10_1246_cl_170084 crossref_primary_10_1016_j_electacta_2013_10_195 crossref_primary_10_1016_j_jpowsour_2014_10_180 crossref_primary_10_1039_C5RA19943C crossref_primary_10_1007_s10008_019_04419_x crossref_primary_10_1039_C6NJ01042C crossref_primary_10_1016_j_jallcom_2019_05_284 crossref_primary_10_1007_s11581_021_03977_3 crossref_primary_10_1016_j_jpcs_2017_01_011 crossref_primary_10_1016_j_micromeso_2021_111672 crossref_primary_10_1002_aesr_202100198 crossref_primary_10_1016_j_cej_2023_148047 crossref_primary_10_1021_acsaem_2c01446 crossref_primary_10_1142_S1793604720500423 crossref_primary_10_1016_j_est_2023_108715 crossref_primary_10_1039_C8QI00173A crossref_primary_10_1016_j_mtelec_2024_100089 crossref_primary_10_1016_j_mtcomm_2020_101003 crossref_primary_10_1016_j_apsusc_2017_12_259 crossref_primary_10_1016_j_electacta_2023_142134 crossref_primary_10_3390_batteries11030115 crossref_primary_10_1021_acsaem_0c02621 crossref_primary_10_1016_j_apsusc_2015_01_236 crossref_primary_10_20964_2022_08_47 crossref_primary_10_3390_polym13183126 crossref_primary_10_1016_j_carbon_2014_10_046 crossref_primary_10_1007_s11249_018_1033_y crossref_primary_10_1007_s11581_021_03902_8 crossref_primary_10_1021_acssuschemeng_3c02027 crossref_primary_10_1007_s10854_024_13140_z crossref_primary_10_1016_j_ceramint_2015_07_147 crossref_primary_10_1016_j_tsf_2019_137702 crossref_primary_10_1021_acsami_9b12086 crossref_primary_10_1016_j_carbon_2023_118004 crossref_primary_10_1002_ange_201902085 crossref_primary_10_1016_j_cej_2024_155085 crossref_primary_10_1016_j_electacta_2018_01_130 crossref_primary_10_1149_1945_7111_ac91ad crossref_primary_10_1016_j_est_2022_105093 crossref_primary_10_1016_j_jallcom_2020_157109 crossref_primary_10_1016_j_cej_2016_12_072 crossref_primary_10_1016_j_est_2023_109351 crossref_primary_10_1021_acsaem_0c01132 crossref_primary_10_1016_j_jallcom_2017_06_217 crossref_primary_10_1007_s11814_021_1019_6 crossref_primary_10_1016_j_mtener_2020_100561 crossref_primary_10_1016_j_jallcom_2020_157466 crossref_primary_10_1016_S1872_5805_24_60871_1 crossref_primary_10_1039_C6TA02285E crossref_primary_10_1002_aenm_201500289 |
Cites_doi | 10.1149/1.3457425 10.1021/cm902876u 10.1016/j.carbon.2006.06.004 10.1002/anie.200804355 10.1039/c0ee00683a 10.1016/S0013-4686(03)00929-0 10.1149/1.1792242 10.1021/jp072778d 10.1016/j.jpowsour.2011.10.131 10.1016/j.elecom.2011.08.001 10.1039/c2nj40151g 10.1149/1.2220849 10.1016/S1359-6454(02)00514-1 10.1016/j.electacta.2006.01.043 10.1021/cr900070d 10.1021/cm2037475 10.1021/nl902058c 10.1021/jp909284g 10.1039/C0EE00281J 10.1021/nn200659w 10.1016/j.elecom.2005.10.035 10.1016/S0378-7753(02)00461-5 10.1016/j.jpowsour.2005.03.009 10.1149/1.1584212 10.1149/1.1652421 10.1039/c2cc17129e 10.1002/aenm.201100426 10.1149/1.1764411 10.1039/c0jm01702g 10.1002/anie.200601676 10.1016/j.carbon.2011.01.002 10.1016/j.elecom.2009.07.035 10.1002/anie.200906287 10.1039/b919738a 10.1016/j.electacta.2011.02.014 10.1016/j.jpowsour.2004.05.012 |
ContentType | Journal Article |
Copyright | 2013 The Authors |
Copyright_xml | – notice: 2013 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7SR 7TB 7U5 8BQ 8FD FR3 JG9 L7M 7SP |
DOI | 10.1016/j.electacta.2013.04.083 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace METADEX Electronics & Communications Abstracts |
DatabaseTitleList | Materials Research Database Materials Research Database Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-3859 |
EndPage | 123 |
ExternalDocumentID | 10_1016_j_electacta_2013_04_083 S0013468613007408 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADECG ADEWK ADEZE ADIYS AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSK SSZ T5K TWZ UPT WH7 XPP YK3 ZMT ~02 ~G- 29G 41~ 53G AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIDUJ AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HMU HVGLF HZ~ H~9 LPU R2- SC5 SCB SCH SEW SSH T9H VH1 WUQ XOL ZY4 7SR 7TB 7U5 8BQ 8FD EFKBS FR3 JG9 L7M 7SP |
ID | FETCH-LOGICAL-c566t-6f5b60218289c8fbd9c52fe7de9f0de0203ec005de3bdd8a20cdda895dd962ee3 |
IEDL.DBID | .~1 |
ISSN | 0013-4686 |
IngestDate | Mon Jul 21 09:30:39 EDT 2025 Tue Aug 05 11:06:57 EDT 2025 Tue Aug 05 10:05:50 EDT 2025 Thu Apr 24 22:51:34 EDT 2025 Tue Jul 01 01:52:36 EDT 2025 Fri Feb 23 02:17:35 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Spray drying Silicon Anode Graphene |
Language | English |
License | http://creativecommons.org/licenses/by-nc-nd/3.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c566t-6f5b60218289c8fbd9c52fe7de9f0de0203ec005de3bdd8a20cdda895dd962ee3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0013468613007408 |
PQID | 1464558167 |
PQPubID | 23500 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1671455279 proquest_miscellaneous_1513491304 proquest_miscellaneous_1464558167 crossref_primary_10_1016_j_electacta_2013_04_083 crossref_citationtrail_10_1016_j_electacta_2013_04_083 elsevier_sciencedirect_doi_10_1016_j_electacta_2013_04_083 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-08-01 |
PublicationDateYYYYMMDD | 2013-08-01 |
PublicationDate_xml | – month: 08 year: 2013 text: 2013-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Electrochimica acta |
PublicationYear | 2013 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Yao, Shen, Wang, Liu, Wang (bib0035) 2009; 11 Guo, Sun, Chen, Wang, Manivannan (bib0010) 2011; 56 Ng, Wang, Wexler, Chew, Liu (bib0085) 2007; 111 Sun, Wu, Shi (bib0120) 2011; 4 Xiang, Zhang, Ji, Lee, Zou, Chen, Wu (bib0105) 2011; 49 Luo, Li, Dahn (bib0005) 2010; 157 Chang, Chen (bib0180) 2011; 5 Ryu, Kim, Sung, Oh (bib0060) 2004; 7 Xiao, Cao, Xiao, Wang, Kovarik, Nie, Liu (bib0030) 2012; 48 Zhang, Zhang, Zhang, Zhao, Li, Liu, Cheng (bib0095) 2006; 51 Limthongkul, Jang, Dudney, Chiang (bib0165) 2003; 51 Lee, Lee (bib0020) 2002; 112 Kim, Seo, Park, Cho (bib0065) 2010; 49 Dimov, Kugino, Yoshio (bib0090) 2004; 136 Obrovac, Christensen (bib0170) 2004; 7 Offeman (bib0125) 1958; 8 Stankovich, Piner, Nguyen, Ruoff (bib0150) 2006; 44 Chen, Wei, Wang, Zhu, Guo (bib0055) 2012; 36 Allen, Tung, Kaner (bib0140) 2010; 110 Liu, Guo, Wang, Konstantinov (bib0045) 2010; 20 Lee, Smith, Hayner, Kung (bib0110) 2010; 46 Park, Kim, Joo, Kim, Kim, Ahn, Cui, Cho (bib0075) 2009; 9 Kim, Blomgren, Kumta (bib0080) 2003; 6 Szczech, Jin (bib0015) 2011; 4 Murugesan, Harris, Korgel, Stevenson (bib0040) 2012; 24 Zhang, Zhang, Zhao, Wu (bib0130) 2010; 22 Ohzawa, Yamanaka, Naga, Nakajima (bib0025) 2005; 146 Tao, Fan, Mei, Qu (bib0145) 2011; 13 Ohzuku (bib0160) 1993; 140 Zhang, Shi (bib0175) 2004; 49 Kim, Han, Choo, Cho (bib0070) 2008; 47 Yang, Song, Chen (bib0185) 2006; 8 Wang, Yao, Liu (bib0100) 2004; 7 Tao, Zai, Wang, Zhang, Xu, Shen, Su, Qian (bib0050) 2012; 202 Gao, Jang, Nagase (bib0135) 2010; 114 Ng, Wang, Wexler, Konstantinov, Guo, Liu (bib0155) 2006; 45 Zhao, Hayner, Kung, Kung (bib0115) 2011; 1 Kim (10.1016/j.electacta.2013.04.083_bib0070) 2008; 47 Gao (10.1016/j.electacta.2013.04.083_bib0135) 2010; 114 Dimov (10.1016/j.electacta.2013.04.083_bib0090) 2004; 136 Chang (10.1016/j.electacta.2013.04.083_bib0180) 2011; 5 Kim (10.1016/j.electacta.2013.04.083_bib0065) 2010; 49 Yao (10.1016/j.electacta.2013.04.083_bib0035) 2009; 11 Ryu (10.1016/j.electacta.2013.04.083_bib0060) 2004; 7 Lee (10.1016/j.electacta.2013.04.083_bib0110) 2010; 46 Szczech (10.1016/j.electacta.2013.04.083_bib0015) 2011; 4 Zhang (10.1016/j.electacta.2013.04.083_bib0130) 2010; 22 Ohzuku (10.1016/j.electacta.2013.04.083_bib0160) 1993; 140 Zhang (10.1016/j.electacta.2013.04.083_bib0095) 2006; 51 Zhao (10.1016/j.electacta.2013.04.083_bib0115) 2011; 1 Liu (10.1016/j.electacta.2013.04.083_bib0045) 2010; 20 Zhang (10.1016/j.electacta.2013.04.083_bib0175) 2004; 49 Kim (10.1016/j.electacta.2013.04.083_bib0080) 2003; 6 Yang (10.1016/j.electacta.2013.04.083_bib0185) 2006; 8 Lee (10.1016/j.electacta.2013.04.083_bib0020) 2002; 112 Sun (10.1016/j.electacta.2013.04.083_bib0120) 2011; 4 Murugesan (10.1016/j.electacta.2013.04.083_bib0040) 2012; 24 Wang (10.1016/j.electacta.2013.04.083_bib0100) 2004; 7 Tao (10.1016/j.electacta.2013.04.083_bib0145) 2011; 13 Guo (10.1016/j.electacta.2013.04.083_bib0010) 2011; 56 Limthongkul (10.1016/j.electacta.2013.04.083_bib0165) 2003; 51 Offeman (10.1016/j.electacta.2013.04.083_bib0125) 1958; 8 Luo (10.1016/j.electacta.2013.04.083_bib0005) 2010; 157 Xiang (10.1016/j.electacta.2013.04.083_bib0105) 2011; 49 Stankovich (10.1016/j.electacta.2013.04.083_bib0150) 2006; 44 Ng (10.1016/j.electacta.2013.04.083_bib0085) 2007; 111 Ohzawa (10.1016/j.electacta.2013.04.083_bib0025) 2005; 146 Tao (10.1016/j.electacta.2013.04.083_bib0050) 2012; 202 Ng (10.1016/j.electacta.2013.04.083_bib0155) 2006; 45 Chen (10.1016/j.electacta.2013.04.083_bib0055) 2012; 36 Park (10.1016/j.electacta.2013.04.083_bib0075) 2009; 9 Allen (10.1016/j.electacta.2013.04.083_bib0140) 2010; 110 Xiao (10.1016/j.electacta.2013.04.083_bib0030) 2012; 48 Obrovac (10.1016/j.electacta.2013.04.083_bib0170) 2004; 7 |
References_xml | – volume: 20 start-page: 10055 year: 2010 end-page: 10057 ident: bib0045 article-title: Si-based anode materials for lithium rechargeable batteries publication-title: Journal of Materials Chemistry – volume: 110 start-page: 132 year: 2010 end-page: 145 ident: bib0140 article-title: Honeycomb carbon: a review of graphene publication-title: Chemical reviews – volume: 146 start-page: 125 year: 2005 end-page: 128 ident: bib0025 article-title: Pyrocarbon-coating on powdery hard-carbon using chemical vapor infiltration and its electrochemical characteristics publication-title: Journal of Power Sources – volume: 44 start-page: 3342 year: 2006 end-page: 3347 ident: bib0150 article-title: Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets publication-title: Carbon – volume: 4 start-page: 1113 year: 2011 ident: bib0120 article-title: Graphene based new energy materials publication-title: Energy & Environmental Science – volume: 136 start-page: 108 year: 2004 end-page: 114 ident: bib0090 article-title: Mixed silicon–graphite composites as anode material for lithium ion batteries publication-title: Journal of Power Sources – volume: 6 start-page: A157 year: 2003 end-page: A161 ident: bib0080 article-title: Nanostructured Si/TiB publication-title: Electrochemical and Solid-State Letters – volume: 49 start-page: 1475 year: 2004 end-page: 1482 ident: bib0175 article-title: Electrochemical impedance study of lithium intercalation into MCMB electrode in a gel electrolyte publication-title: Electrochimica Acta – volume: 48 start-page: 3321 year: 2012 end-page: 3323 ident: bib0030 article-title: High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications publication-title: Chemical Communications (Camb) – volume: 8 start-page: 137 year: 2006 end-page: 142 ident: bib0185 article-title: Electrochemical performance of expanded mesocarbon microbeads as anode material for lithium-ion batteries publication-title: Electrochemistry Communications – volume: 56 start-page: 3981 year: 2011 end-page: 3987 ident: bib0010 article-title: Cyclability study of silicon–carbon composite anodes for lithium–ion batteries using electrochemical impedance spectroscopy publication-title: Electrochimica Acta – volume: 4 start-page: 56 year: 2011 end-page: 72 ident: bib0015 article-title: Nanostructured silicon for high capacity lithium battery anodes publication-title: Energy & Environmental Science – volume: 46 start-page: 2025 year: 2010 end-page: 2027 ident: bib0110 article-title: Silicon nanoparticles-graphene paper composites for Li ion battery anodes publication-title: Chemical Communications (Camb) – volume: 7 start-page: A250 year: 2004 end-page: A253 ident: bib0100 article-title: Characterization of nanocrystalline Si-MCMB composite anode materials publication-title: Electrochemical and Solid–State Letters – volume: 51 start-page: 1103 year: 2003 end-page: 1113 ident: bib0165 article-title: Electrochemically-driven solid–state amorphization in lithium–silicon alloys and implications for lithium storage publication-title: Acta Materialia – volume: 11 start-page: 1849 year: 2009 end-page: 1852 ident: bib0035 article-title: In situ chemical synthesis of SnO publication-title: Electrochemistry Communications – volume: 13 start-page: 1332 year: 2011 end-page: 1335 ident: bib0145 article-title: Self-supporting Si/reduced graphene oxide nanocomposite films as anode for lithium ion batteries publication-title: Electrochemistry Communications – volume: 49 start-page: 1787 year: 2011 end-page: 1796 ident: bib0105 article-title: Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability publication-title: Carbon – volume: 140 start-page: 2490 year: 1993 end-page: 2498 ident: bib0160 article-title: Formation of lithium–graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (Shuttlecock) cell publication-title: Journal of The Electrochemical Society – volume: 36 start-page: 1589 year: 2012 end-page: 1595 ident: bib0055 article-title: α-Fe publication-title: New Journal of Chemistry – volume: 7 start-page: A93 year: 2004 end-page: A96 ident: bib0170 article-title: Structural changes in silicon anodes during lithium insertion/extraction publication-title: Electrochemical and Solid-State Letters – volume: 9 start-page: 3844 year: 2009 end-page: 3847 ident: bib0075 article-title: Silicon nanotube battery anodes publication-title: Nano Letters – volume: 47 start-page: 10151 year: 2008 end-page: 10154 ident: bib0070 article-title: Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries publication-title: Angewandte Chemie International Edition – volume: 24 start-page: 1306 year: 2012 end-page: 1315 ident: bib0040 article-title: Copper-coated amorphous silicon particles as an anode material for Lithium–ion batteries publication-title: Chemistry of Materials – volume: 7 start-page: A306 year: 2004 end-page: A309 ident: bib0060 article-title: Failure Modes of silicon powder negative electrode in lithium secondary batteries publication-title: Electrochemical and Solid-State Letters – volume: 202 start-page: 230 year: 2012 end-page: 235 ident: bib0050 article-title: Co publication-title: Journal of Power Sources – volume: 114 start-page: 832 year: 2010 end-page: 842 ident: bib0135 article-title: Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design publication-title: The Journal of Physical Chemistry C – volume: 111 start-page: 11131 year: 2007 end-page: 11138 ident: bib0085 article-title: Amorphous Carbon-coated silicon nanocomposites: a low-temperature synthesis via spray pyrolysis and their application as high-capacity anodes for lithium–ion batteries publication-title: The Journal of Physical Chemistry C – volume: 8 start-page: 1339 year: 1958 ident: bib0125 article-title: Preparation of graphitic oxide publication-title: Journal of the American Chemical Society – volume: 51 start-page: 4994 year: 2006 end-page: 5000 ident: bib0095 article-title: Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries publication-title: Electrochimica Acta – volume: 45 start-page: 6896 year: 2006 end-page: 6899 ident: bib0155 article-title: Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries publication-title: Angewandte Chemie International Edition – volume: 49 start-page: 2146 year: 2010 end-page: 2149 ident: bib0065 article-title: A critical size of silicon nano-anodes for lithium rechargeable batteries publication-title: Angewandte Chemie International Edition – volume: 112 start-page: 649 year: 2002 end-page: 654 ident: bib0020 article-title: Graphite–FeSi alloy composites as anode materials for rechargeable lithium batteries publication-title: Journal of Power Sources – volume: 22 start-page: 1392 year: 2010 end-page: 1401 ident: bib0130 article-title: Graphene/polyaniline nanofiber composites as supercapacitor electrodes publication-title: Chemistry of Materials – volume: 1 start-page: 1079 year: 2011 end-page: 1084 ident: bib0115 article-title: In-plane vacancy-enabled high-power Si–graphene composite electrode for lithium–ion batteries publication-title: Advanced Energy Materials – volume: 157 start-page: A993 year: 2010 end-page: A1001 ident: bib0005 article-title: Synthesis, characterization, and thermal stability of LiCo publication-title: Journal of The Electrochemical Society – volume: 5 start-page: 4720 year: 2011 end-page: 4728 ident: bib0180 article-title: -Cysteine-assisted synthesis of layered MoS publication-title: ACS nano – volume: 157 start-page: A993 year: 2010 ident: 10.1016/j.electacta.2013.04.083_bib0005 article-title: Synthesis, characterization, and thermal stability of LiCo1−z[MnMg]z/2O2 publication-title: Journal of The Electrochemical Society doi: 10.1149/1.3457425 – volume: 22 start-page: 1392 year: 2010 ident: 10.1016/j.electacta.2013.04.083_bib0130 article-title: Graphene/polyaniline nanofiber composites as supercapacitor electrodes publication-title: Chemistry of Materials doi: 10.1021/cm902876u – volume: 44 start-page: 3342 year: 2006 ident: 10.1016/j.electacta.2013.04.083_bib0150 article-title: Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets publication-title: Carbon doi: 10.1016/j.carbon.2006.06.004 – volume: 47 start-page: 10151 year: 2008 ident: 10.1016/j.electacta.2013.04.083_bib0070 article-title: Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries publication-title: Angewandte Chemie International Edition doi: 10.1002/anie.200804355 – volume: 4 start-page: 1113 year: 2011 ident: 10.1016/j.electacta.2013.04.083_bib0120 article-title: Graphene based new energy materials publication-title: Energy & Environmental Science doi: 10.1039/c0ee00683a – volume: 49 start-page: 1475 year: 2004 ident: 10.1016/j.electacta.2013.04.083_bib0175 article-title: Electrochemical impedance study of lithium intercalation into MCMB electrode in a gel electrolyte publication-title: Electrochimica Acta doi: 10.1016/S0013-4686(03)00929-0 – volume: 7 start-page: A306 year: 2004 ident: 10.1016/j.electacta.2013.04.083_bib0060 article-title: Failure Modes of silicon powder negative electrode in lithium secondary batteries publication-title: Electrochemical and Solid-State Letters doi: 10.1149/1.1792242 – volume: 111 start-page: 11131 year: 2007 ident: 10.1016/j.electacta.2013.04.083_bib0085 article-title: Amorphous Carbon-coated silicon nanocomposites: a low-temperature synthesis via spray pyrolysis and their application as high-capacity anodes for lithium–ion batteries publication-title: The Journal of Physical Chemistry C doi: 10.1021/jp072778d – volume: 202 start-page: 230 year: 2012 ident: 10.1016/j.electacta.2013.04.083_bib0050 article-title: Co3O4 nanorods/graphene nanosheets nanocomposites for lithium ion batteries with improved reversible capacity and cycle stability publication-title: Journal of Power Sources doi: 10.1016/j.jpowsour.2011.10.131 – volume: 13 start-page: 1332 year: 2011 ident: 10.1016/j.electacta.2013.04.083_bib0145 article-title: Self-supporting Si/reduced graphene oxide nanocomposite films as anode for lithium ion batteries publication-title: Electrochemistry Communications doi: 10.1016/j.elecom.2011.08.001 – volume: 36 start-page: 1589 year: 2012 ident: 10.1016/j.electacta.2013.04.083_bib0055 article-title: α-Fe2O3 nanoparticles anchored on graphene with 3D quasi-laminated architecture: in situ wet chemistry synthesis and enhanced electrochemical performance for lithium ion batteries publication-title: New Journal of Chemistry doi: 10.1039/c2nj40151g – volume: 140 start-page: 2490 year: 1993 ident: 10.1016/j.electacta.2013.04.083_bib0160 article-title: Formation of lithium–graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (Shuttlecock) cell publication-title: Journal of The Electrochemical Society doi: 10.1149/1.2220849 – volume: 51 start-page: 1103 year: 2003 ident: 10.1016/j.electacta.2013.04.083_bib0165 article-title: Electrochemically-driven solid–state amorphization in lithium–silicon alloys and implications for lithium storage publication-title: Acta Materialia doi: 10.1016/S1359-6454(02)00514-1 – volume: 51 start-page: 4994 year: 2006 ident: 10.1016/j.electacta.2013.04.083_bib0095 article-title: Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries publication-title: Electrochimica Acta doi: 10.1016/j.electacta.2006.01.043 – volume: 110 start-page: 132 year: 2010 ident: 10.1016/j.electacta.2013.04.083_bib0140 article-title: Honeycomb carbon: a review of graphene publication-title: Chemical reviews doi: 10.1021/cr900070d – volume: 24 start-page: 1306 year: 2012 ident: 10.1016/j.electacta.2013.04.083_bib0040 article-title: Copper-coated amorphous silicon particles as an anode material for Lithium–ion batteries publication-title: Chemistry of Materials doi: 10.1021/cm2037475 – volume: 9 start-page: 3844 year: 2009 ident: 10.1016/j.electacta.2013.04.083_bib0075 article-title: Silicon nanotube battery anodes publication-title: Nano Letters doi: 10.1021/nl902058c – volume: 114 start-page: 832 year: 2010 ident: 10.1016/j.electacta.2013.04.083_bib0135 article-title: Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design publication-title: The Journal of Physical Chemistry C doi: 10.1021/jp909284g – volume: 4 start-page: 56 year: 2011 ident: 10.1016/j.electacta.2013.04.083_bib0015 article-title: Nanostructured silicon for high capacity lithium battery anodes publication-title: Energy & Environmental Science doi: 10.1039/C0EE00281J – volume: 5 start-page: 4720 year: 2011 ident: 10.1016/j.electacta.2013.04.083_bib0180 article-title: l-Cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries publication-title: ACS nano doi: 10.1021/nn200659w – volume: 8 start-page: 137 year: 2006 ident: 10.1016/j.electacta.2013.04.083_bib0185 article-title: Electrochemical performance of expanded mesocarbon microbeads as anode material for lithium-ion batteries publication-title: Electrochemistry Communications doi: 10.1016/j.elecom.2005.10.035 – volume: 112 start-page: 649 year: 2002 ident: 10.1016/j.electacta.2013.04.083_bib0020 article-title: Graphite–FeSi alloy composites as anode materials for rechargeable lithium batteries publication-title: Journal of Power Sources doi: 10.1016/S0378-7753(02)00461-5 – volume: 146 start-page: 125 year: 2005 ident: 10.1016/j.electacta.2013.04.083_bib0025 article-title: Pyrocarbon-coating on powdery hard-carbon using chemical vapor infiltration and its electrochemical characteristics publication-title: Journal of Power Sources doi: 10.1016/j.jpowsour.2005.03.009 – volume: 8 start-page: 1339 year: 1958 ident: 10.1016/j.electacta.2013.04.083_bib0125 article-title: Preparation of graphitic oxide publication-title: Journal of the American Chemical Society – volume: 6 start-page: A157 year: 2003 ident: 10.1016/j.electacta.2013.04.083_bib0080 article-title: Nanostructured Si/TiB2 composite anodes for Li-ion batteries publication-title: Electrochemical and Solid-State Letters doi: 10.1149/1.1584212 – volume: 7 start-page: A93 year: 2004 ident: 10.1016/j.electacta.2013.04.083_bib0170 article-title: Structural changes in silicon anodes during lithium insertion/extraction publication-title: Electrochemical and Solid-State Letters doi: 10.1149/1.1652421 – volume: 48 start-page: 3321 year: 2012 ident: 10.1016/j.electacta.2013.04.083_bib0030 article-title: High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications publication-title: Chemical Communications (Camb) doi: 10.1039/c2cc17129e – volume: 1 start-page: 1079 year: 2011 ident: 10.1016/j.electacta.2013.04.083_bib0115 article-title: In-plane vacancy-enabled high-power Si–graphene composite electrode for lithium–ion batteries publication-title: Advanced Energy Materials doi: 10.1002/aenm.201100426 – volume: 7 start-page: A250 year: 2004 ident: 10.1016/j.electacta.2013.04.083_bib0100 article-title: Characterization of nanocrystalline Si-MCMB composite anode materials publication-title: Electrochemical and Solid–State Letters doi: 10.1149/1.1764411 – volume: 20 start-page: 10055 year: 2010 ident: 10.1016/j.electacta.2013.04.083_bib0045 article-title: Si-based anode materials for lithium rechargeable batteries publication-title: Journal of Materials Chemistry doi: 10.1039/c0jm01702g – volume: 45 start-page: 6896 year: 2006 ident: 10.1016/j.electacta.2013.04.083_bib0155 article-title: Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries publication-title: Angewandte Chemie International Edition doi: 10.1002/anie.200601676 – volume: 49 start-page: 1787 year: 2011 ident: 10.1016/j.electacta.2013.04.083_bib0105 article-title: Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability publication-title: Carbon doi: 10.1016/j.carbon.2011.01.002 – volume: 11 start-page: 1849 year: 2009 ident: 10.1016/j.electacta.2013.04.083_bib0035 article-title: In situ chemical synthesis of SnO2–graphene nanocomposite as anode materials for lithium–ion batteries publication-title: Electrochemistry Communications doi: 10.1016/j.elecom.2009.07.035 – volume: 49 start-page: 2146 year: 2010 ident: 10.1016/j.electacta.2013.04.083_bib0065 article-title: A critical size of silicon nano-anodes for lithium rechargeable batteries publication-title: Angewandte Chemie International Edition doi: 10.1002/anie.200906287 – volume: 46 start-page: 2025 year: 2010 ident: 10.1016/j.electacta.2013.04.083_bib0110 article-title: Silicon nanoparticles-graphene paper composites for Li ion battery anodes publication-title: Chemical Communications (Camb) doi: 10.1039/b919738a – volume: 56 start-page: 3981 year: 2011 ident: 10.1016/j.electacta.2013.04.083_bib0010 article-title: Cyclability study of silicon–carbon composite anodes for lithium–ion batteries using electrochemical impedance spectroscopy publication-title: Electrochimica Acta doi: 10.1016/j.electacta.2011.02.014 – volume: 136 start-page: 108 year: 2004 ident: 10.1016/j.electacta.2013.04.083_bib0090 article-title: Mixed silicon–graphite composites as anode material for lithium ion batteries publication-title: Journal of Power Sources doi: 10.1016/j.jpowsour.2004.05.012 |
SSID | ssj0007670 |
Score | 2.478423 |
Snippet | •Graphite/Silicon@Graphene is synthesized via spray drying and subsequent annealing.•Thermal reduction of graphene oxide was used to obtain graphene.•Graphite... The Graphite/SiliconeGO composite was synthesized via spray drying and subsequent annealing. According to XRD, Raman spectroscopy and FT-IR, graphene was... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 117 |
SubjectTerms | Anode Anodes Charge density Electrodes Graphene Graphite Lithium batteries Lithium-ion batteries Silicon Spray drying Transmission electron microscopy |
Title | A facile synthesis of graphite/silicon/graphene spherical composite anode for lithium-ion batteries |
URI | https://dx.doi.org/10.1016/j.electacta.2013.04.083 https://www.proquest.com/docview/1464558167 https://www.proquest.com/docview/1513491304 https://www.proquest.com/docview/1671455279 |
Volume | 104 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaq9gAcUCkgWqAyEtew3mTsxNxWq1YLiJ5aqTfLTxFUslWze-iF386MN-kDifaAlEssW7JmxjOf5ZlvGPtok9fJB1_IKrkCGgeF0yAL0LF0IKdR5Cr-7ydqcQZfz-X5FpuPtTCUVjn4_o1Pz956GJkM0pxcti3V-E4rUA0BYIyDueAXoCYr__T7Ns2jVrUYuxjQ7Hs5XrnVjMWPcryqzHnaVP-KUH_56hyAjnfZ8wE58tlmcy_YVuz22JP52LBtjz27wy34kvkZT9bjmef9dYcor297vkw8E1QjzJz07QUaQTfJA-jweE8EA6QyTmnmlMsVue2WIXLEtRzR-o92_atANXKXOTnxiv2KnR0fnc4XxdBRofAI21aFStKpTNreaN8kF7SXZYp1iDqJEOlVMno8lyFWLoTGlsKHYBstQ9CqjLF6zba7ZRffMC5dJawINmqdQNtkAZIVtcdgFwCc3mdqlKLxA904db24MGNe2U9zI35D4jcCDIp_n4mbhZcbxo3Hl3we1WTuGY_BuPD44g-jYg0qjN5LbBeX655uRSBlM1X1A3Mk8TuiCcIDc1RNdPBlrQ_-Z6Nv2VP6o0LIqXzHtldX6_geEdHKHWaTP2Q7sy_fFid_AAw6D1A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELZQONAeEKWtyqsYqddVnF3bu-YWRaBQICeQuFl-qlvRDeomB_49M85uBJWAQyWfLI9kzdgzn-WZbwj5YaJT0XmXiSLajFeWZ1ZxkXEVcsvFKLBUxX89k9Nb_vNO3G2QSV8Lg2mVne9f-fTkrbuZYafN4UNdY43vqOCyQgAMcRALfjeRnUoMyOb44nI6WzvkUpasb2SAAi_SvFK3GQMD07yKRHtaFa8FqX_cdYpB5ztkuwOPdLza3yeyEZpdsjXpe7btko_P6AU_Ezem0Ti49rR9bADotXVL55EmjmpAmsO2vodz0AzTBPg82iLHAFqNYqY5pnMFapq5DxSgLQXA_qte_snAktQmWk54ZX8ht-dnN5Np1jVVyBwgt0Umo7Ay8bZXylXReuVEHkPpg4rMB_yYDA6upg-F9b4yOXPem0oJ75XMQyi-kkEzb8I3QoUtmGHeBKUiVyYazqNhpYN45zm3ao_IXovadYzj2PjiXvepZb_1Wv0a1a8Z16D-PcLWgg8r0o33RU57M-kX50dDaHhf-KQ3rAaD4ZeJacJ82eLDiAtRjWT5xhqBFI9wCvkba2SJjPB5qfb_Z6PHZGt6c32lry5mlwfkQ55ac2Ay4iEZLP4uwxEApIX93l2AJ0KrEgI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+facile+synthesis+of+graphite%2Fsilicon%2Fgraphene+spherical+composite+anode+for+lithium-ion+batteries&rft.jtitle=Electrochimica+acta&rft.au=Gan%2C+Lei&rft.au=Guo%2C+Huajun&rft.au=Wang%2C+Zhixing&rft.au=Li%2C+Xinhai&rft.date=2013-08-01&rft.pub=Elsevier+Ltd&rft.issn=0013-4686&rft.eissn=1873-3859&rft.volume=104&rft.spage=117&rft.epage=123&rft_id=info:doi/10.1016%2Fj.electacta.2013.04.083&rft.externalDocID=S0013468613007408 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon |