Computational adaptive optics for broadband optical interferometric tomography of biological tissue
Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of aberrations may be achieved through appropriate lens design, but this approach does not offer the flexibility of simultaneously correcting a...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 109; no. 19; pp. 7175 - 7180 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
08.05.2012
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of aberrations may be achieved through appropriate lens design, but this approach does not offer the flexibility of simultaneously correcting aberrations for all imaging depths, nor the adaptability to correct for sample-specific aberrations for high-quality tomographic optical imaging. Incorporation of adaptive optics (AO) methods have demonstrated considerable improvement in optical image contrast and resolution in noninterferometric microscopy techniques, as well as in optical coherence tomography. Here we present a method to correct aberrations in a tomogram rather than the beam of a broadband optical interferometry system. Based on Fourier optics principles, we correct aberrations of a virtual pupil using Zernike polynomials. When used in conjunction with the computed imaging method interferometric synthetic aperture microscopy, this computational AO enables object reconstruction (within the single scattering limit) with ideal focal-plane resolution at all depths. Tomographic reconstructions of tissue phantoms containing subresolution titanium-dioxide particles and of ex vivo rat lung tissue demonstrate aberration correction in datasets acquired with a highly astigmatic illumination beam. These results also demonstrate that imaging with an aberrated astigmatic beam provides the advantage of a more uniform depth-dependent signal compared to imaging with a standard Gaussian beam. With further work, computational AO could enable the replacement of complicated and expensive optical hardware components with algorithms implemented on a standard desktop computer, making high-resolution 3D interferometric tomography accessible to a wider group of users and nonspecialists. |
---|---|
AbstractList | Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of aberrations may be achieved through appropriate lens design, but this approach does not offer the flexibility of simultaneously correcting aberrations for all imaging depths, nor the adaptability to correct for sample-specific aberrations for high-quality tomographic optical imaging. Incorporation of adaptive optics (AO) methods have demonstrated considerable improvement in optical image contrast and resolution in noninterferometric microscopy techniques, as well as in optical coherence tomography. Here we present a method to correct aberrations in a tomogram rather than the beam of a broadband optical interferometry system. Based on Fourier optics principles, we correct aberrations of a virtual pupil using Zernike polynomials. When used in conjunction with the computed imaging method interferometric synthetic aperture microscopy, this computational AO enables object reconstruction (within the single scattering limit) with ideal focal-plane resolution at all depths. Tomographic reconstructions of tissue phantoms containing subresolution titanium-dioxide particles and of ex vivo rat lung tissue demonstrate aberration correction in datasets acquired with a highly astigmatic illumination beam. These results also demonstrate that imaging with an aberrated astigmatic beam provides the advantage of a more uniform depth-dependent signal compared to imaging with a standard Gaussian beam. With further work, computational AO could enable the replacement of complicated and expensive optical hardware components with algorithms implemented on a standard desktop computer, making high-resolution 3D interferometric tomography accessible to a wider group of users and nonspecialists. Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of aberrations may be achieved through appropriate lens design, but this approach does not offer the flexibility of simultaneously correcting aberrations for all imaging depths, nor the adaptability to correct for sample-specific aberrations for high-quality tomographic optical imaging. Incorporation of adaptive optics (AO) methods have demonstrated considerable improvement in optical image contrast and resolution in noninterferometric microscopy techniques, as well as in optical coherence tomography. Here we present a method to correct aberrations in a tomogram rather than the beam of a broadband optical interferometry system. Based on Fourier optics principles, we correct aberrations of a virtual pupil using Zernike polynomials. When used in conjunction with the computed imaging method interferometric synthetic aperture microscopy, this computational AO enables object reconstruction (within the single scattering limit) with ideal focal-plane resolution at all depths. Tomographic reconstructions of tissue phantoms containing subresolution titanium-dioxide particles and of ex vivo rat lung tissue demonstrate aberration correction in datasets acquired with a highly astigmatic illumination beam. These results also demonstrate that imaging with an aberrated astigmatic beam provides the advantage of a more uniform depth-dependent signal compared to imaging with a standard gaussian beam. With further work, computational AO could enable the replacement of complicated and expensive optical hardware components with algorithms implemented on a standard desktop computer, making high-resolution 3D interferometric tomography accessible to a wider group of users and nonspecialists.Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of aberrations may be achieved through appropriate lens design, but this approach does not offer the flexibility of simultaneously correcting aberrations for all imaging depths, nor the adaptability to correct for sample-specific aberrations for high-quality tomographic optical imaging. Incorporation of adaptive optics (AO) methods have demonstrated considerable improvement in optical image contrast and resolution in noninterferometric microscopy techniques, as well as in optical coherence tomography. Here we present a method to correct aberrations in a tomogram rather than the beam of a broadband optical interferometry system. Based on Fourier optics principles, we correct aberrations of a virtual pupil using Zernike polynomials. When used in conjunction with the computed imaging method interferometric synthetic aperture microscopy, this computational AO enables object reconstruction (within the single scattering limit) with ideal focal-plane resolution at all depths. Tomographic reconstructions of tissue phantoms containing subresolution titanium-dioxide particles and of ex vivo rat lung tissue demonstrate aberration correction in datasets acquired with a highly astigmatic illumination beam. These results also demonstrate that imaging with an aberrated astigmatic beam provides the advantage of a more uniform depth-dependent signal compared to imaging with a standard gaussian beam. With further work, computational AO could enable the replacement of complicated and expensive optical hardware components with algorithms implemented on a standard desktop computer, making high-resolution 3D interferometric tomography accessible to a wider group of users and nonspecialists. Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of aberrations may be achieved through appropriate lens design, but this approach does not offer the flexibility of simultaneously correcting aberrations for all imaging depths, nor the adaptability to correct for sample-specific aberrations for high-quality tomographic optical imaging. Incorporation of adaptive optics (AO) methods have demonstrated considerable improvement in optical image contrast and resolution in noninterferometric microscopy techniques, as well as in optical coherence tomography. Here we present a method to correct aberrations in a tomogram rather than the beam of a broadband optical interferometry system. Based on Fourier optics principles, we correct aberrations of a virtual pupil using Zernike polynomials. When used in conjunction with the computed imaging method interferometric synthetic aperture microscopy, this computational AO enables object reconstruction (within the single scattering limit) with ideal focal-plane resolution at all depths. Tomographic reconstructions of tissue phantoms containing subresolution titanium-dioxide particles and of ex vivo rat lung tissue demonstrate aberration correction in datasets acquired with a highly astigmatic illumination beam. These results also demonstrate that imaging with an aberrated astigmatic beam provides the advantage of a more uniform depth-dependent signal compared to imaging with a standard Gaussian beam. With further work, computational AO could enable the replacement of complicated and expensive optical hardware components with algorithms implemented on a standard desktop computer, making high-resolution 3D interferometric tomography accessible to a wider group of users and nonspecialists. [PUBLICATION ABSTRACT] |
Author | Ahmad, Adeel Carney, P. Scott Boppart, Stephen A. Graf, Benedikt W. Adie, Steven G. |
Author_xml | – sequence: 1 givenname: Steven G. surname: Adie fullname: Adie, Steven G. – sequence: 2 givenname: Benedikt W. surname: Graf fullname: Graf, Benedikt W. – sequence: 3 givenname: Adeel surname: Ahmad fullname: Ahmad, Adeel – sequence: 4 givenname: P. Scott surname: Carney fullname: Carney, P. Scott – sequence: 5 givenname: Stephen A. surname: Boppart fullname: Boppart, Stephen A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22538815$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktr3DAUhUVJaSZp1121NXTTjRM9rNemEIa-IJBNuhayLE002JYryYH8-8rxJGkDpRtd0P3O4Uj3noCjMYwWgLcIniHIyfk06nSGEEZIEgTlC7ApJ6pZI-ER2ECIeS0a3ByDk5T2EEJJBXwFjjGmRAhEN8BswzDNWWcfRt1XutNT9re2CqWYVLkQqzYG3bV67NbLQvkx2-hsDIPN0ZsqhyHsop5u7qrgqtaHPuzuwexTmu1r8NLpPtk3h3oKfn79cr39Xl9effuxvbisDWUs14SZRmPTOs65oYLbhiALRWM47xjTgkDLNOWSOKSFxqR1DjuNhSWEY4gtOQWfV99pbgfbGTvmqHs1RT_oeKeC9urvzuhv1C7cKkKoEBwXg08Hgxh-zTZlNfhkbN_r0YY5KdQ0DHMJCf0_ChHGUHDKCvrxGboPcyy_vVJQMg4X6v2f4R9TP4yqAHQFTAwpReuU8evcylt8X7zUshJqWQn1tBJFd_5M92D9b8WHQ5Sl8URLhaTiiC9Z3q3EPuUQH5EGUYml4OQ3DZHOWA |
CitedBy_id | crossref_primary_10_1364_OE_24_001214 crossref_primary_10_1038_s41598_022_06926_w crossref_primary_10_1364_BOE_530569 crossref_primary_10_1364_AO_441646 crossref_primary_10_1038_s41598_021_99889_3 crossref_primary_10_1364_BOE_477646 crossref_primary_10_3390_s24092931 crossref_primary_10_1063_5_0065628 crossref_primary_10_1364_OL_401283 crossref_primary_10_1364_PRJ_452364 crossref_primary_10_1038_s41566_024_01594_w crossref_primary_10_1016_j_heliyon_2024_e32546 crossref_primary_10_1364_OPTICA_505189 crossref_primary_10_1016_j_pacs_2024_100584 crossref_primary_10_1126_sciadv_abf5364 crossref_primary_10_1364_AOP_417102 crossref_primary_10_1364_JOSAA_35_000466 crossref_primary_10_1073_pnas_1606428113 crossref_primary_10_1364_OE_22_032406 crossref_primary_10_1088_2515_7647_adb7af crossref_primary_10_1038_s41467_022_33462_y crossref_primary_10_1364_AO_54_010096 crossref_primary_10_1098_rstb_2018_0219 crossref_primary_10_1364_OE_21_010850 crossref_primary_10_1364_OL_499051 crossref_primary_10_1364_OL_520911 crossref_primary_10_1364_BOE_5_004131 crossref_primary_10_1364_OL_41_003324 crossref_primary_10_1155_2015_758937 crossref_primary_10_1364_BOE_8_004141 crossref_primary_10_1364_OE_27_012998 crossref_primary_10_1364_BOE_8_001152 crossref_primary_10_1038_s41566_024_01544_6 crossref_primary_10_1038_s41377_021_00705_4 crossref_primary_10_1364_BOE_5_002988 crossref_primary_10_3390_s20154285 crossref_primary_10_1117_1_JBO_21_2_026007 crossref_primary_10_1364_OE_22_016606 crossref_primary_10_1364_OL_43_003373 crossref_primary_10_1186_s12885_016_2194_4 crossref_primary_10_1364_JOSAA_36_00C122 crossref_primary_10_1038_s41467_020_19550_x crossref_primary_10_1364_OE_395523 crossref_primary_10_1364_OE_23_007463 crossref_primary_10_1364_BOE_488845 crossref_primary_10_1063_1_4768778 crossref_primary_10_1364_BOE_8_001549 crossref_primary_10_1364_BOE_403509 crossref_primary_10_1126_sciadv_aay7170 crossref_primary_10_1073_pnas_1921533117 crossref_primary_10_2139_ssrn_3961042 crossref_primary_10_1117_1_NPh_6_4_041105 crossref_primary_10_1364_BOE_454975 crossref_primary_10_1364_AO_415270 crossref_primary_10_1364_OE_22_019314 crossref_primary_10_1364_OE_447174 crossref_primary_10_1038_nphoton_2013_71 crossref_primary_10_1126_sciadv_abo4366 crossref_primary_10_1364_BOE_487345 crossref_primary_10_1364_OE_23_006145 crossref_primary_10_1364_BOE_8_001499 crossref_primary_10_1364_OE_419963 crossref_primary_10_1038_s41598_020_58454_0 crossref_primary_10_1109_JSTQE_2013_2288302 crossref_primary_10_1073_pnas_1615790113 crossref_primary_10_1038_srep35209 crossref_primary_10_1137_22M1543240 crossref_primary_10_1038_s41566_024_01479_y crossref_primary_10_1364_OPTICA_6_000647 crossref_primary_10_1002_cyto_a_22570 crossref_primary_10_1364_OE_21_012822 crossref_primary_10_1364_OE_21_017711 crossref_primary_10_1371_journal_pone_0050915 crossref_primary_10_1364_BOE_430596 crossref_primary_10_1364_AO_54_003498 crossref_primary_10_1167_tvst_11_1_28 crossref_primary_10_1186_s43074_022_00071_3 crossref_primary_10_1126_scitranslmed_3009850 crossref_primary_10_1016_j_preteyeres_2018_08_002 crossref_primary_10_1364_OE_22_019183 crossref_primary_10_1109_JLT_2021_3061606 crossref_primary_10_1109_JSTQE_2015_2509947 crossref_primary_10_1364_BOE_9_002614 crossref_primary_10_1364_BOE_9_004919 crossref_primary_10_1002_smll_202203357 crossref_primary_10_1364_BOE_524894 crossref_primary_10_1016_j_optlastec_2022_108118 crossref_primary_10_1364_BOE_6_001124 crossref_primary_10_1038_nphoton_2015_102 crossref_primary_10_1364_OE_25_030807 crossref_primary_10_1002_jbio_201800364 crossref_primary_10_1109_JSTQE_2015_2493962 crossref_primary_10_1038_s41598_018_26514_1 crossref_primary_10_1038_s41467_019_11040_z crossref_primary_10_1364_BOE_465916 crossref_primary_10_1364_OE_24_009251 crossref_primary_10_1186_s43074_020_00009_7 crossref_primary_10_1364_OL_418637 crossref_primary_10_1117_1_JBO_20_11_111203 crossref_primary_10_1117_1_JBO_24_11_116002 crossref_primary_10_1364_BOE_9_004246 crossref_primary_10_1364_OPTICA_521088 crossref_primary_10_1364_OE_541029 crossref_primary_10_1364_OE_22_016061 crossref_primary_10_1364_OL_44_003905 crossref_primary_10_1109_JPHOT_2021_3116326 crossref_primary_10_1117_1_JBO_29_S2_S22714 crossref_primary_10_1364_OPTICA_3_000827 crossref_primary_10_1364_BOE_486980 crossref_primary_10_1002_adfm_201300969 crossref_primary_10_1364_BOE_439395 crossref_primary_10_1364_BOE_5_000167 crossref_primary_10_1364_BOE_470959 crossref_primary_10_1002_jbio_202000112 crossref_primary_10_3788_LOP240437 crossref_primary_10_1038_s41467_024_45434_5 crossref_primary_10_1364_OE_551295 crossref_primary_10_1364_BOE_396666 crossref_primary_10_1364_BOE_479886 crossref_primary_10_1167_tvst_9_11_11 crossref_primary_10_1364_BOE_503801 crossref_primary_10_1038_nmeth_4290 crossref_primary_10_1364_BOE_427979 crossref_primary_10_1364_OE_484874 crossref_primary_10_1364_OL_44_001186 crossref_primary_10_1364_BOE_416569 crossref_primary_10_3390_photonics9050288 crossref_primary_10_1364_AO_55_002034 crossref_primary_10_1016_j_optlaseng_2023_107964 crossref_primary_10_3390_jcm11175139 crossref_primary_10_1364_OPTICA_6_000370 crossref_primary_10_1142_S1793545819300027 crossref_primary_10_1364_BOE_9_003137 crossref_primary_10_1038_s41598_019_40608_4 crossref_primary_10_1364_BOE_9_002562 crossref_primary_10_29026_oes_2024_230020 crossref_primary_10_1109_JSTQE_2023_3248148 |
Cites_doi | 10.1038/nmeth818 10.1073/pnas.94.9.4256 10.1364/OL.32.003005 10.1038/nphoton.2010.3 10.1038/nmeth.1411 10.1063/1.2432287 10.1073/pnas.082544799 10.1364/OE.15.008176 10.1364/OE.15.018209 10.1364/JOSAA.25.000995 10.1364/OE.19.012027 10.1364/AO.42.003038 10.1088/0034-4885/66/2/204 10.1364/OL.35.001683 10.1038/nm0995-970 10.1126/science.276.5321.2037 10.1038/86589 10.1038/nphoton.2011.257 10.1109/JDT.2007.900936 10.1038/nm.2409 10.1038/nphys514 10.1117/12.875592 10.1364/JOSAA.25.000983 10.1364/OE.14.001339 10.1126/science.1957169 10.1038/nbt892 10.1038/nm0798-861 10.1111/j.1365-2818.2009.03315.x 10.1364/OPEX.13.004792 10.1364/JOSAA.23.001027 10.1364/OL.36.003894 10.1364/OL.29.002142 10.1364/OL.27.001800 10.1364/OL.34.002495 10.1364/JOSAA.24.002527 10.1364/OL.30.002706 10.1364/OL.19.000590 10.1073/pnas.0604791103 10.1364/OE.10.000405 10.1073/pnas.0913679107 10.1364/OE.18.003632 10.1364/OL.34.001943 10.1073/pnas.071275698 10.1002/9780470135976 10.1038/nphoton.2007.228 10.1364/OE.14.004380 10.1364/JOSAA.23.003177 |
ContentType | Journal Article |
Copyright | copyright © 1993-2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences May 8, 2012 |
Copyright_xml | – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences May 8, 2012 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1121193109 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA MEDLINE MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Aberration correction for optical tomography |
EISSN | 1091-6490 |
EndPage | 7180 |
ExternalDocumentID | PMC3358872 2656763791 22538815 10_1073_pnas_1121193109 109_19_7175 41592987 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R01 EB012479 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM VXZ YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c566t-36c4a2cbf777c587e431e084c77d66a830e6a5793f1a8a23bff2fa28e337202e3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 17:24:29 EDT 2025 Fri Jul 11 05:38:51 EDT 2025 Thu Jul 10 22:54:17 EDT 2025 Sat Aug 16 22:51:01 EDT 2025 Wed Feb 19 02:28:35 EST 2025 Thu Apr 24 23:11:14 EDT 2025 Tue Jul 01 03:39:16 EDT 2025 Wed Nov 11 00:30:03 EST 2020 Thu May 29 08:40:39 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c566t-36c4a2cbf777c587e431e084c77d66a830e6a5793f1a8a23bff2fa28e337202e3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: S.G.A., P.S.C., and S.A.B. designed research; S.G.A. and A.A. performed research; S.G.A., B.W.G., P.S.C., and S.A.B. analyzed data; and S.G.A. wrote the paper. Edited by Erich P. Ippen, Massachusetts Institute of Technology, Cambridge, MA, and approved March 5, 2012 (received for review December 22, 2011) |
OpenAccessLink | https://www.pnas.org/content/pnas/109/19/7175.full.pdf |
PMID | 22538815 |
PQID | 1012096706 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1446279035 pubmed_primary_22538815 proquest_miscellaneous_1012208756 pnas_primary_109_19_7175 jstor_primary_41592987 crossref_primary_10_1073_pnas_1121193109 proquest_journals_1012096706 crossref_citationtrail_10_1073_pnas_1121193109 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3358872 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-05-08 |
PublicationDateYYYYMMDD | 2012-05-08 |
PublicationDate_xml | – month: 05 year: 2012 text: 2012-05-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2012 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Malacara D (e_1_3_3_39_2) 2007 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 Goodman JW (e_1_3_3_43_2) 1996 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 |
References_xml | – ident: e_1_3_3_1_2 doi: 10.1038/nmeth818 – ident: e_1_3_3_10_2 doi: 10.1073/pnas.94.9.4256 – ident: e_1_3_3_38_2 doi: 10.1364/OL.32.003005 – ident: e_1_3_3_47_2 doi: 10.1038/nphoton.2010.3 – ident: e_1_3_3_46_2 doi: 10.1038/nmeth.1411 – ident: e_1_3_3_31_2 doi: 10.1063/1.2432287 – ident: e_1_3_3_20_2 doi: 10.1073/pnas.082544799 – ident: e_1_3_3_41_2 doi: 10.1364/OE.15.008176 – ident: e_1_3_3_23_2 doi: 10.1364/OE.15.018209 – ident: e_1_3_3_35_2 doi: 10.1364/JOSAA.25.000995 – ident: e_1_3_3_36_2 doi: 10.1364/OE.19.012027 – ident: e_1_3_3_48_2 doi: 10.1364/AO.42.003038 – ident: e_1_3_3_3_2 doi: 10.1088/0034-4885/66/2/204 – ident: e_1_3_3_18_2 doi: 10.1364/OL.35.001683 – ident: e_1_3_3_5_2 doi: 10.1038/nm0995-970 – ident: e_1_3_3_6_2 doi: 10.1126/science.276.5321.2037 – ident: e_1_3_3_7_2 doi: 10.1038/86589 – ident: e_1_3_3_12_2 doi: 10.1038/nphoton.2011.257 – ident: e_1_3_3_33_2 doi: 10.1109/JDT.2007.900936 – ident: e_1_3_3_9_2 doi: 10.1038/nm.2409 – ident: e_1_3_3_17_2 doi: 10.1038/nphys514 – ident: e_1_3_3_19_2 doi: 10.1117/12.875592 – ident: e_1_3_3_34_2 doi: 10.1364/JOSAA.25.000983 – ident: e_1_3_3_40_2 doi: 10.1364/OE.14.001339 – start-page: 145 volume-title: Introduction to Fourier Optics year: 1996 ident: e_1_3_3_43_2 – ident: e_1_3_3_2_2 doi: 10.1126/science.1957169 – ident: e_1_3_3_4_2 doi: 10.1038/nbt892 – ident: e_1_3_3_15_2 doi: 10.1038/nm0798-861 – ident: e_1_3_3_22_2 doi: 10.1111/j.1365-2818.2009.03315.x – ident: e_1_3_3_26_2 doi: 10.1364/OPEX.13.004792 – ident: e_1_3_3_44_2 doi: 10.1364/JOSAA.23.001027 – ident: e_1_3_3_29_2 doi: 10.1364/OL.36.003894 – ident: e_1_3_3_25_2 doi: 10.1364/OL.29.002142 – ident: e_1_3_3_13_2 doi: 10.1364/OL.27.001800 – ident: e_1_3_3_42_2 doi: 10.1364/OL.34.002495 – ident: e_1_3_3_45_2 doi: 10.1364/JOSAA.24.002527 – ident: e_1_3_3_32_2 doi: 10.1364/OL.30.002706 – ident: e_1_3_3_14_2 doi: 10.1364/OL.19.000590 – ident: e_1_3_3_21_2 doi: 10.1073/pnas.0604791103 – ident: e_1_3_3_24_2 doi: 10.1364/OE.10.000405 – ident: e_1_3_3_11_2 doi: 10.1073/pnas.0913679107 – ident: e_1_3_3_16_2 doi: 10.1364/OE.18.003632 – ident: e_1_3_3_28_2 doi: 10.1364/OL.34.001943 – ident: e_1_3_3_37_2 doi: 10.1073/pnas.071275698 – start-page: 519 volume-title: Optical Shop Testing year: 2007 ident: e_1_3_3_39_2 doi: 10.1002/9780470135976 – ident: e_1_3_3_8_2 doi: 10.1038/nphoton.2007.228 – ident: e_1_3_3_27_2 doi: 10.1364/OE.14.004380 – ident: e_1_3_3_30_2 doi: 10.1364/JOSAA.23.003177 |
SSID | ssj0009580 |
Score | 2.4857142 |
Snippet | Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7175 |
SubjectTerms | Adaptability Adaptive optics Algorithms animal tissues Animals Biological samples Biological Sciences Broadband transmission data collection Fiber optic interferometers Fourier transformations image analysis Image Processing, Computer-Assisted - instrumentation Image Processing, Computer-Assisted - methods Imaging Imaging, Three-Dimensional - instrumentation Imaging, Three-Dimensional - methods Interferometry Light microscopy Lung - anatomy & histology Lungs Microscopy Microscopy, Interference - instrumentation Microscopy, Interference - methods Optical coherence tomography Optical focus Optics Phantoms, Imaging Physical Sciences Rats Reproducibility of Results Rodents Supernova remnants Tissues Tomography Tomography, Optical Coherence - instrumentation Tomography, Optical Coherence - methods |
Title | Computational adaptive optics for broadband optical interferometric tomography of biological tissue |
URI | https://www.jstor.org/stable/41592987 http://www.pnas.org/content/109/19/7175.abstract https://www.ncbi.nlm.nih.gov/pubmed/22538815 https://www.proquest.com/docview/1012096706 https://www.proquest.com/docview/1012208756 https://www.proquest.com/docview/1446279035 https://pubmed.ncbi.nlm.nih.gov/PMC3358872 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFLbKuHBBDBgrDGQkDkNVSmI7sXMsEzAhUfWwid0iJ7G1CZZUbXrh7_BHebYTJ626CbhEVfzipH5fnt9znr-H0DsZFWFBVRLEXLGAQaAM71wqA83ynOQl56E2geK3eXJ-yb5exVej0e9B1tKmyafFr737Sv5Hq3AO9Gp2yf6DZn2ncAJ-g37hCBqG41_p2JVk6JbzZCmXNhGoXlruZZuIuaplmZvFcXvSMmyYwtTKsBQYcn7wPW9b1mrjNzpOJivYWJUMndeFn-zWXWrBvLv5rN-Z0pqL9SSYLOZ9neNZ6T6FuDpqky_TPvVHWmbIj2B2y5sfzeS7b5pd3zoIzkqlfC7ImVy1OWqLKdytbprh2oVJAomDUPSpHfc849BoE5hImdtq7Y12mA7RmQ5sMASo8WA-h8k33DtXgHEzBY4ruTb7qCLwZLtOtwm4wcUBH1LwB-ghgViEWOs_ZHYWbp9T-5QdfxSnH3b63nJ9XParodQFoX3hzW6W7sDtuXiCHrfxCp458B2ikaqeosNu-PBpS1v-_hkqttCIOzRih0YMaMQejbhFI95BI-7RiGuNezRih8bn6PLzp4uz86At4REUECc0AU0KJkmRa855EQuwBzRSoWAF52WSSEFDlcgY5ggdSSEJzbUmWhKhqKmeRBQ9QgdVXaljhCNNzCpwyDQtGUQdQkeJBIcdOochpukYTbvRzYqW396UWfmZ2TwLTjMz0lmvjjE69RcsHbXL3aJHVl1ersPEGB1b0f76NIvSzEBwjE46nWatzVibhEoSpgkPkzF665vBopvPdLJS9cbJEFNo4j4ZxhLC05DCbV44mPhngBmaChFBC98CkBcwjPLbLdXNtWWWpzQGp4O8vOvvvkKP-tf4BB00q416DU55k7-xL8UfU2fk1Q |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+adaptive+optics+for+broadband+optical+interferometric+tomography+of+biological+tissue&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Adie%2C+Steven+G.&rft.au=Graf%2C+Benedikt+W.&rft.au=Ahmad%2C+Adeel&rft.au=Carney%2C+P.+Scott&rft.date=2012-05-08&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.volume=109&rft.issue=19&rft.spage=7175&rft.epage=7180&rft_id=info:doi/10.1073%2Fpnas.1121193109&rft.externalDocID=41592987 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F19.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F19.cover.gif |