Robust volcano plot: identification of differential metabolites in the presence of outliers

The identification of differential metabolites in metabolomics is still a big challenge and plays a prominent role in metabolomics data analyses. Metabolomics datasets often contain outliers because of analytical, experimental, and biological ambiguity, but the currently available differential metab...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 19; no. 1; pp. 128 - 11
Main Authors Kumar, Nishith, Hoque, Md. Aminul, Sugimoto, Masahiro
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 11.04.2018
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The identification of differential metabolites in metabolomics is still a big challenge and plays a prominent role in metabolomics data analyses. Metabolomics datasets often contain outliers because of analytical, experimental, and biological ambiguity, but the currently available differential metabolite identification techniques are sensitive to outliers. We propose a kernel weight based outlier-robust volcano plot for identifying differential metabolites from noisy metabolomics datasets. Two numerical experiments are used to evaluate the performance of the proposed technique against nine existing techniques, including the t-test and the Kruskal-Wallis test. Artificially generated data with outliers reveal that the proposed method results in a lower misclassification error rate and a greater area under the receiver operating characteristic curve compared with existing methods. An experimentally measured breast cancer dataset to which outliers were artificially added reveals that our proposed method produces only two non-overlapping differential metabolites whereas the other nine methods produced between seven and 57 non-overlapping differential metabolites. Our data analyses show that the performance of the proposed differential metabolite identification technique is better than that of existing methods. Thus, the proposed method can contribute to analysis of metabolomics data with outliers. The R package and user manual of the proposed method are available at https://github.com/nishithkumarpaul/Rvolcano .
AbstractList Abstract Background The identification of differential metabolites in metabolomics is still a big challenge and plays a prominent role in metabolomics data analyses. Metabolomics datasets often contain outliers because of analytical, experimental, and biological ambiguity, but the currently available differential metabolite identification techniques are sensitive to outliers. Results We propose a kernel weight based outlier-robust volcano plot for identifying differential metabolites from noisy metabolomics datasets. Two numerical experiments are used to evaluate the performance of the proposed technique against nine existing techniques, including the t-test and the Kruskal-Wallis test. Artificially generated data with outliers reveal that the proposed method results in a lower misclassification error rate and a greater area under the receiver operating characteristic curve compared with existing methods. An experimentally measured breast cancer dataset to which outliers were artificially added reveals that our proposed method produces only two non-overlapping differential metabolites whereas the other nine methods produced between seven and 57 non-overlapping differential metabolites. Conclusion Our data analyses show that the performance of the proposed differential metabolite identification technique is better than that of existing methods. Thus, the proposed method can contribute to analysis of metabolomics data with outliers. The R package and user manual of the proposed method are available at https://github.com/nishithkumarpaul/Rvolcano.
The identification of differential metabolites in metabolomics is still a big challenge and plays a prominent role in metabolomics data analyses. Metabolomics datasets often contain outliers because of analytical, experimental, and biological ambiguity, but the currently available differential metabolite identification techniques are sensitive to outliers. We propose a kernel weight based outlier-robust volcano plot for identifying differential metabolites from noisy metabolomics datasets. Two numerical experiments are used to evaluate the performance of the proposed technique against nine existing techniques, including the t-test and the Kruskal-Wallis test. Artificially generated data with outliers reveal that the proposed method results in a lower misclassification error rate and a greater area under the receiver operating characteristic curve compared with existing methods. An experimentally measured breast cancer dataset to which outliers were artificially added reveals that our proposed method produces only two non-overlapping differential metabolites whereas the other nine methods produced between seven and 57 non-overlapping differential metabolites. Our data analyses show that the performance of the proposed differential metabolite identification technique is better than that of existing methods. Thus, the proposed method can contribute to analysis of metabolomics data with outliers. The R package and user manual of the proposed method are available at https://github.com/nishithkumarpaul/Rvolcano .
The identification of differential metabolites in metabolomics is still a big challenge and plays a prominent role in metabolomics data analyses. Metabolomics datasets often contain outliers because of analytical, experimental, and biological ambiguity, but the currently available differential metabolite identification techniques are sensitive to outliers.BACKGROUNDThe identification of differential metabolites in metabolomics is still a big challenge and plays a prominent role in metabolomics data analyses. Metabolomics datasets often contain outliers because of analytical, experimental, and biological ambiguity, but the currently available differential metabolite identification techniques are sensitive to outliers.We propose a kernel weight based outlier-robust volcano plot for identifying differential metabolites from noisy metabolomics datasets. Two numerical experiments are used to evaluate the performance of the proposed technique against nine existing techniques, including the t-test and the Kruskal-Wallis test. Artificially generated data with outliers reveal that the proposed method results in a lower misclassification error rate and a greater area under the receiver operating characteristic curve compared with existing methods. An experimentally measured breast cancer dataset to which outliers were artificially added reveals that our proposed method produces only two non-overlapping differential metabolites whereas the other nine methods produced between seven and 57 non-overlapping differential metabolites.RESULTSWe propose a kernel weight based outlier-robust volcano plot for identifying differential metabolites from noisy metabolomics datasets. Two numerical experiments are used to evaluate the performance of the proposed technique against nine existing techniques, including the t-test and the Kruskal-Wallis test. Artificially generated data with outliers reveal that the proposed method results in a lower misclassification error rate and a greater area under the receiver operating characteristic curve compared with existing methods. An experimentally measured breast cancer dataset to which outliers were artificially added reveals that our proposed method produces only two non-overlapping differential metabolites whereas the other nine methods produced between seven and 57 non-overlapping differential metabolites.Our data analyses show that the performance of the proposed differential metabolite identification technique is better than that of existing methods. Thus, the proposed method can contribute to analysis of metabolomics data with outliers. The R package and user manual of the proposed method are available at https://github.com/nishithkumarpaul/Rvolcano .CONCLUSIONOur data analyses show that the performance of the proposed differential metabolite identification technique is better than that of existing methods. Thus, the proposed method can contribute to analysis of metabolomics data with outliers. The R package and user manual of the proposed method are available at https://github.com/nishithkumarpaul/Rvolcano .
ArticleNumber 128
Audience Academic
Author Kumar, Nishith
Hoque, Md. Aminul
Sugimoto, Masahiro
Author_xml – sequence: 1
  givenname: Nishith
  surname: Kumar
  fullname: Kumar, Nishith
– sequence: 2
  givenname: Md. Aminul
  surname: Hoque
  fullname: Hoque, Md. Aminul
– sequence: 3
  givenname: Masahiro
  surname: Sugimoto
  fullname: Sugimoto, Masahiro
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29642836$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1rFTEYhQep2A_9AW5kwI0upk4y-XQhlOLHhYJQu3MRcpM3tym5k2uSKfrvzXRq6RWRLJK8ec4hB85xczDGEZrmJepPERLsXUZYUNn1SHQYId7hJ80RIhzVW08PHp0Pm-Ocb_oecdHTZ80hloxgMbCj5vtlXE-5tLcxGD3Gdhdied96C2PxzhtdfBzb6FrrnYM0T3Vot1D0OgZfILd-bMs1tLsEGUYDMxunEjyk_Lx56nTI8OJ-P2muPn28Ov_SXXz9vDo_u-gMZax0BHFMiCSaSycsaGqlRhJTzhzuiUAaKMPYDHiNLRsw1lw7IxjDmnLHhuGkWS22NuobtUt-q9MvFbVXd4OYNkqn4k0AhRwM1UESISlBIKQkVnJLiR4wsg5Vrw-L125ab8GaGjjpsGe6_zL6a7WJt4oKyXoxG7y5N0jxxwS5qK3PBkLQI8QpK9zXrEwMXFT09YJudP2aH12sjmbG1RmtDEGEskqd_oOqy8LWm9oH5-t8T_B2T1CZAj_LRk85q9W3y3321eO4Dzn_9KMCaAFMijkncA8I6tXcQbV0UNUOqrmDClcN_0tjfLkrUv25D_9R_gZfvt3N
CitedBy_id crossref_primary_10_1016_j_greeac_2024_100203
crossref_primary_10_3389_fbioe_2021_629083
crossref_primary_10_1016_j_scitotenv_2021_151598
crossref_primary_10_1021_acsagscitech_4c00046
crossref_primary_10_3389_fmed_2022_1033083
crossref_primary_10_3390_jof10080551
crossref_primary_10_1021_acs_jproteome_9b00722
crossref_primary_10_3389_fmicb_2020_577497
crossref_primary_10_1016_j_foodres_2022_111509
crossref_primary_10_1128_iai_00284_24
crossref_primary_10_1016_j_phymed_2023_155060
crossref_primary_10_1016_j_jff_2024_106517
crossref_primary_10_3390_ijms252011097
crossref_primary_10_3390_molecules27010082
crossref_primary_10_1016_j_foodcont_2019_106941
crossref_primary_10_3390_foods14071100
crossref_primary_10_1016_j_foodchem_2024_139603
crossref_primary_10_1016_j_foodchem_2023_138111
crossref_primary_10_55230_mabjournal_v53i4_3103
crossref_primary_10_1016_j_ab_2020_113692
crossref_primary_10_3389_fimmu_2021_724936
crossref_primary_10_1021_acs_analchem_4c02038
crossref_primary_10_1021_acs_jafc_2c06459
crossref_primary_10_3390_biomedicines12081639
crossref_primary_10_3390_nu16234096
crossref_primary_10_1093_nar_gkz483
crossref_primary_10_1016_j_aca_2019_11_006
crossref_primary_10_3390_ijms242316694
crossref_primary_10_1016_j_scitotenv_2024_171922
crossref_primary_10_1016_j_foodcont_2022_109162
crossref_primary_10_1021_acs_jafc_1c05599
crossref_primary_10_1177_19714009231193158
Cites_doi 10.1186/1471-2105-13-135
10.1038/nm.2307
10.1186/s13321-016-0156-0
10.1007/s10637-011-9768-4
10.1002/sim.1548
10.1007/978-1-4939-3106-4_14
10.1007/978-1-59745-244-1_7
10.1111/j.1467-9876.2005.05593.x
10.1186/1471-2105-10-402
10.1016/j.jchromb.2013.11.038
10.1186/1758-2946-2-9
10.3892/ol.2012.710
10.1038/s41598-016-0028-x
10.1371/journal.pgen.1000282
10.1155/2017/2437608
10.1016/S0031-9422(02)00708-2
10.18632/oncotarget.7155
10.1073/pnas.091062498
10.1186/1471-2105-12-288
10.1007/s12127-010-0049-2
10.1198/016214501753382129
10.1038/srep46249
10.1007/s11306-011-0366-4
10.1186/1471-2105-15-14
10.1007/s00204-010-0609-6
10.1111/j.1541-0420.2005.00397.x
10.1002/elps.201300053
10.1007/978-94-010-0448-0_11
10.1007/0-387-29362-0_23
10.1142/S0219720012310038
10.1016/j.cmet.2016.09.018
10.1038/nrd2251
10.1186/1471-2369-15-43
10.1002/elps.201500352
10.1016/j.aquatox.2016.11.018
10.3389/fmolb.2015.00004
10.1186/s12859-015-0506-3
ContentType Journal Article
Copyright COPYRIGHT 2018 BioMed Central Ltd.
The Author(s). 2018
Copyright_xml – notice: COPYRIGHT 2018 BioMed Central Ltd.
– notice: The Author(s). 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
5PM
DOA
DOI 10.1186/s12859-018-2117-2
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 11
ExternalDocumentID oai_doaj_org_article_1fe33229489541e8994d97d54a321df1
PMC5896081
A546841456
29642836
10_1186_s12859_018_2117_2
Genre Journal Article
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
PMFND
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c566t-41724494a79f8dea5d9a192576f20481ae5622c32b2d6322a7afc8662a57f633
IEDL.DBID M48
ISSN 1471-2105
IngestDate Wed Aug 27 01:32:20 EDT 2025
Thu Aug 21 18:26:38 EDT 2025
Fri Jul 11 05:34:13 EDT 2025
Tue Jun 17 21:20:54 EDT 2025
Tue Jun 10 20:28:00 EDT 2025
Fri Jun 27 04:40:19 EDT 2025
Mon Jul 21 05:56:46 EDT 2025
Tue Jul 01 03:38:25 EDT 2025
Thu Apr 24 23:06:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Metabolomics
Differential metabolites
Fold change
Classical volcano plot
Receiver operating characteristic (ROC) curve
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c566t-41724494a79f8dea5d9a192576f20481ae5622c32b2d6322a7afc8662a57f633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-018-2117-2
PMID 29642836
PQID 2024468378
PQPubID 23479
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_1fe33229489541e8994d97d54a321df1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5896081
proquest_miscellaneous_2024468378
gale_infotracmisc_A546841456
gale_infotracacademiconefile_A546841456
gale_incontextgauss_ISR_A546841456
pubmed_primary_29642836
crossref_primary_10_1186_s12859_018_2117_2
crossref_citationtrail_10_1186_s12859_018_2117_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-11
PublicationDateYYYYMMDD 2018-04-11
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-11
  day: 11
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2018
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References CM Kendziorski (2117_CR28) 2003; 22
C Wang (2117_CR26) 2014; 4
C Gieger (2117_CR1) 2008; 4
TJ Wang (2117_CR4) 2011; 17
O Hrydziuszko (2117_CR10) 2012; 8
L Blanchet (2117_CR17) 2016
X Wei (2117_CR36) 2012; 4
2117_CR18
R Steuer (2117_CR14) 2007
CB Newgard (2117_CR3) 2017; 25
J Godzien (2117_CR16) 2013; 34
Y Fan (2117_CR21) 2016; 7
MR Trusheim (2117_CR8) 2007; 6
YV Karpievitch (2117_CR9) 2012; 13
P Mochalski (2117_CR38) 2014; 15
A Bordbar (2117_CR20) 2017; 7
B Efron (2117_CR30) 2001; 96
E Leung (2117_CR37) 2012; 30
LW Sumner (2117_CR5) 2003; 62
X Zhan (2117_CR6) 2015; 16
J Yang (2117_CR13) 2015; 2
EG Armitage (2117_CR11) 2015; 36
MN Snyder (2117_CR19) 2017; 182
H Liu (2117_CR39) 2014; 945
CL Silva (2117_CR40) 2017; 7
D Dembélé (2117_CR23) 2014; 15
O Fiehn (2117_CR2) 2002
VG Tusher (2117_CR24) 2001; 98
GK Smyth (2117_CR29) 2005
K Jung (2117_CR33) 2011; 12
PS Gromski (2117_CR12) 2014; 4
A McMillan (2117_CR25) 2016; 8
MM Mollah (2117_CR32) 2012; 13
W Li (2117_CR22) 2012; 10
KA Do (2117_CR31) 2005; 54
CD DeHaven (2117_CR15) 2010; 2
S Zhang (2117_CR34) 2009; 10
R Gottardo (2117_CR27) 2006; 62
M Westhoff (2117_CR35) 2010; 13
M Mamas (2117_CR7) 2011; 85
References_xml – volume: 13
  start-page: 135
  issue: 1
  year: 2012
  ident: 2117_CR32
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-13-135
– volume: 17
  start-page: 448
  issue: 4
  year: 2011
  ident: 2117_CR4
  publication-title: Nat Med
  doi: 10.1038/nm.2307
– volume: 8
  start-page: 44
  issue: 1
  year: 2016
  ident: 2117_CR25
  publication-title: J Cheminform
  doi: 10.1186/s13321-016-0156-0
– volume: 30
  start-page: 2103
  issue: 6
  year: 2012
  ident: 2117_CR37
  publication-title: Investig New Drugs
  doi: 10.1007/s10637-011-9768-4
– volume: 22
  start-page: 3899
  issue: 24
  year: 2003
  ident: 2117_CR28
  publication-title: Stat Med
  doi: 10.1002/sim.1548
– start-page: 209
  volume-title: Statistical Analysis in Proteomics
  year: 2016
  ident: 2117_CR17
  doi: 10.1007/978-1-4939-3106-4_14
– start-page: 105
  volume-title: Metabolomics: Methods and Protocols
  year: 2007
  ident: 2117_CR14
  doi: 10.1007/978-1-59745-244-1_7
– volume: 54
  start-page: 627
  issue: 3
  year: 2005
  ident: 2117_CR31
  publication-title: J R Stat Soc: Ser C: Appl Stat
  doi: 10.1111/j.1467-9876.2005.05593.x
– volume: 13
  start-page: 1
  issue: 16
  year: 2012
  ident: 2117_CR9
  publication-title: BMC Bioinformatics
– volume: 10
  start-page: 402
  issue: 1
  year: 2009
  ident: 2117_CR34
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-402
– volume: 945
  start-page: 53
  year: 2014
  ident: 2117_CR39
  publication-title: J Chromatogr B
  doi: 10.1016/j.jchromb.2013.11.038
– volume: 4
  start-page: 1
  year: 2014
  ident: 2117_CR26
  publication-title: Sci Rep
– volume: 2
  start-page: 1
  issue: 1
  year: 2010
  ident: 2117_CR15
  publication-title: J Cheminform
  doi: 10.1186/1758-2946-2-9
– volume: 4
  start-page: 279
  issue: 2
  year: 2012
  ident: 2117_CR36
  publication-title: Oncol Lett
  doi: 10.3892/ol.2012.710
– volume: 7
  start-page: 1
  year: 2017
  ident: 2117_CR40
  publication-title: Sci Rep
  doi: 10.1038/s41598-016-0028-x
– volume: 4
  start-page: e1000282
  issue: 11
  year: 2008
  ident: 2117_CR1
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000282
– ident: 2117_CR18
  doi: 10.1155/2017/2437608
– volume: 62
  start-page: 817
  issue: 6
  year: 2003
  ident: 2117_CR5
  publication-title: Phytochemistry
  doi: 10.1016/S0031-9422(02)00708-2
– volume: 7
  start-page: 9925
  issue: 9
  year: 2016
  ident: 2117_CR21
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.7155
– volume: 98
  start-page: 5116
  issue: 9
  year: 2001
  ident: 2117_CR24
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.091062498
– volume: 12
  start-page: 288
  issue: 1
  year: 2011
  ident: 2117_CR33
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-288
– volume: 13
  start-page: 131
  issue: 3–4
  year: 2010
  ident: 2117_CR35
  publication-title: Int J Ion Mobil Spectrom
  doi: 10.1007/s12127-010-0049-2
– volume: 96
  start-page: 1151
  issue: 456
  year: 2001
  ident: 2117_CR30
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214501753382129
– volume: 7
  start-page: 1
  year: 2017
  ident: 2117_CR20
  publication-title: Sci Rep
  doi: 10.1038/srep46249
– volume: 8
  start-page: 161
  issue: 1
  year: 2012
  ident: 2117_CR10
  publication-title: Metabolomics
  doi: 10.1007/s11306-011-0366-4
– volume: 15
  start-page: 14
  issue: 1
  year: 2014
  ident: 2117_CR23
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-15-14
– volume: 85
  start-page: 5
  issue: 1
  year: 2011
  ident: 2117_CR7
  publication-title: Arch Toxicol
  doi: 10.1007/s00204-010-0609-6
– volume: 62
  start-page: 10
  issue: 1
  year: 2006
  ident: 2117_CR27
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2005.00397.x
– volume: 34
  start-page: 2812
  issue: 19
  year: 2013
  ident: 2117_CR16
  publication-title: Electrophoresis
  doi: 10.1002/elps.201300053
– start-page: 155
  volume-title: Functional Genomics
  year: 2002
  ident: 2117_CR2
  doi: 10.1007/978-94-010-0448-0_11
– start-page: 397
  volume-title: Bioinformatics and computational biology solutions using R and Bioconductor
  year: 2005
  ident: 2117_CR29
  doi: 10.1007/0-387-29362-0_23
– volume: 10
  start-page: 1231003
  issue: 06
  year: 2012
  ident: 2117_CR22
  publication-title: J Bioinforma Comput Biol
  doi: 10.1142/S0219720012310038
– volume: 25
  start-page: 43
  issue: 1
  year: 2017
  ident: 2117_CR3
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2016.09.018
– volume: 6
  start-page: 287
  issue: 4
  year: 2007
  ident: 2117_CR8
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd2251
– volume: 4
  start-page: 433
  issue: 2
  year: 2014
  ident: 2117_CR12
  publication-title: Meta
– volume: 15
  start-page: 43
  issue: 1
  year: 2014
  ident: 2117_CR38
  publication-title: BMC Nephrol
  doi: 10.1186/1471-2369-15-43
– volume: 36
  start-page: 3050
  issue: 24
  year: 2015
  ident: 2117_CR11
  publication-title: Electrophoresis
  doi: 10.1002/elps.201500352
– volume: 182
  start-page: 184
  year: 2017
  ident: 2117_CR19
  publication-title: Aquat Toxicol
  doi: 10.1016/j.aquatox.2016.11.018
– volume: 2
  start-page: 1
  year: 2015
  ident: 2117_CR13
  publication-title: Front Mol Biosci
  doi: 10.3389/fmolb.2015.00004
– volume: 16
  start-page: 77
  issue: 1
  year: 2015
  ident: 2117_CR6
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-015-0506-3
SSID ssj0017805
Score 2.4601712
Snippet The identification of differential metabolites in metabolomics is still a big challenge and plays a prominent role in metabolomics data analyses. Metabolomics...
Abstract Background The identification of differential metabolites in metabolomics is still a big challenge and plays a prominent role in metabolomics data...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 128
SubjectTerms Algorithms
Biomarkers - metabolism
Cardiovascular diseases
Care and treatment
Classical volcano plot
Computational biology
Diabetes
Differential metabolites
Down-Regulation - genetics
Female
Fold change
Genetic aspects
Humans
Metabolites
Metabolome
Metabolomics
Metabolomics - methods
Methodology
Receiver operating characteristic (ROC) curve
ROC Curve
Up-Regulation - genetics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9QwFA6yIHgRdf1RXZcogiCUnaZpk3rblV1WDx7WFRY8hDQ_dGC2HWzn4H_v99rOMEXQi9fmhTYvX5rvkZfvMfZG1IqE0HxqJRa5dDqmOuaIUgCPoF1Fdxsp2-JzeflVfropbvZKfVFO2CgPPDruJIshB-gqqatCZgHhgfSV8oW0uch8HAIf7HnbYGo6PyCl_ukMM9PlSZeRThvCZqACL0_FbBcaxPr__CXv7UnzfMm9DejiAbs_MUd-On7xQ3YnNI_Y3bGW5K9D9u2qrTddz_G7gbdavl61_Xu-9FM20DABvI18WxEFK3vFb0MPENA15I4vGw4yyNfDfSQXyJayhahU9mN2fXF-_eEynSonpA70rE8laImUlbSqitoHW_jKgsohtogk1JvZANojXC5q4Ut41yobnS5LYQsVyzx_wg6atgnPGCdCor2uhAK3U36hfV4v6qDAdtHZhoQtto40blIVp-IWKzNEF7o0o-8NfG_I90Yk7N2uy3qU1Pib8RnNzs6Q1LCHB8CImTBi_oWRhL2muTWkd9FQQs13u-k68_HLlTktZKllBhqZsLeTUWwxAmen-wnwA0lkzSyPZpZYkG7W_GoLIUNNlMXWhHbTGQFCBKtc6YQ9HSG1Gxgdf4PqobeagW028nlLs_wx6IEXGmGozp7_D1e9YPcELRNSs8yO2EH_cxNegnb19fGwwn4DZsQlpw
  priority: 102
  providerName: Directory of Open Access Journals
Title Robust volcano plot: identification of differential metabolites in the presence of outliers
URI https://www.ncbi.nlm.nih.gov/pubmed/29642836
https://www.proquest.com/docview/2024468378
https://pubmed.ncbi.nlm.nih.gov/PMC5896081
https://doaj.org/article/1fe33229489541e8994d97d54a321df1
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swEBZdy2AvY7_nrgvaGAwG3mJZtuTBGOlo1gVWRtpCYA9CtqQukNlp7MD63-9OdrKalcFeHLBOBp3upO-i03eEvGK5QCI0E2oOTs4L6ULpYohSwDysLDK824jZFifp8TmfzJLZDtmUt-oUWN8Y2mE9qfPV4u2vy6uP4PAfvMPL9F0dIQsbBMUw5_DpEFbkPdiYBBY0-Mr_HCogfb-_bCQiEBwm3SHnjZ_obVOezf_vNfvaptVPqLy2Q43vkbsdtKSj1hbukx1bPiC322KTVw_J92mVr-uGwnoE6qzoclE17-ncdOlCfoZo5eimZAq4_oL-tA1YCd5Trum8pIAW6dJfWCosymI6EdbSfkTOxkdnn47DrrRCWAB-a0LUDucZ1yJz0lidmEwD1oPgwyGTb6Qt4CJWxCxnJgWf10K7QqYp04lwaRw_JrtlVdqnhCJikUZmTAD4E2YoTZwPcysADkNnbQMy3ChSFR3tOFa_WCgffshUtbpXoHuFulcsIG-2XZYt58a_hA9xdraCSJftX1SrC9V5n4qcjWEUGZdZwiMLMSY3mTAJ1zGLjIsC8hLnViEhRokZNxd6Xdfqy-lUjRKeSh4BzgzI607IVTCCQncXGEAPyKHVkzzoSYLHFr3mFxsTUtiEaW6lrda1YoCYQCoWMiBPWpPaDgzPxwELQm_RM7beyPst5fyHJwxPJMSpMtr_H70-I3cYugPSWkYHZLdZre1zwF9NPiC3xEzAU44_D8jeaDQ5ncDv4dHJt-nA_6cx8H73G7WtLLw
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+volcano+plot%3A+identification+of+differential+metabolites+in+the+presence+of+outliers&rft.jtitle=BMC+bioinformatics&rft.au=Kumar%2C+Nishith&rft.au=Hoque%2C+Md.+Aminul&rft.au=Sugimoto%2C+Masahiro&rft.date=2018-04-11&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-018-2117-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12859_018_2117_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon