Robust volcano plot: identification of differential metabolites in the presence of outliers
The identification of differential metabolites in metabolomics is still a big challenge and plays a prominent role in metabolomics data analyses. Metabolomics datasets often contain outliers because of analytical, experimental, and biological ambiguity, but the currently available differential metab...
Saved in:
Published in | BMC bioinformatics Vol. 19; no. 1; pp. 128 - 11 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
11.04.2018
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The identification of differential metabolites in metabolomics is still a big challenge and plays a prominent role in metabolomics data analyses. Metabolomics datasets often contain outliers because of analytical, experimental, and biological ambiguity, but the currently available differential metabolite identification techniques are sensitive to outliers.
We propose a kernel weight based outlier-robust volcano plot for identifying differential metabolites from noisy metabolomics datasets. Two numerical experiments are used to evaluate the performance of the proposed technique against nine existing techniques, including the t-test and the Kruskal-Wallis test. Artificially generated data with outliers reveal that the proposed method results in a lower misclassification error rate and a greater area under the receiver operating characteristic curve compared with existing methods. An experimentally measured breast cancer dataset to which outliers were artificially added reveals that our proposed method produces only two non-overlapping differential metabolites whereas the other nine methods produced between seven and 57 non-overlapping differential metabolites.
Our data analyses show that the performance of the proposed differential metabolite identification technique is better than that of existing methods. Thus, the proposed method can contribute to analysis of metabolomics data with outliers. The R package and user manual of the proposed method are available at https://github.com/nishithkumarpaul/Rvolcano . |
---|---|
AbstractList | Abstract Background The identification of differential metabolites in metabolomics is still a big challenge and plays a prominent role in metabolomics data analyses. Metabolomics datasets often contain outliers because of analytical, experimental, and biological ambiguity, but the currently available differential metabolite identification techniques are sensitive to outliers. Results We propose a kernel weight based outlier-robust volcano plot for identifying differential metabolites from noisy metabolomics datasets. Two numerical experiments are used to evaluate the performance of the proposed technique against nine existing techniques, including the t-test and the Kruskal-Wallis test. Artificially generated data with outliers reveal that the proposed method results in a lower misclassification error rate and a greater area under the receiver operating characteristic curve compared with existing methods. An experimentally measured breast cancer dataset to which outliers were artificially added reveals that our proposed method produces only two non-overlapping differential metabolites whereas the other nine methods produced between seven and 57 non-overlapping differential metabolites. Conclusion Our data analyses show that the performance of the proposed differential metabolite identification technique is better than that of existing methods. Thus, the proposed method can contribute to analysis of metabolomics data with outliers. The R package and user manual of the proposed method are available at https://github.com/nishithkumarpaul/Rvolcano. The identification of differential metabolites in metabolomics is still a big challenge and plays a prominent role in metabolomics data analyses. Metabolomics datasets often contain outliers because of analytical, experimental, and biological ambiguity, but the currently available differential metabolite identification techniques are sensitive to outliers. We propose a kernel weight based outlier-robust volcano plot for identifying differential metabolites from noisy metabolomics datasets. Two numerical experiments are used to evaluate the performance of the proposed technique against nine existing techniques, including the t-test and the Kruskal-Wallis test. Artificially generated data with outliers reveal that the proposed method results in a lower misclassification error rate and a greater area under the receiver operating characteristic curve compared with existing methods. An experimentally measured breast cancer dataset to which outliers were artificially added reveals that our proposed method produces only two non-overlapping differential metabolites whereas the other nine methods produced between seven and 57 non-overlapping differential metabolites. Our data analyses show that the performance of the proposed differential metabolite identification technique is better than that of existing methods. Thus, the proposed method can contribute to analysis of metabolomics data with outliers. The R package and user manual of the proposed method are available at https://github.com/nishithkumarpaul/Rvolcano . The identification of differential metabolites in metabolomics is still a big challenge and plays a prominent role in metabolomics data analyses. Metabolomics datasets often contain outliers because of analytical, experimental, and biological ambiguity, but the currently available differential metabolite identification techniques are sensitive to outliers.BACKGROUNDThe identification of differential metabolites in metabolomics is still a big challenge and plays a prominent role in metabolomics data analyses. Metabolomics datasets often contain outliers because of analytical, experimental, and biological ambiguity, but the currently available differential metabolite identification techniques are sensitive to outliers.We propose a kernel weight based outlier-robust volcano plot for identifying differential metabolites from noisy metabolomics datasets. Two numerical experiments are used to evaluate the performance of the proposed technique against nine existing techniques, including the t-test and the Kruskal-Wallis test. Artificially generated data with outliers reveal that the proposed method results in a lower misclassification error rate and a greater area under the receiver operating characteristic curve compared with existing methods. An experimentally measured breast cancer dataset to which outliers were artificially added reveals that our proposed method produces only two non-overlapping differential metabolites whereas the other nine methods produced between seven and 57 non-overlapping differential metabolites.RESULTSWe propose a kernel weight based outlier-robust volcano plot for identifying differential metabolites from noisy metabolomics datasets. Two numerical experiments are used to evaluate the performance of the proposed technique against nine existing techniques, including the t-test and the Kruskal-Wallis test. Artificially generated data with outliers reveal that the proposed method results in a lower misclassification error rate and a greater area under the receiver operating characteristic curve compared with existing methods. An experimentally measured breast cancer dataset to which outliers were artificially added reveals that our proposed method produces only two non-overlapping differential metabolites whereas the other nine methods produced between seven and 57 non-overlapping differential metabolites.Our data analyses show that the performance of the proposed differential metabolite identification technique is better than that of existing methods. Thus, the proposed method can contribute to analysis of metabolomics data with outliers. The R package and user manual of the proposed method are available at https://github.com/nishithkumarpaul/Rvolcano .CONCLUSIONOur data analyses show that the performance of the proposed differential metabolite identification technique is better than that of existing methods. Thus, the proposed method can contribute to analysis of metabolomics data with outliers. The R package and user manual of the proposed method are available at https://github.com/nishithkumarpaul/Rvolcano . |
ArticleNumber | 128 |
Audience | Academic |
Author | Kumar, Nishith Hoque, Md. Aminul Sugimoto, Masahiro |
Author_xml | – sequence: 1 givenname: Nishith surname: Kumar fullname: Kumar, Nishith – sequence: 2 givenname: Md. Aminul surname: Hoque fullname: Hoque, Md. Aminul – sequence: 3 givenname: Masahiro surname: Sugimoto fullname: Sugimoto, Masahiro |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29642836$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1rFTEYhQep2A_9AW5kwI0upk4y-XQhlOLHhYJQu3MRcpM3tym5k2uSKfrvzXRq6RWRLJK8ec4hB85xczDGEZrmJepPERLsXUZYUNn1SHQYId7hJ80RIhzVW08PHp0Pm-Ocb_oecdHTZ80hloxgMbCj5vtlXE-5tLcxGD3Gdhdied96C2PxzhtdfBzb6FrrnYM0T3Vot1D0OgZfILd-bMs1tLsEGUYDMxunEjyk_Lx56nTI8OJ-P2muPn28Ov_SXXz9vDo_u-gMZax0BHFMiCSaSycsaGqlRhJTzhzuiUAaKMPYDHiNLRsw1lw7IxjDmnLHhuGkWS22NuobtUt-q9MvFbVXd4OYNkqn4k0AhRwM1UESISlBIKQkVnJLiR4wsg5Vrw-L125ab8GaGjjpsGe6_zL6a7WJt4oKyXoxG7y5N0jxxwS5qK3PBkLQI8QpK9zXrEwMXFT09YJudP2aH12sjmbG1RmtDEGEskqd_oOqy8LWm9oH5-t8T_B2T1CZAj_LRk85q9W3y3321eO4Dzn_9KMCaAFMijkncA8I6tXcQbV0UNUOqrmDClcN_0tjfLkrUv25D_9R_gZfvt3N |
CitedBy_id | crossref_primary_10_1016_j_greeac_2024_100203 crossref_primary_10_3389_fbioe_2021_629083 crossref_primary_10_1016_j_scitotenv_2021_151598 crossref_primary_10_1021_acsagscitech_4c00046 crossref_primary_10_3389_fmed_2022_1033083 crossref_primary_10_3390_jof10080551 crossref_primary_10_1021_acs_jproteome_9b00722 crossref_primary_10_3389_fmicb_2020_577497 crossref_primary_10_1016_j_foodres_2022_111509 crossref_primary_10_1128_iai_00284_24 crossref_primary_10_1016_j_phymed_2023_155060 crossref_primary_10_1016_j_jff_2024_106517 crossref_primary_10_3390_ijms252011097 crossref_primary_10_3390_molecules27010082 crossref_primary_10_1016_j_foodcont_2019_106941 crossref_primary_10_3390_foods14071100 crossref_primary_10_1016_j_foodchem_2024_139603 crossref_primary_10_1016_j_foodchem_2023_138111 crossref_primary_10_55230_mabjournal_v53i4_3103 crossref_primary_10_1016_j_ab_2020_113692 crossref_primary_10_3389_fimmu_2021_724936 crossref_primary_10_1021_acs_analchem_4c02038 crossref_primary_10_1021_acs_jafc_2c06459 crossref_primary_10_3390_biomedicines12081639 crossref_primary_10_3390_nu16234096 crossref_primary_10_1093_nar_gkz483 crossref_primary_10_1016_j_aca_2019_11_006 crossref_primary_10_3390_ijms242316694 crossref_primary_10_1016_j_scitotenv_2024_171922 crossref_primary_10_1016_j_foodcont_2022_109162 crossref_primary_10_1021_acs_jafc_1c05599 crossref_primary_10_1177_19714009231193158 |
Cites_doi | 10.1186/1471-2105-13-135 10.1038/nm.2307 10.1186/s13321-016-0156-0 10.1007/s10637-011-9768-4 10.1002/sim.1548 10.1007/978-1-4939-3106-4_14 10.1007/978-1-59745-244-1_7 10.1111/j.1467-9876.2005.05593.x 10.1186/1471-2105-10-402 10.1016/j.jchromb.2013.11.038 10.1186/1758-2946-2-9 10.3892/ol.2012.710 10.1038/s41598-016-0028-x 10.1371/journal.pgen.1000282 10.1155/2017/2437608 10.1016/S0031-9422(02)00708-2 10.18632/oncotarget.7155 10.1073/pnas.091062498 10.1186/1471-2105-12-288 10.1007/s12127-010-0049-2 10.1198/016214501753382129 10.1038/srep46249 10.1007/s11306-011-0366-4 10.1186/1471-2105-15-14 10.1007/s00204-010-0609-6 10.1111/j.1541-0420.2005.00397.x 10.1002/elps.201300053 10.1007/978-94-010-0448-0_11 10.1007/0-387-29362-0_23 10.1142/S0219720012310038 10.1016/j.cmet.2016.09.018 10.1038/nrd2251 10.1186/1471-2369-15-43 10.1002/elps.201500352 10.1016/j.aquatox.2016.11.018 10.3389/fmolb.2015.00004 10.1186/s12859-015-0506-3 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2018 BioMed Central Ltd. The Author(s). 2018 |
Copyright_xml | – notice: COPYRIGHT 2018 BioMed Central Ltd. – notice: The Author(s). 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 5PM DOA |
DOI | 10.1186/s12859-018-2117-2 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2105 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_1fe33229489541e8994d97d54a321df1 PMC5896081 A546841456 29642836 10_1186_s12859_018_2117_2 |
Genre | Journal Article |
GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB PMFND 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c566t-41724494a79f8dea5d9a192576f20481ae5622c32b2d6322a7afc8662a57f633 |
IEDL.DBID | M48 |
ISSN | 1471-2105 |
IngestDate | Wed Aug 27 01:32:20 EDT 2025 Thu Aug 21 18:26:38 EDT 2025 Fri Jul 11 05:34:13 EDT 2025 Tue Jun 17 21:20:54 EDT 2025 Tue Jun 10 20:28:00 EDT 2025 Fri Jun 27 04:40:19 EDT 2025 Mon Jul 21 05:56:46 EDT 2025 Tue Jul 01 03:38:25 EDT 2025 Thu Apr 24 23:06:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Metabolomics Differential metabolites Fold change Classical volcano plot Receiver operating characteristic (ROC) curve |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c566t-41724494a79f8dea5d9a192576f20481ae5622c32b2d6322a7afc8662a57f633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-018-2117-2 |
PMID | 29642836 |
PQID | 2024468378 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1fe33229489541e8994d97d54a321df1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5896081 proquest_miscellaneous_2024468378 gale_infotracmisc_A546841456 gale_infotracacademiconefile_A546841456 gale_incontextgauss_ISR_A546841456 pubmed_primary_29642836 crossref_primary_10_1186_s12859_018_2117_2 crossref_citationtrail_10_1186_s12859_018_2117_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-11 |
PublicationDateYYYYMMDD | 2018-04-11 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC bioinformatics |
PublicationTitleAlternate | BMC Bioinformatics |
PublicationYear | 2018 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | CM Kendziorski (2117_CR28) 2003; 22 C Wang (2117_CR26) 2014; 4 C Gieger (2117_CR1) 2008; 4 TJ Wang (2117_CR4) 2011; 17 O Hrydziuszko (2117_CR10) 2012; 8 L Blanchet (2117_CR17) 2016 X Wei (2117_CR36) 2012; 4 2117_CR18 R Steuer (2117_CR14) 2007 CB Newgard (2117_CR3) 2017; 25 J Godzien (2117_CR16) 2013; 34 Y Fan (2117_CR21) 2016; 7 MR Trusheim (2117_CR8) 2007; 6 YV Karpievitch (2117_CR9) 2012; 13 P Mochalski (2117_CR38) 2014; 15 A Bordbar (2117_CR20) 2017; 7 B Efron (2117_CR30) 2001; 96 E Leung (2117_CR37) 2012; 30 LW Sumner (2117_CR5) 2003; 62 X Zhan (2117_CR6) 2015; 16 J Yang (2117_CR13) 2015; 2 EG Armitage (2117_CR11) 2015; 36 MN Snyder (2117_CR19) 2017; 182 H Liu (2117_CR39) 2014; 945 CL Silva (2117_CR40) 2017; 7 D Dembélé (2117_CR23) 2014; 15 O Fiehn (2117_CR2) 2002 VG Tusher (2117_CR24) 2001; 98 GK Smyth (2117_CR29) 2005 K Jung (2117_CR33) 2011; 12 PS Gromski (2117_CR12) 2014; 4 A McMillan (2117_CR25) 2016; 8 MM Mollah (2117_CR32) 2012; 13 W Li (2117_CR22) 2012; 10 KA Do (2117_CR31) 2005; 54 CD DeHaven (2117_CR15) 2010; 2 S Zhang (2117_CR34) 2009; 10 R Gottardo (2117_CR27) 2006; 62 M Westhoff (2117_CR35) 2010; 13 M Mamas (2117_CR7) 2011; 85 |
References_xml | – volume: 13 start-page: 135 issue: 1 year: 2012 ident: 2117_CR32 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-13-135 – volume: 17 start-page: 448 issue: 4 year: 2011 ident: 2117_CR4 publication-title: Nat Med doi: 10.1038/nm.2307 – volume: 8 start-page: 44 issue: 1 year: 2016 ident: 2117_CR25 publication-title: J Cheminform doi: 10.1186/s13321-016-0156-0 – volume: 30 start-page: 2103 issue: 6 year: 2012 ident: 2117_CR37 publication-title: Investig New Drugs doi: 10.1007/s10637-011-9768-4 – volume: 22 start-page: 3899 issue: 24 year: 2003 ident: 2117_CR28 publication-title: Stat Med doi: 10.1002/sim.1548 – start-page: 209 volume-title: Statistical Analysis in Proteomics year: 2016 ident: 2117_CR17 doi: 10.1007/978-1-4939-3106-4_14 – start-page: 105 volume-title: Metabolomics: Methods and Protocols year: 2007 ident: 2117_CR14 doi: 10.1007/978-1-59745-244-1_7 – volume: 54 start-page: 627 issue: 3 year: 2005 ident: 2117_CR31 publication-title: J R Stat Soc: Ser C: Appl Stat doi: 10.1111/j.1467-9876.2005.05593.x – volume: 13 start-page: 1 issue: 16 year: 2012 ident: 2117_CR9 publication-title: BMC Bioinformatics – volume: 10 start-page: 402 issue: 1 year: 2009 ident: 2117_CR34 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-402 – volume: 945 start-page: 53 year: 2014 ident: 2117_CR39 publication-title: J Chromatogr B doi: 10.1016/j.jchromb.2013.11.038 – volume: 4 start-page: 1 year: 2014 ident: 2117_CR26 publication-title: Sci Rep – volume: 2 start-page: 1 issue: 1 year: 2010 ident: 2117_CR15 publication-title: J Cheminform doi: 10.1186/1758-2946-2-9 – volume: 4 start-page: 279 issue: 2 year: 2012 ident: 2117_CR36 publication-title: Oncol Lett doi: 10.3892/ol.2012.710 – volume: 7 start-page: 1 year: 2017 ident: 2117_CR40 publication-title: Sci Rep doi: 10.1038/s41598-016-0028-x – volume: 4 start-page: e1000282 issue: 11 year: 2008 ident: 2117_CR1 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000282 – ident: 2117_CR18 doi: 10.1155/2017/2437608 – volume: 62 start-page: 817 issue: 6 year: 2003 ident: 2117_CR5 publication-title: Phytochemistry doi: 10.1016/S0031-9422(02)00708-2 – volume: 7 start-page: 9925 issue: 9 year: 2016 ident: 2117_CR21 publication-title: Oncotarget doi: 10.18632/oncotarget.7155 – volume: 98 start-page: 5116 issue: 9 year: 2001 ident: 2117_CR24 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.091062498 – volume: 12 start-page: 288 issue: 1 year: 2011 ident: 2117_CR33 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-288 – volume: 13 start-page: 131 issue: 3–4 year: 2010 ident: 2117_CR35 publication-title: Int J Ion Mobil Spectrom doi: 10.1007/s12127-010-0049-2 – volume: 96 start-page: 1151 issue: 456 year: 2001 ident: 2117_CR30 publication-title: J Am Stat Assoc doi: 10.1198/016214501753382129 – volume: 7 start-page: 1 year: 2017 ident: 2117_CR20 publication-title: Sci Rep doi: 10.1038/srep46249 – volume: 8 start-page: 161 issue: 1 year: 2012 ident: 2117_CR10 publication-title: Metabolomics doi: 10.1007/s11306-011-0366-4 – volume: 15 start-page: 14 issue: 1 year: 2014 ident: 2117_CR23 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-15-14 – volume: 85 start-page: 5 issue: 1 year: 2011 ident: 2117_CR7 publication-title: Arch Toxicol doi: 10.1007/s00204-010-0609-6 – volume: 62 start-page: 10 issue: 1 year: 2006 ident: 2117_CR27 publication-title: Biometrics doi: 10.1111/j.1541-0420.2005.00397.x – volume: 34 start-page: 2812 issue: 19 year: 2013 ident: 2117_CR16 publication-title: Electrophoresis doi: 10.1002/elps.201300053 – start-page: 155 volume-title: Functional Genomics year: 2002 ident: 2117_CR2 doi: 10.1007/978-94-010-0448-0_11 – start-page: 397 volume-title: Bioinformatics and computational biology solutions using R and Bioconductor year: 2005 ident: 2117_CR29 doi: 10.1007/0-387-29362-0_23 – volume: 10 start-page: 1231003 issue: 06 year: 2012 ident: 2117_CR22 publication-title: J Bioinforma Comput Biol doi: 10.1142/S0219720012310038 – volume: 25 start-page: 43 issue: 1 year: 2017 ident: 2117_CR3 publication-title: Cell Metab doi: 10.1016/j.cmet.2016.09.018 – volume: 6 start-page: 287 issue: 4 year: 2007 ident: 2117_CR8 publication-title: Nat Rev Drug Discov doi: 10.1038/nrd2251 – volume: 4 start-page: 433 issue: 2 year: 2014 ident: 2117_CR12 publication-title: Meta – volume: 15 start-page: 43 issue: 1 year: 2014 ident: 2117_CR38 publication-title: BMC Nephrol doi: 10.1186/1471-2369-15-43 – volume: 36 start-page: 3050 issue: 24 year: 2015 ident: 2117_CR11 publication-title: Electrophoresis doi: 10.1002/elps.201500352 – volume: 182 start-page: 184 year: 2017 ident: 2117_CR19 publication-title: Aquat Toxicol doi: 10.1016/j.aquatox.2016.11.018 – volume: 2 start-page: 1 year: 2015 ident: 2117_CR13 publication-title: Front Mol Biosci doi: 10.3389/fmolb.2015.00004 – volume: 16 start-page: 77 issue: 1 year: 2015 ident: 2117_CR6 publication-title: BMC Bioinformatics doi: 10.1186/s12859-015-0506-3 |
SSID | ssj0017805 |
Score | 2.4601712 |
Snippet | The identification of differential metabolites in metabolomics is still a big challenge and plays a prominent role in metabolomics data analyses. Metabolomics... Abstract Background The identification of differential metabolites in metabolomics is still a big challenge and plays a prominent role in metabolomics data... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 128 |
SubjectTerms | Algorithms Biomarkers - metabolism Cardiovascular diseases Care and treatment Classical volcano plot Computational biology Diabetes Differential metabolites Down-Regulation - genetics Female Fold change Genetic aspects Humans Metabolites Metabolome Metabolomics Metabolomics - methods Methodology Receiver operating characteristic (ROC) curve ROC Curve Up-Regulation - genetics |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9QwFA6yIHgRdf1RXZcogiCUnaZpk3rblV1WDx7WFRY8hDQ_dGC2HWzn4H_v99rOMEXQi9fmhTYvX5rvkZfvMfZG1IqE0HxqJRa5dDqmOuaIUgCPoF1Fdxsp2-JzeflVfropbvZKfVFO2CgPPDruJIshB-gqqatCZgHhgfSV8oW0uch8HAIf7HnbYGo6PyCl_ukMM9PlSZeRThvCZqACL0_FbBcaxPr__CXv7UnzfMm9DejiAbs_MUd-On7xQ3YnNI_Y3bGW5K9D9u2qrTddz_G7gbdavl61_Xu-9FM20DABvI18WxEFK3vFb0MPENA15I4vGw4yyNfDfSQXyJayhahU9mN2fXF-_eEynSonpA70rE8laImUlbSqitoHW_jKgsohtogk1JvZANojXC5q4Ut41yobnS5LYQsVyzx_wg6atgnPGCdCor2uhAK3U36hfV4v6qDAdtHZhoQtto40blIVp-IWKzNEF7o0o-8NfG_I90Yk7N2uy3qU1Pib8RnNzs6Q1LCHB8CImTBi_oWRhL2muTWkd9FQQs13u-k68_HLlTktZKllBhqZsLeTUWwxAmen-wnwA0lkzSyPZpZYkG7W_GoLIUNNlMXWhHbTGQFCBKtc6YQ9HSG1Gxgdf4PqobeagW028nlLs_wx6IEXGmGozp7_D1e9YPcELRNSs8yO2EH_cxNegnb19fGwwn4DZsQlpw priority: 102 providerName: Directory of Open Access Journals |
Title | Robust volcano plot: identification of differential metabolites in the presence of outliers |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29642836 https://www.proquest.com/docview/2024468378 https://pubmed.ncbi.nlm.nih.gov/PMC5896081 https://doaj.org/article/1fe33229489541e8994d97d54a321df1 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swEBZdy2AvY7_nrgvaGAwG3mJZtuTBGOlo1gVWRtpCYA9CtqQukNlp7MD63-9OdrKalcFeHLBOBp3upO-i03eEvGK5QCI0E2oOTs4L6ULpYohSwDysLDK824jZFifp8TmfzJLZDtmUt-oUWN8Y2mE9qfPV4u2vy6uP4PAfvMPL9F0dIQsbBMUw5_DpEFbkPdiYBBY0-Mr_HCogfb-_bCQiEBwm3SHnjZ_obVOezf_vNfvaptVPqLy2Q43vkbsdtKSj1hbukx1bPiC322KTVw_J92mVr-uGwnoE6qzoclE17-ncdOlCfoZo5eimZAq4_oL-tA1YCd5Trum8pIAW6dJfWCosymI6EdbSfkTOxkdnn47DrrRCWAB-a0LUDucZ1yJz0lidmEwD1oPgwyGTb6Qt4CJWxCxnJgWf10K7QqYp04lwaRw_JrtlVdqnhCJikUZmTAD4E2YoTZwPcysADkNnbQMy3ChSFR3tOFa_WCgffshUtbpXoHuFulcsIG-2XZYt58a_hA9xdraCSJftX1SrC9V5n4qcjWEUGZdZwiMLMSY3mTAJ1zGLjIsC8hLnViEhRokZNxd6Xdfqy-lUjRKeSh4BzgzI607IVTCCQncXGEAPyKHVkzzoSYLHFr3mFxsTUtiEaW6lrda1YoCYQCoWMiBPWpPaDgzPxwELQm_RM7beyPst5fyHJwxPJMSpMtr_H70-I3cYugPSWkYHZLdZre1zwF9NPiC3xEzAU44_D8jeaDQ5ncDv4dHJt-nA_6cx8H73G7WtLLw |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+volcano+plot%3A+identification+of+differential+metabolites+in+the+presence+of+outliers&rft.jtitle=BMC+bioinformatics&rft.au=Kumar%2C+Nishith&rft.au=Hoque%2C+Md.+Aminul&rft.au=Sugimoto%2C+Masahiro&rft.date=2018-04-11&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-018-2117-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12859_018_2117_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |