DNA dynamically directs its own transcription initiation
It has long been known that double‐stranded DNA is subject to temporary, localized openings of its two strands. Particular regions along a DNA polymer are destabilized structurally by available thermal energy in the system. The localized sequence of DNA determines the physical properties of a stretc...
Saved in:
Published in | Nucleic acids research Vol. 32; no. 4; pp. 1584 - 1590 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
2004
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It has long been known that double‐stranded DNA is subject to temporary, localized openings of its two strands. Particular regions along a DNA polymer are destabilized structurally by available thermal energy in the system. The localized sequence of DNA determines the physical properties of a stretch of DNA, and that in turn determines the opening profile of that DNA fragment. We show that the Peyrard–Bishop nonlinear dynamical model of DNA, which has been used to simulate denaturation of short DNA fragments, gives an accurate representation of the instability profile of a defined sequence of DNA, as verified using S1 nuclease cleavage assays. By comparing results for a non‐promoter DNA fragment, the adenovirus major late promoter, the adeno‐associated viral P5 promoter and a known P5 mutant promoter that is inactive for transcription, we show that the predicted openings correlate almost exactly with the promoter transcriptional start sites and major regulatory sites. Physicists have speculated that localized melting of DNA might play a role in gene transcription and other processes. Our data link sequence‐dependent opening behavior in DNA to transcriptional activity for the first time. |
---|---|
AbstractList | It has long been known that double-stranded DNA is subject to temporary, localized openings of its two strands. Particular regions along a DNA polymer are destabilized structurally by available thermal energy in the system. The localized sequence of DNA determines the physical properties of a stretch of DNA, and that in turn determines the opening profile of that DNA fragment. We show that the Peyrard-Bishop nonlinear dynamical model of DNA, which has been used to simulate denaturation of short DNA fragments, gives an accurate representation of the instability profile of a defined sequence of DNA, as verified using S1 nuclease cleavage assays. By comparing results for a non- promoter DNA fragment, the adenovirus major late promoter, the adeno-associated viral P5 promoter and a known P5 mutant promoter that is inactive for transcription, we show that the predicted openings correlate almost exactly with the promoter transcriptional start sites and major regulatory sites. Physicists have speculated that localized melting of DNA might play a role in gene transcription and other processes. Our data link sequence-dependent opening behavior in DNA to transcriptional activity for the first time. It has long been known that double-stranded DNA is subject to temporary, localized openings of its two strands. Particular regions along a DNA polymer are destabilized structurally by available thermal energy in the system. The localized sequence of DNA determines the physical properties of a stretch of DNA, and that in turn determines the opening profile of that DNA fragment. We show that the Peyrard-Bishop nonlinear dynamical model of DNA, which has been used to simulate denaturation of short DNA fragments, gives an accurate representation of the instability profile of a defined sequence of DNA, as verified using S1 nuclease cleavage assays. By comparing results for a non-promoter DNA fragment, the adenovirus major late promoter, the adeno-associated viral P5 promoter and a known P5 mutant promoter that is inactive for transcription, we show that the predicted openings correlate almost exactly with the promoter transcriptional start sites and major regulatory sites. Physicists have speculated that localized melting of DNA might play a role in gene transcription and other processes. Our data link sequence-dependent opening behavior in DNA to transcriptional activity for the first time.It has long been known that double-stranded DNA is subject to temporary, localized openings of its two strands. Particular regions along a DNA polymer are destabilized structurally by available thermal energy in the system. The localized sequence of DNA determines the physical properties of a stretch of DNA, and that in turn determines the opening profile of that DNA fragment. We show that the Peyrard-Bishop nonlinear dynamical model of DNA, which has been used to simulate denaturation of short DNA fragments, gives an accurate representation of the instability profile of a defined sequence of DNA, as verified using S1 nuclease cleavage assays. By comparing results for a non-promoter DNA fragment, the adenovirus major late promoter, the adeno-associated viral P5 promoter and a known P5 mutant promoter that is inactive for transcription, we show that the predicted openings correlate almost exactly with the promoter transcriptional start sites and major regulatory sites. Physicists have speculated that localized melting of DNA might play a role in gene transcription and other processes. Our data link sequence-dependent opening behavior in DNA to transcriptional activity for the first time. |
Author | Hiromura, Makoto Rasmussen, Kim Ø. Choi, Chu H. Kalosakas, George Bishop, Alan R. Usheva, Anny |
AuthorAffiliation | Endocrinology, Beth Israel Deaconess Medical Center and Harvard Medical School, Department of Medicine, 99 Brookline Avenue, Boston, MA 02215, USA and 1 Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA |
AuthorAffiliation_xml | – name: Endocrinology, Beth Israel Deaconess Medical Center and Harvard Medical School, Department of Medicine, 99 Brookline Avenue, Boston, MA 02215, USA and 1 Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA |
Author_xml | – sequence: 1 givenname: Chu H. surname: Choi fullname: Choi, Chu H. – sequence: 2 givenname: George surname: Kalosakas fullname: Kalosakas, George organization: Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA – sequence: 3 givenname: Kim Ø. surname: Rasmussen fullname: Rasmussen, Kim Ø. organization: Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA – sequence: 4 givenname: Makoto surname: Hiromura fullname: Hiromura, Makoto – sequence: 5 givenname: Alan R. surname: Bishop fullname: Bishop, Alan R. organization: Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA – sequence: 6 givenname: Anny surname: Usheva fullname: Usheva, Anny organization: To whom correspondence should be addressed. Tel: +1 617 632 0522; Fax: +1 617 632 2927; Email: ausheva@bidmc.harvard.edu Present address: Makoto Hiromura, Division of Cancer Biology and Institute for Genetic Medicine, Hokkaido University, N15, W7, Kita‐ku, Sapporo 060‐0815, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15004245$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk9LHDEYxoMoutpe-gHK0IOHwuibyb_JoQerVQvSCoqIl5DNJBqdTbbJbOt--2a7dqlS8BASyO95yZPn2UbrIQaL0DsMexgk2Q867d8-3BHC1tAIE97UVPJmHY2AAKsx0HYLbed8D4ApZnQTbWEGQBvKRqg9-nZQdfOgJ97ovp9XnU_WDLnyZcVfoRqSDtkkPx18DJUPfvB6cXyDNpzus337tO-gy-Mvl4en9dn3k6-HB2e1YZwPNWk11W7stGzMWBDRSWYE1pI6OSbCkpY7YYRxrW6tdkQaa11HOtY0mDeuJTvo03LsdDae2M7YUB7Uq2nyE53mKmqvnt8Ef6du409FJBCMi373SZ_ij5nNg5r4bGzf62DjLCuBBbCWiVdBLLkAyuF1UEghmVyAH16A93GWQvks1QBwYAyzAr3_19_K2N-ECgBLwKSYc7JOGT_8SaDY9b3CoBYlUKUEalmCIvn4QrKa-j-4XsI-D_ZxRer0oHjJi6nT6xt1c3Vy_vninCtKfgPkXMQm |
CODEN | NARHAD |
CitedBy_id | crossref_primary_10_1016_j_bbagrm_2014_09_014 crossref_primary_10_1093_nar_gkad118 crossref_primary_10_1093_bioinformatics_btn172 crossref_primary_10_1140_epjb_e2007_00112_9 crossref_primary_10_1002_cbic_200600038 crossref_primary_10_1063_5_0060335 crossref_primary_10_1103_PhysRevE_100_052203 crossref_primary_10_1103_PhysRevLett_94_035504 crossref_primary_10_1007_s10867_009_9125_4 crossref_primary_10_1038_s41598_017_09537_y crossref_primary_10_1371_journal_pcbi_1002881 crossref_primary_10_1016_j_chaos_2024_114786 crossref_primary_10_1007_s00249_022_01614_z crossref_primary_10_1016_j_molcel_2012_03_029 crossref_primary_10_1016_j_physd_2006_09_005 crossref_primary_10_7566_JPSJ_89_024004 crossref_primary_10_1103_PhysRevE_101_062415 crossref_primary_10_3390_life1010003 crossref_primary_10_1016_j_pbiomolbio_2006_07_001 crossref_primary_10_1103_PhysRevE_102_062114 crossref_primary_10_1021_nl0499084 crossref_primary_10_1103_PhysRevE_71_061901 crossref_primary_10_1109_TNB_2014_2327586 crossref_primary_10_1371_journal_pcbi_1003835 crossref_primary_10_1186_1748_7188_3_10 crossref_primary_10_1371_journal_pone_0018811 crossref_primary_10_1016_j_ympev_2011_04_015 crossref_primary_10_1007_s10867_005_3244_3 crossref_primary_10_1186_s12859_022_05129_4 crossref_primary_10_4061_2010_290935 crossref_primary_10_1063_1_4807381 crossref_primary_10_1093_nar_gkp016 crossref_primary_10_1103_PhysRevE_72_021912 crossref_primary_10_1088_0953_8984_21_3_034111 crossref_primary_10_3390_molecules28031041 crossref_primary_10_1016_j_cplett_2006_10_045 crossref_primary_10_1016_j_jtbi_2014_03_031 crossref_primary_10_1371_journal_pone_0015806 crossref_primary_10_20948_prepr_2018_231 crossref_primary_10_1103_PhysRevE_84_051905 crossref_primary_10_1038_ncomms11799 crossref_primary_10_1186_1471_2105_6_1 crossref_primary_10_1038_srep01184 crossref_primary_10_1088_0953_8984_21_3_034107 crossref_primary_10_1088_0953_8984_21_3_034108 crossref_primary_10_1103_PhysRevE_75_021908 crossref_primary_10_1007_s00214_009_0643_8 crossref_primary_10_1134_S0006350918020069 crossref_primary_10_1007_s10867_006_2719_1 crossref_primary_10_1140_epjb_e2016_60949_1 crossref_primary_10_1088_0951_7715_21_6_T02 crossref_primary_10_1103_PhysRevE_81_051910 crossref_primary_10_1002_chem_201301995 crossref_primary_10_1007_s00418_023_02233_1 crossref_primary_10_1103_PhysRevE_86_021908 crossref_primary_10_1103_PhysRevLett_96_239801 crossref_primary_10_1103_PhysRevLett_96_239802 crossref_primary_10_17537_2020_15_129 crossref_primary_10_3390_ijms26030933 crossref_primary_10_1002_cbic_200400222 crossref_primary_10_1103_PhysRevE_70_051903 crossref_primary_10_1016_j_mehy_2008_03_048 crossref_primary_10_1016_j_physa_2015_12_132 crossref_primary_10_1016_j_pmatsci_2015_03_001 crossref_primary_10_1088_1751_8113_46_41_415002 crossref_primary_10_1103_PhysRevE_76_066603 crossref_primary_10_1103_PhysRevE_82_031916 crossref_primary_10_1016_j_ijbiomac_2020_12_039 crossref_primary_10_17537_2020_15_93 crossref_primary_10_1109_TCBB_2015_2396057 crossref_primary_10_1088_1742_6596_1245_1_012070 crossref_primary_10_1103_PhysRevLett_96_248101 crossref_primary_10_1103_PhysRevE_73_051902 crossref_primary_10_1021_nn500790m crossref_primary_10_1209_0295_5075_77_48001 crossref_primary_10_1088_0953_8984_21_3_034106 crossref_primary_10_1063_1_2194468 crossref_primary_10_1101_gr_6991408 crossref_primary_10_1103_PhysRevE_83_011904 crossref_primary_10_1103_PhysRevLett_97_128105 crossref_primary_10_1016_j_dnarep_2006_04_007 crossref_primary_10_1103_PhysRevE_77_031919 crossref_primary_10_1103_PhysRevLett_97_059802 crossref_primary_10_1140_epje_e2005_00026_9 crossref_primary_10_1371_journal_pcbi_0030093 crossref_primary_10_1063_1_4930220 crossref_primary_10_1063_1_3149859 crossref_primary_10_1134_S1560354718020016 crossref_primary_10_1103_PhysRevLett_95_264302 crossref_primary_10_1039_c2sm26089a crossref_primary_10_1088_0953_8984_19_13_136203 crossref_primary_10_1093_nar_gkae783 crossref_primary_10_1103_PhysRevE_75_036615 crossref_primary_10_1103_PhysRevLett_104_025503 crossref_primary_10_17537_2018_13_534 crossref_primary_10_1103_PhysRevE_99_022213 crossref_primary_10_1209_epl_i2004_10167_8 crossref_primary_10_1016_j_cplett_2011_07_080 crossref_primary_10_1021_nl062304a crossref_primary_10_1063_1_2359724 crossref_primary_10_1088_1367_2630_18_5_053032 crossref_primary_10_1063_1_3117922 crossref_primary_10_1134_S1063784220090200 crossref_primary_10_1016_j_bpj_2014_04_029 crossref_primary_10_1021_acs_jpcb_8b01445 crossref_primary_10_1209_epl_i2005_10543_x crossref_primary_10_1073_pnas_1314862110 crossref_primary_10_1371_journal_pcbi_1003785 crossref_primary_10_1016_j_mrrev_2008_01_007 crossref_primary_10_1016_j_ygeno_2010_06_003 crossref_primary_10_1140_epje_i2010_10618_y crossref_primary_10_1371_journal_pcbi_1000313 crossref_primary_10_1016_j_bpj_2018_08_002 crossref_primary_10_1103_PhysRevE_87_022703 crossref_primary_10_1088_0031_8949_83_03_035802 crossref_primary_10_1140_epje_i2009_10475_9 crossref_primary_10_1529_biophysj_106_095935 crossref_primary_10_31083_j_fbl2911381 crossref_primary_10_1088_1478_3975_8_2_026006 crossref_primary_10_1103_PhysRevE_70_036609 crossref_primary_10_1128_JVI_00363_15 crossref_primary_10_1016_j_mehy_2009_05_039 crossref_primary_10_1088_1674_1056_22_12_129402 crossref_primary_10_1016_j_physleta_2009_12_077 crossref_primary_10_1039_c3sm52953c crossref_primary_10_1103_PhysRevE_77_032901 crossref_primary_10_1063_5_0168915 crossref_primary_10_1063_1_4869112 crossref_primary_10_1093_nar_gkt541 crossref_primary_10_1142_S1402925111001581 crossref_primary_10_1103_PhysRevE_71_061922 crossref_primary_10_1093_bioinformatics_btad699 crossref_primary_10_1186_1471_2105_11_604 crossref_primary_10_1103_PhysRevE_74_050901 crossref_primary_10_1038_nphys197 crossref_primary_10_1103_PhysRevLett_95_218104 crossref_primary_10_1140_epje_i2006_10032_2 crossref_primary_10_1186_1745_6150_3_22 crossref_primary_10_1093_nar_gkp1084 crossref_primary_10_1529_biophysj_107_123471 crossref_primary_10_1007_s11693_006_9003_3 |
ContentType | Journal Article |
Copyright | Copyright Oxford University Press(England) Feb 15, 2004 Copyright © 2004 Oxford University Press 2004 |
Copyright_xml | – notice: Copyright Oxford University Press(England) Feb 15, 2004 – notice: Copyright © 2004 Oxford University Press 2004 |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7QP 7QR 7SS 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM |
DOI | 10.1093/nar/gkh335 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | AIDS and Cancer Research Abstracts Virology and AIDS Abstracts MEDLINE - Academic MEDLINE Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | 1590 |
ExternalDocumentID | PMC390311 579200281 15004245 10_1093_nar_gkh335 ark_67375_HXZ_ZVGPBSP6_4 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM073911 – fundername: NHLBI NIH HHS grantid: HL624458 |
GroupedDBID | --- -DZ -~X .55 .GJ .I3 0R~ 123 18M 1TH 29N 2WC 3O- 4.4 482 53G 5VS 5WA 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPXW AAUQX AAVAP AAYJJ ABEJV ABGNP ABNGD ABPTD ABQLI ABXVV ACGFO ACGFS ACIPB ACIWK ACNCT ACPRK ACUKT ACUTJ ADBBV ADHZD AEGXH AENEX AENZO AFFNX AFPKN AFRAH AFYAG AGQPQ AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL AOIJS ASPBG AVWKF AZFZN BAWUL BAYMD BCNDV BEYMZ BSCLL C1A CAG CIDKT COF CS3 CZ4 DIK DU5 D~K E3Z EBD EBS EJD EMOBN F5P FEDTE GROUPED_DOAJ GX1 HH5 HVGLF HYE HZ~ H~9 IH2 KAQDR KQ8 KSI MVM NTWIH OAWHX OBC OBS OEB OES OJQWA OVD OVT P2P PB- PEELM PQQKQ R44 RD5 RNI RNS ROL ROZ RPM RXO RZF RZO SJN SV3 TEORI TN5 TOX TR2 WG7 WOQ X7H X7M XSB YSK ZKX ~91 ~D7 ~KM AAYXX CITATION 6.Y AAPPN AAWDT ABQTQ ABSAR ABSMQ ACFRR ACPQN ACZBC ADIXU AEHUL AEKPW AFSHK AFULF AGKRT AGMDO ANFBD AQDSO ASAOO ATDFG ATTQO BTTYL CGR CUY CVF CXTWN D0S DFGAJ ECM EIF ELUNK H13 M49 MBTAY M~E NPM O~Y PKN QBD ROX TCN UHB XSW ZXP 7QL 7QO 7QP 7QR 7SS 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c566t-38a4afbfa92cb737d95c71a94f9b37e386f7c7cf8a8eaf39ceefd3d522162f83 |
ISSN | 0305-1048 1362-4962 |
IngestDate | Thu Aug 21 14:14:15 EDT 2025 Fri Jul 11 07:57:07 EDT 2025 Fri Jul 11 10:28:43 EDT 2025 Fri Jul 11 03:06:44 EDT 2025 Mon Jun 30 08:45:45 EDT 2025 Wed Feb 19 01:36:38 EST 2025 Thu Apr 24 23:07:53 EDT 2025 Tue Jul 01 01:57:30 EDT 2025 Tue Aug 05 16:48:46 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c566t-38a4afbfa92cb737d95c71a94f9b37e386f7c7cf8a8eaf39ceefd3d522162f83 |
Notes | istex:D1E0B18E49F4D5EB08BBCBEEDEA9A64266567CFF To whom correspondence should be addressed. Tel: +1 617 632 0522; Fax: +1 617 632 2927; Email: ausheva@bidmc.harvard.edu Present address: Makoto Hiromura, Division of Cancer Biology and Institute for Genetic Medicine, Hokkaido University, N15, W7, Kita‐ku, Sapporo 060‐0815, Japan Received January 16, 2004; Revised and Accepted February 19, 2004 ark:/67375/HXZ-ZVGPBSP6-4 local:gkh335 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 Present address: Makoto Hiromura, Division of Cancer Biology and Institute for Genetic Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo 060-0815, Japan To whom correspondence should be addressed. Tel: +1 617 632 0522; Fax: +1 617 632 2927; Email: ausheva@bidmc.harvard.edu |
OpenAccessLink | http://doi.org/10.1093/nar/gkh335 |
PMID | 15004245 |
PQID | 200605515 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_390311 proquest_miscellaneous_71705857 proquest_miscellaneous_19670460 proquest_miscellaneous_17979590 proquest_journals_200605515 pubmed_primary_15004245 crossref_citationtrail_10_1093_nar_gkh335 crossref_primary_10_1093_nar_gkh335 istex_primary_ark_67375_HXZ_ZVGPBSP6_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004-00-00 |
PublicationDateYYYYMMDD | 2004-01-01 |
PublicationDate_xml | – year: 2004 text: 2004-00-00 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford – name: Oxford, UK |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucl. Acids Res |
PublicationYear | 2004 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | 9960075 - Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1993 Jan;47(1):R44-R47 10623510 - J Mol Biol. 2000 Jan 7;295(1):85-103 9960044 - Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1993 Jan;47(1):684-695 3070859 - Trends Genet. 1988 Apr;4(4):111-4 6088786 - J Virol. 1984 Sep;51(3):611-9 8413604 - Nature. 1993 Oct 7;365(6446):512-20 12708848 - J Am Chem Soc. 2003 Apr 30;125(17):4998-9 8942975 - Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13571-6 11226246 - Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2370-4 6574846 - Cold Spring Harb Symp Quant Biol. 1983;47 Pt 1:251-62 12672955 - Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4411-6 1602485 - J Mol Biol. 1992 Jun 5;225(3):835-47 10040080 - Phys Rev Lett. 1989 Jun 5;62(23):2755-2758 9571019 - J Mol Biol. 1998 Apr 17;277(5):1015-31 3028247 - Annu Rev Genet. 1986;20:45-79 1946368 - Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9553-7 10499798 - Cell. 1999 Sep 17;98(6):811-24 8942976 - Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13577-82 6572970 - Proc Natl Acad Sci U S A. 1983 Apr;80(8):2184-8 9649394 - Biophys J. 1998 Jul;75(1):372-81 10835278 - J Mol Biol. 2000 Jun 9;299(3):695-709 8137426 - Cell. 1994 Mar 25;76(6):1115-21 9251783 - Biophys J. 1997 Aug;73(2):640-52 6400873 - J Biomol Struct Dyn. 1983 Oct;1(1):253-62 10066749 - J Biol Chem. 1999 Mar 12;274(11):6957-62 11278276 - J Biol Chem. 2001 May 4;276(18):14614-22 7501470 - Nucleic Acids Res. 1995 Nov 11;23(21):4457-65 3018288 - J Virol. 1986 Oct;60(1):251-8 3459152 - Proc Natl Acad Sci U S A. 1986 Jun;83(11):3746-50 171268 - J Biol Chem. 1975 Nov 25;250(22):8848-55 10404615 - Comput Chem. 1999 Jun 15;23(3-4):191-207 7775443 - J Biol Chem. 1995 Jun 9;270(23):13850-9 12016307 - Science. 2002 May 17;296(5571):1285-90 11071810 - J Mol Biol. 2000 Nov 17;304(1):55-68 8568887 - J Mol Biol. 1996 Jan 26;255(3):425-34 8385354 - Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2999-3003 6201319 - CRC Crit Rev Biochem. 1984;15(3):237-90 10915625 - Science. 2000 Jul 28;289(5479):619-25 9900533 - Phys Rev A Gen Phys. 1988 Aug 1;38(3):1538-1541 |
References_xml | – reference: 3070859 - Trends Genet. 1988 Apr;4(4):111-4 – reference: 10040080 - Phys Rev Lett. 1989 Jun 5;62(23):2755-2758 – reference: 9900533 - Phys Rev A Gen Phys. 1988 Aug 1;38(3):1538-1541 – reference: 12016307 - Science. 2002 May 17;296(5571):1285-90 – reference: 9251783 - Biophys J. 1997 Aug;73(2):640-52 – reference: 6201319 - CRC Crit Rev Biochem. 1984;15(3):237-90 – reference: 8942975 - Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13571-6 – reference: 3028247 - Annu Rev Genet. 1986;20:45-79 – reference: 7501470 - Nucleic Acids Res. 1995 Nov 11;23(21):4457-65 – reference: 8385354 - Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2999-3003 – reference: 6574846 - Cold Spring Harb Symp Quant Biol. 1983;47 Pt 1:251-62 – reference: 10066749 - J Biol Chem. 1999 Mar 12;274(11):6957-62 – reference: 11071810 - J Mol Biol. 2000 Nov 17;304(1):55-68 – reference: 8137426 - Cell. 1994 Mar 25;76(6):1115-21 – reference: 9571019 - J Mol Biol. 1998 Apr 17;277(5):1015-31 – reference: 1602485 - J Mol Biol. 1992 Jun 5;225(3):835-47 – reference: 10915625 - Science. 2000 Jul 28;289(5479):619-25 – reference: 10499798 - Cell. 1999 Sep 17;98(6):811-24 – reference: 9960044 - Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1993 Jan;47(1):684-695 – reference: 12708848 - J Am Chem Soc. 2003 Apr 30;125(17):4998-9 – reference: 8942976 - Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13577-82 – reference: 10623510 - J Mol Biol. 2000 Jan 7;295(1):85-103 – reference: 11278276 - J Biol Chem. 2001 May 4;276(18):14614-22 – reference: 1946368 - Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9553-7 – reference: 9649394 - Biophys J. 1998 Jul;75(1):372-81 – reference: 171268 - J Biol Chem. 1975 Nov 25;250(22):8848-55 – reference: 8413604 - Nature. 1993 Oct 7;365(6446):512-20 – reference: 8568887 - J Mol Biol. 1996 Jan 26;255(3):425-34 – reference: 12672955 - Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4411-6 – reference: 10835278 - J Mol Biol. 2000 Jun 9;299(3):695-709 – reference: 9960075 - Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1993 Jan;47(1):R44-R47 – reference: 3459152 - Proc Natl Acad Sci U S A. 1986 Jun;83(11):3746-50 – reference: 11226246 - Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2370-4 – reference: 7775443 - J Biol Chem. 1995 Jun 9;270(23):13850-9 – reference: 6088786 - J Virol. 1984 Sep;51(3):611-9 – reference: 3018288 - J Virol. 1986 Oct;60(1):251-8 – reference: 6400873 - J Biomol Struct Dyn. 1983 Oct;1(1):253-62 – reference: 10404615 - Comput Chem. 1999 Jun 15;23(3-4):191-207 – reference: 6572970 - Proc Natl Acad Sci U S A. 1983 Apr;80(8):2184-8 |
SSID | ssj0014154 |
Score | 2.1914525 |
Snippet | It has long been known that double‐stranded DNA is subject to temporary, localized openings of its two strands. Particular regions along a DNA polymer are... It has long been known that double-stranded DNA is subject to temporary, localized openings of its two strands. Particular regions along a DNA polymer are... |
SourceID | pubmedcentral proquest pubmed crossref istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1584 |
SubjectTerms | Adeno-associated virus Adenoviridae - genetics Adenovirus Base Sequence Computer Simulation Deoxyribonucleic acid Dependovirus - genetics DNA DNA - chemistry DNA, Single-Stranded - chemistry Molecular Sequence Data Nucleic Acid Denaturation Physical properties Polymers Promoter Regions, Genetic Thermal energy Transcription Factor TFIIB - genetics Transcription Initiation Site Transcription, Genetic |
Title | DNA dynamically directs its own transcription initiation |
URI | https://api.istex.fr/ark:/67375/HXZ-ZVGPBSP6-4/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/15004245 https://www.proquest.com/docview/200605515 https://www.proquest.com/docview/17979590 https://www.proquest.com/docview/19670460 https://www.proquest.com/docview/71705857 https://pubmed.ncbi.nlm.nih.gov/PMC390311 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdge4AXBBuwbHxYAk1CVbqmTuL4sZSNColpEgVVe4n8EbOykk5rJjH-es52PpoR0OAlipJzpPhnn3_nO98h9FpLBrRBCl-HAfNDOZA-zKKhH1M2UAEVLFZmv-PjcTz5HH6YRbOmCJ49XVKIvvzZea7kf1CFZ4CrOSX7D8jWH4UHcA_4whUQhuutMH53POopV1KeLxbXPbc-rawzAKxrU_8hb9TC3MQJNUB8qw7ewkdN0lY5V8aFsLa7Zb3-S-vuH_d7k35rhyBcU2f2TBQr9V3W8azUgc0eY2PgW4UWRK6CW7k4AvkZdCpel5QqN0HhR1_Pz4jLQdLOb31j3amjAZ0fnKTQOnVt76LNIdB-o2jp4LD2CgHZcEWKyz-o0s0ycgBtD1zbFsHYNHPlR5f1cDMIdo1VTB-iB6U5gEcO20foTpZvoe1Rzovl92u8j22ArvV8bKF746o43zZKAHq8Bj0uoccAPQbocQt63ED_GE2PDqfjiV8WwfAlMO3CJwkPuRaas6EUlFDFIkkDzkLNBKEZSWJNJZU64UnGNWFAerQiCmh1EA91Qp6gjXyZZzsICxGQTCdKcEpCHRIBtISBwaDAZJbAAz30puq4VJYJ4k2dkkX6O0AeelXLXri0KJ1S-7b_axF-eW4CCWmUTman6emX9ydvP53EaeihvQqgtJxfK1MgFWxt4Nseelm_hW42Hi2eZ8urVQqrCWUwJP8iwWJqfP9_lqAmoVQSUQ89dQOi-aHIBQZ4KG4NlVrApGZvv8nnZzZFO2GwWAa7t-qlPXTfhYOZfb1naKO4vMqeA9MtxAs7_H8BTc-uZw |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNA+dynamically+directs+its+own+transcription+initiation&rft.jtitle=Nucleic+acids+research&rft.au=Choi%2C+C.+H.&rft.date=2004&rft.issn=1362-4962&rft.eissn=1362-4962&rft.volume=32&rft.issue=4&rft.spage=1584&rft.epage=1590&rft_id=info:doi/10.1093%2Fnar%2Fgkh335&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_nar_gkh335 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |