DNA dynamically directs its own transcription initiation

It has long been known that double‐stranded DNA is subject to temporary, localized openings of its two strands. Particular regions along a DNA polymer are destabilized structurally by available thermal energy in the system. The localized sequence of DNA determines the physical properties of a stretc...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 32; no. 4; pp. 1584 - 1590
Main Authors Choi, Chu H., Kalosakas, George, Rasmussen, Kim Ø., Hiromura, Makoto, Bishop, Alan R., Usheva, Anny
Format Journal Article
LanguageEnglish
Published England Oxford University Press 2004
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It has long been known that double‐stranded DNA is subject to temporary, localized openings of its two strands. Particular regions along a DNA polymer are destabilized structurally by available thermal energy in the system. The localized sequence of DNA determines the physical properties of a stretch of DNA, and that in turn determines the opening profile of that DNA fragment. We show that the Peyrard–Bishop nonlinear dynamical model of DNA, which has been used to simulate denaturation of short DNA fragments, gives an accurate representation of the instability profile of a defined sequence of DNA, as verified using S1 nuclease cleavage assays. By comparing results for a non‐promoter DNA fragment, the adenovirus major late promoter, the adeno‐associated viral P5 promoter and a known P5 mutant promoter that is inactive for transcription, we show that the predicted openings correlate almost exactly with the promoter transcriptional start sites and major regulatory sites. Physicists have speculated that localized melting of DNA might play a role in gene transcription and other processes. Our data link sequence‐dependent opening behavior in DNA to transcriptional activity for the first time.
AbstractList It has long been known that double-stranded DNA is subject to temporary, localized openings of its two strands. Particular regions along a DNA polymer are destabilized structurally by available thermal energy in the system. The localized sequence of DNA determines the physical properties of a stretch of DNA, and that in turn determines the opening profile of that DNA fragment. We show that the Peyrard-Bishop nonlinear dynamical model of DNA, which has been used to simulate denaturation of short DNA fragments, gives an accurate representation of the instability profile of a defined sequence of DNA, as verified using S1 nuclease cleavage assays. By comparing results for a non- promoter DNA fragment, the adenovirus major late promoter, the adeno-associated viral P5 promoter and a known P5 mutant promoter that is inactive for transcription, we show that the predicted openings correlate almost exactly with the promoter transcriptional start sites and major regulatory sites. Physicists have speculated that localized melting of DNA might play a role in gene transcription and other processes. Our data link sequence-dependent opening behavior in DNA to transcriptional activity for the first time.
It has long been known that double-stranded DNA is subject to temporary, localized openings of its two strands. Particular regions along a DNA polymer are destabilized structurally by available thermal energy in the system. The localized sequence of DNA determines the physical properties of a stretch of DNA, and that in turn determines the opening profile of that DNA fragment. We show that the Peyrard-Bishop nonlinear dynamical model of DNA, which has been used to simulate denaturation of short DNA fragments, gives an accurate representation of the instability profile of a defined sequence of DNA, as verified using S1 nuclease cleavage assays. By comparing results for a non-promoter DNA fragment, the adenovirus major late promoter, the adeno-associated viral P5 promoter and a known P5 mutant promoter that is inactive for transcription, we show that the predicted openings correlate almost exactly with the promoter transcriptional start sites and major regulatory sites. Physicists have speculated that localized melting of DNA might play a role in gene transcription and other processes. Our data link sequence-dependent opening behavior in DNA to transcriptional activity for the first time.It has long been known that double-stranded DNA is subject to temporary, localized openings of its two strands. Particular regions along a DNA polymer are destabilized structurally by available thermal energy in the system. The localized sequence of DNA determines the physical properties of a stretch of DNA, and that in turn determines the opening profile of that DNA fragment. We show that the Peyrard-Bishop nonlinear dynamical model of DNA, which has been used to simulate denaturation of short DNA fragments, gives an accurate representation of the instability profile of a defined sequence of DNA, as verified using S1 nuclease cleavage assays. By comparing results for a non-promoter DNA fragment, the adenovirus major late promoter, the adeno-associated viral P5 promoter and a known P5 mutant promoter that is inactive for transcription, we show that the predicted openings correlate almost exactly with the promoter transcriptional start sites and major regulatory sites. Physicists have speculated that localized melting of DNA might play a role in gene transcription and other processes. Our data link sequence-dependent opening behavior in DNA to transcriptional activity for the first time.
Author Hiromura, Makoto
Rasmussen, Kim Ø.
Choi, Chu H.
Kalosakas, George
Bishop, Alan R.
Usheva, Anny
AuthorAffiliation Endocrinology, Beth Israel Deaconess Medical Center and Harvard Medical School, Department of Medicine, 99 Brookline Avenue, Boston, MA 02215, USA and 1 Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
AuthorAffiliation_xml – name: Endocrinology, Beth Israel Deaconess Medical Center and Harvard Medical School, Department of Medicine, 99 Brookline Avenue, Boston, MA 02215, USA and 1 Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Author_xml – sequence: 1
  givenname: Chu H.
  surname: Choi
  fullname: Choi, Chu H.
– sequence: 2
  givenname: George
  surname: Kalosakas
  fullname: Kalosakas, George
  organization: Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
– sequence: 3
  givenname: Kim Ø.
  surname: Rasmussen
  fullname: Rasmussen, Kim Ø.
  organization: Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
– sequence: 4
  givenname: Makoto
  surname: Hiromura
  fullname: Hiromura, Makoto
– sequence: 5
  givenname: Alan R.
  surname: Bishop
  fullname: Bishop, Alan R.
  organization: Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
– sequence: 6
  givenname: Anny
  surname: Usheva
  fullname: Usheva, Anny
  organization: To whom correspondence should be addressed. Tel: +1 617 632 0522; Fax: +1 617 632 2927; Email: ausheva@bidmc.harvard.edu Present address: Makoto Hiromura, Division of Cancer Biology and Institute for Genetic Medicine, Hokkaido University, N15, W7, Kita‐ku, Sapporo 060‐0815, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15004245$$D View this record in MEDLINE/PubMed
BookMark eNqFkk9LHDEYxoMoutpe-gHK0IOHwuibyb_JoQerVQvSCoqIl5DNJBqdTbbJbOt--2a7dqlS8BASyO95yZPn2UbrIQaL0DsMexgk2Q867d8-3BHC1tAIE97UVPJmHY2AAKsx0HYLbed8D4ApZnQTbWEGQBvKRqg9-nZQdfOgJ97ovp9XnU_WDLnyZcVfoRqSDtkkPx18DJUPfvB6cXyDNpzus337tO-gy-Mvl4en9dn3k6-HB2e1YZwPNWk11W7stGzMWBDRSWYE1pI6OSbCkpY7YYRxrW6tdkQaa11HOtY0mDeuJTvo03LsdDae2M7YUB7Uq2nyE53mKmqvnt8Ef6du409FJBCMi373SZ_ij5nNg5r4bGzf62DjLCuBBbCWiVdBLLkAyuF1UEghmVyAH16A93GWQvks1QBwYAyzAr3_19_K2N-ECgBLwKSYc7JOGT_8SaDY9b3CoBYlUKUEalmCIvn4QrKa-j-4XsI-D_ZxRer0oHjJi6nT6xt1c3Vy_vninCtKfgPkXMQm
CODEN NARHAD
CitedBy_id crossref_primary_10_1016_j_bbagrm_2014_09_014
crossref_primary_10_1093_nar_gkad118
crossref_primary_10_1093_bioinformatics_btn172
crossref_primary_10_1140_epjb_e2007_00112_9
crossref_primary_10_1002_cbic_200600038
crossref_primary_10_1063_5_0060335
crossref_primary_10_1103_PhysRevE_100_052203
crossref_primary_10_1103_PhysRevLett_94_035504
crossref_primary_10_1007_s10867_009_9125_4
crossref_primary_10_1038_s41598_017_09537_y
crossref_primary_10_1371_journal_pcbi_1002881
crossref_primary_10_1016_j_chaos_2024_114786
crossref_primary_10_1007_s00249_022_01614_z
crossref_primary_10_1016_j_molcel_2012_03_029
crossref_primary_10_1016_j_physd_2006_09_005
crossref_primary_10_7566_JPSJ_89_024004
crossref_primary_10_1103_PhysRevE_101_062415
crossref_primary_10_3390_life1010003
crossref_primary_10_1016_j_pbiomolbio_2006_07_001
crossref_primary_10_1103_PhysRevE_102_062114
crossref_primary_10_1021_nl0499084
crossref_primary_10_1103_PhysRevE_71_061901
crossref_primary_10_1109_TNB_2014_2327586
crossref_primary_10_1371_journal_pcbi_1003835
crossref_primary_10_1186_1748_7188_3_10
crossref_primary_10_1371_journal_pone_0018811
crossref_primary_10_1016_j_ympev_2011_04_015
crossref_primary_10_1007_s10867_005_3244_3
crossref_primary_10_1186_s12859_022_05129_4
crossref_primary_10_4061_2010_290935
crossref_primary_10_1063_1_4807381
crossref_primary_10_1093_nar_gkp016
crossref_primary_10_1103_PhysRevE_72_021912
crossref_primary_10_1088_0953_8984_21_3_034111
crossref_primary_10_3390_molecules28031041
crossref_primary_10_1016_j_cplett_2006_10_045
crossref_primary_10_1016_j_jtbi_2014_03_031
crossref_primary_10_1371_journal_pone_0015806
crossref_primary_10_20948_prepr_2018_231
crossref_primary_10_1103_PhysRevE_84_051905
crossref_primary_10_1038_ncomms11799
crossref_primary_10_1186_1471_2105_6_1
crossref_primary_10_1038_srep01184
crossref_primary_10_1088_0953_8984_21_3_034107
crossref_primary_10_1088_0953_8984_21_3_034108
crossref_primary_10_1103_PhysRevE_75_021908
crossref_primary_10_1007_s00214_009_0643_8
crossref_primary_10_1134_S0006350918020069
crossref_primary_10_1007_s10867_006_2719_1
crossref_primary_10_1140_epjb_e2016_60949_1
crossref_primary_10_1088_0951_7715_21_6_T02
crossref_primary_10_1103_PhysRevE_81_051910
crossref_primary_10_1002_chem_201301995
crossref_primary_10_1007_s00418_023_02233_1
crossref_primary_10_1103_PhysRevE_86_021908
crossref_primary_10_1103_PhysRevLett_96_239801
crossref_primary_10_1103_PhysRevLett_96_239802
crossref_primary_10_17537_2020_15_129
crossref_primary_10_3390_ijms26030933
crossref_primary_10_1002_cbic_200400222
crossref_primary_10_1103_PhysRevE_70_051903
crossref_primary_10_1016_j_mehy_2008_03_048
crossref_primary_10_1016_j_physa_2015_12_132
crossref_primary_10_1016_j_pmatsci_2015_03_001
crossref_primary_10_1088_1751_8113_46_41_415002
crossref_primary_10_1103_PhysRevE_76_066603
crossref_primary_10_1103_PhysRevE_82_031916
crossref_primary_10_1016_j_ijbiomac_2020_12_039
crossref_primary_10_17537_2020_15_93
crossref_primary_10_1109_TCBB_2015_2396057
crossref_primary_10_1088_1742_6596_1245_1_012070
crossref_primary_10_1103_PhysRevLett_96_248101
crossref_primary_10_1103_PhysRevE_73_051902
crossref_primary_10_1021_nn500790m
crossref_primary_10_1209_0295_5075_77_48001
crossref_primary_10_1088_0953_8984_21_3_034106
crossref_primary_10_1063_1_2194468
crossref_primary_10_1101_gr_6991408
crossref_primary_10_1103_PhysRevE_83_011904
crossref_primary_10_1103_PhysRevLett_97_128105
crossref_primary_10_1016_j_dnarep_2006_04_007
crossref_primary_10_1103_PhysRevE_77_031919
crossref_primary_10_1103_PhysRevLett_97_059802
crossref_primary_10_1140_epje_e2005_00026_9
crossref_primary_10_1371_journal_pcbi_0030093
crossref_primary_10_1063_1_4930220
crossref_primary_10_1063_1_3149859
crossref_primary_10_1134_S1560354718020016
crossref_primary_10_1103_PhysRevLett_95_264302
crossref_primary_10_1039_c2sm26089a
crossref_primary_10_1088_0953_8984_19_13_136203
crossref_primary_10_1093_nar_gkae783
crossref_primary_10_1103_PhysRevE_75_036615
crossref_primary_10_1103_PhysRevLett_104_025503
crossref_primary_10_17537_2018_13_534
crossref_primary_10_1103_PhysRevE_99_022213
crossref_primary_10_1209_epl_i2004_10167_8
crossref_primary_10_1016_j_cplett_2011_07_080
crossref_primary_10_1021_nl062304a
crossref_primary_10_1063_1_2359724
crossref_primary_10_1088_1367_2630_18_5_053032
crossref_primary_10_1063_1_3117922
crossref_primary_10_1134_S1063784220090200
crossref_primary_10_1016_j_bpj_2014_04_029
crossref_primary_10_1021_acs_jpcb_8b01445
crossref_primary_10_1209_epl_i2005_10543_x
crossref_primary_10_1073_pnas_1314862110
crossref_primary_10_1371_journal_pcbi_1003785
crossref_primary_10_1016_j_mrrev_2008_01_007
crossref_primary_10_1016_j_ygeno_2010_06_003
crossref_primary_10_1140_epje_i2010_10618_y
crossref_primary_10_1371_journal_pcbi_1000313
crossref_primary_10_1016_j_bpj_2018_08_002
crossref_primary_10_1103_PhysRevE_87_022703
crossref_primary_10_1088_0031_8949_83_03_035802
crossref_primary_10_1140_epje_i2009_10475_9
crossref_primary_10_1529_biophysj_106_095935
crossref_primary_10_31083_j_fbl2911381
crossref_primary_10_1088_1478_3975_8_2_026006
crossref_primary_10_1103_PhysRevE_70_036609
crossref_primary_10_1128_JVI_00363_15
crossref_primary_10_1016_j_mehy_2009_05_039
crossref_primary_10_1088_1674_1056_22_12_129402
crossref_primary_10_1016_j_physleta_2009_12_077
crossref_primary_10_1039_c3sm52953c
crossref_primary_10_1103_PhysRevE_77_032901
crossref_primary_10_1063_5_0168915
crossref_primary_10_1063_1_4869112
crossref_primary_10_1093_nar_gkt541
crossref_primary_10_1142_S1402925111001581
crossref_primary_10_1103_PhysRevE_71_061922
crossref_primary_10_1093_bioinformatics_btad699
crossref_primary_10_1186_1471_2105_11_604
crossref_primary_10_1103_PhysRevE_74_050901
crossref_primary_10_1038_nphys197
crossref_primary_10_1103_PhysRevLett_95_218104
crossref_primary_10_1140_epje_i2006_10032_2
crossref_primary_10_1186_1745_6150_3_22
crossref_primary_10_1093_nar_gkp1084
crossref_primary_10_1529_biophysj_107_123471
crossref_primary_10_1007_s11693_006_9003_3
ContentType Journal Article
Copyright Copyright Oxford University Press(England) Feb 15, 2004
Copyright © 2004 Oxford University Press 2004
Copyright_xml – notice: Copyright Oxford University Press(England) Feb 15, 2004
– notice: Copyright © 2004 Oxford University Press 2004
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QP
7QR
7SS
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
DOI 10.1093/nar/gkh335
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList AIDS and Cancer Research Abstracts


Virology and AIDS Abstracts
MEDLINE - Academic
MEDLINE
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 1590
ExternalDocumentID PMC390311
579200281
15004245
10_1093_nar_gkh335
ark_67375_HXZ_ZVGPBSP6_4
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM073911
– fundername: NHLBI NIH HHS
  grantid: HL624458
GroupedDBID ---
-DZ
-~X
.55
.GJ
.I3
0R~
123
18M
1TH
29N
2WC
3O-
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPXW
AAUQX
AAVAP
AAYJJ
ABEJV
ABGNP
ABNGD
ABPTD
ABQLI
ABXVV
ACGFO
ACGFS
ACIPB
ACIWK
ACNCT
ACPRK
ACUKT
ACUTJ
ADBBV
ADHZD
AEGXH
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFYAG
AGQPQ
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
AOIJS
ASPBG
AVWKF
AZFZN
BAWUL
BAYMD
BCNDV
BEYMZ
BSCLL
C1A
CAG
CIDKT
COF
CS3
CZ4
DIK
DU5
D~K
E3Z
EBD
EBS
EJD
EMOBN
F5P
FEDTE
GROUPED_DOAJ
GX1
HH5
HVGLF
HYE
HZ~
H~9
IH2
KAQDR
KQ8
KSI
MVM
NTWIH
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVD
OVT
P2P
PB-
PEELM
PQQKQ
R44
RD5
RNI
RNS
ROL
ROZ
RPM
RXO
RZF
RZO
SJN
SV3
TEORI
TN5
TOX
TR2
WG7
WOQ
X7H
X7M
XSB
YSK
ZKX
~91
~D7
~KM
AAYXX
CITATION
6.Y
AAPPN
AAWDT
ABQTQ
ABSAR
ABSMQ
ACFRR
ACPQN
ACZBC
ADIXU
AEHUL
AEKPW
AFSHK
AFULF
AGKRT
AGMDO
ANFBD
AQDSO
ASAOO
ATDFG
ATTQO
BTTYL
CGR
CUY
CVF
CXTWN
D0S
DFGAJ
ECM
EIF
ELUNK
H13
M49
MBTAY
M~E
NPM
O~Y
PKN
QBD
ROX
TCN
UHB
XSW
ZXP
7QL
7QO
7QP
7QR
7SS
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c566t-38a4afbfa92cb737d95c71a94f9b37e386f7c7cf8a8eaf39ceefd3d522162f83
ISSN 0305-1048
1362-4962
IngestDate Thu Aug 21 14:14:15 EDT 2025
Fri Jul 11 07:57:07 EDT 2025
Fri Jul 11 10:28:43 EDT 2025
Fri Jul 11 03:06:44 EDT 2025
Mon Jun 30 08:45:45 EDT 2025
Wed Feb 19 01:36:38 EST 2025
Thu Apr 24 23:07:53 EDT 2025
Tue Jul 01 01:57:30 EDT 2025
Tue Aug 05 16:48:46 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c566t-38a4afbfa92cb737d95c71a94f9b37e386f7c7cf8a8eaf39ceefd3d522162f83
Notes istex:D1E0B18E49F4D5EB08BBCBEEDEA9A64266567CFF
To whom correspondence should be addressed. Tel: +1 617 632 0522; Fax: +1 617 632 2927; Email: ausheva@bidmc.harvard.edu
 Present address:
 Makoto Hiromura, Division of Cancer Biology and Institute for Genetic Medicine, Hokkaido University, N15, W7, Kita‐ku, Sapporo 060‐0815, Japan
Received January 16, 2004; Revised and Accepted February 19, 2004
ark:/67375/HXZ-ZVGPBSP6-4
local:gkh335
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
Present address: Makoto Hiromura, Division of Cancer Biology and Institute for Genetic Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo 060-0815, Japan
To whom correspondence should be addressed. Tel: +1 617 632 0522; Fax: +1 617 632 2927; Email: ausheva@bidmc.harvard.edu
OpenAccessLink http://doi.org/10.1093/nar/gkh335
PMID 15004245
PQID 200605515
PQPubID 23462
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_390311
proquest_miscellaneous_71705857
proquest_miscellaneous_19670460
proquest_miscellaneous_17979590
proquest_journals_200605515
pubmed_primary_15004245
crossref_citationtrail_10_1093_nar_gkh335
crossref_primary_10_1093_nar_gkh335
istex_primary_ark_67375_HXZ_ZVGPBSP6_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-00-00
PublicationDateYYYYMMDD 2004-01-01
PublicationDate_xml – year: 2004
  text: 2004-00-00
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
– name: Oxford, UK
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucl. Acids Res
PublicationYear 2004
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References 9960075 - Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1993 Jan;47(1):R44-R47
10623510 - J Mol Biol. 2000 Jan 7;295(1):85-103
9960044 - Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1993 Jan;47(1):684-695
3070859 - Trends Genet. 1988 Apr;4(4):111-4
6088786 - J Virol. 1984 Sep;51(3):611-9
8413604 - Nature. 1993 Oct 7;365(6446):512-20
12708848 - J Am Chem Soc. 2003 Apr 30;125(17):4998-9
8942975 - Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13571-6
11226246 - Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2370-4
6574846 - Cold Spring Harb Symp Quant Biol. 1983;47 Pt 1:251-62
12672955 - Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4411-6
1602485 - J Mol Biol. 1992 Jun 5;225(3):835-47
10040080 - Phys Rev Lett. 1989 Jun 5;62(23):2755-2758
9571019 - J Mol Biol. 1998 Apr 17;277(5):1015-31
3028247 - Annu Rev Genet. 1986;20:45-79
1946368 - Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9553-7
10499798 - Cell. 1999 Sep 17;98(6):811-24
8942976 - Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13577-82
6572970 - Proc Natl Acad Sci U S A. 1983 Apr;80(8):2184-8
9649394 - Biophys J. 1998 Jul;75(1):372-81
10835278 - J Mol Biol. 2000 Jun 9;299(3):695-709
8137426 - Cell. 1994 Mar 25;76(6):1115-21
9251783 - Biophys J. 1997 Aug;73(2):640-52
6400873 - J Biomol Struct Dyn. 1983 Oct;1(1):253-62
10066749 - J Biol Chem. 1999 Mar 12;274(11):6957-62
11278276 - J Biol Chem. 2001 May 4;276(18):14614-22
7501470 - Nucleic Acids Res. 1995 Nov 11;23(21):4457-65
3018288 - J Virol. 1986 Oct;60(1):251-8
3459152 - Proc Natl Acad Sci U S A. 1986 Jun;83(11):3746-50
171268 - J Biol Chem. 1975 Nov 25;250(22):8848-55
10404615 - Comput Chem. 1999 Jun 15;23(3-4):191-207
7775443 - J Biol Chem. 1995 Jun 9;270(23):13850-9
12016307 - Science. 2002 May 17;296(5571):1285-90
11071810 - J Mol Biol. 2000 Nov 17;304(1):55-68
8568887 - J Mol Biol. 1996 Jan 26;255(3):425-34
8385354 - Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2999-3003
6201319 - CRC Crit Rev Biochem. 1984;15(3):237-90
10915625 - Science. 2000 Jul 28;289(5479):619-25
9900533 - Phys Rev A Gen Phys. 1988 Aug 1;38(3):1538-1541
References_xml – reference: 3070859 - Trends Genet. 1988 Apr;4(4):111-4
– reference: 10040080 - Phys Rev Lett. 1989 Jun 5;62(23):2755-2758
– reference: 9900533 - Phys Rev A Gen Phys. 1988 Aug 1;38(3):1538-1541
– reference: 12016307 - Science. 2002 May 17;296(5571):1285-90
– reference: 9251783 - Biophys J. 1997 Aug;73(2):640-52
– reference: 6201319 - CRC Crit Rev Biochem. 1984;15(3):237-90
– reference: 8942975 - Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13571-6
– reference: 3028247 - Annu Rev Genet. 1986;20:45-79
– reference: 7501470 - Nucleic Acids Res. 1995 Nov 11;23(21):4457-65
– reference: 8385354 - Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2999-3003
– reference: 6574846 - Cold Spring Harb Symp Quant Biol. 1983;47 Pt 1:251-62
– reference: 10066749 - J Biol Chem. 1999 Mar 12;274(11):6957-62
– reference: 11071810 - J Mol Biol. 2000 Nov 17;304(1):55-68
– reference: 8137426 - Cell. 1994 Mar 25;76(6):1115-21
– reference: 9571019 - J Mol Biol. 1998 Apr 17;277(5):1015-31
– reference: 1602485 - J Mol Biol. 1992 Jun 5;225(3):835-47
– reference: 10915625 - Science. 2000 Jul 28;289(5479):619-25
– reference: 10499798 - Cell. 1999 Sep 17;98(6):811-24
– reference: 9960044 - Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1993 Jan;47(1):684-695
– reference: 12708848 - J Am Chem Soc. 2003 Apr 30;125(17):4998-9
– reference: 8942976 - Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13577-82
– reference: 10623510 - J Mol Biol. 2000 Jan 7;295(1):85-103
– reference: 11278276 - J Biol Chem. 2001 May 4;276(18):14614-22
– reference: 1946368 - Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9553-7
– reference: 9649394 - Biophys J. 1998 Jul;75(1):372-81
– reference: 171268 - J Biol Chem. 1975 Nov 25;250(22):8848-55
– reference: 8413604 - Nature. 1993 Oct 7;365(6446):512-20
– reference: 8568887 - J Mol Biol. 1996 Jan 26;255(3):425-34
– reference: 12672955 - Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4411-6
– reference: 10835278 - J Mol Biol. 2000 Jun 9;299(3):695-709
– reference: 9960075 - Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1993 Jan;47(1):R44-R47
– reference: 3459152 - Proc Natl Acad Sci U S A. 1986 Jun;83(11):3746-50
– reference: 11226246 - Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2370-4
– reference: 7775443 - J Biol Chem. 1995 Jun 9;270(23):13850-9
– reference: 6088786 - J Virol. 1984 Sep;51(3):611-9
– reference: 3018288 - J Virol. 1986 Oct;60(1):251-8
– reference: 6400873 - J Biomol Struct Dyn. 1983 Oct;1(1):253-62
– reference: 10404615 - Comput Chem. 1999 Jun 15;23(3-4):191-207
– reference: 6572970 - Proc Natl Acad Sci U S A. 1983 Apr;80(8):2184-8
SSID ssj0014154
Score 2.1914525
Snippet It has long been known that double‐stranded DNA is subject to temporary, localized openings of its two strands. Particular regions along a DNA polymer are...
It has long been known that double-stranded DNA is subject to temporary, localized openings of its two strands. Particular regions along a DNA polymer are...
SourceID pubmedcentral
proquest
pubmed
crossref
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1584
SubjectTerms Adeno-associated virus
Adenoviridae - genetics
Adenovirus
Base Sequence
Computer Simulation
Deoxyribonucleic acid
Dependovirus - genetics
DNA
DNA - chemistry
DNA, Single-Stranded - chemistry
Molecular Sequence Data
Nucleic Acid Denaturation
Physical properties
Polymers
Promoter Regions, Genetic
Thermal energy
Transcription Factor TFIIB - genetics
Transcription Initiation Site
Transcription, Genetic
Title DNA dynamically directs its own transcription initiation
URI https://api.istex.fr/ark:/67375/HXZ-ZVGPBSP6-4/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/15004245
https://www.proquest.com/docview/200605515
https://www.proquest.com/docview/17979590
https://www.proquest.com/docview/19670460
https://www.proquest.com/docview/71705857
https://pubmed.ncbi.nlm.nih.gov/PMC390311
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdge4AXBBuwbHxYAk1CVbqmTuL4sZSNColpEgVVe4n8EbOykk5rJjH-es52PpoR0OAlipJzpPhnn3_nO98h9FpLBrRBCl-HAfNDOZA-zKKhH1M2UAEVLFZmv-PjcTz5HH6YRbOmCJ49XVKIvvzZea7kf1CFZ4CrOSX7D8jWH4UHcA_4whUQhuutMH53POopV1KeLxbXPbc-rawzAKxrU_8hb9TC3MQJNUB8qw7ewkdN0lY5V8aFsLa7Zb3-S-vuH_d7k35rhyBcU2f2TBQr9V3W8azUgc0eY2PgW4UWRK6CW7k4AvkZdCpel5QqN0HhR1_Pz4jLQdLOb31j3amjAZ0fnKTQOnVt76LNIdB-o2jp4LD2CgHZcEWKyz-o0s0ycgBtD1zbFsHYNHPlR5f1cDMIdo1VTB-iB6U5gEcO20foTpZvoe1Rzovl92u8j22ArvV8bKF746o43zZKAHq8Bj0uoccAPQbocQt63ED_GE2PDqfjiV8WwfAlMO3CJwkPuRaas6EUlFDFIkkDzkLNBKEZSWJNJZU64UnGNWFAerQiCmh1EA91Qp6gjXyZZzsICxGQTCdKcEpCHRIBtISBwaDAZJbAAz30puq4VJYJ4k2dkkX6O0AeelXLXri0KJ1S-7b_axF-eW4CCWmUTman6emX9ydvP53EaeihvQqgtJxfK1MgFWxt4Nseelm_hW42Hi2eZ8urVQqrCWUwJP8iwWJqfP9_lqAmoVQSUQ89dQOi-aHIBQZ4KG4NlVrApGZvv8nnZzZFO2GwWAa7t-qlPXTfhYOZfb1naKO4vMqeA9MtxAs7_H8BTc-uZw
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNA+dynamically+directs+its+own+transcription+initiation&rft.jtitle=Nucleic+acids+research&rft.au=Choi%2C+C.+H.&rft.date=2004&rft.issn=1362-4962&rft.eissn=1362-4962&rft.volume=32&rft.issue=4&rft.spage=1584&rft.epage=1590&rft_id=info:doi/10.1093%2Fnar%2Fgkh335&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_nar_gkh335
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon