Machine learning glass transition temperature of polymers

As an important thermophysical property, polymers' glass transition temperature, Tg, could sometimes be difficult to determine experimentally. Modeling methods, particularly data-driven approaches, are promising alternatives to predictions of Tg in a fast and robust way. The molecular traceless...

Full description

Saved in:
Bibliographic Details
Published inHeliyon Vol. 6; no. 10; p. e05055
Main Authors Zhang, Yun, Xu, Xiaojie
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.10.2020
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As an important thermophysical property, polymers' glass transition temperature, Tg, could sometimes be difficult to determine experimentally. Modeling methods, particularly data-driven approaches, are promising alternatives to predictions of Tg in a fast and robust way. The molecular traceless quadrupole moment and molecule average hexadecapole moment are closely correlated with polymers' Tg. In the current work, these two parameters are used as descriptors in the Gaussian process regression model to predict Tg. We investigate 60 samples with Tg values from 194 K to 440 K. The model provides rapid and low-cost Tg estimations with high accuracy and stability. Materials science; Materials chemistry; Physical chemistry; Glass transition temperature; Polymer; Machine learning; Gaussian process regression
AbstractList As an important thermophysical property, polymers' glass transition temperature, Tg, could sometimes be difficult to determine experimentally. Modeling methods, particularly data-driven approaches, are promising alternatives to predictions of Tg in a fast and robust way. The molecular traceless quadrupole moment and molecule average hexadecapole moment are closely correlated with polymers' Tg. In the current work, these two parameters are used as descriptors in the Gaussian process regression model to predict Tg. We investigate 60 samples with Tg values from 194 K to 440 K. The model provides rapid and low-cost Tg estimations with high accuracy and stability. Materials science; Materials chemistry; Physical chemistry; Glass transition temperature; Polymer; Machine learning; Gaussian process regression
As an important thermophysical property, polymers' glass transition temperature, Tg, could sometimes be difficult to determine experimentally. Modeling methods, particularly data-driven approaches, are promising alternatives to predictions of Tg in a fast and robust way. The molecular traceless quadrupole moment and molecule average hexadecapole moment are closely correlated with polymers' Tg. In the current work, these two parameters are used as descriptors in the Gaussian process regression model to predict Tg. We investigate 60 samples with Tg values from 194 K to 440 K. The model provides rapid and low-cost Tg estimations with high accuracy and stability.As an important thermophysical property, polymers' glass transition temperature, Tg, could sometimes be difficult to determine experimentally. Modeling methods, particularly data-driven approaches, are promising alternatives to predictions of Tg in a fast and robust way. The molecular traceless quadrupole moment and molecule average hexadecapole moment are closely correlated with polymers' Tg. In the current work, these two parameters are used as descriptors in the Gaussian process regression model to predict Tg. We investigate 60 samples with Tg values from 194 K to 440 K. The model provides rapid and low-cost Tg estimations with high accuracy and stability.
As an important thermophysical property, polymers' glass transition temperature, Tg, could sometimes be difficult to determine experimentally. Modeling methods, particularly data-driven approaches, are promising alternatives to predictions of Tg in a fast and robust way. The molecular traceless quadrupole moment and molecule average hexadecapole moment are closely correlated with polymers' Tg. In the current work, these two parameters are used as descriptors in the Gaussian process regression model to predict Tg. We investigate 60 samples with Tg values from 194 K to 440 K. The model provides rapid and low-cost Tg estimations with high accuracy and stability.
ArticleNumber e05055
Author Xu, Xiaojie
Zhang, Yun
Author_xml – sequence: 1
  givenname: Yun
  orcidid: 0000-0002-9464-1751
  surname: Zhang
  fullname: Zhang, Yun
  email: yzhang43@ncsu.edu
– sequence: 2
  givenname: Xiaojie
  surname: Xu
  fullname: Xu, Xiaojie
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33083589$$D View this record in MEDLINE/PubMed
BookMark eNqNklFvFCEQxzemxtbaj6DZR1_uHBZYICaaprHapMYXfSYsO3vHhYUT9prct5frXk3rS01IIMz__2OYmdfVSYgBq-otgSUB0n7YLNfo3T6GZQMNLBE4cP6iOmsY8IVkDE4enU-ri5w3AEC4bJWgr6pTSkFSLtVZpb4bu3YBa48mBRdW9cqbnOspmZDd5GKoJxy3mMy0S1jHod5Gvx8x5TfVy8H4jBfH_bz6df3l59W3xe2PrzdXl7cLy9t2WrSgDOnNoAgq2TaWG94BHZD3vSxLylZYyWkJctV1nYVONLJX0rRUmIEZel7dzNw-mo3eJjeatNfROH1_EdNKmzQ561HzwaBQrJBYxxTIbqAdMiFIKQ-ReGB9mlnbXTdibzGUf_on0KeR4NZ6Fe-04Jwq0RbA-yMgxd87zJMeXbbovQkYd1k3vGEUgJH_kDLeKEkENEX67nFaf_N5aFMRfJwFNsWcEw7auskculOydF4T0Ie50Bt9nAt9mAs9z0Vx83_cDw885_s8-7C0985h0tk6DBZ7l9BOpf7uGcIf18jVmQ
CitedBy_id crossref_primary_10_1007_s10854_025_14391_0
crossref_primary_10_1016_j_cplett_2021_138589
crossref_primary_10_1007_s40089_023_00400_9
crossref_primary_10_1088_2631_8695_ad43ba
crossref_primary_10_1177_0037549721995574
crossref_primary_10_1016_j_matpr_2022_04_633
crossref_primary_10_1038_s41524_023_01034_3
crossref_primary_10_1007_s40830_020_00303_0
crossref_primary_10_1021_acs_iecr_0c05055
crossref_primary_10_1016_j_memsci_2023_122169
crossref_primary_10_1111_ijac_13709
crossref_primary_10_1039_D3CP03631F
crossref_primary_10_1134_S1560090422700166
crossref_primary_10_1016_j_powtec_2021_04_072
crossref_primary_10_3390_app142210413
crossref_primary_10_1002_adts_202100565
crossref_primary_10_3390_polym13111898
crossref_primary_10_1039_D5NJ00035A
crossref_primary_10_1063_5_0137357
crossref_primary_10_1007_s00339_025_08429_7
crossref_primary_10_1007_s42114_024_01192_y
crossref_primary_10_1007_s11947_024_03639_y
crossref_primary_10_1007_s12540_020_00883_7
crossref_primary_10_1021_acsanm_3c05225
crossref_primary_10_1016_j_heliyon_2021_e07601
crossref_primary_10_1039_D0NJ03868G
crossref_primary_10_1016_j_heliyon_2023_e21332
crossref_primary_10_1002_inf2_12425
crossref_primary_10_3390_pr9081456
crossref_primary_10_1007_s00521_024_10532_4
crossref_primary_10_1002_adma_202413695
crossref_primary_10_1007_s10948_020_05682_0
crossref_primary_10_1021_acspolymersau_3c00029
crossref_primary_10_1021_acscentsci_3c00502
crossref_primary_10_1515_ijmr_2020_7986
crossref_primary_10_1002_mats_202400008
crossref_primary_10_1177_0021998320984245
crossref_primary_10_1016_j_foodchem_2022_133595
crossref_primary_10_1016_j_dajour_2023_100267
crossref_primary_10_1007_s10854_024_13964_9
crossref_primary_10_3390_polym16081049
crossref_primary_10_1016_j_jssc_2025_125179
crossref_primary_10_1007_s11224_020_01699_2
crossref_primary_10_1520_ACEM20200134
crossref_primary_10_1080_10667857_2020_1830567
crossref_primary_10_3390_app11062525
crossref_primary_10_1016_j_jssc_2024_125173
crossref_primary_10_1016_j_jssc_2025_125252
crossref_primary_10_1016_j_mlwa_2020_100010
crossref_primary_10_1002_marc_202400260
crossref_primary_10_1007_s11661_020_06130_3
crossref_primary_10_1002_pi_6345
crossref_primary_10_1016_j_mtcomm_2024_110155
crossref_primary_10_1016_j_jmapro_2022_06_035
crossref_primary_10_1016_j_commatsci_2024_112863
crossref_primary_10_1515_revce_2023_0021
crossref_primary_10_1007_s10853_021_06561_2
crossref_primary_10_1016_j_solidstatesciences_2021_106541
crossref_primary_10_1016_j_jmgm_2020_107796
crossref_primary_10_1007_s10909_020_02545_9
crossref_primary_10_1080_15421406_2021_1946348
crossref_primary_10_1103_PhysRevB_107_205121
crossref_primary_10_1016_j_chemphys_2024_112579
crossref_primary_10_1063_5_0066410
crossref_primary_10_1007_s11665_020_05146_5
crossref_primary_10_1021_acs_jcim_2c00875
crossref_primary_10_1016_j_mtcomm_2024_108405
crossref_primary_10_1007_s12008_022_00945_7
crossref_primary_10_3390_ijms26062743
crossref_primary_10_1007_s10854_023_11479_3
crossref_primary_10_3390_polym14204284
Cites_doi 10.1016/j.physc.2020.1353633
10.1007/s10765-020-02734-4
10.1002/pen.760130611
10.1088/1361-6463/ab1e2c
10.1002/slct.202002532
10.1109/TASC.2009.2017914
10.1016/j.actamat.2012.09.003
10.1088/0953-2048/29/12/125005
10.1021/acs.chemmater.5b00024
10.1002/pssa.201228278
10.1007/s00339-020-03503-8
10.1007/s11665-020-05146-5
10.1016/j.ijleo.2020.164808
10.1039/D0RA03031G
10.1109/TUFFC.2013.2686
10.1063/1.4915903
10.1063/1.5144241
10.1111/j.1551-2916.2011.04659.x
10.1103/PhysRevE.57.843
10.1021/acsomega.0c01438
10.1002/app.1978.070220823
10.1063/1.1756854
10.1039/D0CE00928H
10.1063/1.4794056
10.1088/0953-2048/29/9/095012
10.1016/j.jmmm.2020.166998
10.1016/j.chemphys.2006.11.029
10.1088/0953-2048/27/5/055016
10.1007/s40830-020-00303-0
10.1016/j.physleta.2020.126500
10.1109/LSENS.2017.2752216
10.1016/S0009-2614(03)00816-9
10.1016/j.commatsci.2020.109583
10.4028/www.scientific.net/AMR.455-456.430
10.1016/j.fusengdes.2014.09.012
10.1007/s10853-018-03258-x
ContentType Journal Article
Copyright 2020 The Authors
2020 The Authors.
2020 The Authors 2020
Copyright_xml – notice: 2020 The Authors
– notice: 2020 The Authors.
– notice: 2020 The Authors 2020
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOA
DOI 10.1016/j.heliyon.2020.e05055
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA


PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2405-8440
ExternalDocumentID oai_doaj_org_article_5fae7948594b4908bf3be477150518ea
PMC7553976
33083589
10_1016_j_heliyon_2020_e05055
S2405844020318983
Genre Journal Article
GroupedDBID 0R~
457
53G
5VS
6I.
AACTN
AAEDW
AAFTH
AAFWJ
ABMAC
ACGFS
ACLIJ
ADBBV
ADEZE
ADVLN
AEXQZ
AFJKZ
AFPKN
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
IPNFZ
KQ8
M~E
O9-
OK1
RIG
ROL
RPM
SSZ
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c566t-609a1daf91e9862c5a5b03fe5dd8dd88867c853e9859bbbc0b728d98a637af4a3
IEDL.DBID DOA
ISSN 2405-8440
IngestDate Wed Aug 27 01:30:50 EDT 2025
Thu Aug 21 18:12:04 EDT 2025
Fri Aug 22 20:26:32 EDT 2025
Fri Jul 11 07:11:01 EDT 2025
Mon Jul 21 06:03:59 EDT 2025
Tue Jul 01 05:23:36 EDT 2025
Thu Apr 24 23:10:27 EDT 2025
Sat Mar 22 15:54:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Physical chemistry
Machine learning
Gaussian process regression
Materials science
Polymer
Glass transition temperature
Materials chemistry
Language English
License This is an open access article under the CC BY license.
2020 The Authors.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c566t-609a1daf91e9862c5a5b03fe5dd8dd88867c853e9859bbbc0b728d98a637af4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9464-1751
OpenAccessLink https://doaj.org/article/5fae7948594b4908bf3be477150518ea
PMID 33083589
PQID 2452981702
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_5fae7948594b4908bf3be477150518ea
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7553976
proquest_miscellaneous_2524300416
proquest_miscellaneous_2452981702
pubmed_primary_33083589
crossref_citationtrail_10_1016_j_heliyon_2020_e05055
crossref_primary_10_1016_j_heliyon_2020_e05055
elsevier_sciencedirect_doi_10_1016_j_heliyon_2020_e05055
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Heliyon
PublicationTitleAlternate Heliyon
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Li, Wu, Huang, Li (br0020) 2014; 89
Zhang, Xu (br0370) 2020; 22
Wang, Hasanyan, Li, Gao, Li, Viehland (br0090) 2013; 60
Yang, Wang, Qiu, Chang, Ma, Zhu, Jin, Hong (br0240) 2018; 28
Wang, Zheng, Zhu, Zhang, Yuan (br0210) 2019; 52
Guo, Kirste, Bryan, Bryan, Gerhold, Collazo, Sitar (br0150) 2015; 117
Zhang, Xu (br0350) 2020; 10
Schweizer, Saltzman (br0170) 2004; 121
Chen, Zhang, Li (br0120) 2003; 375
Zhang, Xu (br0340) 2020; 217
Zhang, Koch, Schwartz (br0050) 2016; 29
Meyer (br0010) 1973; 13
Vrentas, Duda (br0260) 1978; 22
J. Schwartz, C.C. Koch, Y. Zhang, X. Liu, Formation of bismuth strontium calcium copper oxide superconductors, U.S. Patent US9773962B2, September 26, 2017.
Zhang, Xu (br0280) 2020; 573
Zhang, Xu (br0390) 2020; 41
Yang, Li, Wang, Wang, Wu, Huang, Hong, Jiang, Jin (br0230) 2019; 29
Zhang, Xu (br0270) 2020; 179
Lin, Gu, Zhu, Ye, Jiang, Wang, Liao, Yang, Zeng, Sheng, Guo (br0130) 2019; 54
Thieme, Gagnon, Coulter, Song, Schwartz (br0190) 2009; 19
Zhang, Xu (br0320) 2020; 384
Li, Berry, Das, Gray, Li, Viehland (br0110) 2011; 94
Zhang, Xu (br0430) 2020
Li, Wang, Wang, Li, Viehland (br0070) 2013; 102
Zhang, Xu (br0360) 2020; 5
Müller (br0160) 2015; 27
Li, Dong, Zhou, Wang, Wang, Liang, Lin, Sun (br0080) 2017; 1
Zhang, Xu (br0470) 2020
Pan, Sheng, Wu, Wang, Zeng, Zhao, Zhang, Li, Hong, Jin (br0250) 2017; 27
Zhang, Xu (br0410) 2020
Zhang, Xu (br0450) 2020
Zhang, Koch, Schwartz (br0060) 2014; 27
Zhang, Xu (br0310) 2020; 10
Qiu, Wu, Pan, Xu, Zhang, Li, Li, Wang, Wang, Zhao, Zhang (br0220) 2017; 27
Wang, Hasanyan, Li, Gao, Viswan, Li, Viehland (br0100) 2012; 209
Yu, Yi, Wang, Xie (br0480) 2007; 332
Yang, Liu, Sheng, Guo, Zeng, Gao, Ye (br0140) 2017; 7
Pei, Cai, Zhu, Wang, Yan (br0490) 2012; 455
Zhang, Xu (br0300) 2020; 126
Zhang, Xu (br0330) 2020; 10
Bennemann, Paul, Binder, Dünweg (br0200) 1998; 57
Zhang, Xu (br0420) 2020
Zhang, Xu (br0440) 2020
Song, Hunte, Schwartz (br0180) 2012; 60
Zhang, Xu (br0290) 2020; 512
Zhang, Xu (br0380) 2020; 5
Zhang, Johnson, Naderi, Chaubal, Hunt, Schwartz (br0040) 2016; 29
Zhang, Xu (br0400) 2020
Zhang, Xu (br0460) 2020
Li (10.1016/j.heliyon.2020.e05055_br0020) 2014; 89
Song (10.1016/j.heliyon.2020.e05055_br0180) 2012; 60
Zhang (10.1016/j.heliyon.2020.e05055_br0340) 2020; 217
Li (10.1016/j.heliyon.2020.e05055_br0080) 2017; 1
Thieme (10.1016/j.heliyon.2020.e05055_br0190) 2009; 19
Zhang (10.1016/j.heliyon.2020.e05055_br0290) 2020; 512
Qiu (10.1016/j.heliyon.2020.e05055_br0220) 2017; 27
Chen (10.1016/j.heliyon.2020.e05055_br0120) 2003; 375
Zhang (10.1016/j.heliyon.2020.e05055_br0050) 2016; 29
Wang (10.1016/j.heliyon.2020.e05055_br0100) 2012; 209
Zhang (10.1016/j.heliyon.2020.e05055_br0360) 2020; 5
Zhang (10.1016/j.heliyon.2020.e05055_br0320) 2020; 384
Zhang (10.1016/j.heliyon.2020.e05055_br0460) 2020
Lin (10.1016/j.heliyon.2020.e05055_br0130) 2019; 54
Zhang (10.1016/j.heliyon.2020.e05055_br0040) 2016; 29
Zhang (10.1016/j.heliyon.2020.e05055_br0440) 2020
Yu (10.1016/j.heliyon.2020.e05055_br0480) 2007; 332
Zhang (10.1016/j.heliyon.2020.e05055_br0060) 2014; 27
Zhang (10.1016/j.heliyon.2020.e05055_br0400) 2020
Li (10.1016/j.heliyon.2020.e05055_br0110) 2011; 94
Vrentas (10.1016/j.heliyon.2020.e05055_br0260) 1978; 22
Zhang (10.1016/j.heliyon.2020.e05055_br0420) 2020
Yang (10.1016/j.heliyon.2020.e05055_br0240) 2018; 28
Yang (10.1016/j.heliyon.2020.e05055_br0230) 2019; 29
Meyer (10.1016/j.heliyon.2020.e05055_br0010) 1973; 13
Pei (10.1016/j.heliyon.2020.e05055_br0490) 2012; 455
Yang (10.1016/j.heliyon.2020.e05055_br0140) 2017; 7
Zhang (10.1016/j.heliyon.2020.e05055_br0350) 2020; 10
Wang (10.1016/j.heliyon.2020.e05055_br0090) 2013; 60
Li (10.1016/j.heliyon.2020.e05055_br0070) 2013; 102
Müller (10.1016/j.heliyon.2020.e05055_br0160) 2015; 27
Zhang (10.1016/j.heliyon.2020.e05055_br0270) 2020; 179
Bennemann (10.1016/j.heliyon.2020.e05055_br0200) 1998; 57
Zhang (10.1016/j.heliyon.2020.e05055_br0390) 2020; 41
Zhang (10.1016/j.heliyon.2020.e05055_br0280) 2020; 573
Zhang (10.1016/j.heliyon.2020.e05055_br0330) 2020; 10
Zhang (10.1016/j.heliyon.2020.e05055_br0300) 2020; 126
Zhang (10.1016/j.heliyon.2020.e05055_br0470) 2020
Guo (10.1016/j.heliyon.2020.e05055_br0150) 2015; 117
Zhang (10.1016/j.heliyon.2020.e05055_br0380) 2020; 5
Zhang (10.1016/j.heliyon.2020.e05055_br0450) 2020
Zhang (10.1016/j.heliyon.2020.e05055_br0430) 2020
Pan (10.1016/j.heliyon.2020.e05055_br0250) 2017; 27
Zhang (10.1016/j.heliyon.2020.e05055_br0410) 2020
Wang (10.1016/j.heliyon.2020.e05055_br0210) 2019; 52
10.1016/j.heliyon.2020.e05055_br0030
Schweizer (10.1016/j.heliyon.2020.e05055_br0170) 2004; 121
Zhang (10.1016/j.heliyon.2020.e05055_br0370) 2020; 22
Zhang (10.1016/j.heliyon.2020.e05055_br0310) 2020; 10
References_xml – volume: 27
  start-page: 1
  year: 2017
  end-page: 5
  ident: br0220
  article-title: Experiment and numerical analysis on magnetic field stability of persistent current mode coil made of HTS-coated conductors
  publication-title: IEEE Trans. Appl. Supercond.
– volume: 27
  year: 2014
  ident: br0060
  article-title: Synthesis of Bi
  publication-title: Supercond. Sci. Technol.
– volume: 60
  start-page: 6991
  year: 2012
  end-page: 7000
  ident: br0180
  article-title: On the role of pre-existing defects and magnetic flux avalanches in the degradation of
  publication-title: Acta Mater.
– year: 2020
  ident: br0470
  article-title: Machine learning lattice constants for spinel compounds
  publication-title: Chem. Phys. Lett.
– volume: 5
  start-page: 9999
  year: 2020
  end-page: 10009
  ident: br0380
  article-title: Machine learning lattice constants for cubic perovskite
  publication-title: ChemistrySelect
– volume: 179
  year: 2020
  ident: br0270
  article-title: Yttrium barium copper oxide superconducting transition temperature modeling through Gaussian process regression
  publication-title: Comput. Mater. Sci.
– volume: 332
  start-page: 115
  year: 2007
  end-page: 118
  ident: br0480
  article-title: Correlation between the glass transition temperatures and multipole moments for polymers
  publication-title: Chem. Phys.
– year: 2020
  ident: br0400
  article-title: Lattice misfit predictions via the Gaussian process regression for Ni-based single crystal superalloys
  publication-title: Met. Mater. Int.
– year: 2020
  ident: br0420
  article-title: Machine learning lattice parameters of monoclinic double perovskites
  publication-title: Int. J. Quant. Chem.
– volume: 102
  year: 2013
  ident: br0070
  article-title: Giant magnetoelectric effect in self-biased laminates under zero magnetic field
  publication-title: Appl. Phys. Lett.
– volume: 10
  year: 2020
  ident: br0310
  article-title: Machine learning the magnetocaloric effect in manganites from compositions and structural parameters
  publication-title: AIP Adv.
– year: 2020
  ident: br0440
  article-title: Predicting doped Fe-based superconductor critical temperature from structural and topological parameters using machine learning
  publication-title: Int. J. Mater. Res.
– volume: 455
  start-page: 430
  year: 2012
  end-page: 435
  ident: br0490
  article-title: Modeling the glass transition temperature of polymers via multipole moments using support vector regression
  publication-title: Adv. Mater. Res.
– volume: 22
  start-page: 2325
  year: 1978
  end-page: 2339
  ident: br0260
  article-title: A free-volume interpretation of the influence of the glass transition on diffusion in amorphous polymers
  publication-title: J. Appl. Polym. Sci.
– volume: 27
  start-page: 2740
  year: 2015
  end-page: 2754
  ident: br0160
  article-title: On the glass transition of polymer semiconductors and its impact on polymer solar cell stability
  publication-title: Chem. Mater.
– volume: 29
  year: 2016
  ident: br0040
  article-title: High critical current density Bi
  publication-title: Supercond. Sci. Technol.
– volume: 22
  start-page: 6385
  year: 2020
  end-page: 6397
  ident: br0370
  article-title: Machine learning lattice constants for cubic perovskite
  publication-title: CrystEngComm
– volume: 28
  start-page: 1
  year: 2018
  end-page: 5
  ident: br0240
  article-title: Design and fabrication of a 1-MW high-temperature superconductor DC induction heater
  publication-title: IEEE Trans. Appl. Supercond.
– volume: 1
  start-page: 1
  year: 2017
  end-page: 4
  ident: br0080
  article-title: Highly sensitive DC magnetic field sensor based on nonlinear ME effect
  publication-title: IEEE Sens. Lett.
– volume: 512
  year: 2020
  ident: br0290
  article-title: Curie temperature modeling of magnetocaloric lanthanum manganites using Gaussian process regression
  publication-title: J. Magn. Magn. Mater.
– volume: 94
  start-page: 3738
  year: 2011
  end-page: 3741
  ident: br0110
  article-title: Enhanced sensitivity and reduced noise floor in magnetoelectric laminate sensors by an improved lamination process
  publication-title: J. Am. Ceram. Soc.
– volume: 117
  year: 2015
  ident: br0150
  article-title: Nanostructure surface patterning of GaN thin films and application to AlGaN/AlN multiple quantum wells: a way towards light extraction efficiency enhancement of III-nitride based light emitting diodes
  publication-title: J. Appl. Phys.
– volume: 384
  year: 2020
  ident: br0320
  article-title: Predicting the thermal conductivity enhancement of nanofluids using computational intelligence
  publication-title: Phys. Lett. A
– volume: 121
  start-page: 1984
  year: 2004
  end-page: 2000
  ident: br0170
  article-title: Theory of dynamic barriers, activated hopping, and the glass transition in polymer melts
  publication-title: J. Chem. Phys.
– volume: 19
  start-page: 1626
  year: 2009
  end-page: 1632
  ident: br0190
  article-title: Stability of second generation HTS pancake coils at 4.2 K for high heat flux applications
  publication-title: IEEE Trans. Appl. Supercond.
– volume: 27
  start-page: 1
  year: 2017
  end-page: 5
  ident: br0250
  article-title: Numerical study on simplified resistive joints of coated conductors: is there a lower limit of the joint resistance?
  publication-title: IEEE Trans. Appl. Supercond.
– volume: 217
  year: 2020
  ident: br0340
  article-title: Machine learning optical band gaps of doped-ZnO films
  publication-title: Optik
– volume: 29
  year: 2016
  ident: br0050
  article-title: Formation of Bi
  publication-title: Supercond. Sci. Technol.
– volume: 10
  year: 2020
  ident: br0330
  article-title: Machine learning modeling of lattice constants for half-Heusler alloys
  publication-title: AIP Adv.
– volume: 7
  start-page: 1
  year: 2017
  end-page: 9
  ident: br0140
  article-title: Opto-electric investigation for Si/organic heterojunction single-nanowire solar cells
  publication-title: Sci. Rep.
– reference: J. Schwartz, C.C. Koch, Y. Zhang, X. Liu, Formation of bismuth strontium calcium copper oxide superconductors, U.S. Patent US9773962B2, September 26, 2017.
– year: 2020
  ident: br0410
  article-title: Transformation temperature predictions through computational intelligence for NiTi-based shape memory alloys
  publication-title: Shape Mem. Superelast.
– volume: 89
  start-page: 3112
  year: 2014
  end-page: 3116
  ident: br0020
  article-title: Gamma irradiation effects on cyanate ester/epoxy insulation materials for superconducting magnets
  publication-title: Fusion Eng. Des.
– volume: 29
  start-page: 1
  year: 2019
  end-page: 6
  ident: br0230
  article-title: Quench protection system of a 1 MW high temperature superconductor DC induction heater
  publication-title: IEEE Trans. Appl. Supercond.
– volume: 60
  start-page: 1227
  year: 2013
  end-page: 1233
  ident: br0090
  article-title: Equivalent magnetic noise in multi-push-pull configuration magnetoelectric composites: model and experiment
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 54
  start-page: 7789
  year: 2019
  end-page: 7797
  ident: br0130
  article-title: Engineering of hole-selective contact for high-performance perovskite solar cell featuring silver back-electrode
  publication-title: J. Mater. Sci.
– volume: 57
  start-page: 843
  year: 1998
  ident: br0200
  article-title: Molecular-dynamics simulations of the thermal glass transition in polymer melts:
  publication-title: Phys. Rev. E
– volume: 41
  start-page: 149
  year: 2020
  ident: br0390
  article-title: Predicting
  publication-title: Int. J. Thermophys.
– volume: 52
  year: 2019
  ident: br0210
  article-title: Quench behavior of high-temperature superconductor (RE) Ba2Cu3O × CORC cable
  publication-title: J. Phys. D, Appl. Phys.
– year: 2020
  ident: br0460
  article-title: Machine learning the central magnetic flux density of superconducting solenoids
  publication-title: Mater. Technol.
– volume: 10
  start-page: 20646
  year: 2020
  end-page: 20653
  ident: br0350
  article-title: Relative cooling power modeling of lanthanum manganites using Gaussian process regression
  publication-title: RSC Adv.
– volume: 573
  year: 2020
  ident: br0280
  article-title: Predicting doped MgB
  publication-title: Physica C, Supercond. Appl.
– year: 2020
  ident: br0450
  article-title: Machine learning F-doped Bi(Pb)-Sr-Ca-Cu-O superconducting transition temperature
  publication-title: J. Supercond. Nov. Magn.
– volume: 5
  start-page: 15344
  year: 2020
  end-page: 15352
  ident: br0360
  article-title: Machine learning band gaps of doped-TiO
  publication-title: ACS Omega
– year: 2020
  ident: br0430
  article-title: Machine learning decomposition onset temperature of lubricant additives
  publication-title: J. Mater. Eng. Perform.
– volume: 126
  start-page: 341
  year: 2020
  ident: br0300
  article-title: Machine learning the magnetocaloric effect in manganites from lattice parameters
  publication-title: Appl. Phys. A
– volume: 375
  start-page: 213
  year: 2003
  end-page: 218
  ident: br0120
  article-title: Enhanced room-temperature magnetoresistance in half-metallic CrO
  publication-title: Chem. Phys. Lett.
– volume: 209
  start-page: 2059
  year: 2012
  end-page: 2062
  ident: br0100
  article-title: Magnetic field dependence of the effective permittivity in multiferroic composites
  publication-title: Phys. Status Solidi A
– volume: 13
  start-page: 462
  year: 1973
  end-page: 468
  ident: br0010
  article-title: Glass transition temperature as a guide to selection of polymers suitable for PTC materials
  publication-title: Polym. Eng. Sci.
– volume: 10
  year: 2020
  ident: 10.1016/j.heliyon.2020.e05055_br0330
  article-title: Machine learning modeling of lattice constants for half-Heusler alloys
  publication-title: AIP Adv.
– ident: 10.1016/j.heliyon.2020.e05055_br0030
– volume: 573
  year: 2020
  ident: 10.1016/j.heliyon.2020.e05055_br0280
  article-title: Predicting doped MgB2 superconductor critical temperature from lattice parameters using Gaussian process regression
  publication-title: Physica C, Supercond. Appl.
  doi: 10.1016/j.physc.2020.1353633
– year: 2020
  ident: 10.1016/j.heliyon.2020.e05055_br0420
  article-title: Machine learning lattice parameters of monoclinic double perovskites
  publication-title: Int. J. Quant. Chem.
– volume: 41
  start-page: 149
  year: 2020
  ident: 10.1016/j.heliyon.2020.e05055_br0390
  article-title: Predicting AsxSe1−x glass transition onset temperature
  publication-title: Int. J. Thermophys.
  doi: 10.1007/s10765-020-02734-4
– volume: 13
  start-page: 462
  issue: 6
  year: 1973
  ident: 10.1016/j.heliyon.2020.e05055_br0010
  article-title: Glass transition temperature as a guide to selection of polymers suitable for PTC materials
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.760130611
– volume: 52
  issue: 34
  year: 2019
  ident: 10.1016/j.heliyon.2020.e05055_br0210
  article-title: Quench behavior of high-temperature superconductor (RE) Ba2Cu3O × CORC cable
  publication-title: J. Phys. D, Appl. Phys.
  doi: 10.1088/1361-6463/ab1e2c
– volume: 27
  start-page: 1
  issue: 4
  year: 2017
  ident: 10.1016/j.heliyon.2020.e05055_br0250
  article-title: Numerical study on simplified resistive joints of coated conductors: is there a lower limit of the joint resistance?
  publication-title: IEEE Trans. Appl. Supercond.
– volume: 5
  start-page: 9999
  year: 2020
  ident: 10.1016/j.heliyon.2020.e05055_br0380
  article-title: Machine learning lattice constants for cubic perovskite ABX3 compounds
  publication-title: ChemistrySelect
  doi: 10.1002/slct.202002532
– volume: 27
  start-page: 1
  issue: 4
  year: 2017
  ident: 10.1016/j.heliyon.2020.e05055_br0220
  article-title: Experiment and numerical analysis on magnetic field stability of persistent current mode coil made of HTS-coated conductors
  publication-title: IEEE Trans. Appl. Supercond.
– volume: 19
  start-page: 1626
  issue: 3
  year: 2009
  ident: 10.1016/j.heliyon.2020.e05055_br0190
  article-title: Stability of second generation HTS pancake coils at 4.2 K for high heat flux applications
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/TASC.2009.2017914
– volume: 60
  start-page: 6991
  issue: 20
  year: 2012
  ident: 10.1016/j.heliyon.2020.e05055_br0180
  article-title: On the role of pre-existing defects and magnetic flux avalanches in the degradation of YBa2Cu3O7−x coated conductors by quenching
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2012.09.003
– volume: 29
  issue: 12
  year: 2016
  ident: 10.1016/j.heliyon.2020.e05055_br0050
  article-title: Formation of Bi2Sr2CaCu2Ox/Ag multifilamentary metallic precursor powder-in-tube wires
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/29/12/125005
– volume: 27
  start-page: 2740
  issue: 8
  year: 2015
  ident: 10.1016/j.heliyon.2020.e05055_br0160
  article-title: On the glass transition of polymer semiconductors and its impact on polymer solar cell stability
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b00024
– volume: 209
  start-page: 2059
  issue: 10
  year: 2012
  ident: 10.1016/j.heliyon.2020.e05055_br0100
  article-title: Magnetic field dependence of the effective permittivity in multiferroic composites
  publication-title: Phys. Status Solidi A
  doi: 10.1002/pssa.201228278
– volume: 126
  start-page: 341
  year: 2020
  ident: 10.1016/j.heliyon.2020.e05055_br0300
  article-title: Machine learning the magnetocaloric effect in manganites from lattice parameters
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-020-03503-8
– year: 2020
  ident: 10.1016/j.heliyon.2020.e05055_br0430
  article-title: Machine learning decomposition onset temperature of lubricant additives
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-020-05146-5
– volume: 217
  year: 2020
  ident: 10.1016/j.heliyon.2020.e05055_br0340
  article-title: Machine learning optical band gaps of doped-ZnO films
  publication-title: Optik
  doi: 10.1016/j.ijleo.2020.164808
– volume: 29
  start-page: 1
  issue: 5
  year: 2019
  ident: 10.1016/j.heliyon.2020.e05055_br0230
  article-title: Quench protection system of a 1 MW high temperature superconductor DC induction heater
  publication-title: IEEE Trans. Appl. Supercond.
– volume: 10
  start-page: 20646
  year: 2020
  ident: 10.1016/j.heliyon.2020.e05055_br0350
  article-title: Relative cooling power modeling of lanthanum manganites using Gaussian process regression
  publication-title: RSC Adv.
  doi: 10.1039/D0RA03031G
– volume: 60
  start-page: 1227
  issue: 6
  year: 2013
  ident: 10.1016/j.heliyon.2020.e05055_br0090
  article-title: Equivalent magnetic noise in multi-push-pull configuration magnetoelectric composites: model and experiment
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2013.2686
– year: 2020
  ident: 10.1016/j.heliyon.2020.e05055_br0460
  article-title: Machine learning the central magnetic flux density of superconducting solenoids
  publication-title: Mater. Technol.
– volume: 117
  issue: 11
  year: 2015
  ident: 10.1016/j.heliyon.2020.e05055_br0150
  article-title: Nanostructure surface patterning of GaN thin films and application to AlGaN/AlN multiple quantum wells: a way towards light extraction efficiency enhancement of III-nitride based light emitting diodes
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4915903
– volume: 10
  issue: 3
  year: 2020
  ident: 10.1016/j.heliyon.2020.e05055_br0310
  article-title: Machine learning the magnetocaloric effect in manganites from compositions and structural parameters
  publication-title: AIP Adv.
  doi: 10.1063/1.5144241
– volume: 94
  start-page: 3738
  issue: 11
  year: 2011
  ident: 10.1016/j.heliyon.2020.e05055_br0110
  article-title: Enhanced sensitivity and reduced noise floor in magnetoelectric laminate sensors by an improved lamination process
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2011.04659.x
– volume: 57
  start-page: 843
  issue: 1
  year: 1998
  ident: 10.1016/j.heliyon.2020.e05055_br0200
  article-title: Molecular-dynamics simulations of the thermal glass transition in polymer melts: α-relaxation behavior
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.57.843
– volume: 5
  start-page: 15344
  year: 2020
  ident: 10.1016/j.heliyon.2020.e05055_br0360
  article-title: Machine learning band gaps of doped-TiO2 photocatalysts from structural and morphological parameters
  publication-title: ACS Omega
  doi: 10.1021/acsomega.0c01438
– volume: 22
  start-page: 2325
  issue: 8
  year: 1978
  ident: 10.1016/j.heliyon.2020.e05055_br0260
  article-title: A free-volume interpretation of the influence of the glass transition on diffusion in amorphous polymers
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.1978.070220823
– volume: 121
  start-page: 1984
  issue: 4
  year: 2004
  ident: 10.1016/j.heliyon.2020.e05055_br0170
  article-title: Theory of dynamic barriers, activated hopping, and the glass transition in polymer melts
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1756854
– volume: 22
  start-page: 6385
  year: 2020
  ident: 10.1016/j.heliyon.2020.e05055_br0370
  article-title: Machine learning lattice constants for cubic perovskite A22+BB′O6 compounds
  publication-title: CrystEngComm
  doi: 10.1039/D0CE00928H
– volume: 102
  issue: 8
  year: 2013
  ident: 10.1016/j.heliyon.2020.e05055_br0070
  article-title: Giant magnetoelectric effect in self-biased laminates under zero magnetic field
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4794056
– year: 2020
  ident: 10.1016/j.heliyon.2020.e05055_br0400
  article-title: Lattice misfit predictions via the Gaussian process regression for Ni-based single crystal superalloys
  publication-title: Met. Mater. Int.
– volume: 28
  start-page: 1
  issue: 4
  year: 2018
  ident: 10.1016/j.heliyon.2020.e05055_br0240
  article-title: Design and fabrication of a 1-MW high-temperature superconductor DC induction heater
  publication-title: IEEE Trans. Appl. Supercond.
– volume: 29
  issue: 9
  year: 2016
  ident: 10.1016/j.heliyon.2020.e05055_br0040
  article-title: High critical current density Bi2Sr2CaCu2Ox/Ag wire containing oxide precursor synthesized from nano-oxides
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/29/9/095012
– volume: 512
  year: 2020
  ident: 10.1016/j.heliyon.2020.e05055_br0290
  article-title: Curie temperature modeling of magnetocaloric lanthanum manganites using Gaussian process regression
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2020.166998
– volume: 332
  start-page: 115
  issue: 1
  year: 2007
  ident: 10.1016/j.heliyon.2020.e05055_br0480
  article-title: Correlation between the glass transition temperatures and multipole moments for polymers
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2006.11.029
– volume: 27
  issue: 5
  year: 2014
  ident: 10.1016/j.heliyon.2020.e05055_br0060
  article-title: Synthesis of Bi2Sr2CaCu2Ox superconductors via direct oxidation of metallic precursors
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/27/5/055016
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.heliyon.2020.e05055_br0140
  article-title: Opto-electric investigation for Si/organic heterojunction single-nanowire solar cells
  publication-title: Sci. Rep.
– year: 2020
  ident: 10.1016/j.heliyon.2020.e05055_br0410
  article-title: Transformation temperature predictions through computational intelligence for NiTi-based shape memory alloys
  publication-title: Shape Mem. Superelast.
  doi: 10.1007/s40830-020-00303-0
– year: 2020
  ident: 10.1016/j.heliyon.2020.e05055_br0440
  article-title: Predicting doped Fe-based superconductor critical temperature from structural and topological parameters using machine learning
  publication-title: Int. J. Mater. Res.
– year: 2020
  ident: 10.1016/j.heliyon.2020.e05055_br0450
  article-title: Machine learning F-doped Bi(Pb)-Sr-Ca-Cu-O superconducting transition temperature
  publication-title: J. Supercond. Nov. Magn.
– volume: 384
  year: 2020
  ident: 10.1016/j.heliyon.2020.e05055_br0320
  article-title: Predicting the thermal conductivity enhancement of nanofluids using computational intelligence
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2020.126500
– volume: 1
  start-page: 1
  issue: 6
  year: 2017
  ident: 10.1016/j.heliyon.2020.e05055_br0080
  article-title: Highly sensitive DC magnetic field sensor based on nonlinear ME effect
  publication-title: IEEE Sens. Lett.
  doi: 10.1109/LSENS.2017.2752216
– year: 2020
  ident: 10.1016/j.heliyon.2020.e05055_br0470
  article-title: Machine learning lattice constants for spinel compounds
  publication-title: Chem. Phys. Lett.
– volume: 375
  start-page: 213
  issue: 1–2
  year: 2003
  ident: 10.1016/j.heliyon.2020.e05055_br0120
  article-title: Enhanced room-temperature magnetoresistance in half-metallic CrO2/polymer composites
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(03)00816-9
– volume: 179
  year: 2020
  ident: 10.1016/j.heliyon.2020.e05055_br0270
  article-title: Yttrium barium copper oxide superconducting transition temperature modeling through Gaussian process regression
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2020.109583
– volume: 455
  start-page: 430
  year: 2012
  ident: 10.1016/j.heliyon.2020.e05055_br0490
  article-title: Modeling the glass transition temperature of polymers via multipole moments using support vector regression
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.455-456.430
– volume: 89
  start-page: 3112
  issue: 12
  year: 2014
  ident: 10.1016/j.heliyon.2020.e05055_br0020
  article-title: Gamma irradiation effects on cyanate ester/epoxy insulation materials for superconducting magnets
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2014.09.012
– volume: 54
  start-page: 7789
  issue: 10
  year: 2019
  ident: 10.1016/j.heliyon.2020.e05055_br0130
  article-title: Engineering of hole-selective contact for high-performance perovskite solar cell featuring silver back-electrode
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-018-03258-x
SSID ssj0001586973
Score 2.4609013
Snippet As an important thermophysical property, polymers' glass transition temperature, Tg, could sometimes be difficult to determine experimentally. Modeling...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e05055
SubjectTerms Gaussian process regression
Glass transition temperature
Machine learning
Materials chemistry
Materials science
normal distribution
Physical chemistry
Polymer
regression analysis
Title Machine learning glass transition temperature of polymers
URI https://dx.doi.org/10.1016/j.heliyon.2020.e05055
https://www.ncbi.nlm.nih.gov/pubmed/33083589
https://www.proquest.com/docview/2452981702
https://www.proquest.com/docview/2524300416
https://pubmed.ncbi.nlm.nih.gov/PMC7553976
https://doaj.org/article/5fae7948594b4908bf3be477150518ea
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1VRap6QUBpCR9VkLhmm43t2D4WRFVRLQdERW-WHdvtVqukgu2h_x6P7d1uQGIvSDkldiKPx3nPmckbgA_eeM8C8FSW1LaiznWVYR2rjKW8YR5BFr9Dzr6255f0yxW72ij1hTlhSR44Ge6Eee04SphIajBIZTwxjnIeiAybChepUcC8jc1U-j9YtDKGlwNisUpQWj_-vnNyO7lxi_nDgPqnTT1xWM2NjYAp6veP8Olv_vlnGuUGLp09g6eZUJanaSDPYcf1L2BvlkPmByBnMV3Slbk-xHUZCXO5RJCK-VolylNlbeVy8OXdsHjAr9kv4fLs8_dP51Wul1B1gZQtq7aWemq1l1Mnw0alY5qZmnjHrBXhEKLlXUDncJFJY0xXG94IK4VuCdeeanIIu_3Qu1dQ2jq8eFyYOWkoNdpqTqQILVrbEVTgK4CujKW6LCaONS0WapU1dquyjRXaWCUbFzBZd7tLahrbOnzEmVg3RjHseCK4iMouora5SAFiNY8q84rEF8Kt5tue_3417yqsOwym6N4N979UjFijumHzjzasoVHRrC3gKPnKeiSEIPkVsgA-8qLRUMdX-vlN1P_mjCGLfP0_bPMG9nG4KT3xLewuf967d4FmLc0xPDm9-Pbj4jiurN_KzScU
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+glass+transition+temperature+of+polymers&rft.jtitle=Heliyon&rft.au=Zhang%2C+Yun&rft.au=Xu%2C+Xiaojie&rft.date=2020-10-01&rft.issn=2405-8440&rft.eissn=2405-8440&rft.volume=6&rft.issue=10&rft.spage=e05055&rft_id=info:doi/10.1016%2Fj.heliyon.2020.e05055&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8440&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8440&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8440&client=summon