Fostering Real-Time Software Analysis by Leveraging Heterogeneous and Autonomous Software Repositories

Mining software repositories allow software practitioners to improve the quality of software systems and to support maintenance based on historical data. Such data is scattered across autonomous and heterogeneous information sources, such as version control, bug tracking and build automation systems...

Full description

Saved in:
Bibliographic Details
Published inIEICE Transactions on Information and Systems Vol. E101.D; no. 11; pp. 2730 - 2743
Main Authors WIJESIRIWARDANA, Chaman, WIMALARATNE, Prasad
Format Journal Article
LanguageEnglish
Published Tokyo The Institute of Electronics, Information and Communication Engineers 01.11.2018
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN0916-8532
1745-1361
DOI10.1587/transinf.2018EDP7094

Cover

Loading…
Abstract Mining software repositories allow software practitioners to improve the quality of software systems and to support maintenance based on historical data. Such data is scattered across autonomous and heterogeneous information sources, such as version control, bug tracking and build automation systems. Despite having many tools to track and measure the data originated from such repositories, software practitioners often suffer from a scarcity of the techniques necessary to dynamically leverage software repositories to fulfill their complex information needs. For example, answering a question such as “What is the number of commits between two successful builds?” requires tiresome manual inspection of multiple repositories. As a solution, this paper presents a conceptual framework and a proof of concept visual query interface to satisfy distinct software quality related information needs of software practitioners. The data originated from repositories is integrated and analyzed to perform systematic investigations, which helps to uncover hidden relationships between software quality and trends of software evolution. This approach has several significant benefits such as the ability to perform real-time analyses, the ability to combine data from various software repositories and generate queries dynamically. The framework evaluated with 31 subjects by using a series of questions categorized into three software evolution scenarios. The evaluation results evidently show that our framework surpasses the state of the art tools in terms of correctness, time and usability.
AbstractList Mining software repositories allow software practitioners to improve the quality of software systems and to support maintenance based on historical data. Such data is scattered across autonomous and heterogeneous information sources, such as version control, bug tracking and build automation systems. Despite having many tools to track and measure the data originated from such repositories, software practitioners often suffer from a scarcity of the techniques necessary to dynamically leverage software repositories to fulfill their complex information needs. For example, answering a question such as “What is the number of commits between two successful builds?” requires tiresome manual inspection of multiple repositories. As a solution, this paper presents a conceptual framework and a proof of concept visual query interface to satisfy distinct software quality related information needs of software practitioners. The data originated from repositories is integrated and analyzed to perform systematic investigations, which helps to uncover hidden relationships between software quality and trends of software evolution. This approach has several significant benefits such as the ability to perform real-time analyses, the ability to combine data from various software repositories and generate queries dynamically. The framework evaluated with 31 subjects by using a series of questions categorized into three software evolution scenarios. The evaluation results evidently show that our framework surpasses the state of the art tools in terms of correctness, time and usability.
Author WIMALARATNE, Prasad
WIJESIRIWARDANA, Chaman
Author_xml – sequence: 1
  fullname: WIJESIRIWARDANA, Chaman
  organization: University of Colombo School of Computing
– sequence: 1
  fullname: WIMALARATNE, Prasad
  organization: University of Colombo School of Computing
BookMark eNqFkE1PAjEQhhujiYD-Aw-beF5st9vdrjfCh5iQaADPTXeZYsnSYls0_HuXIEi8eJqZ5H3eZJ42ujTWAEJ3BHcJ4_lDcNJ4bVQ3wYQPB685LtIL1CJ5ymJCM3KJWrggWcwZTa5R2_sVboIJYS2kRtYHcNosoynIOp7rNUQzq8KXdBD1jKx3Xvuo3EUT-AQnl_vkGBrELsGA3fpImkXU2wZr7Hp_nuApbKzXwToN_gZdKVl7uP2ZHfQ2Gs7743jy8vTc703iimVZiJnK8qSoaMKlpAyXFCuyYAUvJVSYYlkWScV4USgFUKZ8kS3KPOWZ4krlJaiSdtD9oXfj7McWfBAru3XNF14kFNO8yHgjoYMeD6nKWe8dKFHpIIO2pjGpa0Gw2HsVR6_izGsDp3_gjdNr6Xb_YbMDtvJBLuEESRd0VcMvNCSYiIEg5LidtZzS1bt0Agz9Bq18oZg
CitedBy_id crossref_primary_10_1142_S0218539323500213
crossref_primary_10_15388_21_INFOR454
Cites_doi 10.1002/smr.344
10.1007/s10664-008-9068-6
10.1109/APSEC.2012.112
10.1007/978-3-642-29044-2
10.1109/FOSM.2008.4659248
10.1109/TOPI.2012.6229803
10.1007/978-3-540-76440-3_3
10.1109/MSR.2017.13
10.1145/1368088.1368092
10.1145/1134285.1134355
10.1109/SANER.2015.7081840
10.1007/s10664-013-9242-3
10.1145/1937117.1937125
10.1109/SNPD.2013.96
10.1109/MSR.2017.32
10.5121/ijsea.2010.1302
10.1016/j.infsof.2014.10.004
10.1109/ICSE.2007.45
10.1109/MSR.2017.39
10.1201/b17461
10.1007/978-3-540-73460-4_26
10.1145/2597073.2597107
10.1109/ICSE.2012.6227188
10.1145/1181775.1181779
10.1016/B978-0-12-411519-4.00001-X
10.1145/1985441.1985473
10.1145/1806799.1806828
10.1109/MSR.2013.6624048
10.1145/1370750.1370781
ContentType Journal Article
Copyright 2018 The Institute of Electronics, Information and Communication Engineers
Copyright Japan Science and Technology Agency 2018
Copyright_xml – notice: 2018 The Institute of Electronics, Information and Communication Engineers
– notice: Copyright Japan Science and Technology Agency 2018
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1587/transinf.2018EDP7094
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1745-1361
EndPage 2743
ExternalDocumentID 10_1587_transinf_2018EDP7094
article_transinf_E101_D_11_E101_D_2018EDP7094_article_char_en
GroupedDBID -~X
5GY
ABJNI
ABZEH
ACGFS
ADNWM
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
EJD
F5P
ICE
JSF
JSH
KQ8
OK1
P2P
RJT
RZJ
TN5
ZKX
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c566t-5f6729c328aa350b30f1d598baec030ab92c5899ffeeb48d6db7486f8ff7befb3
ISSN 0916-8532
IngestDate Mon Jun 30 06:16:17 EDT 2025
Tue Jul 01 02:27:58 EDT 2025
Thu Apr 24 23:06:20 EDT 2025
Wed Sep 03 06:22:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c566t-5f6729c328aa350b30f1d598baec030ab92c5899ffeeb48d6db7486f8ff7befb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.jstage.jst.go.jp/article/transinf/E101.D/11/E101.D_2018EDP7094/_article/-char/en
PQID 2303796885
PQPubID 2048497
PageCount 14
ParticipantIDs proquest_journals_2303796885
crossref_citationtrail_10_1587_transinf_2018EDP7094
crossref_primary_10_1587_transinf_2018EDP7094
jstage_primary_article_transinf_E101_D_11_E101_D_2018EDP7094_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle IEICE Transactions on Information and Systems
PublicationTitleAlternate IEICE Trans. Inf. & Syst.
PublicationYear 2018
Publisher The Institute of Electronics, Information and Communication Engineers
Japan Science and Technology Agency
Publisher_xml – name: The Institute of Electronics, Information and Communication Engineers
– name: Japan Science and Technology Agency
References [6] J. Sillito, G.C. Murphy, and K. De Volder, “Questions programmers ask during software evolution tasks,” Proc. 14th ACM SIGSOFT international symposium on Foundations of software engineering, pp.23-34, ACM, 2006. 10.1145/1181775.1181779
[12] L. Voinea and A. Telea, “Visual querying and analysis of large software repositories,” Empirical Software Engineering, vol.14, no.3, pp.316-340, 2009. 10.1007/s10664-008-9068-6
[18] J.M. Gonzalez-Barahona, G. Robles, and I. Herraiz, “Challenges in software evolution: the libre software perspective,” International ERCIM-ESF Workshop on Challenges in Software Evolution (ChaSE), 2005.
[23] N. Fenton and J. Bieman, Software Metrics: A rigorous and practical approach, CRC Press, 2014.
[27] H. Washizaki, R. Namiki, T. Fukuoka, Y. Harada, and H. Watanabe,“A framework for measuring and evaluating program source code quality,” Product-Focused Software Process Improvement, pp.284-299, Springer, 2007.
[15] M. Brandtner, E. Giger, and H. Gall, “Sqa-mashup: A mashup framework for continuous integration,” Information and Software Technology, vol.65, pp.97-113, 2015. 10.1016/j.infsof.2014.10.004
[29] C. Bird, T. Menzies, and T. Zimmerman, The Art and Science of Analyzing Software Data, Elsevier, MA, 2015.
[32] G. Gousios, E. Kalliamvakou, and D. Spinellis, “Measuring developer contribution from software repository data,” Proc. 2008 international working conference on Mining software repositories, pp.129-132, ACM, 2008. 10.1145/1370750.1370781
[20] M.M. Rahman and C.K. Roy, “Impact of continuous integration on code reviews,” Proc. 14th International Conference on Mining Software Repositories, pp.499-502, IEEE Press, 2017. 10.1109/msr.2017.39
[11] G. Ghezzi, M. Würsch, E. Giger, and H.C. Gall, “An architectural blueprint for a pluggable version control system for software (evolution) analysis,” Proc. Second International Workshop on Developing Tools as Plug-Ins, pp.13-18, IEEE Press, 2012. 10.1109/topi.2012.6229803
[17] C. Wijesiriwardana, G. Ghezzi, and H. Gall, “A guided mashup framework for rapid software analysis service composition,” 2012 19th Asia-Pacific Software Engineering Conference (APSEC), pp.725-728, IEEE, 2012. 10.1109/apsec.2012.112
[31] J. Brooke et al., “Sus-a quick and dirty usability scale,” Usability evaluation in Industry, vol.189, no.194, pp.4-7, 1996.
[30] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, and A. Wesslén, Experimentation in Software Engineering, Springer Science & Business Media, 2012.
[19] M. DAmbros, H. Gall, M. Lanza, and M. Pinzger, “Analysing software repositories to understand software evolution,” Software Evolution, pp.37-67, Springer, 2008.
[34] G. Gousios and D. Spinellis, “Conducting quantitative software engineering studies with alitheia core,” Empirical Software Engineering, vol.19, no.4, pp.885-925, 2014. 10.1007/s10664-013-9242-3
[1] H. Hemmati, S. Nadi, O. Baysal, O. Kononenko, W. Wang, R. Holmes, and M.W. Godfrey, “The msr cookbook: Mining a decade of research,” 2013 10th IEEE Working Conference on Mining Software Repositories (MSR), pp.343-352, IEEE, 2013. 10.1109/msr.2013.6624048
[3] A.E. Hassan, “The road ahead for mining software repositories,” Frontiers of Software Maintenance, 2008. FoSM 2008., pp.48-57, IEEE, 2008. 10.1109/fosm.2008.4659248
[7] B. De Alwis and G.C. Murphy, “Answering conceptual queries with ferret,” ACM/IEEE 30th International Conference on Software Engineering, 2008. ICSE'08. pp.21-30, IEEE, 2008. 10.1145/1368088.1368092
[9] T.D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models: a study of developer work habits,” Proc. 28th international conference on Software engineering, pp.492-501, ACM, 2006. 10.1145/1134285.1134355
[16] M. Brandtner, S.C. Muller, P. Leitner, and H.C. Gall, “Sqa-profiles: Rule-based activity profiles for continuous integration environments,” 2015 IEEE 22nd International Conference on Software Analysis, Evolution and Reengineering (SANER), pp.301-310, IEEE, 2015. 10.1109/saner.2015.7081840
[26] Y. Kanellopoulos, P. Antonellis, D. Antoniou, C. Makris, E. Theodoridis, C. Tjortjis, and N. Tsirakis, “Code quality evaluation methodology using the ISO/IEC 9126 standard,” arXiv preprint arXiv:1007.5117, 2010.
[33] G. Robles, J.M. González-Barahona, C. Cervigón, A. Capiluppi, and D. Izquierdo-Cortázar, “Estimating development effort in free/open source software projects by mining software repositories: a case study of openstack,” Proc. 11th Working Conference on Mining Software Repositories, pp.222-231, ACM, 2014. 10.1145/2597073.2597107
[8] A.J. Ko, R. DeLine, and G. Venolia, “Information needs in collocated software development teams,” Proc. 29th international conference on Software Engineering, pp.344-353, IEEE Computer Society, 2007. 10.1109/icse.2007.45
[28] B. Vasilescu, A. Serebrenik, and M. van den Brand, “Comparative study of software metrics aggregation techniques,” Proc. International Worskhop Benevol, vol.2010, 2010.
[35] H. Kagdi, M.L. Collard, and J.I. Maletic, “A survey and taxonomy of approaches for mining software repositories in the context of software evolution,” Journal of Software Maintenance and Evolution: Research and Practice, vol.19, no.2, pp.77-131, 2007. 10.1002/smr.344
[13] T. Fritz and G.C. Murphy, “Using information fragments to answer the questions developers ask,” Proc. 32nd ACM/IEEE International Conference on Software Engineering, vol.1, pp.175-184, ACM, 2010. 10.1145/1806799.1806828
[10] T.D. LaToza and B.A. Myers, “Hard-to-answer questions about code,” Evaluation and Usability of Programming Languages and Tools, p.8, ACM, 2010.
[14] Y.-F. Li and H. Zhang, “Integrating software engineering data using semantic web technologies,” Proc. 8th Working Conference on Mining Software Repositories, pp.211-214, ACM, 2011. 10.1145/1985441.1985473
[24] ISO:IEC25010, “Systems and software engineering systems and software quality requirements and evaluation (square) system and software quality models,” International Organisation for Standardisation, Geneva, Switzerland, 2011.
[25] ISO:IEC9126-1, “Software engineering-product quality-part 1: Quality model,” International Organization for Standardization, Geneva, Switzerland, 2001.
[22] M. Rebouças, R.O. Santos, G. Pinto, and F. Castor, “How does contributors' involvement influence the build status of an open-source software project?,” Proc. 14th International Conference on Mining Software Repositories, pp.475-478, IEEE Press, 2017. 10.1109/msr.2017.32
[4] Y. Sakamoto, S. Matsumoto, S. Saiki, and M. Nakamura, “Visualizing software metrics with service-oriented mining software repository for reviewing personal process,” 2013 14th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), pp.549-554, IEEE, 2013. 10.1109/snpd.2013.96
[21] D. Yang, P. Martins, V. Saini, and C. Lopes, “Stack overflow in github: any snippets there?,” Proc. 14th International Conference on Mining Software Repositories, pp.280-290, IEEE Press, 2017. 10.1109/msr.2017.13
[2] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do professional developers comprehend software?,” Proc. 34th International Conference on Software Engineering, pp.255-265, IEEE Press, 2012. 10.1109/icse.2012.6227188
[5] V.R. Basili, G. Caldiera, H.D. Rombach, and R. van Solingen, “Goal question metric (GQM) approach,” ed. J. Marciniak, Encyclopedia of Software Engineering, vol.1, pp.578-583, Wiley Online Library, 2002.
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: [31] J. Brooke et al., “Sus-a quick and dirty usability scale,” Usability evaluation in Industry, vol.189, no.194, pp.4-7, 1996.
– reference: [35] H. Kagdi, M.L. Collard, and J.I. Maletic, “A survey and taxonomy of approaches for mining software repositories in the context of software evolution,” Journal of Software Maintenance and Evolution: Research and Practice, vol.19, no.2, pp.77-131, 2007. 10.1002/smr.344
– reference: [16] M. Brandtner, S.C. Muller, P. Leitner, and H.C. Gall, “Sqa-profiles: Rule-based activity profiles for continuous integration environments,” 2015 IEEE 22nd International Conference on Software Analysis, Evolution and Reengineering (SANER), pp.301-310, IEEE, 2015. 10.1109/saner.2015.7081840
– reference: [12] L. Voinea and A. Telea, “Visual querying and analysis of large software repositories,” Empirical Software Engineering, vol.14, no.3, pp.316-340, 2009. 10.1007/s10664-008-9068-6
– reference: [28] B. Vasilescu, A. Serebrenik, and M. van den Brand, “Comparative study of software metrics aggregation techniques,” Proc. International Worskhop Benevol, vol.2010, 2010.
– reference: [1] H. Hemmati, S. Nadi, O. Baysal, O. Kononenko, W. Wang, R. Holmes, and M.W. Godfrey, “The msr cookbook: Mining a decade of research,” 2013 10th IEEE Working Conference on Mining Software Repositories (MSR), pp.343-352, IEEE, 2013. 10.1109/msr.2013.6624048
– reference: [22] M. Rebouças, R.O. Santos, G. Pinto, and F. Castor, “How does contributors' involvement influence the build status of an open-source software project?,” Proc. 14th International Conference on Mining Software Repositories, pp.475-478, IEEE Press, 2017. 10.1109/msr.2017.32
– reference: [34] G. Gousios and D. Spinellis, “Conducting quantitative software engineering studies with alitheia core,” Empirical Software Engineering, vol.19, no.4, pp.885-925, 2014. 10.1007/s10664-013-9242-3
– reference: [20] M.M. Rahman and C.K. Roy, “Impact of continuous integration on code reviews,” Proc. 14th International Conference on Mining Software Repositories, pp.499-502, IEEE Press, 2017. 10.1109/msr.2017.39
– reference: [21] D. Yang, P. Martins, V. Saini, and C. Lopes, “Stack overflow in github: any snippets there?,” Proc. 14th International Conference on Mining Software Repositories, pp.280-290, IEEE Press, 2017. 10.1109/msr.2017.13
– reference: [11] G. Ghezzi, M. Würsch, E. Giger, and H.C. Gall, “An architectural blueprint for a pluggable version control system for software (evolution) analysis,” Proc. Second International Workshop on Developing Tools as Plug-Ins, pp.13-18, IEEE Press, 2012. 10.1109/topi.2012.6229803
– reference: [25] ISO:IEC9126-1, “Software engineering-product quality-part 1: Quality model,” International Organization for Standardization, Geneva, Switzerland, 2001.
– reference: [18] J.M. Gonzalez-Barahona, G. Robles, and I. Herraiz, “Challenges in software evolution: the libre software perspective,” International ERCIM-ESF Workshop on Challenges in Software Evolution (ChaSE), 2005.
– reference: [19] M. DAmbros, H. Gall, M. Lanza, and M. Pinzger, “Analysing software repositories to understand software evolution,” Software Evolution, pp.37-67, Springer, 2008.
– reference: [6] J. Sillito, G.C. Murphy, and K. De Volder, “Questions programmers ask during software evolution tasks,” Proc. 14th ACM SIGSOFT international symposium on Foundations of software engineering, pp.23-34, ACM, 2006. 10.1145/1181775.1181779
– reference: [23] N. Fenton and J. Bieman, Software Metrics: A rigorous and practical approach, CRC Press, 2014.
– reference: [30] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, and A. Wesslén, Experimentation in Software Engineering, Springer Science & Business Media, 2012.
– reference: [33] G. Robles, J.M. González-Barahona, C. Cervigón, A. Capiluppi, and D. Izquierdo-Cortázar, “Estimating development effort in free/open source software projects by mining software repositories: a case study of openstack,” Proc. 11th Working Conference on Mining Software Repositories, pp.222-231, ACM, 2014. 10.1145/2597073.2597107
– reference: [13] T. Fritz and G.C. Murphy, “Using information fragments to answer the questions developers ask,” Proc. 32nd ACM/IEEE International Conference on Software Engineering, vol.1, pp.175-184, ACM, 2010. 10.1145/1806799.1806828
– reference: [26] Y. Kanellopoulos, P. Antonellis, D. Antoniou, C. Makris, E. Theodoridis, C. Tjortjis, and N. Tsirakis, “Code quality evaluation methodology using the ISO/IEC 9126 standard,” arXiv preprint arXiv:1007.5117, 2010.
– reference: [9] T.D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models: a study of developer work habits,” Proc. 28th international conference on Software engineering, pp.492-501, ACM, 2006. 10.1145/1134285.1134355
– reference: [3] A.E. Hassan, “The road ahead for mining software repositories,” Frontiers of Software Maintenance, 2008. FoSM 2008., pp.48-57, IEEE, 2008. 10.1109/fosm.2008.4659248
– reference: [10] T.D. LaToza and B.A. Myers, “Hard-to-answer questions about code,” Evaluation and Usability of Programming Languages and Tools, p.8, ACM, 2010.
– reference: [7] B. De Alwis and G.C. Murphy, “Answering conceptual queries with ferret,” ACM/IEEE 30th International Conference on Software Engineering, 2008. ICSE'08. pp.21-30, IEEE, 2008. 10.1145/1368088.1368092
– reference: [8] A.J. Ko, R. DeLine, and G. Venolia, “Information needs in collocated software development teams,” Proc. 29th international conference on Software Engineering, pp.344-353, IEEE Computer Society, 2007. 10.1109/icse.2007.45
– reference: [5] V.R. Basili, G. Caldiera, H.D. Rombach, and R. van Solingen, “Goal question metric (GQM) approach,” ed. J. Marciniak, Encyclopedia of Software Engineering, vol.1, pp.578-583, Wiley Online Library, 2002.
– reference: [27] H. Washizaki, R. Namiki, T. Fukuoka, Y. Harada, and H. Watanabe,“A framework for measuring and evaluating program source code quality,” Product-Focused Software Process Improvement, pp.284-299, Springer, 2007.
– reference: [24] ISO:IEC25010, “Systems and software engineering systems and software quality requirements and evaluation (square) system and software quality models,” International Organisation for Standardisation, Geneva, Switzerland, 2011.
– reference: [32] G. Gousios, E. Kalliamvakou, and D. Spinellis, “Measuring developer contribution from software repository data,” Proc. 2008 international working conference on Mining software repositories, pp.129-132, ACM, 2008. 10.1145/1370750.1370781
– reference: [15] M. Brandtner, E. Giger, and H. Gall, “Sqa-mashup: A mashup framework for continuous integration,” Information and Software Technology, vol.65, pp.97-113, 2015. 10.1016/j.infsof.2014.10.004
– reference: [14] Y.-F. Li and H. Zhang, “Integrating software engineering data using semantic web technologies,” Proc. 8th Working Conference on Mining Software Repositories, pp.211-214, ACM, 2011. 10.1145/1985441.1985473
– reference: [2] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do professional developers comprehend software?,” Proc. 34th International Conference on Software Engineering, pp.255-265, IEEE Press, 2012. 10.1109/icse.2012.6227188
– reference: [4] Y. Sakamoto, S. Matsumoto, S. Saiki, and M. Nakamura, “Visualizing software metrics with service-oriented mining software repository for reviewing personal process,” 2013 14th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), pp.549-554, IEEE, 2013. 10.1109/snpd.2013.96
– reference: [17] C. Wijesiriwardana, G. Ghezzi, and H. Gall, “A guided mashup framework for rapid software analysis service composition,” 2012 19th Asia-Pacific Software Engineering Conference (APSEC), pp.725-728, IEEE, 2012. 10.1109/apsec.2012.112
– reference: [29] C. Bird, T. Menzies, and T. Zimmerman, The Art and Science of Analyzing Software Data, Elsevier, MA, 2015.
– ident: 35
  doi: 10.1002/smr.344
– ident: 12
  doi: 10.1007/s10664-008-9068-6
– ident: 18
– ident: 17
  doi: 10.1109/APSEC.2012.112
– ident: 30
  doi: 10.1007/978-3-642-29044-2
– ident: 3
  doi: 10.1109/FOSM.2008.4659248
– ident: 11
  doi: 10.1109/TOPI.2012.6229803
– ident: 19
  doi: 10.1007/978-3-540-76440-3_3
– ident: 21
  doi: 10.1109/MSR.2017.13
– ident: 7
  doi: 10.1145/1368088.1368092
– ident: 9
  doi: 10.1145/1134285.1134355
– ident: 16
  doi: 10.1109/SANER.2015.7081840
– ident: 31
– ident: 34
  doi: 10.1007/s10664-013-9242-3
– ident: 10
  doi: 10.1145/1937117.1937125
– ident: 28
– ident: 4
  doi: 10.1109/SNPD.2013.96
– ident: 22
  doi: 10.1109/MSR.2017.32
– ident: 26
  doi: 10.5121/ijsea.2010.1302
– ident: 24
– ident: 15
  doi: 10.1016/j.infsof.2014.10.004
– ident: 8
  doi: 10.1109/ICSE.2007.45
– ident: 20
  doi: 10.1109/MSR.2017.39
– ident: 5
– ident: 23
  doi: 10.1201/b17461
– ident: 27
  doi: 10.1007/978-3-540-73460-4_26
– ident: 33
  doi: 10.1145/2597073.2597107
– ident: 2
  doi: 10.1109/ICSE.2012.6227188
– ident: 6
  doi: 10.1145/1181775.1181779
– ident: 29
  doi: 10.1016/B978-0-12-411519-4.00001-X
– ident: 14
  doi: 10.1145/1985441.1985473
– ident: 13
  doi: 10.1145/1806799.1806828
– ident: 25
– ident: 1
  doi: 10.1109/MSR.2013.6624048
– ident: 32
  doi: 10.1145/1370750.1370781
SSID ssj0018215
Score 2.178428
Snippet Mining software repositories allow software practitioners to improve the quality of software systems and to support maintenance based on historical data. Such...
SourceID proquest
crossref
jstage
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2730
SubjectTerms Evolution
Information sources
Inspection
mining software repositories
Questions
Real time
Repositories
Software
software analysis
Software quality
static grammar
Tracking control
Version control
visual query interfaces
Title Fostering Real-Time Software Analysis by Leveraging Heterogeneous and Autonomous Software Repositories
URI https://www.jstage.jst.go.jp/article/transinf/E101.D/11/E101.D_2018EDP7094/_article/-char/en
https://www.proquest.com/docview/2303796885
Volume E101.D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX IEICE Transactions on Information and Systems, 2018/11/01, Vol.E101.D(11), pp.2730-2743
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLbK4IE9cBmgFQbyA28oo7k7j9GaqhldNbpO21tkO84EGh1aUyH42_wBzqntJGWTuL5ESWSnTr6vx-fY50LIa9-XTHJMfRkp5gSeKxxW4kJ-EsZqICSXPsYOH02j8WlweB6e93rfO15Lq1rsy2-3xpX8DapwD3DFKNk_QLZ5KNyAc8AXjoAwHH8L4xFGaBgHOn7pYDjHmxOQq1_QnatJNwIK5kTBu-l6RGP0f7mCRyp0fsVl83RVY2QDXjadUS9ffsAEIsbH0OiveZYfZDojuo6IWO82mJim2ro2d9Ogo8DPD7OTfJafpbNhOk3NLv-nlpdn-VE6SWfpfLr2zTy-5ktedtcjXGYC8yyD5mufz46fQ9aU8zFib3NEG3EwTRLGjYVKN3JAqdAyW2kxHQeh4_o6jbuV4xlIl_1hl7NuVzLHZv9HmUudHerGDBLiGsyoxu8I99H3j2XD43igSzH_lJvbIF_Y5gWOoRiCWWXPOv0L2xrj6YC-d8hdD2wbLLvx7n279cU8XXbDvraJ94Rxvb1tVBv61L2PYFJc3NQr1srS_BF5YKwcmuqhPCY9tdghD20FEWomlB2y3UmH-YRUDZ9pw2dqKUktn6n4Sls-0w0-U8CatnxuO3f5_JScjrL5wdgxdUAcCcZG7YRVBCag9D3GuR8OhD-o3DJMmOBKwhzFReLJkCVJVSklAoYl0uKARRWrqlioSvjPyNbiaqF2CS2ZDKQAm6bkoLq6nkhECEZNpcpQJgPB-8S3X7OQJkk-1mq5LNBYBgxaqDsY9InT9Pqsk8T8ov1EA9W0_ici9cmehbsw0mlZeKCbxknEWPj8__7aC3K__dvvka36eqVegmJei1drIv8ACjTuJQ
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fostering+Real-Time+Software+Analysis+by+Leveraging+Heterogeneous+and+Autonomous+Software+Repositories&rft.jtitle=IEICE+Transactions+on+Information+and+Systems&rft.au=WIJESIRIWARDANA%2C+Chaman&rft.au=WIMALARATNE%2C+Prasad&rft.date=2018-11-01&rft.pub=The+Institute+of+Electronics%2C+Information+and+Communication+Engineers&rft.issn=0916-8532&rft.eissn=1745-1361&rft.volume=E101.D&rft.issue=11&rft.spage=2730&rft.epage=2743&rft_id=info:doi/10.1587%2Ftransinf.2018EDP7094&rft.externalDocID=article_transinf_E101_D_11_E101_D_2018EDP7094_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-8532&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-8532&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-8532&client=summon