Generation of Induced Pluripotent Stem Cells from Human Amniotic Fluid Cells by Reprogramming with Two Factors in Feeder-free Conditions
The ectopic expression of transcription factors for reprogramming human somatic cells to a pluripotent state represents a valuable resource for the development of in vitro-based models for human disease and has great potential in regenerative therapies. However, the majority of studies have used ski...
Saved in:
Published in | Journal of Reproduction and Development Vol. 59; no. 1; pp. 72 - 77 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Japan
THE SOCIETY FOR REPRODUCTION AND DEVELOPMENT
2013
The Society for Reproduction and Development |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The ectopic expression of transcription factors for reprogramming human somatic cells to a pluripotent state represents a valuable resource for the development of in vitro-based models for human disease and has great potential in regenerative therapies. However, the majority of studies have used skin fibroblasts to generate induced pluripotent stem cells (iPSCs) that typically require the enforced expression of several transcription factors, thereby posing a mutagenesis risk by the insertion of viral transgenes. To reduce this risk, iPSCs have been generated with OCT4 and KLF4 from human neural stem cells that endogenously express the remaining reprogramming factors. However, human neural stem cells are rare and difficult to obtain. Here, we show that iPSCs can be generated from human amniotic fluid cells (hAFCs) with two transcription factors: OCT4 and KLF4. Furthermore, iPSCs can be readily derived from hAFCs in a feeder-free conditions, thereby eliminating the potential variability caused by using feeder cells. Our results indicate that hAFCs represent an accessible source of cells that can be reprogrammed into pluripotent stem cells with two Yamanaka factors. Therefore, hAFCs may become a preferred cell type in the future for safe reprogramming without any exogenous genetic material. |
---|---|
AbstractList | The ectopic expression of transcription factors for reprogramming human somatic cells to
a pluripotent state represents a valuable resource for the development of
in
vitro
-based models for human disease and has great potential in regenerative
therapies. However, the majority of studies have used skin fibroblasts to generate induced
pluripotent stem cells (iPSCs) that typically require the enforced expression of several
transcription factors, thereby posing a mutagenesis risk by the insertion of viral
transgenes. To reduce this risk, iPSCs have been generated with OCT4 and KLF4 from human
neural stem cells that endogenously express the remaining reprogramming factors. However,
human neural stem cells are rare and difficult to obtain. Here, we show that iPSCs can be
generated from human amniotic fluid cells (hAFCs) with two transcription factors: OCT4 and
KLF4. Furthermore, iPSCs can be readily derived from hAFCs in a feeder-free conditions,
thereby eliminating the potential variability caused by using feeder cells. Our results
indicate that hAFCs represent an accessible source of cells that can be reprogrammed into
pluripotent stem cells with two Yamanaka factors. Therefore, hAFCs may become a preferred
cell type in the future for safe reprogramming without any exogenous genetic material. The ectopic expression of transcription factors for reprogramming human somatic cells to a pluripotent state represents a valuable resource for the development of in vitro-based models for human disease and has great potential in regenerative therapies. However, the majority of studies have used skin fibroblasts to generate induced pluripotent stem cells (iPSCs) that typically require the enforced expression of several transcription factors, thereby posing a mutagenesis risk by the insertion of viral transgenes. To reduce this risk, iPSCs have been generated with OCT4 and KLF4 from human neural stem cells that endogenously express the remaining reprogramming factors. However, human neural stem cells are rare and difficult to obtain. Here, we show that iPSCs can be generated from human amniotic fluid cells (hAFCs) with two transcription factors: OCT4 and KLF4. Furthermore, iPSCs can be readily derived from hAFCs in a feeder-free conditions, thereby eliminating the potential variability caused by using feeder cells. Our results indicate that hAFCs represent an accessible source of cells that can be reprogrammed into pluripotent stem cells with two Yamanaka factors. Therefore, hAFCs may become a preferred cell type in the future for safe reprogramming without any exogenous genetic material. |
Author | SUN, Xiaofang YU, Yanhong LI, Qing FAN, Yong |
Author_xml | – sequence: 1 fullname: LI, Qing organization: Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangdong, China – sequence: 2 fullname: FAN, Yong organization: Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangdong, China – sequence: 3 fullname: SUN, Xiaofang organization: Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangdong, China – sequence: 4 fullname: YU, Yanhong organization: Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangdong, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23138118$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtv1DAUhS1URB-wY428ZEGKH0kab5DKiGkrVQJBWVuOfT3jUWIPtkPVf8DPxulMR4DExpZ8vnuP7z2n6MgHDwi9puScspa930RzzghlFSXiGTqhvO6quibkCJ0QQduq62h3jE5T2hDCWdPWL9Ax45R3lHYn6NcVeIgqu-BxsPjGm0mDwV-GKbptyOAz_pZhxAsYhoRtDCO-nkbl8eXoXchO4-UwObPX-wf8FbYxrKIaR-dX-N7lNb67D3ipdA4xYefxEsBArGwEwIvgjZvN00v03Kohwav9fYa-Lz_dLa6r289XN4vL20o3bZsrzm1te-j6-sK2F5wB7xW3mvJGsUYrJcrkWmtCiLHccNFoSnULTHSq7ntr-Bn6sOu7nfoRjC4TRjXIbXSjig8yKCf_Vrxby1X4KbmoOWNNafB23yCGHxOkLEeXdBlfeQhTkrSZty-YmNE3f3odTJ7WX4B3O0DHkFIEe0AokXO6sqQr53TLgyg4-wfXLj9mV37qhv8VfdwVbVJWKzg4qFjSG-ARboSk8_FUdBD1WkUJnv8GPrjDMg |
CitedBy_id | crossref_primary_10_1016_j_placenta_2017_01_121 crossref_primary_10_1186_s13287_021_02212_0 crossref_primary_10_3390_ijms20092236 crossref_primary_10_3390_ijms17040607 crossref_primary_10_3892_etm_2014_1959 crossref_primary_10_1089_scd_2016_0352 crossref_primary_10_1016_j_jpedsurg_2014_04_006 crossref_primary_10_1538_expanim_15_0031 crossref_primary_10_3727_096368916X692014 crossref_primary_10_3390_ijms161226119 |
ContentType | Journal Article |
Copyright | 2013 Society for Reproduction and Development 2013 Society for Reproduction and Development 2013 |
Copyright_xml | – notice: 2013 Society for Reproduction and Development – notice: 2013 Society for Reproduction and Development 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7U9 H94 5PM |
DOI | 10.1262/jrd.2012-109 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Virology and AIDS Abstracts AIDS and Cancer Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts Virology and AIDS Abstracts |
DatabaseTitleList | AIDS and Cancer Research Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1348-4400 |
EndPage | 77 |
ExternalDocumentID | PMC3943225 23138118 10_1262_jrd_2012_109 article_jrd_59_1_59_2012_109_article_char_en |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 29L 2WC 53G 5GY ACGFO ACPRK ADBBV ADRAZ AENEX ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL CS3 DIK DU5 E3Z EBS EJD F5P GROUPED_DOAJ GX1 HYE JSF JSH KQ8 M48 M~E N5S OK1 P2P RJT RNS RPM RZJ TKC TR2 XSB AAYXX B.T CITATION OVT PGMZT CGR CUY CVF ECM EIF NPM 7U9 H94 5PM |
ID | FETCH-LOGICAL-c566t-33f4fbe8b47f6732e3ba3fc135a25caa9400ccc000df3d395c11c6e298a4bbfd3 |
ISSN | 0916-8818 |
IngestDate | Thu Aug 21 14:09:17 EDT 2025 Fri Jul 11 13:10:26 EDT 2025 Fri Sep 17 22:56:42 EDT 2021 Tue Jul 01 02:55:15 EDT 2025 Thu Apr 24 22:51:45 EDT 2025 Wed Apr 05 03:21:55 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c566t-33f4fbe8b47f6732e3ba3fc135a25caa9400ccc000df3d395c11c6e298a4bbfd3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 Q Li and Y Fan contributed equally to this study. |
OpenAccessLink | http://dx.doi.org/10.1262/jrd.2012-109 |
PMID | 23138118 |
PQID | 1544009295 |
PQPubID | 23462 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3943225 proquest_miscellaneous_1544009295 pubmed_primary_23138118 crossref_primary_10_1262_jrd_2012_109 crossref_citationtrail_10_1262_jrd_2012_109 jstage_primary_article_jrd_59_1_59_2012_109_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-00-00 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – year: 2013 text: 2013-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan |
PublicationTitle | Journal of Reproduction and Development |
PublicationTitleAlternate | J. Reprod. Dev. |
PublicationYear | 2013 |
Publisher | THE SOCIETY FOR REPRODUCTION AND DEVELOPMENT The Society for Reproduction and Development |
Publisher_xml | – name: THE SOCIETY FOR REPRODUCTION AND DEVELOPMENT – name: The Society for Reproduction and Development |
References | 15. Lyssiotis CA, Foreman RK, Staerk J, Garcia M, Mathur D, Markoulaki S, Hanna J, Lairson LL, Charette BD, Bouchez LC, Bollong M, Kunick C, Brinker A, Cho CY, Schultz PG, Jaenisch R. Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4. Proc Natl Acad Sci USA 2009; 106: 8912–8917. 16. Yuan X, Wan H, Zhao X, Zhu S, Zhou Q, Ding S. Brief report: combined chemical treatment enables Oct4-induced reprogramming from mouse embryonic fibroblasts. Stem Cells 2011; 29: 549–553. 6. Hester ME, Song S, Miranda CJ, Eagle A, Schwartz PH, Kaspar BK. Two factor reprogramming of human neural stem cells into pluripotency. PLoS One 2009; 4: e7044. 7. Polgár K, Adany R, Abel G, Kappelmayer J, Muszbek L, Papp Z. Characterization of rapidly adhering amniotic fluid cells by combined immunofluorescence and phagocytosis assays. Am J Hum Genet 1989; 45: 786–792. 1. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861–872. 4. Wernig M, Meissner A, Cassady JP, Jaenisch R. c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell 2008; 2: 10–12. 12. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318: 1917–1920. 8. De Coppi P, Bartsch GJr, Siddiqui MM, Xu T, Santos CC, Perin L, Mostoslavsky G, Serre AC, Snyder EY, Yoo JJ, Furth ME, Soker S, Atala A. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 2007; 25: 100–106. 2. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature 2007; 448: 313–317. 13. Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, Reinecke H, Xu C, Hassanipour M, Police S, O’Sullivan C, Collins L, Chen Y, Minami E, Gill EA, Ueno S, Yuan C, Gold J, Murry CE. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 2007; 25: 1015–1024. 3. Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 2008; 26: 101–106. 9. Fan Y, Luo Y, Chen X, Li Q, Sun X. Generation of human beta-thalassemia induced pluripotent stem cells from amniotic fluid cells using a single excisable lentiviral stem cell cassette. J Reprod Dev 2012; 58: 404–409. 10. Galende E, Karakikes I, Edelmann L, Desnick RJ, Kerenyi T, Khoueiry G, Lafferty J, McGinn JT, Brodman M, Fuster V, Hajjar RJ, Polgar K. Amniotic fluid cells are more efficiently reprogrammed to pluripotency than adult cells. Cell Reprogram 2010; 12: 117–125. 17. Zhu S, Li W, Zhou H, Wei W, Ambasudhan R, Lin T, Kim J, Zhang K, Ding S. Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell 2010; 7: 651–655. 5. Li C, Zhou J, Shi G, Ma Y, Yang Y, Gu J, Yu H, Jin S, Wei Z, Chen F, Jin Y. Pluripotency can be rapidly and efficiently induced in human amniotic fluid-derived cells. Hum Mol Genet 2009; 18: 4340–4349. 11. Sun X, Long X, Yin Y, Jiang Y, Chen X, Liu W, Zhang W, Du H, Li S, Zheng Y, Kong S, Pang Q, Shi Y, Huang Y, Huang S, Liao B, Xiao G, Wang W. Similar biological characteristics of human embryonic stem cell lines with normal and abnormal karyotypes. Hum Reprod 2008; 23: 2185–2193. 14. Li Y, Zhang Q, Yin X, Yang W, Du Y, Hou P, Ge J, Liu C, Zhang W, Zhang X, Wu Y, Li H, Liu K, Wu C, Song Z, Zhao Y, Shi Y, Deng H. Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Cell Res 2011; 21: 196–204. |
References_xml | – reference: 12. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318: 1917–1920. – reference: 6. Hester ME, Song S, Miranda CJ, Eagle A, Schwartz PH, Kaspar BK. Two factor reprogramming of human neural stem cells into pluripotency. PLoS One 2009; 4: e7044. – reference: 1. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861–872. – reference: 3. Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 2008; 26: 101–106. – reference: 4. Wernig M, Meissner A, Cassady JP, Jaenisch R. c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell 2008; 2: 10–12. – reference: 11. Sun X, Long X, Yin Y, Jiang Y, Chen X, Liu W, Zhang W, Du H, Li S, Zheng Y, Kong S, Pang Q, Shi Y, Huang Y, Huang S, Liao B, Xiao G, Wang W. Similar biological characteristics of human embryonic stem cell lines with normal and abnormal karyotypes. Hum Reprod 2008; 23: 2185–2193. – reference: 8. De Coppi P, Bartsch GJr, Siddiqui MM, Xu T, Santos CC, Perin L, Mostoslavsky G, Serre AC, Snyder EY, Yoo JJ, Furth ME, Soker S, Atala A. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 2007; 25: 100–106. – reference: 16. Yuan X, Wan H, Zhao X, Zhu S, Zhou Q, Ding S. Brief report: combined chemical treatment enables Oct4-induced reprogramming from mouse embryonic fibroblasts. Stem Cells 2011; 29: 549–553. – reference: 15. Lyssiotis CA, Foreman RK, Staerk J, Garcia M, Mathur D, Markoulaki S, Hanna J, Lairson LL, Charette BD, Bouchez LC, Bollong M, Kunick C, Brinker A, Cho CY, Schultz PG, Jaenisch R. Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4. Proc Natl Acad Sci USA 2009; 106: 8912–8917. – reference: 2. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature 2007; 448: 313–317. – reference: 7. Polgár K, Adany R, Abel G, Kappelmayer J, Muszbek L, Papp Z. Characterization of rapidly adhering amniotic fluid cells by combined immunofluorescence and phagocytosis assays. Am J Hum Genet 1989; 45: 786–792. – reference: 17. Zhu S, Li W, Zhou H, Wei W, Ambasudhan R, Lin T, Kim J, Zhang K, Ding S. Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell 2010; 7: 651–655. – reference: 10. Galende E, Karakikes I, Edelmann L, Desnick RJ, Kerenyi T, Khoueiry G, Lafferty J, McGinn JT, Brodman M, Fuster V, Hajjar RJ, Polgar K. Amniotic fluid cells are more efficiently reprogrammed to pluripotency than adult cells. Cell Reprogram 2010; 12: 117–125. – reference: 13. Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, Reinecke H, Xu C, Hassanipour M, Police S, O’Sullivan C, Collins L, Chen Y, Minami E, Gill EA, Ueno S, Yuan C, Gold J, Murry CE. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 2007; 25: 1015–1024. – reference: 5. Li C, Zhou J, Shi G, Ma Y, Yang Y, Gu J, Yu H, Jin S, Wei Z, Chen F, Jin Y. Pluripotency can be rapidly and efficiently induced in human amniotic fluid-derived cells. Hum Mol Genet 2009; 18: 4340–4349. – reference: 9. Fan Y, Luo Y, Chen X, Li Q, Sun X. Generation of human beta-thalassemia induced pluripotent stem cells from amniotic fluid cells using a single excisable lentiviral stem cell cassette. J Reprod Dev 2012; 58: 404–409. – reference: 14. Li Y, Zhang Q, Yin X, Yang W, Du Y, Hou P, Ge J, Liu C, Zhang W, Zhang X, Wu Y, Li H, Liu K, Wu C, Song Z, Zhao Y, Shi Y, Deng H. Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Cell Res 2011; 21: 196–204. |
SSID | ssj0032564 |
Score | 2.0417507 |
Snippet | The ectopic expression of transcription factors for reprogramming human somatic cells to a pluripotent state represents a valuable resource for the development... The ectopic expression of transcription factors for reprogramming human somatic cells to a pluripotent state represents a valuable resource for the development... |
SourceID | pubmedcentral proquest pubmed crossref jstage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 72 |
SubjectTerms | Amniotic Fluid - cytology Cell Culture Techniques Cell Differentiation Cells, Cultured Cellular Reprogramming Feeder Cells - cytology Feeder-free Gene Expression Regulation, Developmental HEK293 Cells Human amniotic fluid cells Humans Induced pluripotent stem cells Induced Pluripotent Stem Cells - cytology Karyotyping Kruppel-Like Transcription Factors - metabolism Mutagenesis Neural Stem Cells - cytology Octamer Transcription Factor-3 - metabolism Oligonucleotide Array Sequence Analysis Original Transcription Factors - metabolism |
Title | Generation of Induced Pluripotent Stem Cells from Human Amniotic Fluid Cells by Reprogramming with Two Factors in Feeder-free Conditions |
URI | https://www.jstage.jst.go.jp/article/jrd/59/1/59_2012-109/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/23138118 https://www.proquest.com/docview/1544009295 https://pubmed.ncbi.nlm.nih.gov/PMC3943225 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Reproduction and Development, 2013, Vol.59(1), pp.72-77 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKuIgXBONWLpOR4KkKNHGu4qkaVBuo09BaaXuKHMdhqdoEdanQ-AX8Gf4j59jOpaNIgxerso8bpeerz_Hx8XcIee24UnqO4FaAwQ3Xc10rihJuhdIbyswZRlJdj54c-Qcz99Opd9rr_epkLa2r5K34sfVeyf9oFfpAr3hL9h8023wpdMBn0C-0oGFor6VjzRld-3xYhQNP848Xa1gJygpP-U8quRzsy8XiQl8k0TH70bLIS2RqHS_WeWrGE-WN63StZROinX4vB2NTkycvBmOJ5BNWtpJY7g6Pu5t437zFXcfLRdJMxSlbpz2nbZZSkwx0iIr-UhtRRNNIZR-clW3XyUx1nea8zHjbfTZTgrw4r2VNCEPfPa2jkLZvhaFZgqVegxnGON3hsLtIG9rwLhj1iqsL_xjbrSvC_GEVHB9ZZucrZIa1HbA8UWv96hP_K0axSVXETRLMj2F2jLPxyP4GuenArgQLZnw4_Fwbfgbeo2Irq9_J3LOA2e-6z97wgG7NYRPwVW7b31xN0-34PdP75J5RJR1p9D0gPVnsktu6hOnlLrkzMckZD8nPFo60zKiBI-3AkSIcqYIbRThSBUdaw5EqOJrx5JJuwJEiHCnAkRo40rygHTjSFo6PyGz8cbp_YJlCH5aA3URlMZa5WSLDxA0yP2COZAlnmbCZxx1PcB4BGIQQYL3TjKUs8oRtC186UcjdJMlS9pjsFGUhnxLKWcqRc04wxt3UT0Lmch54EmkyA5HyPhnUP34sDAs-FmNZxNsU3SdvGulvmv3lL3LvtR4bKbMmKCkvim1saulmEC9WwjrWJ69q5cewuOOJHS9kub6IkSoLWdEir0-eaDA0T4CNGXjbdtgnwQZMGgEkjt8cKfJzRSDPIhft-LNrvt1zctdRRWAw8PiC7FSrtXwJrniV7Kk_wJ4KZEF7dDz5DWH65_g |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generation+of+Induced+Pluripotent+Stem+Cells+from+Human+Amniotic+Fluid+Cells+by+Reprogramming+with+Two+Factors+in+Feeder-free+Conditions&rft.jtitle=The+Journal+of+reproduction+and+development&rft.au=LI%2C+Qing&rft.au=FAN%2C+Yong&rft.au=SUN%2C+Xiaofang&rft.au=YU%2C+Yanhong&rft.date=2013&rft.issn=0916-8818&rft.eissn=1348-4400&rft.volume=59&rft.issue=1&rft.spage=72&rft.epage=77&rft_id=info:doi/10.1262%2Fjrd.2012-109&rft.externalDBID=n%2Fa&rft.externalDocID=10_1262_jrd_2012_109 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-8818&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-8818&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-8818&client=summon |