Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles
A central challenge to the development of protein-based therapeutics is the inefficiency of delivery of protein cargo across the mammalian cell membrane, including escape from endosomes. Here we report that combining bioreducible lipid nanoparticles with negatively supercharged Cre recombinase or an...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 113; no. 11; pp. 2868 - 2873 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
15.03.2016
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A central challenge to the development of protein-based therapeutics is the inefficiency of delivery of protein cargo across the mammalian cell membrane, including escape from endosomes. Here we report that combining bioreducible lipid nanoparticles with negatively supercharged Cre recombinase or anionic Cas9:single-guide (sg)RNA complexes drives the electrostatic assembly of nanoparticles that mediate potent protein delivery and genome editing. These bioreducible lipids efficiently deliver protein cargo into cells, facilitate the escape of protein from endosomes in response to the reductive intracellular environment, and direct protein to its intracellular target sites. The delivery of supercharged Cre protein and Cas9:sgRNA complexed with bioreducible lipids into cultured human cells enables gene recombination and genome editing with efficiencies greater than 70%. In addition, we demonstrate that these lipids are effective for functional protein delivery into mouse brain for gene recombination in vivo. Therefore, the integration of this bioreducible lipid platform with protein engineering has the potential to advance the therapeutic relevance of protein-based genome editing. |
---|---|
AbstractList | A central challenge to the development of protein-based therapeutics is the inefficiency of delivery of protein cargo across the mammalian cell membrane, including escape from endosomes. Here we report that combining bioreducible lipid nanoparticles with negatively supercharged Cre recombinase or anionic Cas9:single-guide (sg)RNA complexes drives the electrostatic assembly of nanoparticles that mediate potent protein delivery and genome editing. These bioreducible lipids efficiently deliver protein cargo into cells, facilitate the escape of protein from endosomes in response to the reductive intracellular environment, and direct protein to its intracellular target sites. The delivery of supercharged Cre protein and Cas9:sgRNA complexed with bioreducible lipids into cultured human cells enables gene recombination and genome editing with efficiencies greater than 70%. In addition, we demonstrate that these lipids are effective for functional protein delivery into mouse brain for gene recombination in vivo. Therefore, the integration of this bioreducible lipid platform with protein engineering has the potential to advance the therapeutic relevance of protein-based genome editing. The therapeutic potential of protein-based genome editing is dependent on the delivery of proteins to appropriate intracellular targets. Here we report that combining bioreducible lipid nanoparticles and negatively supercharged Cre recombinase or anionic Cas9:single-guide (sg)RNA complexes drives the self-assembly of nanoparticles for potent protein delivery and genome editing. The design of bioreducible lipids facilitates the degradation of nanoparticles inside cells in response to the reductive intracellular environment, enhancing the endosome escape of protein. In addition, modulation of protein charge through either genetic fusion of supercharged protein or complexation of Cas9 with its inherently anionic sgRNA allows highly efficient protein delivery and effective genome editing in mammalian cells and functional recombinase delivery in the rodent brain. A central challenge to the development of protein-based therapeutics is the inefficiency of delivery of protein cargo across the mammalian cell membrane, including escape from endosomes. Here we report that combining bioreducible lipid nanoparticles with negatively supercharged Cre recombinase or anionic Cas9:single-guide (sg)RNA complexes drives the electrostatic assembly of nanoparticles that mediate potent protein delivery and genome editing. These bioreducible lipids efficiently deliver protein cargo into cells, facilitate the escape of protein from endosomes in response to the reductive intracellular environment, and direct protein to its intracellular target sites. The delivery of supercharged Cre protein and Cas9:sgRNA complexed with bioreducible lipids into cultured human cells enables gene recombination and genome editing with efficiencies greater than 70%. In addition, we demonstrate that these lipids are effective for functional protein delivery into mouse brain for gene recombination in vivo. Therefore, the integration of this bioreducible lipid platform with protein engineering has the potential to advance the therapeutic relevance of protein-based genome editing. A central challenge to the development of protein-based therapeutics is the inefficiency of delivery of protein cargo across the mammalian cell membrane, including escape from endosomes. Here we report that combining bioreducible lipid nanoparticles with negatively supercharged Cre recombinase or anionic Cas9:single-guide (sg)RNA complexes drives the electrostatic assembly of nanoparticles that mediate potent protein delivery and genome editing. These bioreducible lipids efficiently deliver protein cargo into cells, facilitate the escape of protein from endosomes in response to the reductive intracellular environment, and direct protein to its intracellular target sites. The delivery of supercharged Cre protein and Cas9:sgRNA complexed with bioreducible lipids into cultured human cells enables gene recombination and genome editing with efficiencies greater than 70%. In addition, we demonstrate that these lipids are effective for functional protein delivery into mouse brain for gene recombination in vivo. Therefore, the integration of this bioreducible lipid platform with protein engineering has the potential to advance the therapeutic relevance of protein-based genome editing.A central challenge to the development of protein-based therapeutics is the inefficiency of delivery of protein cargo across the mammalian cell membrane, including escape from endosomes. Here we report that combining bioreducible lipid nanoparticles with negatively supercharged Cre recombinase or anionic Cas9:single-guide (sg)RNA complexes drives the electrostatic assembly of nanoparticles that mediate potent protein delivery and genome editing. These bioreducible lipids efficiently deliver protein cargo into cells, facilitate the escape of protein from endosomes in response to the reductive intracellular environment, and direct protein to its intracellular target sites. The delivery of supercharged Cre protein and Cas9:sgRNA complexed with bioreducible lipids into cultured human cells enables gene recombination and genome editing with efficiencies greater than 70%. In addition, we demonstrate that these lipids are effective for functional protein delivery into mouse brain for gene recombination in vivo. Therefore, the integration of this bioreducible lipid platform with protein engineering has the potential to advance the therapeutic relevance of protein-based genome editing. |
Author | Zuris, John A. Pouli, Dimitra Rees, Holly Liu, David R. Sun, Shuo Deng, Pu Gao, Xue Georgakoudi, Irene Meng, Fantao Wang, Ming Wu, Qi Xu, Qiaobing Han, Yong |
Author_xml | – sequence: 1 givenname: Ming surname: Wang fullname: Wang, Ming organization: Department of Biomedical Engineering, Tufts University, Medford, MA 02155 – sequence: 2 givenname: John A. surname: Zuris fullname: Zuris, John A. organization: Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138 – sequence: 3 givenname: Fantao surname: Meng fullname: Meng, Fantao organization: Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030 – sequence: 4 givenname: Holly surname: Rees fullname: Rees, Holly organization: Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138 – sequence: 5 givenname: Shuo surname: Sun fullname: Sun, Shuo organization: Department of Biomedical Engineering, Tufts University, Medford, MA 02155 – sequence: 6 givenname: Pu surname: Deng fullname: Deng, Pu organization: Department of Biomedical Engineering, Tufts University, Medford, MA 02155 – sequence: 7 givenname: Yong surname: Han fullname: Han, Yong organization: Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030 – sequence: 8 givenname: Xue surname: Gao fullname: Gao, Xue organization: Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138 – sequence: 9 givenname: Dimitra surname: Pouli fullname: Pouli, Dimitra organization: Department of Biomedical Engineering, Tufts University, Medford, MA 02155 – sequence: 10 givenname: Qi surname: Wu fullname: Wu, Qi organization: Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030 – sequence: 11 givenname: Irene surname: Georgakoudi fullname: Georgakoudi, Irene organization: Department of Biomedical Engineering, Tufts University, Medford, MA 02155 – sequence: 12 givenname: David R. surname: Liu fullname: Liu, David R. organization: Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138 – sequence: 13 givenname: Qiaobing surname: Xu fullname: Xu, Qiaobing organization: Department of Biomedical Engineering, Tufts University, Medford, MA 02155 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26929348$$D View this record in MEDLINE/PubMed |
BookMark | eNqFksFrFDEUh4NU7LZ69qQOePEybV4mk00ugpS2CgUv9RwymZc1y2wyJjOF_vdm2G2tBfEQQsj3fnwveSfkKMSAhLwFegZ03ZyPweQzaBllnAM0L8gKqIJacEWPyIpStq4lZ_yYnOS8pZSqVtJX5JgJxVTD5YrcXjrnrccwVT0O_g7TfRVdtcEQd1hj7ycfNtWY4oQ-5GrOy7HzMWE_W98NWA1-9H0VTIijSZO3A-bX5KUzQ8Y3h_2U_Li6vL34Wt98v_528eWmtq0QU92IjlsUXY-GI-3QddBKVxQ7C6KlohHMml4xpxyVrgHDOsF7AZYWlFnZnJLP-9xx7nbY29JFMoMek9-ZdK-j8frvm-B_6k2801xSYEqUgE-HgBR_zZgnvfPZ4jCYgHHOGiRtW2AM5P_RdREXXCgo6Mdn6DbOKZSXKNRageKUNYV6_1T-0frhbwrQ7gGbYs4JnbZ-MpOPSy9-0ED1MgN6mQH9ZwZK3fmzuofof1d8OKgsF480NGVpJsXi8m5PbPMU0xNXLqQQ0PwG3D3JTA |
CitedBy_id | crossref_primary_10_1002_smll_202309431 crossref_primary_10_1088_1361_6528_ac357a crossref_primary_10_1002_EXP_20210081 crossref_primary_10_3390_ijms252111792 crossref_primary_10_1007_s11033_022_07880_6 crossref_primary_10_1002_smsc_202400192 crossref_primary_10_1002_ange_201708689 crossref_primary_10_1002_admi_201701163 crossref_primary_10_1093_nar_gkx154 crossref_primary_10_1021_jacs_8b11996 crossref_primary_10_1002_ange_202004994 crossref_primary_10_1039_D1CC05999H crossref_primary_10_1002_adma_202108116 crossref_primary_10_1002_smll_202308574 crossref_primary_10_1016_j_jconrel_2020_12_013 crossref_primary_10_1016_j_biomaterials_2018_03_011 crossref_primary_10_3389_fnmol_2019_00110 crossref_primary_10_3389_fmicb_2024_1393974 crossref_primary_10_1016_j_plana_2022_100001 crossref_primary_10_1021_acsabm_1c01112 crossref_primary_10_1007_s10930_017_9724_z crossref_primary_10_1016_j_dmpk_2022_100450 crossref_primary_10_1007_s11033_021_06832_w crossref_primary_10_1002_adtp_201800085 crossref_primary_10_1016_j_actbio_2022_09_046 crossref_primary_10_1208_s12248_018_0267_9 crossref_primary_10_1021_acsami_9b21667 crossref_primary_10_1038_nature25164 crossref_primary_10_1007_s40259_021_00500_y crossref_primary_10_1007_s12274_023_5978_2 crossref_primary_10_1002_anie_202005644 crossref_primary_10_1073_pnas_2020401118 crossref_primary_10_2147_IJN_S315444 crossref_primary_10_1016_j_addr_2019_11_005 crossref_primary_10_1126_sciadv_abg3217 crossref_primary_10_1016_j_drudis_2021_03_021 crossref_primary_10_3389_fchem_2023_1259435 crossref_primary_10_1021_acs_bioconjchem_8b00753 crossref_primary_10_1021_acs_bioconjchem_8b00750 crossref_primary_10_1039_C9CC00519F crossref_primary_10_1021_acs_biochem_1c00515 crossref_primary_10_1002_adfm_201910566 crossref_primary_10_1016_j_nantod_2022_101482 crossref_primary_10_1021_acsabm_1c01226 crossref_primary_10_1016_j_xplc_2021_100168 crossref_primary_10_1016_j_eurpolymj_2024_113386 crossref_primary_10_1002_adfm_202402630 crossref_primary_10_1038_s41467_020_16248_y crossref_primary_10_1007_s00109_020_01893_z crossref_primary_10_1016_j_apsb_2022_04_013 crossref_primary_10_1016_j_tips_2020_08_005 crossref_primary_10_1016_j_jconrel_2025_113651 crossref_primary_10_1007_s12274_024_6748_5 crossref_primary_10_1007_s11248_024_00404_x crossref_primary_10_1007_s44258_023_00004_0 crossref_primary_10_1055_s_0044_1785234 crossref_primary_10_1021_acsnano_3c09028 crossref_primary_10_5582_bst_2023_01285 crossref_primary_10_1002_smll_202106746 crossref_primary_10_1126_sciadv_aay3255 crossref_primary_10_4103_1673_5374_346541 crossref_primary_10_1002_adfm_201706710 crossref_primary_10_1038_s41467_022_31791_6 crossref_primary_10_1016_j_tibtech_2023_06_005 crossref_primary_10_1007_s12274_023_6172_2 crossref_primary_10_1016_j_ajps_2022_02_001 crossref_primary_10_3390_mi13020315 crossref_primary_10_1039_D2TB01055K crossref_primary_10_1002_ange_202005644 crossref_primary_10_1038_s41392_024_01750_2 crossref_primary_10_1016_j_omtm_2024_101203 crossref_primary_10_1039_D2SC02858A crossref_primary_10_1016_j_jconrel_2020_11_032 crossref_primary_10_1039_D1BM00790D crossref_primary_10_1002_adhm_202402366 crossref_primary_10_1016_j_biomaterials_2020_120580 crossref_primary_10_1161_ATVBAHA_117_309326 crossref_primary_10_1039_D2SM00863G crossref_primary_10_1111_wrr_12881 crossref_primary_10_1002_anie_201708689 crossref_primary_10_1016_j_copbio_2018_02_009 crossref_primary_10_1016_j_ymthe_2021_06_003 crossref_primary_10_1002_adma_202110618 crossref_primary_10_1038_s41586_020_1978_5 crossref_primary_10_1016_j_jddst_2021_102728 crossref_primary_10_31083_j_rcm2508286 crossref_primary_10_1039_C8BM00637G crossref_primary_10_1039_D2NR05421C crossref_primary_10_1002_anie_202004994 crossref_primary_10_1007_s12033_022_00479_z crossref_primary_10_1016_j_tig_2021_02_008 crossref_primary_10_1021_acsptsci_3c00397 crossref_primary_10_1126_sciadv_aaw8922 crossref_primary_10_1038_ncomms15790 crossref_primary_10_1021_acs_nanolett_2c02948 crossref_primary_10_1038_s41578_022_00529_7 crossref_primary_10_1016_j_ajps_2022_08_001 crossref_primary_10_3389_fgeed_2022_1030285 crossref_primary_10_1021_acsomega_7b00935 crossref_primary_10_1021_acs_accounts_9b00106 crossref_primary_10_1021_acsbiomaterials_9b01722 crossref_primary_10_3727_105221618X15350366478989 crossref_primary_10_1002_jgm_3721 crossref_primary_10_1126_sciadv_adl4336 crossref_primary_10_3389_fbioe_2022_942325 crossref_primary_10_21769_BioProtoc_3136 crossref_primary_10_1080_1744666X_2022_2060203 crossref_primary_10_1021_acs_bioconjchem_9b00022 crossref_primary_10_1002_cbic_201800390 crossref_primary_10_1016_j_jbiotec_2020_09_013 crossref_primary_10_1002_btm2_10021 crossref_primary_10_1074_jbc_RA118_004554 crossref_primary_10_1186_s12951_022_01570_y crossref_primary_10_3390_jfb15110324 crossref_primary_10_1016_j_biomaterials_2024_122693 crossref_primary_10_1016_j_cej_2020_124688 crossref_primary_10_1016_j_omtn_2020_04_012 crossref_primary_10_1002_anie_201610209 crossref_primary_10_1124_pr_120_019554 crossref_primary_10_1021_acs_nanolett_1c03293 crossref_primary_10_1002_bmm2_12025 crossref_primary_10_1021_acssynbio_3c00596 crossref_primary_10_1002_anie_202401004 crossref_primary_10_1016_j_mattod_2018_12_003 crossref_primary_10_1038_s41467_020_17029_3 crossref_primary_10_1021_acs_macromol_9b01645 crossref_primary_10_1038_s41587_020_0561_9 crossref_primary_10_1016_j_jcis_2019_10_100 crossref_primary_10_1038_s41551_024_01296_2 crossref_primary_10_1073_pnas_2207841119 crossref_primary_10_3390_ma14123164 crossref_primary_10_1002_bab_2200 crossref_primary_10_1016_j_genrep_2024_102070 crossref_primary_10_1080_17460441_2017_1317244 crossref_primary_10_1021_acsnano_0c04707 crossref_primary_10_1089_crispr_2022_0051 crossref_primary_10_1039_D4BM01440E crossref_primary_10_1021_acsami_3c07918 crossref_primary_10_1016_j_biomaterials_2024_122559 crossref_primary_10_3389_fonc_2022_864444 crossref_primary_10_1002_cac2_12366 crossref_primary_10_1038_nrd_2016_280 crossref_primary_10_1002_smtd_201700375 crossref_primary_10_1016_j_stem_2021_01_001 crossref_primary_10_2174_0115665232295117240405070809 crossref_primary_10_3390_app9050965 crossref_primary_10_1002_anie_202111213 crossref_primary_10_1039_D3TB00649B crossref_primary_10_1089_zeb_2017_1511 crossref_primary_10_1126_sciadv_aaz0051 crossref_primary_10_1021_acs_nanolett_1c03031 crossref_primary_10_1002_adtp_201900206 crossref_primary_10_1021_acschembio_7b00777 crossref_primary_10_1039_D1NR04430C crossref_primary_10_1016_j_biomaterials_2022_121376 crossref_primary_10_1080_09205063_2022_2121592 crossref_primary_10_1021_acs_biochem_3c00614 crossref_primary_10_1038_s41576_018_0059_1 crossref_primary_10_1039_C9NR05233J crossref_primary_10_1089_hum_2024_020 crossref_primary_10_3892_ijo_2018_4434 crossref_primary_10_1016_j_scib_2023_11_015 crossref_primary_10_1021_acsami_1c09823 crossref_primary_10_1038_s41467_018_05641_3 crossref_primary_10_1080_17425247_2023_2185220 crossref_primary_10_1016_j_mattod_2023_04_011 crossref_primary_10_1021_acs_nanolett_0c03287 crossref_primary_10_1038_s42003_022_03093_6 crossref_primary_10_1038_s41589_018_0080_x crossref_primary_10_1016_j_omtn_2020_04_005 crossref_primary_10_1038_s41578_024_00725_7 crossref_primary_10_1002_adfm_202107093 crossref_primary_10_1096_fj_201700982R crossref_primary_10_1038_nbt_3806 crossref_primary_10_1021_jacs_8b10299 crossref_primary_10_1134_S0006297923140080 crossref_primary_10_1038_nbt_3802 crossref_primary_10_1007_s12015_023_10602_5 crossref_primary_10_1016_j_biomaterials_2019_119736 crossref_primary_10_1039_D4PY00298A crossref_primary_10_1039_D1BM00558H crossref_primary_10_1126_sciadv_abb4429 crossref_primary_10_1002_advs_201801423 crossref_primary_10_1002_anie_202307664 crossref_primary_10_1016_j_jconrel_2016_11_006 crossref_primary_10_1088_1361_6528_ac842d crossref_primary_10_1016_j_omtm_2021_11_004 crossref_primary_10_1016_j_matdes_2022_111415 crossref_primary_10_1002_ange_202008082 crossref_primary_10_1016_j_virusres_2017_01_003 crossref_primary_10_1039_D2TB00645F crossref_primary_10_2147_IJN_S434626 crossref_primary_10_3390_cells9071608 crossref_primary_10_3389_fnmol_2021_789913 crossref_primary_10_1039_D0CC05165A crossref_primary_10_34133_bmef_0035 crossref_primary_10_1039_D3NR01794J crossref_primary_10_1158_1535_7163_MCT_18_0554 crossref_primary_10_1038_s41551_017_0158_x crossref_primary_10_1038_s41591_018_0137_0 crossref_primary_10_1039_C8NR04927K crossref_primary_10_1021_acs_bioconjchem_6b00676 crossref_primary_10_1007_s42994_019_00014_w crossref_primary_10_1016_j_jconrel_2016_11_014 crossref_primary_10_1038_s41392_022_01298_z crossref_primary_10_1021_acsami_1c17868 crossref_primary_10_1002_anie_202004008 crossref_primary_10_1007_s12272_020_01257_8 crossref_primary_10_1021_acsami_9b09605 crossref_primary_10_1002_btpr_2484 crossref_primary_10_1039_D0NR05452F crossref_primary_10_1126_sciadv_aba2983 crossref_primary_10_2174_0115665232292246240426125504 crossref_primary_10_1007_s13346_023_01320_z crossref_primary_10_3389_fgeed_2022_830178 crossref_primary_10_1038_s41467_018_04580_3 crossref_primary_10_3389_fonc_2022_978533 crossref_primary_10_1016_j_tibtech_2018_08_010 crossref_primary_10_1016_j_actbio_2022_08_070 crossref_primary_10_1080_10717544_2018_1474964 crossref_primary_10_1021_jacs_8b03584 crossref_primary_10_3390_ph17050612 crossref_primary_10_1186_s12929_024_01080_z crossref_primary_10_2174_1568026620666201126162945 crossref_primary_10_1016_j_jcis_2024_12_097 crossref_primary_10_1038_s41587_024_02437_3 crossref_primary_10_1002_adma_201905309 crossref_primary_10_2217_nnm_2021_0038 crossref_primary_10_1007_s00438_024_02166_x crossref_primary_10_1039_C8MD00249E crossref_primary_10_1039_C8SC00367J crossref_primary_10_3389_fbioe_2023_1211798 crossref_primary_10_1002_adfm_201703036 crossref_primary_10_1007_s11481_019_09878_7 crossref_primary_10_1016_j_heliyon_2024_e24606 crossref_primary_10_1021_acsanm_3c04192 crossref_primary_10_1016_j_biomaterials_2020_119847 crossref_primary_10_1016_j_addr_2020_03_001 crossref_primary_10_1038_s41467_021_26989_z crossref_primary_10_3389_fbioe_2022_973326 crossref_primary_10_1016_j_nantod_2022_101555 crossref_primary_10_1002_adfm_202107174 crossref_primary_10_1016_j_addr_2020_03_005 crossref_primary_10_1021_acs_biochem_0c00860 crossref_primary_10_3390_pharmaceutics12121233 crossref_primary_10_1021_acsami_8b09642 crossref_primary_10_1021_jacs_7b13017 crossref_primary_10_2174_0929867325666180608122439 crossref_primary_10_3389_fbioe_2023_1339189 crossref_primary_10_2174_1566523219666190701100556 crossref_primary_10_1021_acsanm_4c04353 crossref_primary_10_1021_acsami_6b11324 crossref_primary_10_12688_f1000research_8915_1 crossref_primary_10_1016_j_blre_2024_101185 crossref_primary_10_1021_acs_chemrev_1c00244 crossref_primary_10_2217_nnm_2016_0393 crossref_primary_10_3390_ijms21249604 crossref_primary_10_1002_cbic_202400685 crossref_primary_10_1039_C6CC03637F crossref_primary_10_1002_ange_202111213 crossref_primary_10_1016_j_bioorg_2022_105666 crossref_primary_10_1038_gt_2016_72 crossref_primary_10_1124_jpet_119_257287 crossref_primary_10_1016_j_biomaterials_2019_119302 crossref_primary_10_1038_s41467_021_27493_0 crossref_primary_10_1039_D1BM00063B crossref_primary_10_1039_C8NR07321J crossref_primary_10_1002_adma_202412366 crossref_primary_10_1021_acs_biomac_9b00783 crossref_primary_10_1016_j_biomaterials_2021_121252 crossref_primary_10_1038_gt_2017_35 crossref_primary_10_1016_j_addr_2024_115346 crossref_primary_10_1021_acs_biomac_4c01795 crossref_primary_10_1039_D0BM00679C crossref_primary_10_1002_jgm_3377 crossref_primary_10_1039_C7IB00060J crossref_primary_10_1002_jgm_3015 crossref_primary_10_1002_smll_202005222 crossref_primary_10_1016_j_ymthe_2019_03_003 crossref_primary_10_3390_ijms222011300 crossref_primary_10_1073_pnas_2116271119 crossref_primary_10_1016_j_jconrel_2020_01_056 crossref_primary_10_1016_j_ymthe_2024_07_025 crossref_primary_10_1021_jacs_9b08669 crossref_primary_10_1016_j_progpolymsci_2023_101751 crossref_primary_10_1016_j_biomaterials_2019_119680 crossref_primary_10_1016_j_addr_2020_09_004 crossref_primary_10_1002_adtp_201900041 crossref_primary_10_1021_acs_chemrev_6b00799 crossref_primary_10_1039_C8AY02726A crossref_primary_10_1016_j_pharmthera_2017_08_007 crossref_primary_10_1039_C9CC04517A crossref_primary_10_1073_pnas_1712963115 crossref_primary_10_1021_acs_molpharmaceut_1c00916 crossref_primary_10_1021_acsnano_8b07858 crossref_primary_10_1021_acs_bioconjchem_9b00853 crossref_primary_10_1038_s41598_018_34601_6 crossref_primary_10_1016_j_jbiotec_2023_12_003 crossref_primary_10_1002_ange_202307664 crossref_primary_10_1002_anie_202009572 crossref_primary_10_1016_j_actbio_2020_09_027 crossref_primary_10_3390_ijms241411399 crossref_primary_10_1002_adhm_202100847 crossref_primary_10_1016_j_ymthe_2025_01_013 crossref_primary_10_1002_adbi_201600007 crossref_primary_10_1007_s12274_020_2773_1 crossref_primary_10_1186_s13578_019_0298_7 crossref_primary_10_1002_ange_201610209 crossref_primary_10_1002_advs_202207512 crossref_primary_10_1039_D3TB01850D crossref_primary_10_1016_j_ymeth_2021_06_004 crossref_primary_10_1021_acscentsci_2c00730 crossref_primary_10_1002_smll_202407676 crossref_primary_10_1002_wsbm_1408 crossref_primary_10_1016_j_bioactmat_2021_05_051 crossref_primary_10_1002_adfm_202410931 crossref_primary_10_3390_v14091905 crossref_primary_10_1002_adma_201902575 crossref_primary_10_1016_j_nantod_2024_102283 crossref_primary_10_1002_ange_202009572 crossref_primary_10_1042_ETLS20180146 crossref_primary_10_1016_j_phymed_2021_153830 crossref_primary_10_1016_j_biopha_2022_114065 crossref_primary_10_1002_adbi_202400374 crossref_primary_10_3389_fgeed_2023_1209586 crossref_primary_10_1186_s12936_023_04665_5 crossref_primary_10_1002_cbic_202400481 crossref_primary_10_1002_cbic_201800629 crossref_primary_10_7554_eLife_33761 crossref_primary_10_1093_nar_gkaf105 crossref_primary_10_1007_s11426_023_1684_5 crossref_primary_10_1021_acsnano_4c11259 crossref_primary_10_1002_jev2_12389 crossref_primary_10_1039_C8BM01310A crossref_primary_10_1002_adhm_202000938 crossref_primary_10_1002_cbic_202200801 crossref_primary_10_1007_s12274_019_2465_x crossref_primary_10_1097_JBR_0000000000000040 crossref_primary_10_1038_s41467_019_12922_y crossref_primary_10_1016_j_nantod_2022_101617 crossref_primary_10_1002_jcb_26099 crossref_primary_10_1038_s41434_021_00282_6 crossref_primary_10_1016_j_tibtech_2017_11_006 crossref_primary_10_1016_j_cclet_2024_109812 crossref_primary_10_1021_jacs_2c07913 crossref_primary_10_1002_mco2_259 crossref_primary_10_1016_j_biomaterials_2019_119358 crossref_primary_10_1088_1361_6528_aafbf9 crossref_primary_10_1021_acs_molpharmaceut_4c00925 crossref_primary_10_1021_acsami_0c16380 crossref_primary_10_1007_s40843_016_5154_4 crossref_primary_10_1016_j_jconrel_2022_05_033 crossref_primary_10_1021_acsami_9b17749 crossref_primary_10_1126_sciadv_abo2954 crossref_primary_10_1016_j_meomic_2022_100015 crossref_primary_10_1186_s12951_025_03254_9 crossref_primary_10_1021_acs_biomac_1c00745 crossref_primary_10_1016_j_jconrel_2017_09_012 crossref_primary_10_1021_acs_biochem_9b00046 crossref_primary_10_1039_C7SC03918B crossref_primary_10_1097_JS9_0000000000001081 crossref_primary_10_1039_D4TB01737D crossref_primary_10_1002_adma_201902791 crossref_primary_10_1016_j_canlet_2019_04_040 crossref_primary_10_1021_acs_chemrev_0c00963 crossref_primary_10_3390_pharmaceutics15061610 crossref_primary_10_1021_acs_accounts_8b00493 crossref_primary_10_1016_j_jconrel_2024_08_030 crossref_primary_10_1038_s41596_021_00642_x crossref_primary_10_3389_fbioe_2022_887463 crossref_primary_10_1016_j_omtn_2018_11_008 crossref_primary_10_1038_s41467_019_10828_3 crossref_primary_10_1039_c6ib00140h crossref_primary_10_1002_anie_201914970 crossref_primary_10_1002_anie_202013904 crossref_primary_10_1021_acsnano_9b09024 crossref_primary_10_1021_jacs_8b01551 crossref_primary_10_1016_j_lfs_2019_116636 crossref_primary_10_1021_acs_nanolett_4c02104 crossref_primary_10_1002_adma_202002932 crossref_primary_10_1039_D1CS00343G crossref_primary_10_1039_D3BM00788J crossref_primary_10_1016_j_bioactmat_2021_03_027 crossref_primary_10_1039_D0TB00207K crossref_primary_10_1016_j_jconrel_2017_01_037 crossref_primary_10_1002_ange_202013904 crossref_primary_10_1021_acs_accounts_1c00500 crossref_primary_10_1002_ange_201914970 crossref_primary_10_1080_17425247_2022_2100342 crossref_primary_10_1016_j_omtm_2018_06_006 crossref_primary_10_1021_acsbiomaterials_1c01532 crossref_primary_10_3389_fcell_2021_718466 crossref_primary_10_1021_acs_langmuir_4c04636 crossref_primary_10_1038_aps_2017_2 crossref_primary_10_1016_j_ymthe_2020_09_028 crossref_primary_10_1016_j_cell_2016_10_044 crossref_primary_10_1002_adhm_201701040 crossref_primary_10_1021_acsami_9b21131 crossref_primary_10_3389_fbioe_2023_1143157 crossref_primary_10_1111_febs_16771 crossref_primary_10_1038_s41578_020_00269_6 crossref_primary_10_1002_adom_202201067 crossref_primary_10_1093_bjd_ljad528 crossref_primary_10_1002_adtp_202100009 crossref_primary_10_1073_pnas_2406654121 crossref_primary_10_1021_jacs_8b10947 crossref_primary_10_1016_j_jacbts_2021_11_004 crossref_primary_10_1039_D0NR03978K crossref_primary_10_1021_acsami_1c23412 crossref_primary_10_1038_nchem_2779 crossref_primary_10_1016_j_cej_2022_135116 crossref_primary_10_1016_j_jconrel_2022_02_005 crossref_primary_10_1007_s10142_024_01314_1 crossref_primary_10_1021_acsbiomaterials_9b00445 crossref_primary_10_1016_j_jiec_2021_07_009 crossref_primary_10_1039_D2QM00039C crossref_primary_10_1002_smll_202100546 crossref_primary_10_1007_s00018_021_03850_6 crossref_primary_10_1088_1757_899X_207_1_012017 crossref_primary_10_1039_D0TB01914C crossref_primary_10_1002_advs_201903432 crossref_primary_10_1126_scitranslmed_adi4830 crossref_primary_10_1002_anie_202008082 crossref_primary_10_1016_j_jacbts_2019_05_008 crossref_primary_10_1038_s41467_023_42280_9 crossref_primary_10_1186_s12951_021_00838_z crossref_primary_10_1039_C9CC00010K crossref_primary_10_1021_acs_bioconjchem_4c00154 crossref_primary_10_1016_j_omtn_2024_102345 crossref_primary_10_1016_j_apsb_2021_05_020 crossref_primary_10_1016_j_biomaterials_2019_119291 crossref_primary_10_1021_acs_molpharmaceut_8b01290 crossref_primary_10_1002_adhm_201800685 crossref_primary_10_1016_j_isci_2019_100789 crossref_primary_10_1021_acs_accounts_3c00597 crossref_primary_10_1007_s12274_018_2099_4 crossref_primary_10_1002_smll_201803061 crossref_primary_10_1002_wnan_1609 crossref_primary_10_1016_j_colsurfb_2025_114528 crossref_primary_10_1021_acs_chemmater_8b04672 crossref_primary_10_1002_advs_201700175 crossref_primary_10_18632_oncotarget_25647 crossref_primary_10_1002_adtp_201900061 crossref_primary_10_1186_s12864_020_07233_2 crossref_primary_10_1126_sciadv_abf1244 crossref_primary_10_1016_j_nantod_2020_100895 crossref_primary_10_1016_j_tibtech_2018_03_009 crossref_primary_10_1039_D3BM00008G crossref_primary_10_1016_j_ddmod_2017_02_009 crossref_primary_10_1039_C9NR01786K crossref_primary_10_1021_acs_biomac_7b00666 crossref_primary_10_1002_cmdc_202100678 crossref_primary_10_1002_wsbm_1380 crossref_primary_10_1016_j_semcdb_2019_04_010 crossref_primary_10_1021_acsami_3c01501 crossref_primary_10_1016_j_addr_2020_07_004 crossref_primary_10_1186_s40169_019_0244_7 crossref_primary_10_1002_adhm_202401793 crossref_primary_10_1002_ange_202401004 crossref_primary_10_3390_pharmaceutics14010137 crossref_primary_10_1002_smll_202409353 crossref_primary_10_1002_adhm_202102600 crossref_primary_10_1016_j_pneurobio_2018_04_008 crossref_primary_10_1016_j_jconrel_2021_09_033 crossref_primary_10_1021_acsbiomaterials_8b00382 crossref_primary_10_1177_1756285617741837 crossref_primary_10_1039_C6BM00580B crossref_primary_10_1021_acsnano_3c03269 crossref_primary_10_1016_j_molmed_2018_07_008 crossref_primary_10_1021_acsami_9b12335 crossref_primary_10_1016_j_foodhyd_2018_12_025 crossref_primary_10_1002_adfm_201906187 crossref_primary_10_1021_acsami_7b04788 crossref_primary_10_1039_D4LC00283K crossref_primary_10_1039_D4NR01917B crossref_primary_10_1208_s12249_024_02834_6 crossref_primary_10_1016_j_ymthe_2022_02_026 crossref_primary_10_1016_j_ymthe_2018_10_002 crossref_primary_10_1039_D2BM01001A crossref_primary_10_1002_advs_202202797 crossref_primary_10_1016_j_addr_2021_113837 crossref_primary_10_1021_acs_chemmater_1c02844 crossref_primary_10_1016_j_omtn_2020_01_018 crossref_primary_10_1080_17425247_2017_1273345 crossref_primary_10_3390_ijms22147456 crossref_primary_10_3389_fnins_2018_00153 crossref_primary_10_1016_j_ymthe_2017_03_012 crossref_primary_10_1186_s13073_017_0450_0 crossref_primary_10_1039_C7NR07999K crossref_primary_10_1038_s41584_023_01067_4 crossref_primary_10_1186_s12951_019_0452_8 crossref_primary_10_1016_j_jconrel_2022_02_035 crossref_primary_10_1016_j_biomaterials_2020_120282 crossref_primary_10_1016_j_tibtech_2020_07_012 crossref_primary_10_1002_mabi_201700201 crossref_primary_10_1021_acssynbio_7b00011 crossref_primary_10_1038_s41434_019_0070_y crossref_primary_10_2147_IDR_S247271 crossref_primary_10_1002_adhm_201800996 crossref_primary_10_1016_j_addr_2024_115446 crossref_primary_10_1002_ange_202004008 crossref_primary_10_1039_D2CC00453D |
Cites_doi | 10.1126/science.1231143 10.1021/bc500320j 10.1002/anie.201407234 10.1101/gr.171264.113 10.1016/j.jbiotec.2015.04.024 10.1039/c0cs00227e 10.1006/mthe.2000.0053 10.1002/adhm.201400039 10.1016/j.cell.2014.05.010 10.1038/nbt.3081 10.1101/gr.171322.113 10.2217/nnm.14.192 10.1021/cb1001153 10.1021/ja071641y 10.1038/nbt1402 10.1023/A:1007504613351 10.1002/anie.201311245 10.1021/sb300023h 10.1016/j.jconrel.2014.08.015 10.1016/j.cell.2015.03.028 10.1038/nmeth.3113 10.1093/nar/27.24.4703 10.1038/nrd2399 10.1038/nchembio.1793 10.1021/bc200572w 10.1126/science.1258096 10.1073/pnas.0807883106 10.1038/nm.3793 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Mar 15, 2016 |
Copyright_xml | – notice: Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Mar 15, 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1520244113 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Virology and AIDS Abstracts MEDLINE Genetics Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Delivery of genome-editing proteins using lipids |
EISSN | 1091-6490 |
EndPage | 2873 |
ExternalDocumentID | PMC4801296 4013079301 26929348 10_1073_pnas_1520244113 113_11_2868 26468661 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM095501 – fundername: Howard Hughes Medical Institute – fundername: National Science Foundation (NSF) grantid: DMR 1452122 – fundername: American Diabetes Association (ADA) grantid: 7-13-JF-61 – fundername: Foundation for the National Institutes of Health (FNIH) grantid: R01 GM095501 – fundername: American Cancer Society (ACS) grantid: RSG-09-174-01-CCE |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX AFOSN CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c566t-36b4ce6bdea4e0befb158f958bc16506362cad92f9f08f31a2b64d61c0efb2c83 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:11:19 EDT 2025 Fri Jul 11 05:25:12 EDT 2025 Thu Jul 10 23:28:03 EDT 2025 Mon Jun 30 07:40:17 EDT 2025 Thu Apr 03 06:57:55 EDT 2025 Tue Jul 01 01:53:41 EDT 2025 Thu Apr 24 23:03:53 EDT 2025 Wed Nov 11 00:29:22 EST 2020 Sun Aug 24 12:10:40 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | genome editing lipid nanoparticle CRISPR/Cas9 protein delivery Cre recombinase |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c566t-36b4ce6bdea4e0befb158f958bc16506362cad92f9f08f31a2b64d61c0efb2c83 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: M.W., Q.W., D.R.L., and Q.X. designed research; M.W., J.A.Z., F.M., S.S., Y.H., and D.P. performed research; M.W., J.A.Z., F.M., H.R., P.D., and X.G. contributed new reagents/analytic tools; M.W., J.A.Z., F.M., S.S., Y.H., D.P., Q.W., I.G., D.R.L., and Q.X. analyzed data; and M.W., J.A.Z., F.M., H.R., D.P., Q.W., I.G., D.R.L., and Q.X. wrote the paper. Edited by Robert Langer, Massachusetts Institute of Technology, Cambridge, MA, and approved February 5, 2016 (received for review October 12, 2015) |
OpenAccessLink | https://www.pnas.org/content/pnas/113/11/2868.full.pdf |
PMID | 26929348 |
PQID | 1779194023 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1805512218 crossref_primary_10_1073_pnas_1520244113 proquest_miscellaneous_1795864691 pubmed_primary_26929348 crossref_citationtrail_10_1073_pnas_1520244113 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4801296 jstor_primary_26468661 pnas_primary_113_11_2868 proquest_journals_1779194023 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-03-15 |
PublicationDateYYYYMMDD | 2016-03-15 |
PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2016 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_14_2 e_1_3_3_11_2 e_1_3_3_10_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 24574196 - Adv Healthc Mater. 2014 Sep;3(9):1398-403 25357182 - Nat Biotechnol. 2015 Jan;33(1):73-80 26003884 - J Biotechnol. 2015 Aug 20;208:44-53 25430774 - Science. 2014 Nov 28;346(6213):1258096 10888302 - Pharm Res. 2000 May;17(5):521-5 10933955 - Mol Ther. 2000 Apr;1(4):366-75 25910214 - Cell. 2015 Apr 23;161(3):674-90 24696461 - Genome Res. 2014 Jun;24(6):1012-9 19307578 - Proc Natl Acad Sci U S A. 2009 Apr 14;106(15):6111-6 25151983 - J Control Release. 2014 Nov 28;194:1-19 24696462 - Genome Res. 2014 Jun;24(6):1020-7 17665911 - J Am Chem Soc. 2007 Aug 22;129(33):10110-2 25654603 - Nat Med. 2015 Feb;21(2):121-31 20545362 - ACS Chem Biol. 2010 Aug 20;5(8):747-52 10572169 - Nucleic Acids Res. 1999 Dec 15;27(24):4703-9 18097458 - Nat Rev Drug Discov. 2008 Jan;7(1):21-39 25287050 - Angew Chem Int Ed Engl. 2014 Dec 1;53(49):13444-8 23287718 - Science. 2013 Feb 15;339(6121):819-23 24906146 - Cell. 2014 Jun 5;157(6):1262-78 22148515 - Bioconjug Chem. 2012 Jan 18;23(1):135-40 25133522 - Bioconjug Chem. 2014 Sep 17;25(9):1602-8 21566806 - Chem Soc Rev. 2011 Jul;40(7):3638-55 25848930 - Nat Chem Biol. 2015 May;11(5):316-8 18438401 - Nat Biotechnol. 2008 May;26(5):561-9 25723096 - Nanomedicine (Lond). 2015 Mar;10(4):643-57 23651337 - ACS Synth Biol. 2012 Sep 21;1(9):403-7 24519972 - Angew Chem Int Ed Engl. 2014 Mar 10;53(11):2893-8 25264777 - Nat Methods. 2014 Oct;11(10):1009-11 |
References_xml | – ident: e_1_3_3_19_2 doi: 10.1126/science.1231143 – ident: e_1_3_3_6_2 doi: 10.1021/bc500320j – ident: e_1_3_3_10_2 doi: 10.1002/anie.201407234 – ident: e_1_3_3_24_2 doi: 10.1101/gr.171264.113 – ident: e_1_3_3_25_2 doi: 10.1016/j.jbiotec.2015.04.024 – ident: e_1_3_3_7_2 doi: 10.1039/c0cs00227e – ident: e_1_3_3_26_2 doi: 10.1006/mthe.2000.0053 – ident: e_1_3_3_14_2 doi: 10.1002/adhm.201400039 – ident: e_1_3_3_3_2 doi: 10.1016/j.cell.2014.05.010 – ident: e_1_3_3_4_2 doi: 10.1038/nbt.3081 – ident: e_1_3_3_23_2 doi: 10.1101/gr.171322.113 – ident: e_1_3_3_9_2 doi: 10.2217/nnm.14.192 – ident: e_1_3_3_15_2 doi: 10.1021/cb1001153 – ident: e_1_3_3_17_2 doi: 10.1021/ja071641y – ident: e_1_3_3_28_2 doi: 10.1038/nbt1402 – ident: e_1_3_3_27_2 doi: 10.1023/A:1007504613351 – ident: e_1_3_3_11_2 doi: 10.1002/anie.201311245 – ident: e_1_3_3_12_2 doi: 10.1021/sb300023h – ident: e_1_3_3_8_2 doi: 10.1016/j.jconrel.2014.08.015 – ident: e_1_3_3_22_2 doi: 10.1016/j.cell.2015.03.028 – ident: e_1_3_3_21_2 doi: 10.1038/nmeth.3113 – ident: e_1_3_3_18_2 doi: 10.1093/nar/27.24.4703 – ident: e_1_3_3_1_2 doi: 10.1038/nrd2399 – ident: e_1_3_3_5_2 doi: 10.1038/nchembio.1793 – ident: e_1_3_3_13_2 doi: 10.1021/bc200572w – ident: e_1_3_3_2_2 doi: 10.1126/science.1258096 – ident: e_1_3_3_16_2 doi: 10.1073/pnas.0807883106 – ident: e_1_3_3_20_2 doi: 10.1038/nm.3793 – reference: 25910214 - Cell. 2015 Apr 23;161(3):674-90 – reference: 25264777 - Nat Methods. 2014 Oct;11(10):1009-11 – reference: 10572169 - Nucleic Acids Res. 1999 Dec 15;27(24):4703-9 – reference: 24519972 - Angew Chem Int Ed Engl. 2014 Mar 10;53(11):2893-8 – reference: 26003884 - J Biotechnol. 2015 Aug 20;208:44-53 – reference: 10933955 - Mol Ther. 2000 Apr;1(4):366-75 – reference: 25287050 - Angew Chem Int Ed Engl. 2014 Dec 1;53(49):13444-8 – reference: 23287718 - Science. 2013 Feb 15;339(6121):819-23 – reference: 17665911 - J Am Chem Soc. 2007 Aug 22;129(33):10110-2 – reference: 23651337 - ACS Synth Biol. 2012 Sep 21;1(9):403-7 – reference: 24574196 - Adv Healthc Mater. 2014 Sep;3(9):1398-403 – reference: 10888302 - Pharm Res. 2000 May;17(5):521-5 – reference: 24906146 - Cell. 2014 Jun 5;157(6):1262-78 – reference: 20545362 - ACS Chem Biol. 2010 Aug 20;5(8):747-52 – reference: 25848930 - Nat Chem Biol. 2015 May;11(5):316-8 – reference: 25723096 - Nanomedicine (Lond). 2015 Mar;10(4):643-57 – reference: 25430774 - Science. 2014 Nov 28;346(6213):1258096 – reference: 18438401 - Nat Biotechnol. 2008 May;26(5):561-9 – reference: 25357182 - Nat Biotechnol. 2015 Jan;33(1):73-80 – reference: 24696462 - Genome Res. 2014 Jun;24(6):1020-7 – reference: 25654603 - Nat Med. 2015 Feb;21(2):121-31 – reference: 24696461 - Genome Res. 2014 Jun;24(6):1012-9 – reference: 18097458 - Nat Rev Drug Discov. 2008 Jan;7(1):21-39 – reference: 25133522 - Bioconjug Chem. 2014 Sep 17;25(9):1602-8 – reference: 22148515 - Bioconjug Chem. 2012 Jan 18;23(1):135-40 – reference: 19307578 - Proc Natl Acad Sci U S A. 2009 Apr 14;106(15):6111-6 – reference: 25151983 - J Control Release. 2014 Nov 28;194:1-19 – reference: 21566806 - Chem Soc Rev. 2011 Jul;40(7):3638-55 |
SSID | ssj0009580 |
Score | 2.6487145 |
Snippet | A central challenge to the development of protein-based therapeutics is the inefficiency of delivery of protein cargo across the mammalian cell membrane,... The therapeutic potential of protein-based genome editing is dependent on the delivery of proteins to appropriate intracellular targets. Here we report that... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2868 |
SubjectTerms | Animals Bacterial Proteins - administration & dosage Bacterial Proteins - genetics Ceramides - chemistry Cholesterol - chemistry CRISPR-Cas Systems Drug Carriers Endocytosis Endonucleases - administration & dosage Endonucleases - genetics Endosomes - metabolism Gene Knockout Techniques Genes, Reporter Genes, Synthetic Genetic Engineering - methods Genomes Green Fluorescent Proteins - biosynthesis Green Fluorescent Proteins - genetics HeLa Cells Humans Hypothalamus - metabolism Integrases - administration & dosage Integrases - genetics Lipids Lipids - administration & dosage Lipids - chemical synthesis Lipids - chemistry Luminescent Proteins - biosynthesis Luminescent Proteins - genetics Mice Molecular Structure Nanoparticles Nanoparticles - administration & dosage Nanoparticles - chemistry Nanoparticles - metabolism Nanoparticles - toxicity Phosphatidylethanolamines - chemistry Physical Sciences Proteins Recombinant Proteins - biosynthesis Recombination, Genetic Ribonucleic acid RNA RNA - genetics Static Electricity Structure-Activity Relationship Thalamus - metabolism |
Title | Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles |
URI | https://www.jstor.org/stable/26468661 http://www.pnas.org/content/113/11/2868.abstract https://www.ncbi.nlm.nih.gov/pubmed/26929348 https://www.proquest.com/docview/1779194023 https://www.proquest.com/docview/1795864691 https://www.proquest.com/docview/1805512218 https://pubmed.ncbi.nlm.nih.gov/PMC4801296 |
Volume | 113 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELZgvPCCGDCWbSAj8TBUpcSJ68SPExqqkKj20Im9RbHjiEpdUq3tC79-d3acpGVDwEOjKrm4le98_mzffUfIRxEZrmVh8GiwDLk2LMxUIkMdiTITKZ-oykZbzMT0mn-7mdz0mzk2u2SjxvrXg3kl_6NVuAd6xSzZf9Bs1yjcgO-gX7iChuH6Vzq-tPwPeJpfmiUGWNjjcqRdvTUhzEobl2reYEXL9WhrtwXUorlDutYFpkwtF6tFOaqLGpbObYTcEK1edbPb2scSzPzm4UWfitL6h_UoHF3N-sLGP9qt6O9-dsT9aeQs9CHA_T4qxtZaGA16LpruEMg4HzbFetjD7QkmMD7LJWiOjXOpgEhCwV1R0M7nugRUb1xs6EIzV2fnN98OzggLEtfFGos2AbbgbSsDTa9urapjAagvcRSee3Ta_tFT8iyGlUVsffmQpzmLPANUmnze-zWkjm7f38ExLpQV-XFB_qG1yn7I7QDDzF-SF-3ig144VR-SJ6Z-RQ69-uh5y0H-6TWZd6ZFvWnRpqK7pkW9aVFrWnRoWtSaFt0xrTfk-uvl_Ms0bAtwhBpQ_iZMhILRK1RpCm4iZSrFJlkFXaQ0A2QvAPyArcm4klWUVQkrYiV4KZiOQDTWWXJEDuqmNseETphJASnqqpCCK5HKkvEiLphO00qLWAZk7Lsz1y07PRZJWeY2SiJNcuzavFdFQM67F1aOmOVx0SOrn04OFgEiA2AakGMr2r3PEvjkaIEBOfNKzNsRD02mqWSSA8wNyIfuMfhjPGQratNsUQb6B9qX7A8yWQQLlRjQdUDeOrsY_DdnXwFJdyymE0A--N0n9eKn5YVHJqhYipNH2zwlz_shekYONndb8w4w9Ua9t6PgHtThzVY |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+delivery+of+genome-editing+proteins+using+bioreducible+lipid+nanoparticles&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wang%2C+Ming&rft.au=Zuris%2C+John+A&rft.au=Meng%2C+Fantao&rft.au=Rees%2C+Holly&rft.date=2016-03-15&rft.eissn=1091-6490&rft.volume=113&rft.issue=11&rft.spage=2868&rft_id=info:doi/10.1073%2Fpnas.1520244113&rft_id=info%3Apmid%2F26929348&rft.externalDocID=26929348 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F113%2F11.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F113%2F11.cover.gif |