Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles

A central challenge to the development of protein-based therapeutics is the inefficiency of delivery of protein cargo across the mammalian cell membrane, including escape from endosomes. Here we report that combining bioreducible lipid nanoparticles with negatively supercharged Cre recombinase or an...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 113; no. 11; pp. 2868 - 2873
Main Authors Wang, Ming, Zuris, John A., Meng, Fantao, Rees, Holly, Sun, Shuo, Deng, Pu, Han, Yong, Gao, Xue, Pouli, Dimitra, Wu, Qi, Georgakoudi, Irene, Liu, David R., Xu, Qiaobing
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 15.03.2016
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A central challenge to the development of protein-based therapeutics is the inefficiency of delivery of protein cargo across the mammalian cell membrane, including escape from endosomes. Here we report that combining bioreducible lipid nanoparticles with negatively supercharged Cre recombinase or anionic Cas9:single-guide (sg)RNA complexes drives the electrostatic assembly of nanoparticles that mediate potent protein delivery and genome editing. These bioreducible lipids efficiently deliver protein cargo into cells, facilitate the escape of protein from endosomes in response to the reductive intracellular environment, and direct protein to its intracellular target sites. The delivery of supercharged Cre protein and Cas9:sgRNA complexed with bioreducible lipids into cultured human cells enables gene recombination and genome editing with efficiencies greater than 70%. In addition, we demonstrate that these lipids are effective for functional protein delivery into mouse brain for gene recombination in vivo. Therefore, the integration of this bioreducible lipid platform with protein engineering has the potential to advance the therapeutic relevance of protein-based genome editing.
AbstractList A central challenge to the development of protein-based therapeutics is the inefficiency of delivery of protein cargo across the mammalian cell membrane, including escape from endosomes. Here we report that combining bioreducible lipid nanoparticles with negatively supercharged Cre recombinase or anionic Cas9:single-guide (sg)RNA complexes drives the electrostatic assembly of nanoparticles that mediate potent protein delivery and genome editing. These bioreducible lipids efficiently deliver protein cargo into cells, facilitate the escape of protein from endosomes in response to the reductive intracellular environment, and direct protein to its intracellular target sites. The delivery of supercharged Cre protein and Cas9:sgRNA complexed with bioreducible lipids into cultured human cells enables gene recombination and genome editing with efficiencies greater than 70%. In addition, we demonstrate that these lipids are effective for functional protein delivery into mouse brain for gene recombination in vivo. Therefore, the integration of this bioreducible lipid platform with protein engineering has the potential to advance the therapeutic relevance of protein-based genome editing.
The therapeutic potential of protein-based genome editing is dependent on the delivery of proteins to appropriate intracellular targets. Here we report that combining bioreducible lipid nanoparticles and negatively supercharged Cre recombinase or anionic Cas9:single-guide (sg)RNA complexes drives the self-assembly of nanoparticles for potent protein delivery and genome editing. The design of bioreducible lipids facilitates the degradation of nanoparticles inside cells in response to the reductive intracellular environment, enhancing the endosome escape of protein. In addition, modulation of protein charge through either genetic fusion of supercharged protein or complexation of Cas9 with its inherently anionic sgRNA allows highly efficient protein delivery and effective genome editing in mammalian cells and functional recombinase delivery in the rodent brain. A central challenge to the development of protein-based therapeutics is the inefficiency of delivery of protein cargo across the mammalian cell membrane, including escape from endosomes. Here we report that combining bioreducible lipid nanoparticles with negatively supercharged Cre recombinase or anionic Cas9:single-guide (sg)RNA complexes drives the electrostatic assembly of nanoparticles that mediate potent protein delivery and genome editing. These bioreducible lipids efficiently deliver protein cargo into cells, facilitate the escape of protein from endosomes in response to the reductive intracellular environment, and direct protein to its intracellular target sites. The delivery of supercharged Cre protein and Cas9:sgRNA complexed with bioreducible lipids into cultured human cells enables gene recombination and genome editing with efficiencies greater than 70%. In addition, we demonstrate that these lipids are effective for functional protein delivery into mouse brain for gene recombination in vivo. Therefore, the integration of this bioreducible lipid platform with protein engineering has the potential to advance the therapeutic relevance of protein-based genome editing.
A central challenge to the development of protein-based therapeutics is the inefficiency of delivery of protein cargo across the mammalian cell membrane, including escape from endosomes. Here we report that combining bioreducible lipid nanoparticles with negatively supercharged Cre recombinase or anionic Cas9:single-guide (sg)RNA complexes drives the electrostatic assembly of nanoparticles that mediate potent protein delivery and genome editing. These bioreducible lipids efficiently deliver protein cargo into cells, facilitate the escape of protein from endosomes in response to the reductive intracellular environment, and direct protein to its intracellular target sites. The delivery of supercharged Cre protein and Cas9:sgRNA complexed with bioreducible lipids into cultured human cells enables gene recombination and genome editing with efficiencies greater than 70%. In addition, we demonstrate that these lipids are effective for functional protein delivery into mouse brain for gene recombination in vivo. Therefore, the integration of this bioreducible lipid platform with protein engineering has the potential to advance the therapeutic relevance of protein-based genome editing.A central challenge to the development of protein-based therapeutics is the inefficiency of delivery of protein cargo across the mammalian cell membrane, including escape from endosomes. Here we report that combining bioreducible lipid nanoparticles with negatively supercharged Cre recombinase or anionic Cas9:single-guide (sg)RNA complexes drives the electrostatic assembly of nanoparticles that mediate potent protein delivery and genome editing. These bioreducible lipids efficiently deliver protein cargo into cells, facilitate the escape of protein from endosomes in response to the reductive intracellular environment, and direct protein to its intracellular target sites. The delivery of supercharged Cre protein and Cas9:sgRNA complexed with bioreducible lipids into cultured human cells enables gene recombination and genome editing with efficiencies greater than 70%. In addition, we demonstrate that these lipids are effective for functional protein delivery into mouse brain for gene recombination in vivo. Therefore, the integration of this bioreducible lipid platform with protein engineering has the potential to advance the therapeutic relevance of protein-based genome editing.
Author Zuris, John A.
Pouli, Dimitra
Rees, Holly
Liu, David R.
Sun, Shuo
Deng, Pu
Gao, Xue
Georgakoudi, Irene
Meng, Fantao
Wang, Ming
Wu, Qi
Xu, Qiaobing
Han, Yong
Author_xml – sequence: 1
  givenname: Ming
  surname: Wang
  fullname: Wang, Ming
  organization: Department of Biomedical Engineering, Tufts University, Medford, MA 02155
– sequence: 2
  givenname: John A.
  surname: Zuris
  fullname: Zuris, John A.
  organization: Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138
– sequence: 3
  givenname: Fantao
  surname: Meng
  fullname: Meng, Fantao
  organization: Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
– sequence: 4
  givenname: Holly
  surname: Rees
  fullname: Rees, Holly
  organization: Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138
– sequence: 5
  givenname: Shuo
  surname: Sun
  fullname: Sun, Shuo
  organization: Department of Biomedical Engineering, Tufts University, Medford, MA 02155
– sequence: 6
  givenname: Pu
  surname: Deng
  fullname: Deng, Pu
  organization: Department of Biomedical Engineering, Tufts University, Medford, MA 02155
– sequence: 7
  givenname: Yong
  surname: Han
  fullname: Han, Yong
  organization: Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
– sequence: 8
  givenname: Xue
  surname: Gao
  fullname: Gao, Xue
  organization: Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138
– sequence: 9
  givenname: Dimitra
  surname: Pouli
  fullname: Pouli, Dimitra
  organization: Department of Biomedical Engineering, Tufts University, Medford, MA 02155
– sequence: 10
  givenname: Qi
  surname: Wu
  fullname: Wu, Qi
  organization: Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
– sequence: 11
  givenname: Irene
  surname: Georgakoudi
  fullname: Georgakoudi, Irene
  organization: Department of Biomedical Engineering, Tufts University, Medford, MA 02155
– sequence: 12
  givenname: David R.
  surname: Liu
  fullname: Liu, David R.
  organization: Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138
– sequence: 13
  givenname: Qiaobing
  surname: Xu
  fullname: Xu, Qiaobing
  organization: Department of Biomedical Engineering, Tufts University, Medford, MA 02155
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26929348$$D View this record in MEDLINE/PubMed
BookMark eNqFksFrFDEUh4NU7LZ69qQOePEybV4mk00ugpS2CgUv9RwymZc1y2wyJjOF_vdm2G2tBfEQQsj3fnwveSfkKMSAhLwFegZ03ZyPweQzaBllnAM0L8gKqIJacEWPyIpStq4lZ_yYnOS8pZSqVtJX5JgJxVTD5YrcXjrnrccwVT0O_g7TfRVdtcEQd1hj7ycfNtWY4oQ-5GrOy7HzMWE_W98NWA1-9H0VTIijSZO3A-bX5KUzQ8Y3h_2U_Li6vL34Wt98v_528eWmtq0QU92IjlsUXY-GI-3QddBKVxQ7C6KlohHMml4xpxyVrgHDOsF7AZYWlFnZnJLP-9xx7nbY29JFMoMek9-ZdK-j8frvm-B_6k2801xSYEqUgE-HgBR_zZgnvfPZ4jCYgHHOGiRtW2AM5P_RdREXXCgo6Mdn6DbOKZSXKNRageKUNYV6_1T-0frhbwrQ7gGbYs4JnbZ-MpOPSy9-0ED1MgN6mQH9ZwZK3fmzuofof1d8OKgsF480NGVpJsXi8m5PbPMU0xNXLqQQ0PwG3D3JTA
CitedBy_id crossref_primary_10_1002_smll_202309431
crossref_primary_10_1088_1361_6528_ac357a
crossref_primary_10_1002_EXP_20210081
crossref_primary_10_3390_ijms252111792
crossref_primary_10_1007_s11033_022_07880_6
crossref_primary_10_1002_smsc_202400192
crossref_primary_10_1002_ange_201708689
crossref_primary_10_1002_admi_201701163
crossref_primary_10_1093_nar_gkx154
crossref_primary_10_1021_jacs_8b11996
crossref_primary_10_1002_ange_202004994
crossref_primary_10_1039_D1CC05999H
crossref_primary_10_1002_adma_202108116
crossref_primary_10_1002_smll_202308574
crossref_primary_10_1016_j_jconrel_2020_12_013
crossref_primary_10_1016_j_biomaterials_2018_03_011
crossref_primary_10_3389_fnmol_2019_00110
crossref_primary_10_3389_fmicb_2024_1393974
crossref_primary_10_1016_j_plana_2022_100001
crossref_primary_10_1021_acsabm_1c01112
crossref_primary_10_1007_s10930_017_9724_z
crossref_primary_10_1016_j_dmpk_2022_100450
crossref_primary_10_1007_s11033_021_06832_w
crossref_primary_10_1002_adtp_201800085
crossref_primary_10_1016_j_actbio_2022_09_046
crossref_primary_10_1208_s12248_018_0267_9
crossref_primary_10_1021_acsami_9b21667
crossref_primary_10_1038_nature25164
crossref_primary_10_1007_s40259_021_00500_y
crossref_primary_10_1007_s12274_023_5978_2
crossref_primary_10_1002_anie_202005644
crossref_primary_10_1073_pnas_2020401118
crossref_primary_10_2147_IJN_S315444
crossref_primary_10_1016_j_addr_2019_11_005
crossref_primary_10_1126_sciadv_abg3217
crossref_primary_10_1016_j_drudis_2021_03_021
crossref_primary_10_3389_fchem_2023_1259435
crossref_primary_10_1021_acs_bioconjchem_8b00753
crossref_primary_10_1021_acs_bioconjchem_8b00750
crossref_primary_10_1039_C9CC00519F
crossref_primary_10_1021_acs_biochem_1c00515
crossref_primary_10_1002_adfm_201910566
crossref_primary_10_1016_j_nantod_2022_101482
crossref_primary_10_1021_acsabm_1c01226
crossref_primary_10_1016_j_xplc_2021_100168
crossref_primary_10_1016_j_eurpolymj_2024_113386
crossref_primary_10_1002_adfm_202402630
crossref_primary_10_1038_s41467_020_16248_y
crossref_primary_10_1007_s00109_020_01893_z
crossref_primary_10_1016_j_apsb_2022_04_013
crossref_primary_10_1016_j_tips_2020_08_005
crossref_primary_10_1016_j_jconrel_2025_113651
crossref_primary_10_1007_s12274_024_6748_5
crossref_primary_10_1007_s11248_024_00404_x
crossref_primary_10_1007_s44258_023_00004_0
crossref_primary_10_1055_s_0044_1785234
crossref_primary_10_1021_acsnano_3c09028
crossref_primary_10_5582_bst_2023_01285
crossref_primary_10_1002_smll_202106746
crossref_primary_10_1126_sciadv_aay3255
crossref_primary_10_4103_1673_5374_346541
crossref_primary_10_1002_adfm_201706710
crossref_primary_10_1038_s41467_022_31791_6
crossref_primary_10_1016_j_tibtech_2023_06_005
crossref_primary_10_1007_s12274_023_6172_2
crossref_primary_10_1016_j_ajps_2022_02_001
crossref_primary_10_3390_mi13020315
crossref_primary_10_1039_D2TB01055K
crossref_primary_10_1002_ange_202005644
crossref_primary_10_1038_s41392_024_01750_2
crossref_primary_10_1016_j_omtm_2024_101203
crossref_primary_10_1039_D2SC02858A
crossref_primary_10_1016_j_jconrel_2020_11_032
crossref_primary_10_1039_D1BM00790D
crossref_primary_10_1002_adhm_202402366
crossref_primary_10_1016_j_biomaterials_2020_120580
crossref_primary_10_1161_ATVBAHA_117_309326
crossref_primary_10_1039_D2SM00863G
crossref_primary_10_1111_wrr_12881
crossref_primary_10_1002_anie_201708689
crossref_primary_10_1016_j_copbio_2018_02_009
crossref_primary_10_1016_j_ymthe_2021_06_003
crossref_primary_10_1002_adma_202110618
crossref_primary_10_1038_s41586_020_1978_5
crossref_primary_10_1016_j_jddst_2021_102728
crossref_primary_10_31083_j_rcm2508286
crossref_primary_10_1039_C8BM00637G
crossref_primary_10_1039_D2NR05421C
crossref_primary_10_1002_anie_202004994
crossref_primary_10_1007_s12033_022_00479_z
crossref_primary_10_1016_j_tig_2021_02_008
crossref_primary_10_1021_acsptsci_3c00397
crossref_primary_10_1126_sciadv_aaw8922
crossref_primary_10_1038_ncomms15790
crossref_primary_10_1021_acs_nanolett_2c02948
crossref_primary_10_1038_s41578_022_00529_7
crossref_primary_10_1016_j_ajps_2022_08_001
crossref_primary_10_3389_fgeed_2022_1030285
crossref_primary_10_1021_acsomega_7b00935
crossref_primary_10_1021_acs_accounts_9b00106
crossref_primary_10_1021_acsbiomaterials_9b01722
crossref_primary_10_3727_105221618X15350366478989
crossref_primary_10_1002_jgm_3721
crossref_primary_10_1126_sciadv_adl4336
crossref_primary_10_3389_fbioe_2022_942325
crossref_primary_10_21769_BioProtoc_3136
crossref_primary_10_1080_1744666X_2022_2060203
crossref_primary_10_1021_acs_bioconjchem_9b00022
crossref_primary_10_1002_cbic_201800390
crossref_primary_10_1016_j_jbiotec_2020_09_013
crossref_primary_10_1002_btm2_10021
crossref_primary_10_1074_jbc_RA118_004554
crossref_primary_10_1186_s12951_022_01570_y
crossref_primary_10_3390_jfb15110324
crossref_primary_10_1016_j_biomaterials_2024_122693
crossref_primary_10_1016_j_cej_2020_124688
crossref_primary_10_1016_j_omtn_2020_04_012
crossref_primary_10_1002_anie_201610209
crossref_primary_10_1124_pr_120_019554
crossref_primary_10_1021_acs_nanolett_1c03293
crossref_primary_10_1002_bmm2_12025
crossref_primary_10_1021_acssynbio_3c00596
crossref_primary_10_1002_anie_202401004
crossref_primary_10_1016_j_mattod_2018_12_003
crossref_primary_10_1038_s41467_020_17029_3
crossref_primary_10_1021_acs_macromol_9b01645
crossref_primary_10_1038_s41587_020_0561_9
crossref_primary_10_1016_j_jcis_2019_10_100
crossref_primary_10_1038_s41551_024_01296_2
crossref_primary_10_1073_pnas_2207841119
crossref_primary_10_3390_ma14123164
crossref_primary_10_1002_bab_2200
crossref_primary_10_1016_j_genrep_2024_102070
crossref_primary_10_1080_17460441_2017_1317244
crossref_primary_10_1021_acsnano_0c04707
crossref_primary_10_1089_crispr_2022_0051
crossref_primary_10_1039_D4BM01440E
crossref_primary_10_1021_acsami_3c07918
crossref_primary_10_1016_j_biomaterials_2024_122559
crossref_primary_10_3389_fonc_2022_864444
crossref_primary_10_1002_cac2_12366
crossref_primary_10_1038_nrd_2016_280
crossref_primary_10_1002_smtd_201700375
crossref_primary_10_1016_j_stem_2021_01_001
crossref_primary_10_2174_0115665232295117240405070809
crossref_primary_10_3390_app9050965
crossref_primary_10_1002_anie_202111213
crossref_primary_10_1039_D3TB00649B
crossref_primary_10_1089_zeb_2017_1511
crossref_primary_10_1126_sciadv_aaz0051
crossref_primary_10_1021_acs_nanolett_1c03031
crossref_primary_10_1002_adtp_201900206
crossref_primary_10_1021_acschembio_7b00777
crossref_primary_10_1039_D1NR04430C
crossref_primary_10_1016_j_biomaterials_2022_121376
crossref_primary_10_1080_09205063_2022_2121592
crossref_primary_10_1021_acs_biochem_3c00614
crossref_primary_10_1038_s41576_018_0059_1
crossref_primary_10_1039_C9NR05233J
crossref_primary_10_1089_hum_2024_020
crossref_primary_10_3892_ijo_2018_4434
crossref_primary_10_1016_j_scib_2023_11_015
crossref_primary_10_1021_acsami_1c09823
crossref_primary_10_1038_s41467_018_05641_3
crossref_primary_10_1080_17425247_2023_2185220
crossref_primary_10_1016_j_mattod_2023_04_011
crossref_primary_10_1021_acs_nanolett_0c03287
crossref_primary_10_1038_s42003_022_03093_6
crossref_primary_10_1038_s41589_018_0080_x
crossref_primary_10_1016_j_omtn_2020_04_005
crossref_primary_10_1038_s41578_024_00725_7
crossref_primary_10_1002_adfm_202107093
crossref_primary_10_1096_fj_201700982R
crossref_primary_10_1038_nbt_3806
crossref_primary_10_1021_jacs_8b10299
crossref_primary_10_1134_S0006297923140080
crossref_primary_10_1038_nbt_3802
crossref_primary_10_1007_s12015_023_10602_5
crossref_primary_10_1016_j_biomaterials_2019_119736
crossref_primary_10_1039_D4PY00298A
crossref_primary_10_1039_D1BM00558H
crossref_primary_10_1126_sciadv_abb4429
crossref_primary_10_1002_advs_201801423
crossref_primary_10_1002_anie_202307664
crossref_primary_10_1016_j_jconrel_2016_11_006
crossref_primary_10_1088_1361_6528_ac842d
crossref_primary_10_1016_j_omtm_2021_11_004
crossref_primary_10_1016_j_matdes_2022_111415
crossref_primary_10_1002_ange_202008082
crossref_primary_10_1016_j_virusres_2017_01_003
crossref_primary_10_1039_D2TB00645F
crossref_primary_10_2147_IJN_S434626
crossref_primary_10_3390_cells9071608
crossref_primary_10_3389_fnmol_2021_789913
crossref_primary_10_1039_D0CC05165A
crossref_primary_10_34133_bmef_0035
crossref_primary_10_1039_D3NR01794J
crossref_primary_10_1158_1535_7163_MCT_18_0554
crossref_primary_10_1038_s41551_017_0158_x
crossref_primary_10_1038_s41591_018_0137_0
crossref_primary_10_1039_C8NR04927K
crossref_primary_10_1021_acs_bioconjchem_6b00676
crossref_primary_10_1007_s42994_019_00014_w
crossref_primary_10_1016_j_jconrel_2016_11_014
crossref_primary_10_1038_s41392_022_01298_z
crossref_primary_10_1021_acsami_1c17868
crossref_primary_10_1002_anie_202004008
crossref_primary_10_1007_s12272_020_01257_8
crossref_primary_10_1021_acsami_9b09605
crossref_primary_10_1002_btpr_2484
crossref_primary_10_1039_D0NR05452F
crossref_primary_10_1126_sciadv_aba2983
crossref_primary_10_2174_0115665232292246240426125504
crossref_primary_10_1007_s13346_023_01320_z
crossref_primary_10_3389_fgeed_2022_830178
crossref_primary_10_1038_s41467_018_04580_3
crossref_primary_10_3389_fonc_2022_978533
crossref_primary_10_1016_j_tibtech_2018_08_010
crossref_primary_10_1016_j_actbio_2022_08_070
crossref_primary_10_1080_10717544_2018_1474964
crossref_primary_10_1021_jacs_8b03584
crossref_primary_10_3390_ph17050612
crossref_primary_10_1186_s12929_024_01080_z
crossref_primary_10_2174_1568026620666201126162945
crossref_primary_10_1016_j_jcis_2024_12_097
crossref_primary_10_1038_s41587_024_02437_3
crossref_primary_10_1002_adma_201905309
crossref_primary_10_2217_nnm_2021_0038
crossref_primary_10_1007_s00438_024_02166_x
crossref_primary_10_1039_C8MD00249E
crossref_primary_10_1039_C8SC00367J
crossref_primary_10_3389_fbioe_2023_1211798
crossref_primary_10_1002_adfm_201703036
crossref_primary_10_1007_s11481_019_09878_7
crossref_primary_10_1016_j_heliyon_2024_e24606
crossref_primary_10_1021_acsanm_3c04192
crossref_primary_10_1016_j_biomaterials_2020_119847
crossref_primary_10_1016_j_addr_2020_03_001
crossref_primary_10_1038_s41467_021_26989_z
crossref_primary_10_3389_fbioe_2022_973326
crossref_primary_10_1016_j_nantod_2022_101555
crossref_primary_10_1002_adfm_202107174
crossref_primary_10_1016_j_addr_2020_03_005
crossref_primary_10_1021_acs_biochem_0c00860
crossref_primary_10_3390_pharmaceutics12121233
crossref_primary_10_1021_acsami_8b09642
crossref_primary_10_1021_jacs_7b13017
crossref_primary_10_2174_0929867325666180608122439
crossref_primary_10_3389_fbioe_2023_1339189
crossref_primary_10_2174_1566523219666190701100556
crossref_primary_10_1021_acsanm_4c04353
crossref_primary_10_1021_acsami_6b11324
crossref_primary_10_12688_f1000research_8915_1
crossref_primary_10_1016_j_blre_2024_101185
crossref_primary_10_1021_acs_chemrev_1c00244
crossref_primary_10_2217_nnm_2016_0393
crossref_primary_10_3390_ijms21249604
crossref_primary_10_1002_cbic_202400685
crossref_primary_10_1039_C6CC03637F
crossref_primary_10_1002_ange_202111213
crossref_primary_10_1016_j_bioorg_2022_105666
crossref_primary_10_1038_gt_2016_72
crossref_primary_10_1124_jpet_119_257287
crossref_primary_10_1016_j_biomaterials_2019_119302
crossref_primary_10_1038_s41467_021_27493_0
crossref_primary_10_1039_D1BM00063B
crossref_primary_10_1039_C8NR07321J
crossref_primary_10_1002_adma_202412366
crossref_primary_10_1021_acs_biomac_9b00783
crossref_primary_10_1016_j_biomaterials_2021_121252
crossref_primary_10_1038_gt_2017_35
crossref_primary_10_1016_j_addr_2024_115346
crossref_primary_10_1021_acs_biomac_4c01795
crossref_primary_10_1039_D0BM00679C
crossref_primary_10_1002_jgm_3377
crossref_primary_10_1039_C7IB00060J
crossref_primary_10_1002_jgm_3015
crossref_primary_10_1002_smll_202005222
crossref_primary_10_1016_j_ymthe_2019_03_003
crossref_primary_10_3390_ijms222011300
crossref_primary_10_1073_pnas_2116271119
crossref_primary_10_1016_j_jconrel_2020_01_056
crossref_primary_10_1016_j_ymthe_2024_07_025
crossref_primary_10_1021_jacs_9b08669
crossref_primary_10_1016_j_progpolymsci_2023_101751
crossref_primary_10_1016_j_biomaterials_2019_119680
crossref_primary_10_1016_j_addr_2020_09_004
crossref_primary_10_1002_adtp_201900041
crossref_primary_10_1021_acs_chemrev_6b00799
crossref_primary_10_1039_C8AY02726A
crossref_primary_10_1016_j_pharmthera_2017_08_007
crossref_primary_10_1039_C9CC04517A
crossref_primary_10_1073_pnas_1712963115
crossref_primary_10_1021_acs_molpharmaceut_1c00916
crossref_primary_10_1021_acsnano_8b07858
crossref_primary_10_1021_acs_bioconjchem_9b00853
crossref_primary_10_1038_s41598_018_34601_6
crossref_primary_10_1016_j_jbiotec_2023_12_003
crossref_primary_10_1002_ange_202307664
crossref_primary_10_1002_anie_202009572
crossref_primary_10_1016_j_actbio_2020_09_027
crossref_primary_10_3390_ijms241411399
crossref_primary_10_1002_adhm_202100847
crossref_primary_10_1016_j_ymthe_2025_01_013
crossref_primary_10_1002_adbi_201600007
crossref_primary_10_1007_s12274_020_2773_1
crossref_primary_10_1186_s13578_019_0298_7
crossref_primary_10_1002_ange_201610209
crossref_primary_10_1002_advs_202207512
crossref_primary_10_1039_D3TB01850D
crossref_primary_10_1016_j_ymeth_2021_06_004
crossref_primary_10_1021_acscentsci_2c00730
crossref_primary_10_1002_smll_202407676
crossref_primary_10_1002_wsbm_1408
crossref_primary_10_1016_j_bioactmat_2021_05_051
crossref_primary_10_1002_adfm_202410931
crossref_primary_10_3390_v14091905
crossref_primary_10_1002_adma_201902575
crossref_primary_10_1016_j_nantod_2024_102283
crossref_primary_10_1002_ange_202009572
crossref_primary_10_1042_ETLS20180146
crossref_primary_10_1016_j_phymed_2021_153830
crossref_primary_10_1016_j_biopha_2022_114065
crossref_primary_10_1002_adbi_202400374
crossref_primary_10_3389_fgeed_2023_1209586
crossref_primary_10_1186_s12936_023_04665_5
crossref_primary_10_1002_cbic_202400481
crossref_primary_10_1002_cbic_201800629
crossref_primary_10_7554_eLife_33761
crossref_primary_10_1093_nar_gkaf105
crossref_primary_10_1007_s11426_023_1684_5
crossref_primary_10_1021_acsnano_4c11259
crossref_primary_10_1002_jev2_12389
crossref_primary_10_1039_C8BM01310A
crossref_primary_10_1002_adhm_202000938
crossref_primary_10_1002_cbic_202200801
crossref_primary_10_1007_s12274_019_2465_x
crossref_primary_10_1097_JBR_0000000000000040
crossref_primary_10_1038_s41467_019_12922_y
crossref_primary_10_1016_j_nantod_2022_101617
crossref_primary_10_1002_jcb_26099
crossref_primary_10_1038_s41434_021_00282_6
crossref_primary_10_1016_j_tibtech_2017_11_006
crossref_primary_10_1016_j_cclet_2024_109812
crossref_primary_10_1021_jacs_2c07913
crossref_primary_10_1002_mco2_259
crossref_primary_10_1016_j_biomaterials_2019_119358
crossref_primary_10_1088_1361_6528_aafbf9
crossref_primary_10_1021_acs_molpharmaceut_4c00925
crossref_primary_10_1021_acsami_0c16380
crossref_primary_10_1007_s40843_016_5154_4
crossref_primary_10_1016_j_jconrel_2022_05_033
crossref_primary_10_1021_acsami_9b17749
crossref_primary_10_1126_sciadv_abo2954
crossref_primary_10_1016_j_meomic_2022_100015
crossref_primary_10_1186_s12951_025_03254_9
crossref_primary_10_1021_acs_biomac_1c00745
crossref_primary_10_1016_j_jconrel_2017_09_012
crossref_primary_10_1021_acs_biochem_9b00046
crossref_primary_10_1039_C7SC03918B
crossref_primary_10_1097_JS9_0000000000001081
crossref_primary_10_1039_D4TB01737D
crossref_primary_10_1002_adma_201902791
crossref_primary_10_1016_j_canlet_2019_04_040
crossref_primary_10_1021_acs_chemrev_0c00963
crossref_primary_10_3390_pharmaceutics15061610
crossref_primary_10_1021_acs_accounts_8b00493
crossref_primary_10_1016_j_jconrel_2024_08_030
crossref_primary_10_1038_s41596_021_00642_x
crossref_primary_10_3389_fbioe_2022_887463
crossref_primary_10_1016_j_omtn_2018_11_008
crossref_primary_10_1038_s41467_019_10828_3
crossref_primary_10_1039_c6ib00140h
crossref_primary_10_1002_anie_201914970
crossref_primary_10_1002_anie_202013904
crossref_primary_10_1021_acsnano_9b09024
crossref_primary_10_1021_jacs_8b01551
crossref_primary_10_1016_j_lfs_2019_116636
crossref_primary_10_1021_acs_nanolett_4c02104
crossref_primary_10_1002_adma_202002932
crossref_primary_10_1039_D1CS00343G
crossref_primary_10_1039_D3BM00788J
crossref_primary_10_1016_j_bioactmat_2021_03_027
crossref_primary_10_1039_D0TB00207K
crossref_primary_10_1016_j_jconrel_2017_01_037
crossref_primary_10_1002_ange_202013904
crossref_primary_10_1021_acs_accounts_1c00500
crossref_primary_10_1002_ange_201914970
crossref_primary_10_1080_17425247_2022_2100342
crossref_primary_10_1016_j_omtm_2018_06_006
crossref_primary_10_1021_acsbiomaterials_1c01532
crossref_primary_10_3389_fcell_2021_718466
crossref_primary_10_1021_acs_langmuir_4c04636
crossref_primary_10_1038_aps_2017_2
crossref_primary_10_1016_j_ymthe_2020_09_028
crossref_primary_10_1016_j_cell_2016_10_044
crossref_primary_10_1002_adhm_201701040
crossref_primary_10_1021_acsami_9b21131
crossref_primary_10_3389_fbioe_2023_1143157
crossref_primary_10_1111_febs_16771
crossref_primary_10_1038_s41578_020_00269_6
crossref_primary_10_1002_adom_202201067
crossref_primary_10_1093_bjd_ljad528
crossref_primary_10_1002_adtp_202100009
crossref_primary_10_1073_pnas_2406654121
crossref_primary_10_1021_jacs_8b10947
crossref_primary_10_1016_j_jacbts_2021_11_004
crossref_primary_10_1039_D0NR03978K
crossref_primary_10_1021_acsami_1c23412
crossref_primary_10_1038_nchem_2779
crossref_primary_10_1016_j_cej_2022_135116
crossref_primary_10_1016_j_jconrel_2022_02_005
crossref_primary_10_1007_s10142_024_01314_1
crossref_primary_10_1021_acsbiomaterials_9b00445
crossref_primary_10_1016_j_jiec_2021_07_009
crossref_primary_10_1039_D2QM00039C
crossref_primary_10_1002_smll_202100546
crossref_primary_10_1007_s00018_021_03850_6
crossref_primary_10_1088_1757_899X_207_1_012017
crossref_primary_10_1039_D0TB01914C
crossref_primary_10_1002_advs_201903432
crossref_primary_10_1126_scitranslmed_adi4830
crossref_primary_10_1002_anie_202008082
crossref_primary_10_1016_j_jacbts_2019_05_008
crossref_primary_10_1038_s41467_023_42280_9
crossref_primary_10_1186_s12951_021_00838_z
crossref_primary_10_1039_C9CC00010K
crossref_primary_10_1021_acs_bioconjchem_4c00154
crossref_primary_10_1016_j_omtn_2024_102345
crossref_primary_10_1016_j_apsb_2021_05_020
crossref_primary_10_1016_j_biomaterials_2019_119291
crossref_primary_10_1021_acs_molpharmaceut_8b01290
crossref_primary_10_1002_adhm_201800685
crossref_primary_10_1016_j_isci_2019_100789
crossref_primary_10_1021_acs_accounts_3c00597
crossref_primary_10_1007_s12274_018_2099_4
crossref_primary_10_1002_smll_201803061
crossref_primary_10_1002_wnan_1609
crossref_primary_10_1016_j_colsurfb_2025_114528
crossref_primary_10_1021_acs_chemmater_8b04672
crossref_primary_10_1002_advs_201700175
crossref_primary_10_18632_oncotarget_25647
crossref_primary_10_1002_adtp_201900061
crossref_primary_10_1186_s12864_020_07233_2
crossref_primary_10_1126_sciadv_abf1244
crossref_primary_10_1016_j_nantod_2020_100895
crossref_primary_10_1016_j_tibtech_2018_03_009
crossref_primary_10_1039_D3BM00008G
crossref_primary_10_1016_j_ddmod_2017_02_009
crossref_primary_10_1039_C9NR01786K
crossref_primary_10_1021_acs_biomac_7b00666
crossref_primary_10_1002_cmdc_202100678
crossref_primary_10_1002_wsbm_1380
crossref_primary_10_1016_j_semcdb_2019_04_010
crossref_primary_10_1021_acsami_3c01501
crossref_primary_10_1016_j_addr_2020_07_004
crossref_primary_10_1186_s40169_019_0244_7
crossref_primary_10_1002_adhm_202401793
crossref_primary_10_1002_ange_202401004
crossref_primary_10_3390_pharmaceutics14010137
crossref_primary_10_1002_smll_202409353
crossref_primary_10_1002_adhm_202102600
crossref_primary_10_1016_j_pneurobio_2018_04_008
crossref_primary_10_1016_j_jconrel_2021_09_033
crossref_primary_10_1021_acsbiomaterials_8b00382
crossref_primary_10_1177_1756285617741837
crossref_primary_10_1039_C6BM00580B
crossref_primary_10_1021_acsnano_3c03269
crossref_primary_10_1016_j_molmed_2018_07_008
crossref_primary_10_1021_acsami_9b12335
crossref_primary_10_1016_j_foodhyd_2018_12_025
crossref_primary_10_1002_adfm_201906187
crossref_primary_10_1021_acsami_7b04788
crossref_primary_10_1039_D4LC00283K
crossref_primary_10_1039_D4NR01917B
crossref_primary_10_1208_s12249_024_02834_6
crossref_primary_10_1016_j_ymthe_2022_02_026
crossref_primary_10_1016_j_ymthe_2018_10_002
crossref_primary_10_1039_D2BM01001A
crossref_primary_10_1002_advs_202202797
crossref_primary_10_1016_j_addr_2021_113837
crossref_primary_10_1021_acs_chemmater_1c02844
crossref_primary_10_1016_j_omtn_2020_01_018
crossref_primary_10_1080_17425247_2017_1273345
crossref_primary_10_3390_ijms22147456
crossref_primary_10_3389_fnins_2018_00153
crossref_primary_10_1016_j_ymthe_2017_03_012
crossref_primary_10_1186_s13073_017_0450_0
crossref_primary_10_1039_C7NR07999K
crossref_primary_10_1038_s41584_023_01067_4
crossref_primary_10_1186_s12951_019_0452_8
crossref_primary_10_1016_j_jconrel_2022_02_035
crossref_primary_10_1016_j_biomaterials_2020_120282
crossref_primary_10_1016_j_tibtech_2020_07_012
crossref_primary_10_1002_mabi_201700201
crossref_primary_10_1021_acssynbio_7b00011
crossref_primary_10_1038_s41434_019_0070_y
crossref_primary_10_2147_IDR_S247271
crossref_primary_10_1002_adhm_201800996
crossref_primary_10_1016_j_addr_2024_115446
crossref_primary_10_1002_ange_202004008
crossref_primary_10_1039_D2CC00453D
Cites_doi 10.1126/science.1231143
10.1021/bc500320j
10.1002/anie.201407234
10.1101/gr.171264.113
10.1016/j.jbiotec.2015.04.024
10.1039/c0cs00227e
10.1006/mthe.2000.0053
10.1002/adhm.201400039
10.1016/j.cell.2014.05.010
10.1038/nbt.3081
10.1101/gr.171322.113
10.2217/nnm.14.192
10.1021/cb1001153
10.1021/ja071641y
10.1038/nbt1402
10.1023/A:1007504613351
10.1002/anie.201311245
10.1021/sb300023h
10.1016/j.jconrel.2014.08.015
10.1016/j.cell.2015.03.028
10.1038/nmeth.3113
10.1093/nar/27.24.4703
10.1038/nrd2399
10.1038/nchembio.1793
10.1021/bc200572w
10.1126/science.1258096
10.1073/pnas.0807883106
10.1038/nm.3793
ContentType Journal Article
Copyright Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Mar 15, 2016
Copyright_xml – notice: Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Mar 15, 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1520244113
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
Virology and AIDS Abstracts
MEDLINE
Genetics Abstracts

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Delivery of genome-editing proteins using lipids
EISSN 1091-6490
EndPage 2873
ExternalDocumentID PMC4801296
4013079301
26929348
10_1073_pnas_1520244113
113_11_2868
26468661
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM095501
– fundername: Howard Hughes Medical Institute
– fundername: National Science Foundation (NSF)
  grantid: DMR 1452122
– fundername: American Diabetes Association (ADA)
  grantid: 7-13-JF-61
– fundername: Foundation for the National Institutes of Health (FNIH)
  grantid: R01 GM095501
– fundername: American Cancer Society (ACS)
  grantid: RSG-09-174-01-CCE
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
AFOSN
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c566t-36b4ce6bdea4e0befb158f958bc16506362cad92f9f08f31a2b64d61c0efb2c83
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:11:19 EDT 2025
Fri Jul 11 05:25:12 EDT 2025
Thu Jul 10 23:28:03 EDT 2025
Mon Jun 30 07:40:17 EDT 2025
Thu Apr 03 06:57:55 EDT 2025
Tue Jul 01 01:53:41 EDT 2025
Thu Apr 24 23:03:53 EDT 2025
Wed Nov 11 00:29:22 EST 2020
Sun Aug 24 12:10:40 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords genome editing
lipid nanoparticle
CRISPR/Cas9
protein delivery
Cre recombinase
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c566t-36b4ce6bdea4e0befb158f958bc16506362cad92f9f08f31a2b64d61c0efb2c83
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: M.W., Q.W., D.R.L., and Q.X. designed research; M.W., J.A.Z., F.M., S.S., Y.H., and D.P. performed research; M.W., J.A.Z., F.M., H.R., P.D., and X.G. contributed new reagents/analytic tools; M.W., J.A.Z., F.M., S.S., Y.H., D.P., Q.W., I.G., D.R.L., and Q.X. analyzed data; and M.W., J.A.Z., F.M., H.R., D.P., Q.W., I.G., D.R.L., and Q.X. wrote the paper.
Edited by Robert Langer, Massachusetts Institute of Technology, Cambridge, MA, and approved February 5, 2016 (received for review October 12, 2015)
OpenAccessLink https://www.pnas.org/content/pnas/113/11/2868.full.pdf
PMID 26929348
PQID 1779194023
PQPubID 42026
PageCount 6
ParticipantIDs proquest_miscellaneous_1805512218
crossref_primary_10_1073_pnas_1520244113
proquest_miscellaneous_1795864691
pubmed_primary_26929348
crossref_citationtrail_10_1073_pnas_1520244113
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4801296
jstor_primary_26468661
pnas_primary_113_11_2868
proquest_journals_1779194023
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-03-15
PublicationDateYYYYMMDD 2016-03-15
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2016
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_11_2
e_1_3_3_10_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
24574196 - Adv Healthc Mater. 2014 Sep;3(9):1398-403
25357182 - Nat Biotechnol. 2015 Jan;33(1):73-80
26003884 - J Biotechnol. 2015 Aug 20;208:44-53
25430774 - Science. 2014 Nov 28;346(6213):1258096
10888302 - Pharm Res. 2000 May;17(5):521-5
10933955 - Mol Ther. 2000 Apr;1(4):366-75
25910214 - Cell. 2015 Apr 23;161(3):674-90
24696461 - Genome Res. 2014 Jun;24(6):1012-9
19307578 - Proc Natl Acad Sci U S A. 2009 Apr 14;106(15):6111-6
25151983 - J Control Release. 2014 Nov 28;194:1-19
24696462 - Genome Res. 2014 Jun;24(6):1020-7
17665911 - J Am Chem Soc. 2007 Aug 22;129(33):10110-2
25654603 - Nat Med. 2015 Feb;21(2):121-31
20545362 - ACS Chem Biol. 2010 Aug 20;5(8):747-52
10572169 - Nucleic Acids Res. 1999 Dec 15;27(24):4703-9
18097458 - Nat Rev Drug Discov. 2008 Jan;7(1):21-39
25287050 - Angew Chem Int Ed Engl. 2014 Dec 1;53(49):13444-8
23287718 - Science. 2013 Feb 15;339(6121):819-23
24906146 - Cell. 2014 Jun 5;157(6):1262-78
22148515 - Bioconjug Chem. 2012 Jan 18;23(1):135-40
25133522 - Bioconjug Chem. 2014 Sep 17;25(9):1602-8
21566806 - Chem Soc Rev. 2011 Jul;40(7):3638-55
25848930 - Nat Chem Biol. 2015 May;11(5):316-8
18438401 - Nat Biotechnol. 2008 May;26(5):561-9
25723096 - Nanomedicine (Lond). 2015 Mar;10(4):643-57
23651337 - ACS Synth Biol. 2012 Sep 21;1(9):403-7
24519972 - Angew Chem Int Ed Engl. 2014 Mar 10;53(11):2893-8
25264777 - Nat Methods. 2014 Oct;11(10):1009-11
References_xml – ident: e_1_3_3_19_2
  doi: 10.1126/science.1231143
– ident: e_1_3_3_6_2
  doi: 10.1021/bc500320j
– ident: e_1_3_3_10_2
  doi: 10.1002/anie.201407234
– ident: e_1_3_3_24_2
  doi: 10.1101/gr.171264.113
– ident: e_1_3_3_25_2
  doi: 10.1016/j.jbiotec.2015.04.024
– ident: e_1_3_3_7_2
  doi: 10.1039/c0cs00227e
– ident: e_1_3_3_26_2
  doi: 10.1006/mthe.2000.0053
– ident: e_1_3_3_14_2
  doi: 10.1002/adhm.201400039
– ident: e_1_3_3_3_2
  doi: 10.1016/j.cell.2014.05.010
– ident: e_1_3_3_4_2
  doi: 10.1038/nbt.3081
– ident: e_1_3_3_23_2
  doi: 10.1101/gr.171322.113
– ident: e_1_3_3_9_2
  doi: 10.2217/nnm.14.192
– ident: e_1_3_3_15_2
  doi: 10.1021/cb1001153
– ident: e_1_3_3_17_2
  doi: 10.1021/ja071641y
– ident: e_1_3_3_28_2
  doi: 10.1038/nbt1402
– ident: e_1_3_3_27_2
  doi: 10.1023/A:1007504613351
– ident: e_1_3_3_11_2
  doi: 10.1002/anie.201311245
– ident: e_1_3_3_12_2
  doi: 10.1021/sb300023h
– ident: e_1_3_3_8_2
  doi: 10.1016/j.jconrel.2014.08.015
– ident: e_1_3_3_22_2
  doi: 10.1016/j.cell.2015.03.028
– ident: e_1_3_3_21_2
  doi: 10.1038/nmeth.3113
– ident: e_1_3_3_18_2
  doi: 10.1093/nar/27.24.4703
– ident: e_1_3_3_1_2
  doi: 10.1038/nrd2399
– ident: e_1_3_3_5_2
  doi: 10.1038/nchembio.1793
– ident: e_1_3_3_13_2
  doi: 10.1021/bc200572w
– ident: e_1_3_3_2_2
  doi: 10.1126/science.1258096
– ident: e_1_3_3_16_2
  doi: 10.1073/pnas.0807883106
– ident: e_1_3_3_20_2
  doi: 10.1038/nm.3793
– reference: 25910214 - Cell. 2015 Apr 23;161(3):674-90
– reference: 25264777 - Nat Methods. 2014 Oct;11(10):1009-11
– reference: 10572169 - Nucleic Acids Res. 1999 Dec 15;27(24):4703-9
– reference: 24519972 - Angew Chem Int Ed Engl. 2014 Mar 10;53(11):2893-8
– reference: 26003884 - J Biotechnol. 2015 Aug 20;208:44-53
– reference: 10933955 - Mol Ther. 2000 Apr;1(4):366-75
– reference: 25287050 - Angew Chem Int Ed Engl. 2014 Dec 1;53(49):13444-8
– reference: 23287718 - Science. 2013 Feb 15;339(6121):819-23
– reference: 17665911 - J Am Chem Soc. 2007 Aug 22;129(33):10110-2
– reference: 23651337 - ACS Synth Biol. 2012 Sep 21;1(9):403-7
– reference: 24574196 - Adv Healthc Mater. 2014 Sep;3(9):1398-403
– reference: 10888302 - Pharm Res. 2000 May;17(5):521-5
– reference: 24906146 - Cell. 2014 Jun 5;157(6):1262-78
– reference: 20545362 - ACS Chem Biol. 2010 Aug 20;5(8):747-52
– reference: 25848930 - Nat Chem Biol. 2015 May;11(5):316-8
– reference: 25723096 - Nanomedicine (Lond). 2015 Mar;10(4):643-57
– reference: 25430774 - Science. 2014 Nov 28;346(6213):1258096
– reference: 18438401 - Nat Biotechnol. 2008 May;26(5):561-9
– reference: 25357182 - Nat Biotechnol. 2015 Jan;33(1):73-80
– reference: 24696462 - Genome Res. 2014 Jun;24(6):1020-7
– reference: 25654603 - Nat Med. 2015 Feb;21(2):121-31
– reference: 24696461 - Genome Res. 2014 Jun;24(6):1012-9
– reference: 18097458 - Nat Rev Drug Discov. 2008 Jan;7(1):21-39
– reference: 25133522 - Bioconjug Chem. 2014 Sep 17;25(9):1602-8
– reference: 22148515 - Bioconjug Chem. 2012 Jan 18;23(1):135-40
– reference: 19307578 - Proc Natl Acad Sci U S A. 2009 Apr 14;106(15):6111-6
– reference: 25151983 - J Control Release. 2014 Nov 28;194:1-19
– reference: 21566806 - Chem Soc Rev. 2011 Jul;40(7):3638-55
SSID ssj0009580
Score 2.6487145
Snippet A central challenge to the development of protein-based therapeutics is the inefficiency of delivery of protein cargo across the mammalian cell membrane,...
The therapeutic potential of protein-based genome editing is dependent on the delivery of proteins to appropriate intracellular targets. Here we report that...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2868
SubjectTerms Animals
Bacterial Proteins - administration & dosage
Bacterial Proteins - genetics
Ceramides - chemistry
Cholesterol - chemistry
CRISPR-Cas Systems
Drug Carriers
Endocytosis
Endonucleases - administration & dosage
Endonucleases - genetics
Endosomes - metabolism
Gene Knockout Techniques
Genes, Reporter
Genes, Synthetic
Genetic Engineering - methods
Genomes
Green Fluorescent Proteins - biosynthesis
Green Fluorescent Proteins - genetics
HeLa Cells
Humans
Hypothalamus - metabolism
Integrases - administration & dosage
Integrases - genetics
Lipids
Lipids - administration & dosage
Lipids - chemical synthesis
Lipids - chemistry
Luminescent Proteins - biosynthesis
Luminescent Proteins - genetics
Mice
Molecular Structure
Nanoparticles
Nanoparticles - administration & dosage
Nanoparticles - chemistry
Nanoparticles - metabolism
Nanoparticles - toxicity
Phosphatidylethanolamines - chemistry
Physical Sciences
Proteins
Recombinant Proteins - biosynthesis
Recombination, Genetic
Ribonucleic acid
RNA
RNA - genetics
Static Electricity
Structure-Activity Relationship
Thalamus - metabolism
Title Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles
URI https://www.jstor.org/stable/26468661
http://www.pnas.org/content/113/11/2868.abstract
https://www.ncbi.nlm.nih.gov/pubmed/26929348
https://www.proquest.com/docview/1779194023
https://www.proquest.com/docview/1795864691
https://www.proquest.com/docview/1805512218
https://pubmed.ncbi.nlm.nih.gov/PMC4801296
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELZgvPCCGDCWbSAj8TBUpcSJ68SPExqqkKj20Im9RbHjiEpdUq3tC79-d3acpGVDwEOjKrm4le98_mzffUfIRxEZrmVh8GiwDLk2LMxUIkMdiTITKZ-oykZbzMT0mn-7mdz0mzk2u2SjxvrXg3kl_6NVuAd6xSzZf9Bs1yjcgO-gX7iChuH6Vzq-tPwPeJpfmiUGWNjjcqRdvTUhzEobl2reYEXL9WhrtwXUorlDutYFpkwtF6tFOaqLGpbObYTcEK1edbPb2scSzPzm4UWfitL6h_UoHF3N-sLGP9qt6O9-dsT9aeQs9CHA_T4qxtZaGA16LpruEMg4HzbFetjD7QkmMD7LJWiOjXOpgEhCwV1R0M7nugRUb1xs6EIzV2fnN98OzggLEtfFGos2AbbgbSsDTa9urapjAagvcRSee3Ta_tFT8iyGlUVsffmQpzmLPANUmnze-zWkjm7f38ExLpQV-XFB_qG1yn7I7QDDzF-SF-3ig144VR-SJ6Z-RQ69-uh5y0H-6TWZd6ZFvWnRpqK7pkW9aVFrWnRoWtSaFt0xrTfk-uvl_Ms0bAtwhBpQ_iZMhILRK1RpCm4iZSrFJlkFXaQ0A2QvAPyArcm4klWUVQkrYiV4KZiOQDTWWXJEDuqmNseETphJASnqqpCCK5HKkvEiLphO00qLWAZk7Lsz1y07PRZJWeY2SiJNcuzavFdFQM67F1aOmOVx0SOrn04OFgEiA2AakGMr2r3PEvjkaIEBOfNKzNsRD02mqWSSA8wNyIfuMfhjPGQratNsUQb6B9qX7A8yWQQLlRjQdUDeOrsY_DdnXwFJdyymE0A--N0n9eKn5YVHJqhYipNH2zwlz_shekYONndb8w4w9Ua9t6PgHtThzVY
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+delivery+of+genome-editing+proteins+using+bioreducible+lipid+nanoparticles&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wang%2C+Ming&rft.au=Zuris%2C+John+A&rft.au=Meng%2C+Fantao&rft.au=Rees%2C+Holly&rft.date=2016-03-15&rft.eissn=1091-6490&rft.volume=113&rft.issue=11&rft.spage=2868&rft_id=info:doi/10.1073%2Fpnas.1520244113&rft_id=info%3Apmid%2F26929348&rft.externalDocID=26929348
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F113%2F11.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F113%2F11.cover.gif