Computational adaptive optics for broadband optical interferometric tomography of biological tissue

Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of aberrations may be achieved through appropriate lens design, but this approach does not offer the flexibility of simultaneously correcting a...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 109; no. 19; pp. 7175 - 7180
Main Authors Adie, Steven G., Graf, Benedikt W., Ahmad, Adeel, Carney, P. Scott, Boppart, Stephen A.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 08.05.2012
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of aberrations may be achieved through appropriate lens design, but this approach does not offer the flexibility of simultaneously correcting aberrations for all imaging depths, nor the adaptability to correct for sample-specific aberrations for high-quality tomographic optical imaging. Incorporation of adaptive optics (AO) methods have demonstrated considerable improvement in optical image contrast and resolution in noninterferometric microscopy techniques, as well as in optical coherence tomography. Here we present a method to correct aberrations in a tomogram rather than the beam of a broadband optical interferometry system. Based on Fourier optics principles, we correct aberrations of a virtual pupil using Zernike polynomials. When used in conjunction with the computed imaging method interferometric synthetic aperture microscopy, this computational AO enables object reconstruction (within the single scattering limit) with ideal focal-plane resolution at all depths. Tomographic reconstructions of tissue phantoms containing subresolution titanium-dioxide particles and of ex vivo rat lung tissue demonstrate aberration correction in datasets acquired with a highly astigmatic illumination beam. These results also demonstrate that imaging with an aberrated astigmatic beam provides the advantage of a more uniform depth-dependent signal compared to imaging with a standard Gaussian beam. With further work, computational AO could enable the replacement of complicated and expensive optical hardware components with algorithms implemented on a standard desktop computer, making high-resolution 3D interferometric tomography accessible to a wider group of users and nonspecialists.
AbstractList Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of aberrations may be achieved through appropriate lens design, but this approach does not offer the flexibility of simultaneously correcting aberrations for all imaging depths, nor the adaptability to correct for sample-specific aberrations for high-quality tomographic optical imaging. Incorporation of adaptive optics (AO) methods have demonstrated considerable improvement in optical image contrast and resolution in noninterferometric microscopy techniques, as well as in optical coherence tomography. Here we present a method to correct aberrations in a tomogram rather than the beam of a broadband optical interferometry system. Based on Fourier optics principles, we correct aberrations of a virtual pupil using Zernike polynomials. When used in conjunction with the computed imaging method interferometric synthetic aperture microscopy, this computational AO enables object reconstruction (within the single scattering limit) with ideal focal-plane resolution at all depths. Tomographic reconstructions of tissue phantoms containing subresolution titanium-dioxide particles and of ex vivo rat lung tissue demonstrate aberration correction in datasets acquired with a highly astigmatic illumination beam. These results also demonstrate that imaging with an aberrated astigmatic beam provides the advantage of a more uniform depth-dependent signal compared to imaging with a standard Gaussian beam. With further work, computational AO could enable the replacement of complicated and expensive optical hardware components with algorithms implemented on a standard desktop computer, making high-resolution 3D interferometric tomography accessible to a wider group of users and nonspecialists.
Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of aberrations may be achieved through appropriate lens design, but this approach does not offer the flexibility of simultaneously correcting aberrations for all imaging depths, nor the adaptability to correct for sample-specific aberrations for high-quality tomographic optical imaging. Incorporation of adaptive optics (AO) methods have demonstrated considerable improvement in optical image contrast and resolution in noninterferometric microscopy techniques, as well as in optical coherence tomography. Here we present a method to correct aberrations in a tomogram rather than the beam of a broadband optical interferometry system. Based on Fourier optics principles, we correct aberrations of a virtual pupil using Zernike polynomials. When used in conjunction with the computed imaging method interferometric synthetic aperture microscopy, this computational AO enables object reconstruction (within the single scattering limit) with ideal focal-plane resolution at all depths. Tomographic reconstructions of tissue phantoms containing subresolution titanium-dioxide particles and of ex vivo rat lung tissue demonstrate aberration correction in datasets acquired with a highly astigmatic illumination beam. These results also demonstrate that imaging with an aberrated astigmatic beam provides the advantage of a more uniform depth-dependent signal compared to imaging with a standard gaussian beam. With further work, computational AO could enable the replacement of complicated and expensive optical hardware components with algorithms implemented on a standard desktop computer, making high-resolution 3D interferometric tomography accessible to a wider group of users and nonspecialists.Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of aberrations may be achieved through appropriate lens design, but this approach does not offer the flexibility of simultaneously correcting aberrations for all imaging depths, nor the adaptability to correct for sample-specific aberrations for high-quality tomographic optical imaging. Incorporation of adaptive optics (AO) methods have demonstrated considerable improvement in optical image contrast and resolution in noninterferometric microscopy techniques, as well as in optical coherence tomography. Here we present a method to correct aberrations in a tomogram rather than the beam of a broadband optical interferometry system. Based on Fourier optics principles, we correct aberrations of a virtual pupil using Zernike polynomials. When used in conjunction with the computed imaging method interferometric synthetic aperture microscopy, this computational AO enables object reconstruction (within the single scattering limit) with ideal focal-plane resolution at all depths. Tomographic reconstructions of tissue phantoms containing subresolution titanium-dioxide particles and of ex vivo rat lung tissue demonstrate aberration correction in datasets acquired with a highly astigmatic illumination beam. These results also demonstrate that imaging with an aberrated astigmatic beam provides the advantage of a more uniform depth-dependent signal compared to imaging with a standard gaussian beam. With further work, computational AO could enable the replacement of complicated and expensive optical hardware components with algorithms implemented on a standard desktop computer, making high-resolution 3D interferometric tomography accessible to a wider group of users and nonspecialists.
Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of aberrations may be achieved through appropriate lens design, but this approach does not offer the flexibility of simultaneously correcting aberrations for all imaging depths, nor the adaptability to correct for sample-specific aberrations for high-quality tomographic optical imaging. Incorporation of adaptive optics (AO) methods have demonstrated considerable improvement in optical image contrast and resolution in noninterferometric microscopy techniques, as well as in optical coherence tomography. Here we present a method to correct aberrations in a tomogram rather than the beam of a broadband optical interferometry system. Based on Fourier optics principles, we correct aberrations of a virtual pupil using Zernike polynomials. When used in conjunction with the computed imaging method interferometric synthetic aperture microscopy, this computational AO enables object reconstruction (within the single scattering limit) with ideal focal-plane resolution at all depths. Tomographic reconstructions of tissue phantoms containing subresolution titanium-dioxide particles and of ex vivo rat lung tissue demonstrate aberration correction in datasets acquired with a highly astigmatic illumination beam. These results also demonstrate that imaging with an aberrated astigmatic beam provides the advantage of a more uniform depth-dependent signal compared to imaging with a standard Gaussian beam. With further work, computational AO could enable the replacement of complicated and expensive optical hardware components with algorithms implemented on a standard desktop computer, making high-resolution 3D interferometric tomography accessible to a wider group of users and nonspecialists. [PUBLICATION ABSTRACT]
Author Ahmad, Adeel
Carney, P. Scott
Boppart, Stephen A.
Graf, Benedikt W.
Adie, Steven G.
Author_xml – sequence: 1
  givenname: Steven G.
  surname: Adie
  fullname: Adie, Steven G.
– sequence: 2
  givenname: Benedikt W.
  surname: Graf
  fullname: Graf, Benedikt W.
– sequence: 3
  givenname: Adeel
  surname: Ahmad
  fullname: Ahmad, Adeel
– sequence: 4
  givenname: P. Scott
  surname: Carney
  fullname: Carney, P. Scott
– sequence: 5
  givenname: Stephen A.
  surname: Boppart
  fullname: Boppart, Stephen A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22538815$$D View this record in MEDLINE/PubMed
BookMark eNqFkktr3DAUhUVJaSZp1121NXTTjRM9rNemEIa-IJBNuhayLE002JYryYH8-8rxJGkDpRtd0P3O4Uj3noCjMYwWgLcIniHIyfk06nSGEEZIEgTlC7ApJ6pZI-ER2ECIeS0a3ByDk5T2EEJJBXwFjjGmRAhEN8BswzDNWWcfRt1XutNT9re2CqWYVLkQqzYG3bV67NbLQvkx2-hsDIPN0ZsqhyHsop5u7qrgqtaHPuzuwexTmu1r8NLpPtk3h3oKfn79cr39Xl9effuxvbisDWUs14SZRmPTOs65oYLbhiALRWM47xjTgkDLNOWSOKSFxqR1DjuNhSWEY4gtOQWfV99pbgfbGTvmqHs1RT_oeKeC9urvzuhv1C7cKkKoEBwXg08Hgxh-zTZlNfhkbN_r0YY5KdQ0DHMJCf0_ChHGUHDKCvrxGboPcyy_vVJQMg4X6v2f4R9TP4yqAHQFTAwpReuU8evcylt8X7zUshJqWQn1tBJFd_5M92D9b8WHQ5Sl8URLhaTiiC9Z3q3EPuUQH5EGUYml4OQ3DZHOWA
CitedBy_id crossref_primary_10_1364_OE_24_001214
crossref_primary_10_1038_s41598_022_06926_w
crossref_primary_10_1364_BOE_530569
crossref_primary_10_1364_AO_441646
crossref_primary_10_1038_s41598_021_99889_3
crossref_primary_10_1364_BOE_477646
crossref_primary_10_3390_s24092931
crossref_primary_10_1063_5_0065628
crossref_primary_10_1364_OL_401283
crossref_primary_10_1364_PRJ_452364
crossref_primary_10_1038_s41566_024_01594_w
crossref_primary_10_1016_j_heliyon_2024_e32546
crossref_primary_10_1364_OPTICA_505189
crossref_primary_10_1016_j_pacs_2024_100584
crossref_primary_10_1126_sciadv_abf5364
crossref_primary_10_1364_AOP_417102
crossref_primary_10_1364_JOSAA_35_000466
crossref_primary_10_1073_pnas_1606428113
crossref_primary_10_1364_OE_22_032406
crossref_primary_10_1088_2515_7647_adb7af
crossref_primary_10_1038_s41467_022_33462_y
crossref_primary_10_1364_AO_54_010096
crossref_primary_10_1098_rstb_2018_0219
crossref_primary_10_1364_OE_21_010850
crossref_primary_10_1364_OL_499051
crossref_primary_10_1364_OL_520911
crossref_primary_10_1364_BOE_5_004131
crossref_primary_10_1364_OL_41_003324
crossref_primary_10_1155_2015_758937
crossref_primary_10_1364_BOE_8_004141
crossref_primary_10_1364_OE_27_012998
crossref_primary_10_1364_BOE_8_001152
crossref_primary_10_1038_s41566_024_01544_6
crossref_primary_10_1038_s41377_021_00705_4
crossref_primary_10_1364_BOE_5_002988
crossref_primary_10_3390_s20154285
crossref_primary_10_1117_1_JBO_21_2_026007
crossref_primary_10_1364_OE_22_016606
crossref_primary_10_1364_OL_43_003373
crossref_primary_10_1186_s12885_016_2194_4
crossref_primary_10_1364_JOSAA_36_00C122
crossref_primary_10_1038_s41467_020_19550_x
crossref_primary_10_1364_OE_395523
crossref_primary_10_1364_OE_23_007463
crossref_primary_10_1364_BOE_488845
crossref_primary_10_1063_1_4768778
crossref_primary_10_1364_BOE_8_001549
crossref_primary_10_1364_BOE_403509
crossref_primary_10_1126_sciadv_aay7170
crossref_primary_10_1073_pnas_1921533117
crossref_primary_10_2139_ssrn_3961042
crossref_primary_10_1117_1_NPh_6_4_041105
crossref_primary_10_1364_BOE_454975
crossref_primary_10_1364_AO_415270
crossref_primary_10_1364_OE_22_019314
crossref_primary_10_1364_OE_447174
crossref_primary_10_1038_nphoton_2013_71
crossref_primary_10_1126_sciadv_abo4366
crossref_primary_10_1364_BOE_487345
crossref_primary_10_1364_OE_23_006145
crossref_primary_10_1364_BOE_8_001499
crossref_primary_10_1364_OE_419963
crossref_primary_10_1038_s41598_020_58454_0
crossref_primary_10_1109_JSTQE_2013_2288302
crossref_primary_10_1073_pnas_1615790113
crossref_primary_10_1038_srep35209
crossref_primary_10_1137_22M1543240
crossref_primary_10_1038_s41566_024_01479_y
crossref_primary_10_1364_OPTICA_6_000647
crossref_primary_10_1002_cyto_a_22570
crossref_primary_10_1364_OE_21_012822
crossref_primary_10_1364_OE_21_017711
crossref_primary_10_1371_journal_pone_0050915
crossref_primary_10_1364_BOE_430596
crossref_primary_10_1364_AO_54_003498
crossref_primary_10_1167_tvst_11_1_28
crossref_primary_10_1186_s43074_022_00071_3
crossref_primary_10_1126_scitranslmed_3009850
crossref_primary_10_1016_j_preteyeres_2018_08_002
crossref_primary_10_1364_OE_22_019183
crossref_primary_10_1109_JLT_2021_3061606
crossref_primary_10_1109_JSTQE_2015_2509947
crossref_primary_10_1364_BOE_9_002614
crossref_primary_10_1364_BOE_9_004919
crossref_primary_10_1002_smll_202203357
crossref_primary_10_1364_BOE_524894
crossref_primary_10_1016_j_optlastec_2022_108118
crossref_primary_10_1364_BOE_6_001124
crossref_primary_10_1038_nphoton_2015_102
crossref_primary_10_1364_OE_25_030807
crossref_primary_10_1002_jbio_201800364
crossref_primary_10_1109_JSTQE_2015_2493962
crossref_primary_10_1038_s41598_018_26514_1
crossref_primary_10_1038_s41467_019_11040_z
crossref_primary_10_1364_BOE_465916
crossref_primary_10_1364_OE_24_009251
crossref_primary_10_1186_s43074_020_00009_7
crossref_primary_10_1364_OL_418637
crossref_primary_10_1117_1_JBO_20_11_111203
crossref_primary_10_1117_1_JBO_24_11_116002
crossref_primary_10_1364_BOE_9_004246
crossref_primary_10_1364_OPTICA_521088
crossref_primary_10_1364_OE_541029
crossref_primary_10_1364_OE_22_016061
crossref_primary_10_1364_OL_44_003905
crossref_primary_10_1109_JPHOT_2021_3116326
crossref_primary_10_1117_1_JBO_29_S2_S22714
crossref_primary_10_1364_OPTICA_3_000827
crossref_primary_10_1364_BOE_486980
crossref_primary_10_1002_adfm_201300969
crossref_primary_10_1364_BOE_439395
crossref_primary_10_1364_BOE_5_000167
crossref_primary_10_1364_BOE_470959
crossref_primary_10_1002_jbio_202000112
crossref_primary_10_3788_LOP240437
crossref_primary_10_1038_s41467_024_45434_5
crossref_primary_10_1364_OE_551295
crossref_primary_10_1364_BOE_396666
crossref_primary_10_1364_BOE_479886
crossref_primary_10_1167_tvst_9_11_11
crossref_primary_10_1364_BOE_503801
crossref_primary_10_1038_nmeth_4290
crossref_primary_10_1364_BOE_427979
crossref_primary_10_1364_OE_484874
crossref_primary_10_1364_OL_44_001186
crossref_primary_10_1364_BOE_416569
crossref_primary_10_3390_photonics9050288
crossref_primary_10_1364_AO_55_002034
crossref_primary_10_1016_j_optlaseng_2023_107964
crossref_primary_10_3390_jcm11175139
crossref_primary_10_1364_OPTICA_6_000370
crossref_primary_10_1142_S1793545819300027
crossref_primary_10_1364_BOE_9_003137
crossref_primary_10_1038_s41598_019_40608_4
crossref_primary_10_1364_BOE_9_002562
crossref_primary_10_29026_oes_2024_230020
crossref_primary_10_1109_JSTQE_2023_3248148
Cites_doi 10.1038/nmeth818
10.1073/pnas.94.9.4256
10.1364/OL.32.003005
10.1038/nphoton.2010.3
10.1038/nmeth.1411
10.1063/1.2432287
10.1073/pnas.082544799
10.1364/OE.15.008176
10.1364/OE.15.018209
10.1364/JOSAA.25.000995
10.1364/OE.19.012027
10.1364/AO.42.003038
10.1088/0034-4885/66/2/204
10.1364/OL.35.001683
10.1038/nm0995-970
10.1126/science.276.5321.2037
10.1038/86589
10.1038/nphoton.2011.257
10.1109/JDT.2007.900936
10.1038/nm.2409
10.1038/nphys514
10.1117/12.875592
10.1364/JOSAA.25.000983
10.1364/OE.14.001339
10.1126/science.1957169
10.1038/nbt892
10.1038/nm0798-861
10.1111/j.1365-2818.2009.03315.x
10.1364/OPEX.13.004792
10.1364/JOSAA.23.001027
10.1364/OL.36.003894
10.1364/OL.29.002142
10.1364/OL.27.001800
10.1364/OL.34.002495
10.1364/JOSAA.24.002527
10.1364/OL.30.002706
10.1364/OL.19.000590
10.1073/pnas.0604791103
10.1364/OE.10.000405
10.1073/pnas.0913679107
10.1364/OE.18.003632
10.1364/OL.34.001943
10.1073/pnas.071275698
10.1002/9780470135976
10.1038/nphoton.2007.228
10.1364/OE.14.004380
10.1364/JOSAA.23.003177
ContentType Journal Article
Copyright copyright © 1993-2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences May 8, 2012
Copyright_xml – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences May 8, 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1121193109
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
AGRICOLA
MEDLINE

MEDLINE - Academic
Virology and AIDS Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Aberration correction for optical tomography
EISSN 1091-6490
EndPage 7180
ExternalDocumentID PMC3358872
2656763791
22538815
10_1073_pnas_1121193109
109_19_7175
41592987
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01 EB012479
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c566t-36c4a2cbf777c587e431e084c77d66a830e6a5793f1a8a23bff2fa28e337202e3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 17:24:29 EDT 2025
Fri Jul 11 05:38:51 EDT 2025
Thu Jul 10 22:54:17 EDT 2025
Sat Aug 16 22:51:01 EDT 2025
Wed Feb 19 02:28:35 EST 2025
Thu Apr 24 23:11:14 EDT 2025
Tue Jul 01 03:39:16 EDT 2025
Wed Nov 11 00:30:03 EST 2020
Thu May 29 08:40:39 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c566t-36c4a2cbf777c587e431e084c77d66a830e6a5793f1a8a23bff2fa28e337202e3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: S.G.A., P.S.C., and S.A.B. designed research; S.G.A. and A.A. performed research; S.G.A., B.W.G., P.S.C., and S.A.B. analyzed data; and S.G.A. wrote the paper.
Edited by Erich P. Ippen, Massachusetts Institute of Technology, Cambridge, MA, and approved March 5, 2012 (received for review December 22, 2011)
OpenAccessLink https://www.pnas.org/content/pnas/109/19/7175.full.pdf
PMID 22538815
PQID 1012096706
PQPubID 42026
PageCount 6
ParticipantIDs proquest_miscellaneous_1446279035
pubmed_primary_22538815
proquest_miscellaneous_1012208756
pnas_primary_109_19_7175
jstor_primary_41592987
crossref_primary_10_1073_pnas_1121193109
proquest_journals_1012096706
crossref_citationtrail_10_1073_pnas_1121193109
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3358872
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-05-08
PublicationDateYYYYMMDD 2012-05-08
PublicationDate_xml – month: 05
  year: 2012
  text: 2012-05-08
  day: 08
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2012
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Malacara D (e_1_3_3_39_2) 2007
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
Goodman JW (e_1_3_3_43_2) 1996
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
References_xml – ident: e_1_3_3_1_2
  doi: 10.1038/nmeth818
– ident: e_1_3_3_10_2
  doi: 10.1073/pnas.94.9.4256
– ident: e_1_3_3_38_2
  doi: 10.1364/OL.32.003005
– ident: e_1_3_3_47_2
  doi: 10.1038/nphoton.2010.3
– ident: e_1_3_3_46_2
  doi: 10.1038/nmeth.1411
– ident: e_1_3_3_31_2
  doi: 10.1063/1.2432287
– ident: e_1_3_3_20_2
  doi: 10.1073/pnas.082544799
– ident: e_1_3_3_41_2
  doi: 10.1364/OE.15.008176
– ident: e_1_3_3_23_2
  doi: 10.1364/OE.15.018209
– ident: e_1_3_3_35_2
  doi: 10.1364/JOSAA.25.000995
– ident: e_1_3_3_36_2
  doi: 10.1364/OE.19.012027
– ident: e_1_3_3_48_2
  doi: 10.1364/AO.42.003038
– ident: e_1_3_3_3_2
  doi: 10.1088/0034-4885/66/2/204
– ident: e_1_3_3_18_2
  doi: 10.1364/OL.35.001683
– ident: e_1_3_3_5_2
  doi: 10.1038/nm0995-970
– ident: e_1_3_3_6_2
  doi: 10.1126/science.276.5321.2037
– ident: e_1_3_3_7_2
  doi: 10.1038/86589
– ident: e_1_3_3_12_2
  doi: 10.1038/nphoton.2011.257
– ident: e_1_3_3_33_2
  doi: 10.1109/JDT.2007.900936
– ident: e_1_3_3_9_2
  doi: 10.1038/nm.2409
– ident: e_1_3_3_17_2
  doi: 10.1038/nphys514
– ident: e_1_3_3_19_2
  doi: 10.1117/12.875592
– ident: e_1_3_3_34_2
  doi: 10.1364/JOSAA.25.000983
– ident: e_1_3_3_40_2
  doi: 10.1364/OE.14.001339
– start-page: 145
  volume-title: Introduction to Fourier Optics
  year: 1996
  ident: e_1_3_3_43_2
– ident: e_1_3_3_2_2
  doi: 10.1126/science.1957169
– ident: e_1_3_3_4_2
  doi: 10.1038/nbt892
– ident: e_1_3_3_15_2
  doi: 10.1038/nm0798-861
– ident: e_1_3_3_22_2
  doi: 10.1111/j.1365-2818.2009.03315.x
– ident: e_1_3_3_26_2
  doi: 10.1364/OPEX.13.004792
– ident: e_1_3_3_44_2
  doi: 10.1364/JOSAA.23.001027
– ident: e_1_3_3_29_2
  doi: 10.1364/OL.36.003894
– ident: e_1_3_3_25_2
  doi: 10.1364/OL.29.002142
– ident: e_1_3_3_13_2
  doi: 10.1364/OL.27.001800
– ident: e_1_3_3_42_2
  doi: 10.1364/OL.34.002495
– ident: e_1_3_3_45_2
  doi: 10.1364/JOSAA.24.002527
– ident: e_1_3_3_32_2
  doi: 10.1364/OL.30.002706
– ident: e_1_3_3_14_2
  doi: 10.1364/OL.19.000590
– ident: e_1_3_3_21_2
  doi: 10.1073/pnas.0604791103
– ident: e_1_3_3_24_2
  doi: 10.1364/OE.10.000405
– ident: e_1_3_3_11_2
  doi: 10.1073/pnas.0913679107
– ident: e_1_3_3_16_2
  doi: 10.1364/OE.18.003632
– ident: e_1_3_3_28_2
  doi: 10.1364/OL.34.001943
– ident: e_1_3_3_37_2
  doi: 10.1073/pnas.071275698
– start-page: 519
  volume-title: Optical Shop Testing
  year: 2007
  ident: e_1_3_3_39_2
  doi: 10.1002/9780470135976
– ident: e_1_3_3_8_2
  doi: 10.1038/nphoton.2007.228
– ident: e_1_3_3_27_2
  doi: 10.1364/OE.14.004380
– ident: e_1_3_3_30_2
  doi: 10.1364/JOSAA.23.003177
SSID ssj0009580
Score 2.4857142
Snippet Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7175
SubjectTerms Adaptability
Adaptive optics
Algorithms
animal tissues
Animals
Biological samples
Biological Sciences
Broadband transmission
data collection
Fiber optic interferometers
Fourier transformations
image analysis
Image Processing, Computer-Assisted - instrumentation
Image Processing, Computer-Assisted - methods
Imaging
Imaging, Three-Dimensional - instrumentation
Imaging, Three-Dimensional - methods
Interferometry
Light microscopy
Lung - anatomy & histology
Lungs
Microscopy
Microscopy, Interference - instrumentation
Microscopy, Interference - methods
Optical coherence tomography
Optical focus
Optics
Phantoms, Imaging
Physical Sciences
Rats
Reproducibility of Results
Rodents
Supernova remnants
Tissues
Tomography
Tomography, Optical Coherence - instrumentation
Tomography, Optical Coherence - methods
Title Computational adaptive optics for broadband optical interferometric tomography of biological tissue
URI https://www.jstor.org/stable/41592987
http://www.pnas.org/content/109/19/7175.abstract
https://www.ncbi.nlm.nih.gov/pubmed/22538815
https://www.proquest.com/docview/1012096706
https://www.proquest.com/docview/1012208756
https://www.proquest.com/docview/1446279035
https://pubmed.ncbi.nlm.nih.gov/PMC3358872
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFLbKuHBBDBgrDGQkDkNVSmI7sXMsEzAhUfWwid0iJ7G1CZZUbXrh7_BHebYTJ626CbhEVfzipH5fnt9znr-H0DsZFWFBVRLEXLGAQaAM71wqA83ynOQl56E2geK3eXJ-yb5exVej0e9B1tKmyafFr737Sv5Hq3AO9Gp2yf6DZn2ncAJ-g37hCBqG41_p2JVk6JbzZCmXNhGoXlruZZuIuaplmZvFcXvSMmyYwtTKsBQYcn7wPW9b1mrjNzpOJivYWJUMndeFn-zWXWrBvLv5rN-Z0pqL9SSYLOZ9neNZ6T6FuDpqky_TPvVHWmbIj2B2y5sfzeS7b5pd3zoIzkqlfC7ImVy1OWqLKdytbprh2oVJAomDUPSpHfc849BoE5hImdtq7Y12mA7RmQ5sMASo8WA-h8k33DtXgHEzBY4ruTb7qCLwZLtOtwm4wcUBH1LwB-ghgViEWOs_ZHYWbp9T-5QdfxSnH3b63nJ9XParodQFoX3hzW6W7sDtuXiCHrfxCp458B2ikaqeosNu-PBpS1v-_hkqttCIOzRih0YMaMQejbhFI95BI-7RiGuNezRih8bn6PLzp4uz86At4REUECc0AU0KJkmRa855EQuwBzRSoWAF52WSSEFDlcgY5ggdSSEJzbUmWhKhqKmeRBQ9QgdVXaljhCNNzCpwyDQtGUQdQkeJBIcdOochpukYTbvRzYqW396UWfmZ2TwLTjMz0lmvjjE69RcsHbXL3aJHVl1ersPEGB1b0f76NIvSzEBwjE46nWatzVibhEoSpgkPkzF665vBopvPdLJS9cbJEFNo4j4ZxhLC05DCbV44mPhngBmaChFBC98CkBcwjPLbLdXNtWWWpzQGp4O8vOvvvkKP-tf4BB00q416DU55k7-xL8UfU2fk1Q
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+adaptive+optics+for+broadband+optical+interferometric+tomography+of+biological+tissue&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Adie%2C+Steven+G.&rft.au=Graf%2C+Benedikt+W.&rft.au=Ahmad%2C+Adeel&rft.au=Carney%2C+P.+Scott&rft.date=2012-05-08&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.volume=109&rft.issue=19&rft.spage=7175&rft.epage=7180&rft_id=info:doi/10.1073%2Fpnas.1121193109&rft.externalDocID=41592987
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F19.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F19.cover.gif