Machine learning glass transition temperature of polymers
As an important thermophysical property, polymers' glass transition temperature, Tg, could sometimes be difficult to determine experimentally. Modeling methods, particularly data-driven approaches, are promising alternatives to predictions of Tg in a fast and robust way. The molecular traceless...
Saved in:
Published in | Heliyon Vol. 6; no. 10; p. e05055 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.10.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As an important thermophysical property, polymers' glass transition temperature, Tg, could sometimes be difficult to determine experimentally. Modeling methods, particularly data-driven approaches, are promising alternatives to predictions of Tg in a fast and robust way. The molecular traceless quadrupole moment and molecule average hexadecapole moment are closely correlated with polymers' Tg. In the current work, these two parameters are used as descriptors in the Gaussian process regression model to predict Tg. We investigate 60 samples with Tg values from 194 K to 440 K. The model provides rapid and low-cost Tg estimations with high accuracy and stability.
Materials science; Materials chemistry; Physical chemistry; Glass transition temperature; Polymer; Machine learning; Gaussian process regression |
---|---|
AbstractList | As an important thermophysical property, polymers' glass transition temperature, Tg, could sometimes be difficult to determine experimentally. Modeling methods, particularly data-driven approaches, are promising alternatives to predictions of Tg in a fast and robust way. The molecular traceless quadrupole moment and molecule average hexadecapole moment are closely correlated with polymers' Tg. In the current work, these two parameters are used as descriptors in the Gaussian process regression model to predict Tg. We investigate 60 samples with Tg values from 194 K to 440 K. The model provides rapid and low-cost Tg estimations with high accuracy and stability.
Materials science; Materials chemistry; Physical chemistry; Glass transition temperature; Polymer; Machine learning; Gaussian process regression As an important thermophysical property, polymers' glass transition temperature, Tg, could sometimes be difficult to determine experimentally. Modeling methods, particularly data-driven approaches, are promising alternatives to predictions of Tg in a fast and robust way. The molecular traceless quadrupole moment and molecule average hexadecapole moment are closely correlated with polymers' Tg. In the current work, these two parameters are used as descriptors in the Gaussian process regression model to predict Tg. We investigate 60 samples with Tg values from 194 K to 440 K. The model provides rapid and low-cost Tg estimations with high accuracy and stability.As an important thermophysical property, polymers' glass transition temperature, Tg, could sometimes be difficult to determine experimentally. Modeling methods, particularly data-driven approaches, are promising alternatives to predictions of Tg in a fast and robust way. The molecular traceless quadrupole moment and molecule average hexadecapole moment are closely correlated with polymers' Tg. In the current work, these two parameters are used as descriptors in the Gaussian process regression model to predict Tg. We investigate 60 samples with Tg values from 194 K to 440 K. The model provides rapid and low-cost Tg estimations with high accuracy and stability. As an important thermophysical property, polymers' glass transition temperature, Tg, could sometimes be difficult to determine experimentally. Modeling methods, particularly data-driven approaches, are promising alternatives to predictions of Tg in a fast and robust way. The molecular traceless quadrupole moment and molecule average hexadecapole moment are closely correlated with polymers' Tg. In the current work, these two parameters are used as descriptors in the Gaussian process regression model to predict Tg. We investigate 60 samples with Tg values from 194 K to 440 K. The model provides rapid and low-cost Tg estimations with high accuracy and stability. |
ArticleNumber | e05055 |
Author | Xu, Xiaojie Zhang, Yun |
Author_xml | – sequence: 1 givenname: Yun orcidid: 0000-0002-9464-1751 surname: Zhang fullname: Zhang, Yun email: yzhang43@ncsu.edu – sequence: 2 givenname: Xiaojie surname: Xu fullname: Xu, Xiaojie |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33083589$$D View this record in MEDLINE/PubMed |
BookMark | eNqNklFvFCEQxzemxtbaj6DZR1_uHBZYICaaprHapMYXfSYsO3vHhYUT9prct5frXk3rS01IIMz__2OYmdfVSYgBq-otgSUB0n7YLNfo3T6GZQMNLBE4cP6iOmsY8IVkDE4enU-ri5w3AEC4bJWgr6pTSkFSLtVZpb4bu3YBa48mBRdW9cqbnOspmZDd5GKoJxy3mMy0S1jHod5Gvx8x5TfVy8H4jBfH_bz6df3l59W3xe2PrzdXl7cLy9t2WrSgDOnNoAgq2TaWG94BHZD3vSxLylZYyWkJctV1nYVONLJX0rRUmIEZel7dzNw-mo3eJjeatNfROH1_EdNKmzQ561HzwaBQrJBYxxTIbqAdMiFIKQ-ReGB9mlnbXTdibzGUf_on0KeR4NZ6Fe-04Jwq0RbA-yMgxd87zJMeXbbovQkYd1k3vGEUgJH_kDLeKEkENEX67nFaf_N5aFMRfJwFNsWcEw7auskculOydF4T0Ie50Bt9nAt9mAs9z0Vx83_cDw885_s8-7C0985h0tk6DBZ7l9BOpf7uGcIf18jVmQ |
CitedBy_id | crossref_primary_10_1007_s10854_025_14391_0 crossref_primary_10_1016_j_cplett_2021_138589 crossref_primary_10_1007_s40089_023_00400_9 crossref_primary_10_1088_2631_8695_ad43ba crossref_primary_10_1177_0037549721995574 crossref_primary_10_1016_j_matpr_2022_04_633 crossref_primary_10_1038_s41524_023_01034_3 crossref_primary_10_1007_s40830_020_00303_0 crossref_primary_10_1021_acs_iecr_0c05055 crossref_primary_10_1016_j_memsci_2023_122169 crossref_primary_10_1111_ijac_13709 crossref_primary_10_1039_D3CP03631F crossref_primary_10_1134_S1560090422700166 crossref_primary_10_1016_j_powtec_2021_04_072 crossref_primary_10_3390_app142210413 crossref_primary_10_1002_adts_202100565 crossref_primary_10_3390_polym13111898 crossref_primary_10_1039_D5NJ00035A crossref_primary_10_1063_5_0137357 crossref_primary_10_1007_s00339_025_08429_7 crossref_primary_10_1007_s42114_024_01192_y crossref_primary_10_1007_s11947_024_03639_y crossref_primary_10_1007_s12540_020_00883_7 crossref_primary_10_1021_acsanm_3c05225 crossref_primary_10_1016_j_heliyon_2021_e07601 crossref_primary_10_1039_D0NJ03868G crossref_primary_10_1016_j_heliyon_2023_e21332 crossref_primary_10_1002_inf2_12425 crossref_primary_10_3390_pr9081456 crossref_primary_10_1007_s00521_024_10532_4 crossref_primary_10_1002_adma_202413695 crossref_primary_10_1007_s10948_020_05682_0 crossref_primary_10_1021_acspolymersau_3c00029 crossref_primary_10_1021_acscentsci_3c00502 crossref_primary_10_1515_ijmr_2020_7986 crossref_primary_10_1002_mats_202400008 crossref_primary_10_1177_0021998320984245 crossref_primary_10_1016_j_foodchem_2022_133595 crossref_primary_10_1016_j_dajour_2023_100267 crossref_primary_10_1007_s10854_024_13964_9 crossref_primary_10_3390_polym16081049 crossref_primary_10_1016_j_jssc_2025_125179 crossref_primary_10_1007_s11224_020_01699_2 crossref_primary_10_1520_ACEM20200134 crossref_primary_10_1080_10667857_2020_1830567 crossref_primary_10_3390_app11062525 crossref_primary_10_1016_j_jssc_2024_125173 crossref_primary_10_1016_j_jssc_2025_125252 crossref_primary_10_1016_j_mlwa_2020_100010 crossref_primary_10_1002_marc_202400260 crossref_primary_10_1007_s11661_020_06130_3 crossref_primary_10_1002_pi_6345 crossref_primary_10_1016_j_mtcomm_2024_110155 crossref_primary_10_1016_j_jmapro_2022_06_035 crossref_primary_10_1016_j_commatsci_2024_112863 crossref_primary_10_1515_revce_2023_0021 crossref_primary_10_1007_s10853_021_06561_2 crossref_primary_10_1016_j_solidstatesciences_2021_106541 crossref_primary_10_1016_j_jmgm_2020_107796 crossref_primary_10_1007_s10909_020_02545_9 crossref_primary_10_1080_15421406_2021_1946348 crossref_primary_10_1103_PhysRevB_107_205121 crossref_primary_10_1016_j_chemphys_2024_112579 crossref_primary_10_1063_5_0066410 crossref_primary_10_1007_s11665_020_05146_5 crossref_primary_10_1021_acs_jcim_2c00875 crossref_primary_10_1016_j_mtcomm_2024_108405 crossref_primary_10_1007_s12008_022_00945_7 crossref_primary_10_3390_ijms26062743 crossref_primary_10_1007_s10854_023_11479_3 crossref_primary_10_3390_polym14204284 |
Cites_doi | 10.1016/j.physc.2020.1353633 10.1007/s10765-020-02734-4 10.1002/pen.760130611 10.1088/1361-6463/ab1e2c 10.1002/slct.202002532 10.1109/TASC.2009.2017914 10.1016/j.actamat.2012.09.003 10.1088/0953-2048/29/12/125005 10.1021/acs.chemmater.5b00024 10.1002/pssa.201228278 10.1007/s00339-020-03503-8 10.1007/s11665-020-05146-5 10.1016/j.ijleo.2020.164808 10.1039/D0RA03031G 10.1109/TUFFC.2013.2686 10.1063/1.4915903 10.1063/1.5144241 10.1111/j.1551-2916.2011.04659.x 10.1103/PhysRevE.57.843 10.1021/acsomega.0c01438 10.1002/app.1978.070220823 10.1063/1.1756854 10.1039/D0CE00928H 10.1063/1.4794056 10.1088/0953-2048/29/9/095012 10.1016/j.jmmm.2020.166998 10.1016/j.chemphys.2006.11.029 10.1088/0953-2048/27/5/055016 10.1007/s40830-020-00303-0 10.1016/j.physleta.2020.126500 10.1109/LSENS.2017.2752216 10.1016/S0009-2614(03)00816-9 10.1016/j.commatsci.2020.109583 10.4028/www.scientific.net/AMR.455-456.430 10.1016/j.fusengdes.2014.09.012 10.1007/s10853-018-03258-x |
ContentType | Journal Article |
Copyright | 2020 The Authors 2020 The Authors. 2020 The Authors 2020 |
Copyright_xml | – notice: 2020 The Authors – notice: 2020 The Authors. – notice: 2020 The Authors 2020 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 7S9 L.6 5PM DOA |
DOI | 10.1016/j.heliyon.2020.e05055 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2405-8440 |
ExternalDocumentID | oai_doaj_org_article_5fae7948594b4908bf3be477150518ea PMC7553976 33083589 10_1016_j_heliyon_2020_e05055 S2405844020318983 |
Genre | Journal Article |
GroupedDBID | 0R~ 457 53G 5VS 6I. AACTN AAEDW AAFTH AAFWJ ABMAC ACGFS ACLIJ ADBBV ADEZE ADVLN AEXQZ AFJKZ AFPKN AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE IPNFZ KQ8 M~E O9- OK1 RIG ROL RPM SSZ AALRI AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c566t-609a1daf91e9862c5a5b03fe5dd8dd88867c853e9859bbbc0b728d98a637af4a3 |
IEDL.DBID | DOA |
ISSN | 2405-8440 |
IngestDate | Wed Aug 27 01:30:50 EDT 2025 Thu Aug 21 18:12:04 EDT 2025 Fri Aug 22 20:26:32 EDT 2025 Fri Jul 11 07:11:01 EDT 2025 Mon Jul 21 06:03:59 EDT 2025 Tue Jul 01 05:23:36 EDT 2025 Thu Apr 24 23:10:27 EDT 2025 Sat Mar 22 15:54:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Physical chemistry Machine learning Gaussian process regression Materials science Polymer Glass transition temperature Materials chemistry |
Language | English |
License | This is an open access article under the CC BY license. 2020 The Authors. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c566t-609a1daf91e9862c5a5b03fe5dd8dd88867c853e9859bbbc0b728d98a637af4a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9464-1751 |
OpenAccessLink | https://doaj.org/article/5fae7948594b4908bf3be477150518ea |
PMID | 33083589 |
PQID | 2452981702 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5fae7948594b4908bf3be477150518ea pubmedcentral_primary_oai_pubmedcentral_nih_gov_7553976 proquest_miscellaneous_2524300416 proquest_miscellaneous_2452981702 pubmed_primary_33083589 crossref_citationtrail_10_1016_j_heliyon_2020_e05055 crossref_primary_10_1016_j_heliyon_2020_e05055 elsevier_sciencedirect_doi_10_1016_j_heliyon_2020_e05055 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Heliyon |
PublicationTitleAlternate | Heliyon |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Li, Wu, Huang, Li (br0020) 2014; 89 Zhang, Xu (br0370) 2020; 22 Wang, Hasanyan, Li, Gao, Li, Viehland (br0090) 2013; 60 Yang, Wang, Qiu, Chang, Ma, Zhu, Jin, Hong (br0240) 2018; 28 Wang, Zheng, Zhu, Zhang, Yuan (br0210) 2019; 52 Guo, Kirste, Bryan, Bryan, Gerhold, Collazo, Sitar (br0150) 2015; 117 Zhang, Xu (br0350) 2020; 10 Schweizer, Saltzman (br0170) 2004; 121 Chen, Zhang, Li (br0120) 2003; 375 Zhang, Xu (br0340) 2020; 217 Zhang, Koch, Schwartz (br0050) 2016; 29 Meyer (br0010) 1973; 13 Vrentas, Duda (br0260) 1978; 22 J. Schwartz, C.C. Koch, Y. Zhang, X. Liu, Formation of bismuth strontium calcium copper oxide superconductors, U.S. Patent US9773962B2, September 26, 2017. Zhang, Xu (br0280) 2020; 573 Zhang, Xu (br0390) 2020; 41 Yang, Li, Wang, Wang, Wu, Huang, Hong, Jiang, Jin (br0230) 2019; 29 Zhang, Xu (br0270) 2020; 179 Lin, Gu, Zhu, Ye, Jiang, Wang, Liao, Yang, Zeng, Sheng, Guo (br0130) 2019; 54 Thieme, Gagnon, Coulter, Song, Schwartz (br0190) 2009; 19 Zhang, Xu (br0320) 2020; 384 Li, Berry, Das, Gray, Li, Viehland (br0110) 2011; 94 Zhang, Xu (br0430) 2020 Li, Wang, Wang, Li, Viehland (br0070) 2013; 102 Zhang, Xu (br0360) 2020; 5 Müller (br0160) 2015; 27 Li, Dong, Zhou, Wang, Wang, Liang, Lin, Sun (br0080) 2017; 1 Zhang, Xu (br0470) 2020 Pan, Sheng, Wu, Wang, Zeng, Zhao, Zhang, Li, Hong, Jin (br0250) 2017; 27 Zhang, Xu (br0410) 2020 Zhang, Xu (br0450) 2020 Zhang, Koch, Schwartz (br0060) 2014; 27 Zhang, Xu (br0310) 2020; 10 Qiu, Wu, Pan, Xu, Zhang, Li, Li, Wang, Wang, Zhao, Zhang (br0220) 2017; 27 Wang, Hasanyan, Li, Gao, Viswan, Li, Viehland (br0100) 2012; 209 Yu, Yi, Wang, Xie (br0480) 2007; 332 Yang, Liu, Sheng, Guo, Zeng, Gao, Ye (br0140) 2017; 7 Pei, Cai, Zhu, Wang, Yan (br0490) 2012; 455 Zhang, Xu (br0300) 2020; 126 Zhang, Xu (br0330) 2020; 10 Bennemann, Paul, Binder, Dünweg (br0200) 1998; 57 Zhang, Xu (br0420) 2020 Zhang, Xu (br0440) 2020 Song, Hunte, Schwartz (br0180) 2012; 60 Zhang, Xu (br0290) 2020; 512 Zhang, Xu (br0380) 2020; 5 Zhang, Johnson, Naderi, Chaubal, Hunt, Schwartz (br0040) 2016; 29 Zhang, Xu (br0400) 2020 Zhang, Xu (br0460) 2020 Li (10.1016/j.heliyon.2020.e05055_br0020) 2014; 89 Song (10.1016/j.heliyon.2020.e05055_br0180) 2012; 60 Zhang (10.1016/j.heliyon.2020.e05055_br0340) 2020; 217 Li (10.1016/j.heliyon.2020.e05055_br0080) 2017; 1 Thieme (10.1016/j.heliyon.2020.e05055_br0190) 2009; 19 Zhang (10.1016/j.heliyon.2020.e05055_br0290) 2020; 512 Qiu (10.1016/j.heliyon.2020.e05055_br0220) 2017; 27 Chen (10.1016/j.heliyon.2020.e05055_br0120) 2003; 375 Zhang (10.1016/j.heliyon.2020.e05055_br0050) 2016; 29 Wang (10.1016/j.heliyon.2020.e05055_br0100) 2012; 209 Zhang (10.1016/j.heliyon.2020.e05055_br0360) 2020; 5 Zhang (10.1016/j.heliyon.2020.e05055_br0320) 2020; 384 Zhang (10.1016/j.heliyon.2020.e05055_br0460) 2020 Lin (10.1016/j.heliyon.2020.e05055_br0130) 2019; 54 Zhang (10.1016/j.heliyon.2020.e05055_br0040) 2016; 29 Zhang (10.1016/j.heliyon.2020.e05055_br0440) 2020 Yu (10.1016/j.heliyon.2020.e05055_br0480) 2007; 332 Zhang (10.1016/j.heliyon.2020.e05055_br0060) 2014; 27 Zhang (10.1016/j.heliyon.2020.e05055_br0400) 2020 Li (10.1016/j.heliyon.2020.e05055_br0110) 2011; 94 Vrentas (10.1016/j.heliyon.2020.e05055_br0260) 1978; 22 Zhang (10.1016/j.heliyon.2020.e05055_br0420) 2020 Yang (10.1016/j.heliyon.2020.e05055_br0240) 2018; 28 Yang (10.1016/j.heliyon.2020.e05055_br0230) 2019; 29 Meyer (10.1016/j.heliyon.2020.e05055_br0010) 1973; 13 Pei (10.1016/j.heliyon.2020.e05055_br0490) 2012; 455 Yang (10.1016/j.heliyon.2020.e05055_br0140) 2017; 7 Zhang (10.1016/j.heliyon.2020.e05055_br0350) 2020; 10 Wang (10.1016/j.heliyon.2020.e05055_br0090) 2013; 60 Li (10.1016/j.heliyon.2020.e05055_br0070) 2013; 102 Müller (10.1016/j.heliyon.2020.e05055_br0160) 2015; 27 Zhang (10.1016/j.heliyon.2020.e05055_br0270) 2020; 179 Bennemann (10.1016/j.heliyon.2020.e05055_br0200) 1998; 57 Zhang (10.1016/j.heliyon.2020.e05055_br0390) 2020; 41 Zhang (10.1016/j.heliyon.2020.e05055_br0280) 2020; 573 Zhang (10.1016/j.heliyon.2020.e05055_br0330) 2020; 10 Zhang (10.1016/j.heliyon.2020.e05055_br0300) 2020; 126 Zhang (10.1016/j.heliyon.2020.e05055_br0470) 2020 Guo (10.1016/j.heliyon.2020.e05055_br0150) 2015; 117 Zhang (10.1016/j.heliyon.2020.e05055_br0380) 2020; 5 Zhang (10.1016/j.heliyon.2020.e05055_br0450) 2020 Zhang (10.1016/j.heliyon.2020.e05055_br0430) 2020 Pan (10.1016/j.heliyon.2020.e05055_br0250) 2017; 27 Zhang (10.1016/j.heliyon.2020.e05055_br0410) 2020 Wang (10.1016/j.heliyon.2020.e05055_br0210) 2019; 52 10.1016/j.heliyon.2020.e05055_br0030 Schweizer (10.1016/j.heliyon.2020.e05055_br0170) 2004; 121 Zhang (10.1016/j.heliyon.2020.e05055_br0370) 2020; 22 Zhang (10.1016/j.heliyon.2020.e05055_br0310) 2020; 10 |
References_xml | – volume: 27 start-page: 1 year: 2017 end-page: 5 ident: br0220 article-title: Experiment and numerical analysis on magnetic field stability of persistent current mode coil made of HTS-coated conductors publication-title: IEEE Trans. Appl. Supercond. – volume: 27 year: 2014 ident: br0060 article-title: Synthesis of Bi publication-title: Supercond. Sci. Technol. – volume: 60 start-page: 6991 year: 2012 end-page: 7000 ident: br0180 article-title: On the role of pre-existing defects and magnetic flux avalanches in the degradation of publication-title: Acta Mater. – year: 2020 ident: br0470 article-title: Machine learning lattice constants for spinel compounds publication-title: Chem. Phys. Lett. – volume: 5 start-page: 9999 year: 2020 end-page: 10009 ident: br0380 article-title: Machine learning lattice constants for cubic perovskite publication-title: ChemistrySelect – volume: 179 year: 2020 ident: br0270 article-title: Yttrium barium copper oxide superconducting transition temperature modeling through Gaussian process regression publication-title: Comput. Mater. Sci. – volume: 332 start-page: 115 year: 2007 end-page: 118 ident: br0480 article-title: Correlation between the glass transition temperatures and multipole moments for polymers publication-title: Chem. Phys. – year: 2020 ident: br0400 article-title: Lattice misfit predictions via the Gaussian process regression for Ni-based single crystal superalloys publication-title: Met. Mater. Int. – year: 2020 ident: br0420 article-title: Machine learning lattice parameters of monoclinic double perovskites publication-title: Int. J. Quant. Chem. – volume: 102 year: 2013 ident: br0070 article-title: Giant magnetoelectric effect in self-biased laminates under zero magnetic field publication-title: Appl. Phys. Lett. – volume: 10 year: 2020 ident: br0310 article-title: Machine learning the magnetocaloric effect in manganites from compositions and structural parameters publication-title: AIP Adv. – year: 2020 ident: br0440 article-title: Predicting doped Fe-based superconductor critical temperature from structural and topological parameters using machine learning publication-title: Int. J. Mater. Res. – volume: 455 start-page: 430 year: 2012 end-page: 435 ident: br0490 article-title: Modeling the glass transition temperature of polymers via multipole moments using support vector regression publication-title: Adv. Mater. Res. – volume: 22 start-page: 2325 year: 1978 end-page: 2339 ident: br0260 article-title: A free-volume interpretation of the influence of the glass transition on diffusion in amorphous polymers publication-title: J. Appl. Polym. Sci. – volume: 27 start-page: 2740 year: 2015 end-page: 2754 ident: br0160 article-title: On the glass transition of polymer semiconductors and its impact on polymer solar cell stability publication-title: Chem. Mater. – volume: 29 year: 2016 ident: br0040 article-title: High critical current density Bi publication-title: Supercond. Sci. Technol. – volume: 22 start-page: 6385 year: 2020 end-page: 6397 ident: br0370 article-title: Machine learning lattice constants for cubic perovskite publication-title: CrystEngComm – volume: 28 start-page: 1 year: 2018 end-page: 5 ident: br0240 article-title: Design and fabrication of a 1-MW high-temperature superconductor DC induction heater publication-title: IEEE Trans. Appl. Supercond. – volume: 1 start-page: 1 year: 2017 end-page: 4 ident: br0080 article-title: Highly sensitive DC magnetic field sensor based on nonlinear ME effect publication-title: IEEE Sens. Lett. – volume: 512 year: 2020 ident: br0290 article-title: Curie temperature modeling of magnetocaloric lanthanum manganites using Gaussian process regression publication-title: J. Magn. Magn. Mater. – volume: 94 start-page: 3738 year: 2011 end-page: 3741 ident: br0110 article-title: Enhanced sensitivity and reduced noise floor in magnetoelectric laminate sensors by an improved lamination process publication-title: J. Am. Ceram. Soc. – volume: 117 year: 2015 ident: br0150 article-title: Nanostructure surface patterning of GaN thin films and application to AlGaN/AlN multiple quantum wells: a way towards light extraction efficiency enhancement of III-nitride based light emitting diodes publication-title: J. Appl. Phys. – volume: 384 year: 2020 ident: br0320 article-title: Predicting the thermal conductivity enhancement of nanofluids using computational intelligence publication-title: Phys. Lett. A – volume: 121 start-page: 1984 year: 2004 end-page: 2000 ident: br0170 article-title: Theory of dynamic barriers, activated hopping, and the glass transition in polymer melts publication-title: J. Chem. Phys. – volume: 19 start-page: 1626 year: 2009 end-page: 1632 ident: br0190 article-title: Stability of second generation HTS pancake coils at 4.2 K for high heat flux applications publication-title: IEEE Trans. Appl. Supercond. – volume: 27 start-page: 1 year: 2017 end-page: 5 ident: br0250 article-title: Numerical study on simplified resistive joints of coated conductors: is there a lower limit of the joint resistance? publication-title: IEEE Trans. Appl. Supercond. – volume: 217 year: 2020 ident: br0340 article-title: Machine learning optical band gaps of doped-ZnO films publication-title: Optik – volume: 29 year: 2016 ident: br0050 article-title: Formation of Bi publication-title: Supercond. Sci. Technol. – volume: 10 year: 2020 ident: br0330 article-title: Machine learning modeling of lattice constants for half-Heusler alloys publication-title: AIP Adv. – volume: 7 start-page: 1 year: 2017 end-page: 9 ident: br0140 article-title: Opto-electric investigation for Si/organic heterojunction single-nanowire solar cells publication-title: Sci. Rep. – reference: J. Schwartz, C.C. Koch, Y. Zhang, X. Liu, Formation of bismuth strontium calcium copper oxide superconductors, U.S. Patent US9773962B2, September 26, 2017. – year: 2020 ident: br0410 article-title: Transformation temperature predictions through computational intelligence for NiTi-based shape memory alloys publication-title: Shape Mem. Superelast. – volume: 89 start-page: 3112 year: 2014 end-page: 3116 ident: br0020 article-title: Gamma irradiation effects on cyanate ester/epoxy insulation materials for superconducting magnets publication-title: Fusion Eng. Des. – volume: 29 start-page: 1 year: 2019 end-page: 6 ident: br0230 article-title: Quench protection system of a 1 MW high temperature superconductor DC induction heater publication-title: IEEE Trans. Appl. Supercond. – volume: 60 start-page: 1227 year: 2013 end-page: 1233 ident: br0090 article-title: Equivalent magnetic noise in multi-push-pull configuration magnetoelectric composites: model and experiment publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 54 start-page: 7789 year: 2019 end-page: 7797 ident: br0130 article-title: Engineering of hole-selective contact for high-performance perovskite solar cell featuring silver back-electrode publication-title: J. Mater. Sci. – volume: 57 start-page: 843 year: 1998 ident: br0200 article-title: Molecular-dynamics simulations of the thermal glass transition in polymer melts: publication-title: Phys. Rev. E – volume: 41 start-page: 149 year: 2020 ident: br0390 article-title: Predicting publication-title: Int. J. Thermophys. – volume: 52 year: 2019 ident: br0210 article-title: Quench behavior of high-temperature superconductor (RE) Ba2Cu3O × CORC cable publication-title: J. Phys. D, Appl. Phys. – year: 2020 ident: br0460 article-title: Machine learning the central magnetic flux density of superconducting solenoids publication-title: Mater. Technol. – volume: 10 start-page: 20646 year: 2020 end-page: 20653 ident: br0350 article-title: Relative cooling power modeling of lanthanum manganites using Gaussian process regression publication-title: RSC Adv. – volume: 573 year: 2020 ident: br0280 article-title: Predicting doped MgB publication-title: Physica C, Supercond. Appl. – year: 2020 ident: br0450 article-title: Machine learning F-doped Bi(Pb)-Sr-Ca-Cu-O superconducting transition temperature publication-title: J. Supercond. Nov. Magn. – volume: 5 start-page: 15344 year: 2020 end-page: 15352 ident: br0360 article-title: Machine learning band gaps of doped-TiO publication-title: ACS Omega – year: 2020 ident: br0430 article-title: Machine learning decomposition onset temperature of lubricant additives publication-title: J. Mater. Eng. Perform. – volume: 126 start-page: 341 year: 2020 ident: br0300 article-title: Machine learning the magnetocaloric effect in manganites from lattice parameters publication-title: Appl. Phys. A – volume: 375 start-page: 213 year: 2003 end-page: 218 ident: br0120 article-title: Enhanced room-temperature magnetoresistance in half-metallic CrO publication-title: Chem. Phys. Lett. – volume: 209 start-page: 2059 year: 2012 end-page: 2062 ident: br0100 article-title: Magnetic field dependence of the effective permittivity in multiferroic composites publication-title: Phys. Status Solidi A – volume: 13 start-page: 462 year: 1973 end-page: 468 ident: br0010 article-title: Glass transition temperature as a guide to selection of polymers suitable for PTC materials publication-title: Polym. Eng. Sci. – volume: 10 year: 2020 ident: 10.1016/j.heliyon.2020.e05055_br0330 article-title: Machine learning modeling of lattice constants for half-Heusler alloys publication-title: AIP Adv. – ident: 10.1016/j.heliyon.2020.e05055_br0030 – volume: 573 year: 2020 ident: 10.1016/j.heliyon.2020.e05055_br0280 article-title: Predicting doped MgB2 superconductor critical temperature from lattice parameters using Gaussian process regression publication-title: Physica C, Supercond. Appl. doi: 10.1016/j.physc.2020.1353633 – year: 2020 ident: 10.1016/j.heliyon.2020.e05055_br0420 article-title: Machine learning lattice parameters of monoclinic double perovskites publication-title: Int. J. Quant. Chem. – volume: 41 start-page: 149 year: 2020 ident: 10.1016/j.heliyon.2020.e05055_br0390 article-title: Predicting AsxSe1−x glass transition onset temperature publication-title: Int. J. Thermophys. doi: 10.1007/s10765-020-02734-4 – volume: 13 start-page: 462 issue: 6 year: 1973 ident: 10.1016/j.heliyon.2020.e05055_br0010 article-title: Glass transition temperature as a guide to selection of polymers suitable for PTC materials publication-title: Polym. Eng. Sci. doi: 10.1002/pen.760130611 – volume: 52 issue: 34 year: 2019 ident: 10.1016/j.heliyon.2020.e05055_br0210 article-title: Quench behavior of high-temperature superconductor (RE) Ba2Cu3O × CORC cable publication-title: J. Phys. D, Appl. Phys. doi: 10.1088/1361-6463/ab1e2c – volume: 27 start-page: 1 issue: 4 year: 2017 ident: 10.1016/j.heliyon.2020.e05055_br0250 article-title: Numerical study on simplified resistive joints of coated conductors: is there a lower limit of the joint resistance? publication-title: IEEE Trans. Appl. Supercond. – volume: 5 start-page: 9999 year: 2020 ident: 10.1016/j.heliyon.2020.e05055_br0380 article-title: Machine learning lattice constants for cubic perovskite ABX3 compounds publication-title: ChemistrySelect doi: 10.1002/slct.202002532 – volume: 27 start-page: 1 issue: 4 year: 2017 ident: 10.1016/j.heliyon.2020.e05055_br0220 article-title: Experiment and numerical analysis on magnetic field stability of persistent current mode coil made of HTS-coated conductors publication-title: IEEE Trans. Appl. Supercond. – volume: 19 start-page: 1626 issue: 3 year: 2009 ident: 10.1016/j.heliyon.2020.e05055_br0190 article-title: Stability of second generation HTS pancake coils at 4.2 K for high heat flux applications publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/TASC.2009.2017914 – volume: 60 start-page: 6991 issue: 20 year: 2012 ident: 10.1016/j.heliyon.2020.e05055_br0180 article-title: On the role of pre-existing defects and magnetic flux avalanches in the degradation of YBa2Cu3O7−x coated conductors by quenching publication-title: Acta Mater. doi: 10.1016/j.actamat.2012.09.003 – volume: 29 issue: 12 year: 2016 ident: 10.1016/j.heliyon.2020.e05055_br0050 article-title: Formation of Bi2Sr2CaCu2Ox/Ag multifilamentary metallic precursor powder-in-tube wires publication-title: Supercond. Sci. Technol. doi: 10.1088/0953-2048/29/12/125005 – volume: 27 start-page: 2740 issue: 8 year: 2015 ident: 10.1016/j.heliyon.2020.e05055_br0160 article-title: On the glass transition of polymer semiconductors and its impact on polymer solar cell stability publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b00024 – volume: 209 start-page: 2059 issue: 10 year: 2012 ident: 10.1016/j.heliyon.2020.e05055_br0100 article-title: Magnetic field dependence of the effective permittivity in multiferroic composites publication-title: Phys. Status Solidi A doi: 10.1002/pssa.201228278 – volume: 126 start-page: 341 year: 2020 ident: 10.1016/j.heliyon.2020.e05055_br0300 article-title: Machine learning the magnetocaloric effect in manganites from lattice parameters publication-title: Appl. Phys. A doi: 10.1007/s00339-020-03503-8 – year: 2020 ident: 10.1016/j.heliyon.2020.e05055_br0430 article-title: Machine learning decomposition onset temperature of lubricant additives publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-020-05146-5 – volume: 217 year: 2020 ident: 10.1016/j.heliyon.2020.e05055_br0340 article-title: Machine learning optical band gaps of doped-ZnO films publication-title: Optik doi: 10.1016/j.ijleo.2020.164808 – volume: 29 start-page: 1 issue: 5 year: 2019 ident: 10.1016/j.heliyon.2020.e05055_br0230 article-title: Quench protection system of a 1 MW high temperature superconductor DC induction heater publication-title: IEEE Trans. Appl. Supercond. – volume: 10 start-page: 20646 year: 2020 ident: 10.1016/j.heliyon.2020.e05055_br0350 article-title: Relative cooling power modeling of lanthanum manganites using Gaussian process regression publication-title: RSC Adv. doi: 10.1039/D0RA03031G – volume: 60 start-page: 1227 issue: 6 year: 2013 ident: 10.1016/j.heliyon.2020.e05055_br0090 article-title: Equivalent magnetic noise in multi-push-pull configuration magnetoelectric composites: model and experiment publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2013.2686 – year: 2020 ident: 10.1016/j.heliyon.2020.e05055_br0460 article-title: Machine learning the central magnetic flux density of superconducting solenoids publication-title: Mater. Technol. – volume: 117 issue: 11 year: 2015 ident: 10.1016/j.heliyon.2020.e05055_br0150 article-title: Nanostructure surface patterning of GaN thin films and application to AlGaN/AlN multiple quantum wells: a way towards light extraction efficiency enhancement of III-nitride based light emitting diodes publication-title: J. Appl. Phys. doi: 10.1063/1.4915903 – volume: 10 issue: 3 year: 2020 ident: 10.1016/j.heliyon.2020.e05055_br0310 article-title: Machine learning the magnetocaloric effect in manganites from compositions and structural parameters publication-title: AIP Adv. doi: 10.1063/1.5144241 – volume: 94 start-page: 3738 issue: 11 year: 2011 ident: 10.1016/j.heliyon.2020.e05055_br0110 article-title: Enhanced sensitivity and reduced noise floor in magnetoelectric laminate sensors by an improved lamination process publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2011.04659.x – volume: 57 start-page: 843 issue: 1 year: 1998 ident: 10.1016/j.heliyon.2020.e05055_br0200 article-title: Molecular-dynamics simulations of the thermal glass transition in polymer melts: α-relaxation behavior publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.57.843 – volume: 5 start-page: 15344 year: 2020 ident: 10.1016/j.heliyon.2020.e05055_br0360 article-title: Machine learning band gaps of doped-TiO2 photocatalysts from structural and morphological parameters publication-title: ACS Omega doi: 10.1021/acsomega.0c01438 – volume: 22 start-page: 2325 issue: 8 year: 1978 ident: 10.1016/j.heliyon.2020.e05055_br0260 article-title: A free-volume interpretation of the influence of the glass transition on diffusion in amorphous polymers publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.1978.070220823 – volume: 121 start-page: 1984 issue: 4 year: 2004 ident: 10.1016/j.heliyon.2020.e05055_br0170 article-title: Theory of dynamic barriers, activated hopping, and the glass transition in polymer melts publication-title: J. Chem. Phys. doi: 10.1063/1.1756854 – volume: 22 start-page: 6385 year: 2020 ident: 10.1016/j.heliyon.2020.e05055_br0370 article-title: Machine learning lattice constants for cubic perovskite A22+BB′O6 compounds publication-title: CrystEngComm doi: 10.1039/D0CE00928H – volume: 102 issue: 8 year: 2013 ident: 10.1016/j.heliyon.2020.e05055_br0070 article-title: Giant magnetoelectric effect in self-biased laminates under zero magnetic field publication-title: Appl. Phys. Lett. doi: 10.1063/1.4794056 – year: 2020 ident: 10.1016/j.heliyon.2020.e05055_br0400 article-title: Lattice misfit predictions via the Gaussian process regression for Ni-based single crystal superalloys publication-title: Met. Mater. Int. – volume: 28 start-page: 1 issue: 4 year: 2018 ident: 10.1016/j.heliyon.2020.e05055_br0240 article-title: Design and fabrication of a 1-MW high-temperature superconductor DC induction heater publication-title: IEEE Trans. Appl. Supercond. – volume: 29 issue: 9 year: 2016 ident: 10.1016/j.heliyon.2020.e05055_br0040 article-title: High critical current density Bi2Sr2CaCu2Ox/Ag wire containing oxide precursor synthesized from nano-oxides publication-title: Supercond. Sci. Technol. doi: 10.1088/0953-2048/29/9/095012 – volume: 512 year: 2020 ident: 10.1016/j.heliyon.2020.e05055_br0290 article-title: Curie temperature modeling of magnetocaloric lanthanum manganites using Gaussian process regression publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2020.166998 – volume: 332 start-page: 115 issue: 1 year: 2007 ident: 10.1016/j.heliyon.2020.e05055_br0480 article-title: Correlation between the glass transition temperatures and multipole moments for polymers publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2006.11.029 – volume: 27 issue: 5 year: 2014 ident: 10.1016/j.heliyon.2020.e05055_br0060 article-title: Synthesis of Bi2Sr2CaCu2Ox superconductors via direct oxidation of metallic precursors publication-title: Supercond. Sci. Technol. doi: 10.1088/0953-2048/27/5/055016 – volume: 7 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.heliyon.2020.e05055_br0140 article-title: Opto-electric investigation for Si/organic heterojunction single-nanowire solar cells publication-title: Sci. Rep. – year: 2020 ident: 10.1016/j.heliyon.2020.e05055_br0410 article-title: Transformation temperature predictions through computational intelligence for NiTi-based shape memory alloys publication-title: Shape Mem. Superelast. doi: 10.1007/s40830-020-00303-0 – year: 2020 ident: 10.1016/j.heliyon.2020.e05055_br0440 article-title: Predicting doped Fe-based superconductor critical temperature from structural and topological parameters using machine learning publication-title: Int. J. Mater. Res. – year: 2020 ident: 10.1016/j.heliyon.2020.e05055_br0450 article-title: Machine learning F-doped Bi(Pb)-Sr-Ca-Cu-O superconducting transition temperature publication-title: J. Supercond. Nov. Magn. – volume: 384 year: 2020 ident: 10.1016/j.heliyon.2020.e05055_br0320 article-title: Predicting the thermal conductivity enhancement of nanofluids using computational intelligence publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2020.126500 – volume: 1 start-page: 1 issue: 6 year: 2017 ident: 10.1016/j.heliyon.2020.e05055_br0080 article-title: Highly sensitive DC magnetic field sensor based on nonlinear ME effect publication-title: IEEE Sens. Lett. doi: 10.1109/LSENS.2017.2752216 – year: 2020 ident: 10.1016/j.heliyon.2020.e05055_br0470 article-title: Machine learning lattice constants for spinel compounds publication-title: Chem. Phys. Lett. – volume: 375 start-page: 213 issue: 1–2 year: 2003 ident: 10.1016/j.heliyon.2020.e05055_br0120 article-title: Enhanced room-temperature magnetoresistance in half-metallic CrO2/polymer composites publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(03)00816-9 – volume: 179 year: 2020 ident: 10.1016/j.heliyon.2020.e05055_br0270 article-title: Yttrium barium copper oxide superconducting transition temperature modeling through Gaussian process regression publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2020.109583 – volume: 455 start-page: 430 year: 2012 ident: 10.1016/j.heliyon.2020.e05055_br0490 article-title: Modeling the glass transition temperature of polymers via multipole moments using support vector regression publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.455-456.430 – volume: 89 start-page: 3112 issue: 12 year: 2014 ident: 10.1016/j.heliyon.2020.e05055_br0020 article-title: Gamma irradiation effects on cyanate ester/epoxy insulation materials for superconducting magnets publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2014.09.012 – volume: 54 start-page: 7789 issue: 10 year: 2019 ident: 10.1016/j.heliyon.2020.e05055_br0130 article-title: Engineering of hole-selective contact for high-performance perovskite solar cell featuring silver back-electrode publication-title: J. Mater. Sci. doi: 10.1007/s10853-018-03258-x |
SSID | ssj0001586973 |
Score | 2.4609013 |
Snippet | As an important thermophysical property, polymers' glass transition temperature, Tg, could sometimes be difficult to determine experimentally. Modeling... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e05055 |
SubjectTerms | Gaussian process regression Glass transition temperature Machine learning Materials chemistry Materials science normal distribution Physical chemistry Polymer regression analysis |
Title | Machine learning glass transition temperature of polymers |
URI | https://dx.doi.org/10.1016/j.heliyon.2020.e05055 https://www.ncbi.nlm.nih.gov/pubmed/33083589 https://www.proquest.com/docview/2452981702 https://www.proquest.com/docview/2524300416 https://pubmed.ncbi.nlm.nih.gov/PMC7553976 https://doaj.org/article/5fae7948594b4908bf3be477150518ea |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1VRap6QUBpCR9VkLhmm43t2D4WRFVRLQdERW-WHdvtVqukgu2h_x6P7d1uQGIvSDkldiKPx3nPmckbgA_eeM8C8FSW1LaiznWVYR2rjKW8YR5BFr9Dzr6255f0yxW72ij1hTlhSR44Ge6Eee04SphIajBIZTwxjnIeiAybChepUcC8jc1U-j9YtDKGlwNisUpQWj_-vnNyO7lxi_nDgPqnTT1xWM2NjYAp6veP8Olv_vlnGuUGLp09g6eZUJanaSDPYcf1L2BvlkPmByBnMV3Slbk-xHUZCXO5RJCK-VolylNlbeVy8OXdsHjAr9kv4fLs8_dP51Wul1B1gZQtq7aWemq1l1Mnw0alY5qZmnjHrBXhEKLlXUDncJFJY0xXG94IK4VuCdeeanIIu_3Qu1dQ2jq8eFyYOWkoNdpqTqQILVrbEVTgK4CujKW6LCaONS0WapU1dquyjRXaWCUbFzBZd7tLahrbOnzEmVg3RjHseCK4iMouora5SAFiNY8q84rEF8Kt5tue_3417yqsOwym6N4N979UjFijumHzjzasoVHRrC3gKPnKeiSEIPkVsgA-8qLRUMdX-vlN1P_mjCGLfP0_bPMG9nG4KT3xLewuf967d4FmLc0xPDm9-Pbj4jiurN_KzScU |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+glass+transition+temperature+of+polymers&rft.jtitle=Heliyon&rft.au=Zhang%2C+Yun&rft.au=Xu%2C+Xiaojie&rft.date=2020-10-01&rft.issn=2405-8440&rft.eissn=2405-8440&rft.volume=6&rft.issue=10&rft.spage=e05055&rft_id=info:doi/10.1016%2Fj.heliyon.2020.e05055&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8440&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8440&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8440&client=summon |