Performance-optimized hierarchical models predict neural responses in higher visual cortex
The ventral visual stream underlies key human visual object recognition abilities. However, neural encoding in the higher areas of the ventral stream remains poorly understood. Here, we describe a modeling approach that yields a quantitatively accurate model of inferior temporal (IT) cortex, the hig...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 111; no. 23; pp. 8619 - 8624 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
10.06.2014
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The ventral visual stream underlies key human visual object recognition abilities. However, neural encoding in the higher areas of the ventral stream remains poorly understood. Here, we describe a modeling approach that yields a quantitatively accurate model of inferior temporal (IT) cortex, the highest ventral cortical area. Using high-throughput computational techniques, we discovered that, within a class of biologically plausible hierarchical neural network models, there is a strong correlation between a model's categorization performance and its ability to predict individual IT neural unit response data. To pursue this idea, we then identified a high-performing neural network that matches human performance on a range of recognition tasks. Critically, even though we did not constrain this model to match neural data, its top output layer turns out to be highly predictive of IT spiking responses to complex naturalistic images at both the single site and population levels. Moreover, the model's intermediate layers are highly predictive of neural responses in the V4 cortex, a midlevel visual area that provides the dominant cortical input to IT. These results show that performance optimization—applied in a biologically appropriate model class— can be used to build quantitative predictive models of neural processing. |
---|---|
AbstractList | The ventral visual stream underlies key human visual object recognition abilities. However, neural encoding in the higher areas of the ventral stream remains poorly understood. Here, we describe a modeling approach that yields a quantitatively accurate model of inferior temporal (IT) cortex, the highest ventral cortical area. Using high-throughput computational techniques, we discovered that, within a class of biologically plausible hierarchical neural network models, there is a strong correlation between a model's categorization performance and its ability to predict individual IT neural unit response data. To pursue this idea, we then identified a high-performing neural network that matches human performance on a range of recognition tasks. Critically, even though we did not constrain this model to match neural data, its top output layer turns out to be highly predictive of IT spiking responses to complex naturalistic images at both the single site and population levels. Moreover, the model's intermediate layers are highly predictive of neural responses in the V4 cortex, a midlevel visual area that provides the dominant cortical input to IT. These results show that performance optimization--applied in a biologically appropriate model class--can be used to build quantitative predictive models of neural processing. Humans and monkeys easily recognize objects in scenes. This ability is known to be supported by a network of hierarchically interconnected brain areas. However, understanding neurons in higher levels of this hierarchy has long remained a major challenge in visual systems neuroscience. We use computational techniques to identify a neural network model that matches human performance on challenging object categorization tasks. Although not explicitly constrained to match neural data, this model turns out to be highly predictive of neural responses in both the V4 and inferior temporal cortex, the top two layers of the ventral visual hierarchy. In addition to yielding greatly improved models of visual cortex, these results suggest that a process of biological performance optimization directly shaped neural mechanisms. The ventral visual stream underlies key human visual object recognition abilities. However, neural encoding in the higher areas of the ventral stream remains poorly understood. Here, we describe a modeling approach that yields a quantitatively accurate model of inferior temporal (IT) cortex, the highest ventral cortical area. Using high-throughput computational techniques, we discovered that, within a class of biologically plausible hierarchical neural network models, there is a strong correlation between a model’s categorization performance and its ability to predict individual IT neural unit response data. To pursue this idea, we then identified a high-performing neural network that matches human performance on a range of recognition tasks. Critically, even though we did not constrain this model to match neural data, its top output layer turns out to be highly predictive of IT spiking responses to complex naturalistic images at both the single site and population levels. Moreover, the model’s intermediate layers are highly predictive of neural responses in the V4 cortex, a midlevel visual area that provides the dominant cortical input to IT. These results show that performance optimization—applied in a biologically appropriate model class—can be used to build quantitative predictive models of neural processing. Significance Humans and monkeys easily recognize objects in scenes. This ability is known to be supported by a network of hierarchically interconnected brain areas. However, understanding neurons in higher levels of this hierarchy has long remained a major challenge in visual systems neuroscience. We use computational techniques to identify a neural network model that matches human performance on challenging object categorization tasks. Although not explicitly constrained to match neural data, this model turns out to be highly predictive of neural responses in both the V4 and inferior temporal cortex, the top two layers of the ventral visual hierarchy. In addition to yielding greatly improved models of visual cortex, these results suggest that a process of biological performance optimization directly shaped neural mechanisms. The ventral visual stream underlies key human visual object recognition abilities. However, neural encoding in the higher areas of the ventral stream remains poorly understood. Here, we describe a modeling approach that yields a quantitatively accurate model of inferior temporal (IT) cortex, the highest ventral cortical area. Using high-throughput computational techniques, we discovered that, within a class of biologically plausible hierarchical neural network models, there is a strong correlation between a model’s categorization performance and its ability to predict individual IT neural unit response data. To pursue this idea, we then identified a high-performing neural network that matches human performance on a range of recognition tasks. Critically, even though we did not constrain this model to match neural data, its top output layer turns out to be highly predictive of IT spiking responses to complex naturalistic images at both the single site and population levels. Moreover, the model’s intermediate layers are highly predictive of neural responses in the V4 cortex, a midlevel visual area that provides the dominant cortical input to IT. These results show that performance optimization—applied in a biologically appropriate model class—can be used to build quantitative predictive models of neural processing. |
Author | Hong, Ha Cadieu, Charles F. Seibert, Darren DiCarlo, James J. Yamins, Daniel L. K. Solomon, Ethan A. |
Author_xml | – sequence: 1 givenname: Daniel L. K. surname: Yamins fullname: Yamins, Daniel L. K. – sequence: 2 givenname: Ha surname: Hong fullname: Hong, Ha – sequence: 3 givenname: Charles F. surname: Cadieu fullname: Cadieu, Charles F. – sequence: 4 givenname: Ethan A. surname: Solomon fullname: Solomon, Ethan A. – sequence: 5 givenname: Darren surname: Seibert fullname: Seibert, Darren – sequence: 6 givenname: James J. surname: DiCarlo fullname: DiCarlo, James J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24812127$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1v1DAQxS1URLcLZ05AJC5c0nrij8SXSqgqH1IlOPTExXK8k65XiR3spAL--jraZQucOI0085unefPOyIkPHgl5CfQcaM0uRm_SOXDKACoAeEJWQBWUkit6QlaUVnXZ8IqfkrOUdpRSJRr6jJxWvMl8Va_It68YuxAH4y2WYZzc4H7hptg6jCbarbOmL4awwT4VY8SNs1PhcY65GzGNwSdMhfOZv9tiLO5dmvPIhjjhj-fkaWf6hC8OdU1uP1zfXn0qb758_Hz1_qa0QsqpZNAaLrmwBhRtoZbYCUQQjGErpYBKdSA61RqmRGs52M4wbJDXRqm2lWxNLvey49wOuLHop3yeHqMbTPypg3H674l3W30X7jWnktb5iWvy7iAQw_cZ06QHlyz2vfEY5qRBCJBVVUv1HygTktFKQEbf_oPuwhx9fsRCKSaE4CxTF3vKxpBSxO54N1C9JKyXhPVjwnnj9Z92j_zvSDPw5gAsm0c5AF0x3UhYXLzaE7s0hfiowOpaclmzB7rwuPU |
CitedBy_id | crossref_primary_10_1007_s12021_022_09602_6 crossref_primary_10_1167_jov_21_12_6 crossref_primary_10_1038_s41586_020_2350_5 crossref_primary_10_1371_journal_pbio_3001418 crossref_primary_10_7554_eLife_84357 crossref_primary_10_1142_S2705078522500205 crossref_primary_10_1371_journal_pbio_2005127 crossref_primary_10_3389_fncom_2023_1153572 crossref_primary_10_3390_app9224749 crossref_primary_10_3758_s13423_014_0741_z crossref_primary_10_1016_j_neuroimage_2017_03_062 crossref_primary_10_1109_TPAMI_2019_2907850 crossref_primary_10_1007_s00422_020_00855_5 crossref_primary_10_1016_j_neuron_2023_03_022 crossref_primary_10_1016_j_isci_2024_109550 crossref_primary_10_1167_19_4_8 crossref_primary_10_1371_journal_pcbi_1005859 crossref_primary_10_1146_annurev_neuro_080317_061936 crossref_primary_10_1016_j_tics_2022_09_003 crossref_primary_10_1177_0963721418801342 crossref_primary_10_1007_s12021_018_9357_1 crossref_primary_10_1098_rspa_2022_0662 crossref_primary_10_1016_j_neuron_2017_05_028 crossref_primary_10_1146_annurev_vision_111815_114621 crossref_primary_10_3390_e24050665 crossref_primary_10_3758_s13423_024_02454_y crossref_primary_10_3389_fnins_2022_1096737 crossref_primary_10_1038_s41593_022_01237_9 crossref_primary_10_1109_TNNLS_2021_3094205 crossref_primary_10_3389_fncom_2020_580632 crossref_primary_10_3389_fpsyg_2021_641471 crossref_primary_10_1038_s41598_019_40535_4 crossref_primary_10_1016_j_neuroimage_2021_118812 crossref_primary_10_1007_s12021_021_09540_9 crossref_primary_10_1038_s41598_022_20460_9 crossref_primary_10_1016_j_coisb_2017_04_008 crossref_primary_10_1016_j_neuroimage_2023_120007 crossref_primary_10_1016_j_coisb_2017_04_006 crossref_primary_10_1038_s41467_020_15763_2 crossref_primary_10_1038_s42003_022_03036_1 crossref_primary_10_3389_fnins_2019_00692 crossref_primary_10_1371_journal_pcbi_1011086 crossref_primary_10_1016_j_tics_2022_09_019 crossref_primary_10_1038_s42003_018_0110_y crossref_primary_10_1080_01691864_2021_1943710 crossref_primary_10_1371_journal_pcbi_1004792 crossref_primary_10_1371_journal_pcbi_1011078 crossref_primary_10_1017_S0140525X23001589 crossref_primary_10_1371_journal_pone_0280145 crossref_primary_10_1016_j_neuroimage_2017_12_079 crossref_primary_10_1038_s42256_021_00430_y crossref_primary_10_1038_s41562_022_01302_0 crossref_primary_10_1016_j_cub_2021_06_090 crossref_primary_10_1016_j_neuroimage_2019_05_039 crossref_primary_10_1098_rstb_2015_0348 crossref_primary_10_1371_journal_pone_0199196 crossref_primary_10_1016_j_neubiorev_2019_04_018 crossref_primary_10_1038_s41467_018_07471_9 crossref_primary_10_1007_s42113_019_00058_7 crossref_primary_10_1038_s41467_021_25409_6 crossref_primary_10_1126_sciadv_abd6127 crossref_primary_10_1016_j_cub_2021_04_014 crossref_primary_10_1371_journal_pcbi_1006908 crossref_primary_10_1146_annurev_vision_093019_115159 crossref_primary_10_1038_s41598_020_74009_9 crossref_primary_10_1523_ENEURO_0113_17_2017 crossref_primary_10_1371_journal_pbio_3001686 crossref_primary_10_1016_j_ejrad_2019_02_038 crossref_primary_10_1162_jocn_a_01135 crossref_primary_10_1038_s44159_024_00276_2 crossref_primary_10_1016_j_neuroscience_2017_02_050 crossref_primary_10_3389_fnins_2022_1082120 crossref_primary_10_1016_j_conb_2019_06_005 crossref_primary_10_1162_neco_a_01197 crossref_primary_10_1371_journal_pbio_3002564 crossref_primary_10_3389_fncom_2017_00100 crossref_primary_10_1016_j_neuron_2019_07_003 crossref_primary_10_1038_s44271_024_00091_8 crossref_primary_10_3389_fninf_2021_748370 crossref_primary_10_1016_j_neuroimage_2023_120220 crossref_primary_10_1007_s00429_022_02495_w crossref_primary_10_1523_JNEUROSCI_3454_15_2015 crossref_primary_10_1016_j_cognition_2023_105621 crossref_primary_10_1038_s41598_017_13756_8 crossref_primary_10_1063_5_0195680 crossref_primary_10_1371_journal_pcbi_1012127 crossref_primary_10_1186_2047_217X_3_28 crossref_primary_10_1371_journal_pcbi_1011037 crossref_primary_10_1016_j_sigpro_2015_08_017 crossref_primary_10_1126_sciadv_aav7903 crossref_primary_10_1146_annurev_vision_111815_114443 crossref_primary_10_3389_fnhum_2018_00242 crossref_primary_10_3389_fpsyt_2023_1080668 crossref_primary_10_1016_j_neuron_2019_08_034 crossref_primary_10_1109_TPAMI_2018_2849989 crossref_primary_10_1016_j_neuron_2020_11_021 crossref_primary_10_1016_j_neuron_2020_07_040 crossref_primary_10_3389_fnins_2022_975639 crossref_primary_10_1002_hbm_24732 crossref_primary_10_3389_fncom_2022_890447 crossref_primary_10_1152_jn_00195_2021 crossref_primary_10_1177_09637214221083663 crossref_primary_10_1038_s41598_018_23618_6 crossref_primary_10_1016_j_patter_2021_100304 crossref_primary_10_1002_aaai_12148 crossref_primary_10_1016_j_tics_2017_12_002 crossref_primary_10_1016_j_isci_2021_103301 crossref_primary_10_1038_s41928_022_00913_9 crossref_primary_10_1117_1_JEI_26_1_013015 crossref_primary_10_1016_j_neuron_2019_06_005 crossref_primary_10_1523_JNEUROSCI_5181_14_2015 crossref_primary_10_1016_j_conb_2017_06_003 crossref_primary_10_1523_JNEUROSCI_2674_16_2017 crossref_primary_10_3389_fncom_2014_00074 crossref_primary_10_3389_fncom_2016_00131 crossref_primary_10_1038_srep32672 crossref_primary_10_1371_journal_pbio_3002366 crossref_primary_10_1073_pnas_1407198111 crossref_primary_10_1007_s00138_018_0906_2 crossref_primary_10_1016_j_concog_2019_04_002 crossref_primary_10_1371_journal_pcbi_1011486 crossref_primary_10_1162_jocn_a_01544 crossref_primary_10_3389_fninf_2018_00062 crossref_primary_10_1080_23273798_2016_1218033 crossref_primary_10_1007_s00429_021_02415_4 crossref_primary_10_3390_app14083429 crossref_primary_10_1007_s11229_021_03052_4 crossref_primary_10_1371_journal_pcbi_1011483 crossref_primary_10_1016_j_conb_2019_09_009 crossref_primary_10_1016_j_isci_2022_104913 crossref_primary_10_3389_fncom_2022_979258 crossref_primary_10_1016_j_conb_2019_09_002 crossref_primary_10_3758_s13421_023_01485_5 crossref_primary_10_1016_j_tins_2019_07_001 crossref_primary_10_35848_1347_4065_ab77f3 crossref_primary_10_1038_s41467_024_46631_y crossref_primary_10_1073_pnas_1513198113 crossref_primary_10_1073_pnas_2200800119 crossref_primary_10_1167_jov_21_2_9 crossref_primary_10_1523_JNEUROSCI_1993_20_2021 crossref_primary_10_1080_23273798_2020_1862257 crossref_primary_10_3758_s13428_021_01672_9 crossref_primary_10_1016_j_cub_2021_07_051 crossref_primary_10_3389_fninf_2020_563669 crossref_primary_10_1038_s41593_022_01224_0 crossref_primary_10_1371_journal_pone_0223792 crossref_primary_10_1080_13506285_2017_1324933 crossref_primary_10_3758_s13414_023_02697_2 crossref_primary_10_1016_j_neuroimage_2019_116276 crossref_primary_10_3390_brainsci12121633 crossref_primary_10_1038_s41467_019_12623_6 crossref_primary_10_1126_sciadv_abl8913 crossref_primary_10_1093_cercor_bhaa241 crossref_primary_10_1162_neco_a_01367 crossref_primary_10_3389_fnsys_2017_00012 crossref_primary_10_7554_eLife_56234 crossref_primary_10_1016_j_neuroimage_2019_03_031 crossref_primary_10_7554_eLife_21397 crossref_primary_10_7554_eLife_76384 crossref_primary_10_1038_nn_4128 crossref_primary_10_1016_j_neuroimage_2019_04_079 crossref_primary_10_1371_journal_pcbi_1008017 crossref_primary_10_1016_j_neunet_2022_07_033 crossref_primary_10_1016_j_neunet_2020_03_016 crossref_primary_10_1098_rstb_2019_0664 crossref_primary_10_1038_s42256_020_00242_6 crossref_primary_10_1038_s42256_023_00753_y crossref_primary_10_1016_j_cobeha_2020_08_008 crossref_primary_10_1038_s41583_023_00756_z crossref_primary_10_1126_sciadv_aax5979 crossref_primary_10_1162_neco_a_01356 crossref_primary_10_1038_nn_4158 crossref_primary_10_1016_j_cell_2019_04_005 crossref_primary_10_1523_JNEUROSCI_0237_16_2016 crossref_primary_10_1016_j_cogsys_2024_101244 crossref_primary_10_1017_S0140525X17000188 crossref_primary_10_3389_fninf_2021_679838 crossref_primary_10_1016_j_neuron_2020_06_014 crossref_primary_10_1016_j_pneurobio_2019_01_008 crossref_primary_10_1167_jov_20_7_21 crossref_primary_10_1523_ENEURO_0443_17_2018 crossref_primary_10_1016_j_neunet_2022_07_007 crossref_primary_10_7554_eLife_32259 crossref_primary_10_3934_Neuroscience_2020023 crossref_primary_10_1038_s44159_023_00266_w crossref_primary_10_1093_cercor_bhaa260 crossref_primary_10_3389_fninf_2023_1223687 crossref_primary_10_1093_chemse_bjy043 crossref_primary_10_1016_j_neuroimage_2023_120067 crossref_primary_10_1038_s41467_022_33581_6 crossref_primary_10_1111_cogs_12729 crossref_primary_10_3389_fncel_2022_1006703 crossref_primary_10_1038_s41593_022_01211_5 crossref_primary_10_1038_s42003_024_06316_0 crossref_primary_10_1093_cercor_bhaa269 crossref_primary_10_3390_electronics12204212 crossref_primary_10_1523_JNEUROSCI_1424_22_2022 crossref_primary_10_1016_j_cub_2015_06_009 crossref_primary_10_1016_j_pneurobio_2020_101928 crossref_primary_10_1016_j_pneurobio_2020_101925 crossref_primary_10_1167_jov_20_7_32 crossref_primary_10_1016_j_celrep_2023_112673 crossref_primary_10_1007_s10462_021_10130_z crossref_primary_10_1162_neco_a_01571 crossref_primary_10_1016_j_neunet_2023_08_022 crossref_primary_10_1016_j_visres_2021_09_004 crossref_primary_10_1016_j_bandc_2018_02_012 crossref_primary_10_1016_j_neunet_2021_12_005 crossref_primary_10_1016_j_neunet_2023_08_021 crossref_primary_10_1016_j_neuroimage_2019_116118 crossref_primary_10_1098_rstb_2021_0446 crossref_primary_10_1016_j_neuroimage_2022_119769 crossref_primary_10_1016_j_neuropsychologia_2021_108053 crossref_primary_10_3389_fphys_2019_00140 crossref_primary_10_1038_s41598_018_30601_8 crossref_primary_10_1016_j_patter_2021_100286 crossref_primary_10_1038_s41467_021_25939_z crossref_primary_10_1038_sdata_2019_12 crossref_primary_10_3389_frai_2023_1062230 crossref_primary_10_1016_j_visres_2019_12_006 crossref_primary_10_1073_pnas_2410196121 crossref_primary_10_1016_j_neubiorev_2019_01_014 crossref_primary_10_1016_j_isci_2023_108501 crossref_primary_10_1126_sciadv_adh4690 crossref_primary_10_1016_j_neuroimage_2022_119754 crossref_primary_10_1167_jov_22_2_4 crossref_primary_10_1086_708763 crossref_primary_10_1016_j_cognition_2017_10_006 crossref_primary_10_1371_journal_pcbi_1010522 crossref_primary_10_1371_journal_pcbi_1008215 crossref_primary_10_1016_j_patter_2023_100831 crossref_primary_10_3389_fpsyg_2022_988302 crossref_primary_10_1038_s41583_020_00395_8 crossref_primary_10_1371_journal_pcbi_1011618 crossref_primary_10_1016_j_neuroimage_2016_04_012 crossref_primary_10_1038_s41598_020_61409_0 crossref_primary_10_7554_eLife_71736 crossref_primary_10_1088_1741_2552_abb860 crossref_primary_10_1016_j_cognition_2020_104365 crossref_primary_10_3389_fnins_2024_1344114 crossref_primary_10_1162_neco_a_01559 crossref_primary_10_1016_j_neunet_2017_02_008 crossref_primary_10_1073_pnas_1519761112 crossref_primary_10_1016_j_inffus_2024_102447 crossref_primary_10_1371_journal_pone_0174508 crossref_primary_10_1007_s11229_023_04295_z crossref_primary_10_1016_j_conb_2017_08_016 crossref_primary_10_1371_journal_pcbi_1009572 crossref_primary_10_1016_j_neunet_2023_01_011 crossref_primary_10_3758_s13421_024_01580_1 crossref_primary_10_1162_neco_a_01544 crossref_primary_10_1103_PhysRevX_7_041044 crossref_primary_10_1167_jov_21_8_15 crossref_primary_10_1371_journal_pcbi_1010784 crossref_primary_10_1038_s41467_024_45679_0 crossref_primary_10_1038_s42003_023_05108_2 crossref_primary_10_1167_jov_21_8_10 crossref_primary_10_3389_fncom_2018_00004 crossref_primary_10_7554_eLife_90256 crossref_primary_10_1523_ENEURO_0333_16_2017 crossref_primary_10_1016_j_neunet_2020_09_008 crossref_primary_10_1038_s41467_021_26793_9 crossref_primary_10_1167_jov_20_12_10 crossref_primary_10_1016_j_neuroimage_2016_03_027 crossref_primary_10_1177_26339137231222481 crossref_primary_10_1038_s41467_021_22244_7 crossref_primary_10_7554_eLife_78392 crossref_primary_10_1162_neco_a_01538 crossref_primary_10_1016_j_cell_2022_06_047 crossref_primary_10_1016_j_cobeha_2021_02_006 crossref_primary_10_1016_j_neuroimage_2022_119728 crossref_primary_10_1016_j_tics_2021_11_008 crossref_primary_10_1111_phor_12376 crossref_primary_10_1162_jocn_a_01803 crossref_primary_10_1073_pnas_2219150120 crossref_primary_10_1162_neco_a_01520 crossref_primary_10_1167_jov_22_4_4 crossref_primary_10_1371_journal_pcbi_1009739 crossref_primary_10_1038_s41467_023_40499_0 crossref_primary_10_1523_JNEUROSCI_1061_19_2019 crossref_primary_10_1038_s41562_023_01680_z crossref_primary_10_1098_rstb_2016_0108 crossref_primary_10_3389_fcomp_2023_1275026 crossref_primary_10_1016_j_neures_2024_06_003 crossref_primary_10_1038_s41467_017_00181_8 crossref_primary_10_1038_s41467_023_38674_4 crossref_primary_10_1162_jocn_a_01819 crossref_primary_10_1016_j_cognition_2017_11_008 crossref_primary_10_1038_s41586_023_06670_9 crossref_primary_10_1038_s41583_021_00502_3 crossref_primary_10_1038_s41593_023_01514_1 crossref_primary_10_1146_annurev_neuro_092322_100402 crossref_primary_10_1073_pnas_1520371113 crossref_primary_10_1073_pnas_2105646118 crossref_primary_10_1002_wcs_1385 crossref_primary_10_1038_s41467_022_35659_7 crossref_primary_10_1146_annurev_vision_091517_034103 crossref_primary_10_1371_journal_pcbi_1009528 crossref_primary_10_1111_apha_12875 crossref_primary_10_1080_23273798_2021_2001023 crossref_primary_10_1007_s10827_021_00778_5 crossref_primary_10_1038_s42003_022_03557_9 crossref_primary_10_1016_j_conb_2019_12_007 crossref_primary_10_1016_j_neucom_2022_02_031 crossref_primary_10_1038_s41598_024_59930_7 crossref_primary_10_1146_annurev_vision_091517_034110 crossref_primary_10_3389_fninf_2021_802938 crossref_primary_10_1093_cercor_bhx268 crossref_primary_10_1038_s42256_020_0170_9 crossref_primary_10_1038_s41928_020_0422_z crossref_primary_10_1016_j_neuropsychologia_2020_107621 crossref_primary_10_3389_fncom_2015_00008 crossref_primary_10_7554_eLife_56603 crossref_primary_10_1016_j_conb_2019_10_003 crossref_primary_10_1016_j_neuroimage_2016_02_019 crossref_primary_10_3389_fnsyn_2016_00026 crossref_primary_10_1016_j_neuroimage_2016_03_063 crossref_primary_10_1038_s41593_024_01631_5 crossref_primary_10_1167_jov_22_6_8 crossref_primary_10_3389_fnbot_2021_648527 crossref_primary_10_7554_eLife_87197_3 crossref_primary_10_1371_journal_pone_0157109 crossref_primary_10_1038_d41586_019_02212_4 crossref_primary_10_1016_j_cortex_2015_01_020 crossref_primary_10_1167_jov_21_10_17 crossref_primary_10_1162_jocn_a_00919 crossref_primary_10_1038_srep27755 crossref_primary_10_1146_annurev_neuro_102119_103452 crossref_primary_10_1038_s41467_021_27606_9 crossref_primary_10_1016_j_eng_2020_02_004 crossref_primary_10_1371_journal_pcbi_1007514 crossref_primary_10_1038_s41583_023_00705_w crossref_primary_10_1167_18_13_2 crossref_primary_10_1146_annurev_vision_082114_035733 crossref_primary_10_1038_s41597_019_0052_3 crossref_primary_10_1016_j_neuropsychologia_2017_06_010 crossref_primary_10_1038_s41467_020_20371_1 crossref_primary_10_1038_s41592_018_0152_6 crossref_primary_10_1073_pnas_2011417118 crossref_primary_10_1167_jov_22_2_20 crossref_primary_10_1016_j_cognition_2018_06_015 crossref_primary_10_1016_j_cogsys_2023_101200 crossref_primary_10_1371_journal_pcbi_1009976 crossref_primary_10_12688_bioethopenres_17501_1 crossref_primary_10_1167_19_7_1 crossref_primary_10_1177_0142723720905765 crossref_primary_10_1016_j_neunet_2023_03_020 crossref_primary_10_7554_eLife_55978 crossref_primary_10_1016_j_cub_2023_12_058 crossref_primary_10_1177_2041669517699628 crossref_primary_10_3390_brainsci13101387 crossref_primary_10_3758_s13414_020_02213_w crossref_primary_10_1016_j_patter_2023_100895 crossref_primary_10_1109_TCDS_2020_3007761 crossref_primary_10_3389_fncom_2021_625804 crossref_primary_10_3389_fncom_2024_1273053 crossref_primary_10_7554_eLife_42870 crossref_primary_10_1371_journal_pcbi_1007973 crossref_primary_10_3758_s13421_020_01130_5 crossref_primary_10_1073_pnas_2005087117 crossref_primary_10_1038_nrn_2017_7 crossref_primary_10_1016_j_ecoinf_2021_101486 crossref_primary_10_1007_s42113_019_00028_z crossref_primary_10_1016_j_neunet_2023_04_032 crossref_primary_10_1088_1748_3190_ac709b crossref_primary_10_1109_ACCESS_2022_3208603 crossref_primary_10_1523_JNEUROSCI_1479_23_2024 crossref_primary_10_1016_j_cviu_2016_04_009 crossref_primary_10_3389_fncom_2022_836498 crossref_primary_10_1038_s41539_022_00139_6 crossref_primary_10_3390_vision3040061 crossref_primary_10_1523_JNEUROSCI_0803_23_2023 crossref_primary_10_1007_s11571_023_09989_1 crossref_primary_10_1371_journal_pcbi_1009928 crossref_primary_10_1523_JNEUROSCI_1843_19_2019 crossref_primary_10_1371_journal_pcbi_1006897 crossref_primary_10_1016_j_neures_2019_12_009 crossref_primary_10_1080_13506285_2019_1661927 crossref_primary_10_1016_j_neunet_2017_03_003 crossref_primary_10_1016_j_cub_2017_12_037 crossref_primary_10_1073_pnas_2112566119 crossref_primary_10_1371_journal_pcbi_1005799 crossref_primary_10_1162_jocn_a_02043 crossref_primary_10_1126_sciadv_abj4383 crossref_primary_10_1162_jocn_a_02040 crossref_primary_10_1016_j_neuroscience_2022_02_033 crossref_primary_10_1038_d41586_024_01320_0 crossref_primary_10_1167_jov_24_6_1 crossref_primary_10_1016_j_tics_2016_09_003 crossref_primary_10_1016_j_cognition_2018_05_017 crossref_primary_10_1016_j_tins_2022_06_007 crossref_primary_10_1038_s42003_022_03711_3 crossref_primary_10_1146_annurev_linguistics_031120_122120 crossref_primary_10_1038_s41583_020_00393_w crossref_primary_10_1016_j_neunet_2022_03_044 crossref_primary_10_1098_rstb_2015_0266 crossref_primary_10_1016_j_neunet_2021_08_024 crossref_primary_10_1016_j_neunet_2022_03_042 crossref_primary_10_3389_fncom_2024_1209082 crossref_primary_10_1016_j_cobeha_2019_07_001 crossref_primary_10_1371_journal_pcbi_1004896 crossref_primary_10_1186_s13408_020_00088_7 crossref_primary_10_1080_21507740_2020_1740352 crossref_primary_10_1016_j_cortex_2023_07_003 crossref_primary_10_2139_ssrn_3155608 crossref_primary_10_1016_j_conb_2016_02_001 crossref_primary_10_1167_jov_21_3_16 crossref_primary_10_1371_journal_pcbi_1006829 crossref_primary_10_1002_hbm_24697 crossref_primary_10_1038_s41467_020_17714_3 crossref_primary_10_1016_j_neuron_2015_09_040 crossref_primary_10_7554_eLife_64615 crossref_primary_10_1038_s41597_023_02471_x crossref_primary_10_1007_s11229_023_04461_3 crossref_primary_10_1038_s41593_020_0671_1 crossref_primary_10_1016_j_neunet_2022_02_017 crossref_primary_10_7554_eLife_38105 crossref_primary_10_1038_s41467_020_19632_w crossref_primary_10_1109_TIP_2019_2902831 crossref_primary_10_1167_jov_21_13_6 crossref_primary_10_1371_journal_pcbi_1006613 crossref_primary_10_1254_fpj_19132 crossref_primary_10_1016_j_tics_2019_10_005 crossref_primary_10_1016_j_visres_2020_04_003 crossref_primary_10_1016_j_visres_2020_04_005 crossref_primary_10_1073_pnas_2014196118 crossref_primary_10_1073_pnas_2121331119 crossref_primary_10_1111_desc_12470 crossref_primary_10_1016_j_neuroimage_2020_117328 crossref_primary_10_1146_annurev_vision_082114_035447 crossref_primary_10_1016_j_neunet_2022_02_029 crossref_primary_10_1371_journal_pcbi_1012058 crossref_primary_10_1016_j_isci_2021_103013 crossref_primary_10_1371_journal_pcbi_1012056 crossref_primary_10_1038_s41467_020_15533_0 crossref_primary_10_1038_s41598_020_59175_0 crossref_primary_10_1038_s42003_022_04260_5 crossref_primary_10_3389_fncom_2020_00035 crossref_primary_10_1113_JP282755 crossref_primary_10_3389_fncom_2020_00039 crossref_primary_10_1016_j_cub_2020_04_014 crossref_primary_10_3389_fpsyg_2023_1029808 crossref_primary_10_1016_j_tics_2024_05_001 crossref_primary_10_1103_PhysRevX_11_031059 crossref_primary_10_1016_j_patrec_2019_09_006 crossref_primary_10_1016_j_visres_2020_04_015 crossref_primary_10_1523_JNEUROSCI_1716_20_2021 crossref_primary_10_1152_jn_00433_2018 crossref_primary_10_1016_j_cub_2020_05_050 crossref_primary_10_1021_acschemneuro_6b00319 crossref_primary_10_1038_s41562_022_01510_8 crossref_primary_10_1038_s41467_021_26751_5 crossref_primary_10_1167_jov_21_11_15 crossref_primary_10_1016_j_conb_2019_01_007 crossref_primary_10_1016_j_jmp_2016_10_007 crossref_primary_10_1016_j_jvcir_2016_07_009 crossref_primary_10_1016_j_tins_2020_09_004 crossref_primary_10_1073_pnas_1912336117 crossref_primary_10_3389_fncom_2017_00007 crossref_primary_10_7554_eLife_14320 crossref_primary_10_3390_s20174668 crossref_primary_10_1007_s00422_015_0658_2 crossref_primary_10_1016_j_conb_2016_01_008 crossref_primary_10_1146_annurev_conmatphys_031119_050745 crossref_primary_10_1371_journal_pcbi_1011145 crossref_primary_10_3389_frai_2022_961595 crossref_primary_10_1016_j_celrep_2022_111777 crossref_primary_10_1111_cogs_12676 crossref_primary_10_1126_sciadv_adg1736 crossref_primary_10_1016_j_neuron_2018_06_038 crossref_primary_10_1126_sciadv_abm2219 crossref_primary_10_7554_eLife_72067 crossref_primary_10_1038_s41598_021_03938_w crossref_primary_10_1162_NECO_a_00929 crossref_primary_10_1016_j_conb_2019_01_011 crossref_primary_10_1515_flin_2023_2034 crossref_primary_10_1038_s41467_024_48114_6 crossref_primary_10_1016_j_isci_2022_105788 crossref_primary_10_1109_LRA_2018_2825473 crossref_primary_10_1038_s41467_021_22856_z crossref_primary_10_1073_pnas_2022792118 crossref_primary_10_7554_eLife_91685_3 crossref_primary_10_1016_j_cub_2020_04_074 crossref_primary_10_1016_j_neuroimage_2018_04_053 crossref_primary_10_1146_annurev_vision_093019_111701 crossref_primary_10_1016_j_neuron_2021_06_018 crossref_primary_10_1038_s41583_020_0277_3 crossref_primary_10_1016_j_visres_2015_10_015 crossref_primary_10_1162_neco_a_01086 crossref_primary_10_1038_s41593_019_0392_5 crossref_primary_10_1016_j_conb_2016_01_010 crossref_primary_10_1523_JNEUROSCI_0573_15_2015 crossref_primary_10_1016_j_cortex_2017_09_019 crossref_primary_10_1038_s41467_022_34075_1 crossref_primary_10_1073_pnas_2201854119 crossref_primary_10_1016_j_intell_2021_101548 crossref_primary_10_1038_s41467_021_24456_3 crossref_primary_10_1016_j_jmp_2016_10_010 crossref_primary_10_1038_s41598_019_45268_y crossref_primary_10_3390_biology12101330 crossref_primary_10_1038_s41593_024_01668_6 crossref_primary_10_1016_j_conb_2021_04_004 crossref_primary_10_1167_19_6_13 crossref_primary_10_1162_neco_a_01072 crossref_primary_10_1113_JP279549 crossref_primary_10_3389_fncom_2014_00171 crossref_primary_10_1038_s44159_023_00212_w crossref_primary_10_3389_fncom_2021_626259 crossref_primary_10_1371_journal_pcbi_1003963 crossref_primary_10_1038_s41598_023_36029_z crossref_primary_10_1371_journal_pcbi_1003724 crossref_primary_10_1016_j_visres_2022_108058 crossref_primary_10_1016_j_tics_2018_06_006 crossref_primary_10_1007_s42113_022_00126_5 crossref_primary_10_1371_journal_pcbi_1011343 crossref_primary_10_1162_jocn_a_01444 crossref_primary_10_1038_ncomms13276 crossref_primary_10_1523_JNEUROSCI_2918_19_2020 crossref_primary_10_1371_journal_pcbi_1007091 crossref_primary_10_1080_0952813X_2015_1042534 crossref_primary_10_3389_fncir_2023_1172464 crossref_primary_10_3389_fncom_2014_00168 crossref_primary_10_1038_s42256_022_00592_3 crossref_primary_10_1073_pnas_2304085120 crossref_primary_10_1162_neco_a_01048 crossref_primary_10_1016_j_tics_2019_01_009 crossref_primary_10_1038_s41593_023_01460_y crossref_primary_10_3389_fncom_2023_1274824 crossref_primary_10_3389_fnins_2022_999720 crossref_primary_10_1007_s11023_018_9480_7 crossref_primary_10_1109_TCYB_2020_2972983 crossref_primary_10_1371_journal_pcbi_1009028 crossref_primary_10_1016_j_neuroimage_2016_10_001 crossref_primary_10_1016_j_neuroimage_2017_07_018 crossref_primary_10_1038_s41583_022_00582_9 crossref_primary_10_1371_journal_pcbi_1009267 crossref_primary_10_1371_journal_pcbi_1010484 crossref_primary_10_3389_fncom_2014_00158 crossref_primary_10_7554_eLife_36329 crossref_primary_10_1016_j_neucom_2022_11_035 crossref_primary_10_1038_s41598_018_22160_9 crossref_primary_10_1162_neco_a_01039 crossref_primary_10_1073_pnas_2300558120 crossref_primary_10_3389_fncom_2018_00083 crossref_primary_10_1016_j_robot_2020_103625 crossref_primary_10_1038_s41467_024_44801_6 crossref_primary_10_1016_j_neuroimage_2018_01_009 crossref_primary_10_1016_j_neuroimage_2015_12_036 crossref_primary_10_1167_19_4_29 crossref_primary_10_1073_pnas_2317773121 crossref_primary_10_1016_j_visres_2022_108083 crossref_primary_10_1016_j_neuron_2024_03_021 crossref_primary_10_1007_s11263_020_01405_z crossref_primary_10_1016_j_visres_2020_06_007 crossref_primary_10_1016_j_cognition_2020_104192 crossref_primary_10_1152_jn_00456_2018 crossref_primary_10_1162_neco_a_01497 crossref_primary_10_1146_annurev_vision_100720_113429 crossref_primary_10_1038_s41598_022_20012_1 crossref_primary_10_1016_j_neuropsychologia_2021_108092 crossref_primary_10_1126_sciadv_abe7547 crossref_primary_10_1007_s00521_021_05863_5 crossref_primary_10_1016_j_neuron_2021_09_010 crossref_primary_10_1146_annurev_vision_091718_014731 crossref_primary_10_1073_pnas_1719397115 crossref_primary_10_1371_journal_pcbi_1011783 crossref_primary_10_7554_eLife_68344 crossref_primary_10_3389_fncom_2018_00056 crossref_primary_10_3389_fncom_2018_00057 crossref_primary_10_1073_pnas_2016569118 crossref_primary_10_1016_j_pneurobio_2017_06_002 crossref_primary_10_1371_journal_pcbi_1003915 crossref_primary_10_1016_j_tics_2016_05_004 crossref_primary_10_1016_j_neuroimage_2017_08_016 crossref_primary_10_1016_j_neuron_2018_04_006 crossref_primary_10_7554_eLife_77599 crossref_primary_10_1162_netn_a_00235 crossref_primary_10_1038_nn_4244 crossref_primary_10_1038_nn_4247 crossref_primary_10_3389_fnbot_2018_00078 crossref_primary_10_1016_j_neucom_2016_04_029 crossref_primary_10_1080_00273171_2023_2229305 crossref_primary_10_1016_j_neuroscience_2024_01_015 crossref_primary_10_1016_j_neunet_2018_09_004 crossref_primary_10_1371_journal_pone_0223660 crossref_primary_10_1016_j_cub_2020_12_017 crossref_primary_10_1016_j_neuroimage_2015_04_006 crossref_primary_10_1109_TPAMI_2020_3008107 crossref_primary_10_1146_annurev_vision_120522_031739 crossref_primary_10_1016_j_neuron_2024_04_018 crossref_primary_10_1146_annurev_vision_091718_014951 crossref_primary_10_1162_jocn_a_01624 crossref_primary_10_1038_ncomms15037 crossref_primary_10_1038_s41598_023_34829_x crossref_primary_10_1126_sciadv_abd4205 crossref_primary_10_1016_j_jmp_2016_06_009 crossref_primary_10_1016_j_pneurobio_2019_101717 crossref_primary_10_1016_j_neunet_2016_12_001 crossref_primary_10_3389_fcomp_2022_976801 crossref_primary_10_1146_annurev_vision_030320_041306 crossref_primary_10_1523_JNEUROSCI_2458_18_2018 crossref_primary_10_7554_eLife_22341 crossref_primary_10_1162_netn_a_00219 crossref_primary_10_7554_eLife_21492 crossref_primary_10_7554_eLife_60830 crossref_primary_10_1016_j_cub_2014_12_050 crossref_primary_10_1038_d41586_019_01181_y crossref_primary_10_3389_fncom_2017_00060 crossref_primary_10_1093_bjps_axy073 crossref_primary_10_1371_journal_pcbi_1011792 crossref_primary_10_1038_s41562_021_01194_6 crossref_primary_10_1016_j_neunet_2023_09_028 crossref_primary_10_1016_j_neuroimage_2017_08_033 crossref_primary_10_1162_neco_a_01211 crossref_primary_10_1038_s41467_017_01912_7 crossref_primary_10_1038_s41467_023_36583_0 crossref_primary_10_1016_j_neures_2015_10_012 crossref_primary_10_1162_neco_a_01458 crossref_primary_10_34133_2021_4689869 crossref_primary_10_1089_cmb_2021_0368 crossref_primary_10_3389_fpsyg_2017_01551 crossref_primary_10_1371_journal_pcbi_1007011 crossref_primary_10_1007_s10071_016_0982_5 crossref_primary_10_1371_journal_pone_0253442 crossref_primary_10_3389_fnsys_2020_615129 crossref_primary_10_1371_journal_pcbi_1011506 crossref_primary_10_1016_j_conb_2021_10_010 crossref_primary_10_1109_TCDS_2023_3287184 crossref_primary_10_7554_eLife_82502 crossref_primary_10_1103_PhysRevB_104_235154 crossref_primary_10_1016_j_tics_2018_04_001 crossref_primary_10_1016_j_neuroimage_2022_119635 crossref_primary_10_1073_pnas_1905334117 crossref_primary_10_1038_s42003_020_0945_x crossref_primary_10_1152_jn_00018_2016 crossref_primary_10_1371_journal_pcbi_1007001 crossref_primary_10_1016_j_neuron_2023_06_007 crossref_primary_10_7554_eLife_91685 crossref_primary_10_1016_j_conb_2019_04_002 crossref_primary_10_1016_j_neuron_2024_01_002 crossref_primary_10_1038_s41598_021_04323_3 crossref_primary_10_7554_eLife_87197 crossref_primary_10_1016_j_neunet_2024_106423 crossref_primary_10_1162_neco_a_01671 crossref_primary_10_1038_s41598_023_37995_0 crossref_primary_10_1016_j_neunet_2022_06_034 crossref_primary_10_1038_s41467_020_14578_5 crossref_primary_10_1162_netn_a_00264 crossref_primary_10_3758_s13414_019_01968_1 crossref_primary_10_1016_j_cub_2022_11_016 crossref_primary_10_1038_s41467_022_28323_7 crossref_primary_10_1371_journal_pcbi_1009212 crossref_primary_10_1162_NECO_a_00890 crossref_primary_10_3389_fcomp_2023_1140723 crossref_primary_10_1016_j_cortex_2021_07_008 crossref_primary_10_1109_TPAMI_2020_2995909 crossref_primary_10_1016_j_neunet_2020_02_009 crossref_primary_10_1016_j_neunet_2020_11_013 crossref_primary_10_1016_j_neuron_2018_03_044 crossref_primary_10_1016_j_cogsys_2023_101158 crossref_primary_10_1038_s41598_021_92805_9 crossref_primary_10_1016_j_cogsys_2023_101156 crossref_primary_10_1371_journal_pcbi_1007265 crossref_primary_10_1016_j_neuroimage_2021_118266 crossref_primary_10_1007_s11229_022_03694_y crossref_primary_10_1371_journal_pcbi_1010427 crossref_primary_10_3389_fnbot_2020_578803 crossref_primary_10_1146_annurev_vision_100720_103343 crossref_primary_10_1093_cercor_bhw282 crossref_primary_10_1126_sciadv_add2981 crossref_primary_10_1146_annurev_vision_093019_111124 crossref_primary_10_3389_fncir_2023_1092933 crossref_primary_10_7887_jcns_30_120 crossref_primary_10_1073_pnas_1714287115 crossref_primary_10_1371_journal_pcbi_1007210 crossref_primary_10_3389_fnhum_2022_875201 crossref_primary_10_1016_j_imavis_2017_10_001 crossref_primary_10_1017_S0963180122000688 crossref_primary_10_1016_j_cell_2024_02_036 crossref_primary_10_1186_s40708_021_00147_z crossref_primary_10_1002_cyto_a_23701 crossref_primary_10_3389_fnins_2018_00532 crossref_primary_10_1016_j_visres_2021_107963 crossref_primary_10_1016_j_conb_2018_11_002 crossref_primary_10_1371_journal_pcbi_1011704 crossref_primary_10_3389_fncom_2022_929348 crossref_primary_10_1371_journal_pcbi_1011943 crossref_primary_10_1016_j_scib_2024_02_035 crossref_primary_10_4263_jorthoptic_52T001 crossref_primary_10_1016_j_visres_2020_08_010 crossref_primary_10_1093_cercor_bhaa081 crossref_primary_10_1016_j_neuron_2020_09_005 crossref_primary_10_1016_j_patter_2021_100348 crossref_primary_10_1371_journal_pcbi_1006111 crossref_primary_10_1371_journal_pcbi_1008775 crossref_primary_10_1016_j_neuroscience_2022_11_021 crossref_primary_10_1126_sciadv_abn0984 crossref_primary_10_1016_j_neubiorev_2023_105508 crossref_primary_10_1016_j_tins_2015_02_005 crossref_primary_10_1016_j_patter_2021_100350 crossref_primary_10_1038_s41593_021_00962_x crossref_primary_10_1093_cercor_bhac276 crossref_primary_10_1073_pnas_2104779118 crossref_primary_10_1016_j_neuron_2020_09_035 crossref_primary_10_3902_jnns_28_183 crossref_primary_10_1038_s41586_024_07349_5 crossref_primary_10_1016_j_neunet_2024_106437 crossref_primary_10_1016_j_neuron_2018_02_031 crossref_primary_10_1162_netn_a_00062 crossref_primary_10_1038_s41593_019_0377_4 crossref_primary_10_1038_s41562_023_01759_7 crossref_primary_10_3390_children10101654 crossref_primary_10_1007_s42113_020_00073_z crossref_primary_10_1073_pnas_2115302119 crossref_primary_10_1038_s41598_021_86842_7 crossref_primary_10_7554_eLife_82566 crossref_primary_10_1038_s41598_023_38443_9 crossref_primary_10_1523_JNEUROSCI_2072_19_2019 crossref_primary_10_1016_j_tics_2015_05_006 crossref_primary_10_1016_j_conb_2023_102780 crossref_primary_10_3390_sym16020176 crossref_primary_10_3389_fncom_2022_1030707 crossref_primary_10_3389_fninf_2021_677925 crossref_primary_10_7554_eLife_67620 crossref_primary_10_1016_j_conb_2023_102779 crossref_primary_10_3389_fnins_2022_928841 crossref_primary_10_1016_j_neucom_2020_04_069 crossref_primary_10_1371_journal_pcbi_1010628 crossref_primary_10_1109_TCSVT_2022_3178844 crossref_primary_10_1162_imag_a_00155 crossref_primary_10_1371_journal_pcbi_1011713 crossref_primary_10_1162_jocn_a_01914 crossref_primary_10_3389_fncom_2020_586671 crossref_primary_10_1016_j_cognition_2016_10_016 crossref_primary_10_1111_nyas_14320 crossref_primary_10_1371_journal_pcbi_1006557 crossref_primary_10_1016_j_conb_2022_102630 crossref_primary_10_1007_s11023_019_09512_8 crossref_primary_10_1111_lang_12529 crossref_primary_10_1098_rstb_2016_0278 crossref_primary_10_1038_s41598_023_40807_0 crossref_primary_10_1103_PhysRevX_12_031024 crossref_primary_10_1016_j_conb_2019_02_002 crossref_primary_10_1016_j_conb_2019_02_003 crossref_primary_10_1111_mila_12387 crossref_primary_10_7554_eLife_52599 crossref_primary_10_7554_eLife_81499 crossref_primary_10_1371_journal_pcbi_1010808 crossref_primary_10_1016_j_pneurobio_2020_101781 crossref_primary_10_1017_S0140525X16001837 crossref_primary_10_1109_TGRS_2022_3204062 crossref_primary_10_3389_fncir_2015_00007 crossref_primary_10_1016_j_neunet_2021_09_009 crossref_primary_10_1016_j_neulet_2022_136709 crossref_primary_10_1126_science_aav9436 crossref_primary_10_1016_j_isci_2023_107901 crossref_primary_10_1016_j_jneumeth_2019_108318 crossref_primary_10_1038_s41593_023_01468_4 crossref_primary_10_1167_jov_22_7_3 crossref_primary_10_1016_j_neunet_2021_09_011 crossref_primary_10_1098_rsfs_2018_0013 crossref_primary_10_1098_rsfs_2018_0011 crossref_primary_10_1016_j_neuroimage_2021_118098 crossref_primary_10_1016_j_neunet_2021_09_018 crossref_primary_10_1523_JNEUROSCI_1503_22_2022 crossref_primary_10_1016_j_isci_2023_105976 crossref_primary_10_1145_3359158 crossref_primary_10_4103_jpi_jpi_43_18 crossref_primary_10_1073_pnas_1510847113 crossref_primary_10_1038_s41467_017_01000_w crossref_primary_10_1016_j_neuron_2022_10_003 crossref_primary_10_1098_rsfs_2018_0020 crossref_primary_10_1111_desc_13155 crossref_primary_10_1016_j_bbr_2014_12_053 crossref_primary_10_3390_sym12122083 crossref_primary_10_1073_pnas_1415146112 crossref_primary_10_1016_j_neuroscience_2020_07_040 crossref_primary_10_1146_annurev_vision_102016_061214 crossref_primary_10_1371_journal_pcbi_1005667 crossref_primary_10_1038_s41467_021_22848_z crossref_primary_10_1016_j_tics_2024_03_003 crossref_primary_10_1111_cogs_13009 crossref_primary_10_3233_JIN_170028 crossref_primary_10_1016_j_neuroimage_2017_04_061 crossref_primary_10_1016_j_neuron_2022_12_028 crossref_primary_10_1098_rstb_2018_0377 crossref_primary_10_1073_pnas_1719616115 crossref_primary_10_1093_scan_nsab010 crossref_primary_10_1371_journal_pbio_3000516 crossref_primary_10_1038_s41593_018_0210_5 crossref_primary_10_1111_nyas_14593 crossref_primary_10_1016_j_neuroimage_2020_116844 crossref_primary_10_1016_j_inffus_2022_11_011 crossref_primary_10_1002_hbm_24006 crossref_primary_10_1098_rspb_2016_0166 crossref_primary_10_1038_srep25025 crossref_primary_10_1016_j_neuroimage_2023_119980 crossref_primary_10_1016_j_tins_2022_12_008 crossref_primary_10_1038_s41467_023_44516_0 crossref_primary_10_1371_journal_pcbi_1008714 crossref_primary_10_1016_j_tics_2019_12_014 crossref_primary_10_1016_j_neuropsychologia_2015_10_023 crossref_primary_10_1109_JETCAS_2020_3037951 crossref_primary_10_1523_ENEURO_0398_21_2021 crossref_primary_10_1038_s41593_018_0310_2 crossref_primary_10_1016_j_cell_2017_05_011 crossref_primary_10_1016_j_neuron_2021_04_024 crossref_primary_10_1146_annurev_vision_102016_061249 crossref_primary_10_2183_pjab_98_007 crossref_primary_10_1017_S0140525X22002813 crossref_primary_10_1016_j_cub_2019_09_039 crossref_primary_10_1038_s41467_023_41584_0 crossref_primary_10_7554_eLife_38242 crossref_primary_10_1371_journal_pone_0201192 crossref_primary_10_1038_s41467_022_28091_4 crossref_primary_10_3389_fpsyg_2017_01726 |
Cites_doi | 10.1016/j.conb.2007.03.002 10.7551/mitpress/7131.003.0061 10.1152/jn.01265.2006 10.1016/j.neuron.2012.01.010 10.1561/9781601982957 10.1038/nn1278 10.7551/mitpress/9780262514620.001.0001 10.1523/JNEUROSCI.0179-10.2010 10.1023/B:VISI.0000029664.99615.94 10.1016/S1364-6613(02)01870-3 10.1007/s11263-007-0118-0 10.1126/science.1117593 10.1007/3-540-46769-6_2 10.1038/nn.2889 10.1038/972 10.1093/cercor/bhj086 10.1093/cercor/1.1.1 10.1146/annurev.ne.19.030196.003045 10.1016/j.neuron.2008.10.043 10.1371/journal.pcbi.1000579 10.1126/science.1194908 10.1152/jn.00024.2007 10.1016/j.tics.2007.06.010 10.1007/BF00344251 10.1073/pnas.0700622104 10.1152/jn.1996.76.4.2718 10.1371/journal.pcbi.0040027 10.1146/annurev.ne.19.030196.000545 10.1523/JNEUROSCI.3726-05.2005 10.1016/S0042-6989(01)00073-6 10.1073/pnas.1217479110 10.1152/jn.1994.71.4.1428 10.1038/nn1786 10.1038/81479 |
ContentType | Journal Article |
Copyright | copyright © 1993–2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Jun 10, 2014 |
Copyright_xml | – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Jun 10, 2014 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1403112111 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Ecology Abstracts Virology and AIDS Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Architecture Sciences (General) |
DocumentTitleAlternate | Predicting higher visual cortex neural responses |
EISSN | 1091-6490 |
EndPage | 8624 |
ExternalDocumentID | 3346856891 10_1073_pnas_1403112111 24812127 111_23_8619 23776467 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NEI NIH HHS grantid: R01 EY014970 – fundername: NEI NIH HHS grantid: F32 EY022845 – fundername: NEI NIH HHS grantid: R01-EY014970 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 79B 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM ASUFR BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F5P FRP GX1 HH5 HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZA5 ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO DZ F20 H13 KM PQEST X XHC ADACV CGR CUY CVF ECM EIF IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c566t-31ba4645ca190b176ef5ee1533eb665129f15f9ba395bc41cfa3e8e47a99bb63 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:09:14 EDT 2024 Fri Aug 16 22:46:12 EDT 2024 Sat Oct 05 05:45:06 EDT 2024 Thu Oct 10 18:18:25 EDT 2024 Fri Aug 23 03:01:19 EDT 2024 Sat Sep 28 08:34:58 EDT 2024 Wed Nov 11 00:30:20 EST 2020 Fri Feb 02 07:04:43 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | computer vision array electrophysiology computational neuroscience |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c566t-31ba4645ca190b176ef5ee1533eb665129f15f9ba395bc41cfa3e8e47a99bb63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 1D.L.K.Y. and H.H. contributed equally to this work. Author contributions: D.L.K.Y., H.H., and J.J.D. designed research; D.L.K.Y., H.H., and E.A.S. performed research; D.L.K.Y. contributed new reagents/analytic tools; D.L.K.Y., H.H., C.F.C., and D.S. analyzed data; and D.L.K.Y., H.H., and J.J.D. wrote the paper. Edited by Terrence J. Sejnowski, Salk Institute for Biological Studies, La Jolla, CA, and approved April 8, 2014 (received for review March 3, 2014) |
OpenAccessLink | https://www.pnas.org/content/pnas/111/23/8619.full.pdf |
PMID | 24812127 |
PQID | 1539355543 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pnas_primary_111_23_8619 proquest_miscellaneous_1551622769 pubmed_primary_24812127 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4060707 crossref_primary_10_1073_pnas_1403112111 jstor_primary_23776467 proquest_journals_1539355543 proquest_miscellaneous_1535630251 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2014-06-10 |
PublicationDateYYYYMMDD | 2014-06-10 |
PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2014 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | 24876274 - Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8327-8 31341311 - Nature. 2019 Jul;571(7766):S15-S17 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 Krizhevsky A (e_1_3_3_36_2) 2012; 25 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 |
References_xml | – ident: e_1_3_3_18_2 – ident: e_1_3_3_14_2 doi: 10.1016/j.conb.2007.03.002 – ident: e_1_3_3_34_2 doi: 10.7551/mitpress/7131.003.0061 – ident: e_1_3_3_26_2 doi: 10.1152/jn.01265.2006 – ident: e_1_3_3_9_2 doi: 10.1016/j.neuron.2012.01.010 – ident: e_1_3_3_19_2 doi: 10.1561/9781601982957 – ident: e_1_3_3_29_2 doi: 10.1038/nn1278 – ident: e_1_3_3_37_2 doi: 10.7551/mitpress/9780262514620.001.0001 – ident: e_1_3_3_12_2 doi: 10.1523/JNEUROSCI.0179-10.2010 – ident: e_1_3_3_30_2 doi: 10.1023/B:VISI.0000029664.99615.94 – ident: e_1_3_3_3_2 doi: 10.1016/S1364-6613(02)01870-3 – ident: e_1_3_3_28_2 doi: 10.1007/s11263-007-0118-0 – ident: e_1_3_3_11_2 doi: 10.1126/science.1117593 – ident: e_1_3_3_33_2 doi: 10.1007/3-540-46769-6_2 – volume: 25 start-page: 1097 year: 2012 ident: e_1_3_3_36_2 article-title: ImageNet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems contributor: fullname: Krizhevsky A – ident: e_1_3_3_31_2 doi: 10.1038/nn.2889 – ident: e_1_3_3_35_2 doi: 10.1038/972 – ident: e_1_3_3_32_2 doi: 10.1093/cercor/bhj086 – ident: e_1_3_3_7_2 doi: 10.1093/cercor/1.1.1 – ident: e_1_3_3_6_2 doi: 10.1146/annurev.ne.19.030196.003045 – ident: e_1_3_3_4_2 doi: 10.1016/j.neuron.2008.10.043 – ident: e_1_3_3_20_2 doi: 10.1371/journal.pcbi.1000579 – ident: e_1_3_3_13_2 doi: 10.1126/science.1194908 – ident: e_1_3_3_21_2 doi: 10.1152/jn.00024.2007 – ident: e_1_3_3_1_2 doi: 10.1016/j.tics.2007.06.010 – ident: e_1_3_3_15_2 doi: 10.1007/BF00344251 – ident: e_1_3_3_17_2 doi: 10.1073/pnas.0700622104 – ident: e_1_3_3_24_2 – ident: e_1_3_3_23_2 doi: 10.1152/jn.1996.76.4.2718 – ident: e_1_3_3_25_2 doi: 10.1371/journal.pcbi.0040027 – ident: e_1_3_3_5_2 doi: 10.1146/annurev.ne.19.030196.000545 – ident: e_1_3_3_10_2 doi: 10.1523/JNEUROSCI.3726-05.2005 – ident: e_1_3_3_2_2 doi: 10.1016/S0042-6989(01)00073-6 – ident: e_1_3_3_27_2 doi: 10.1073/pnas.1217479110 – ident: e_1_3_3_8_2 doi: 10.1152/jn.1994.71.4.1428 – ident: e_1_3_3_22_2 doi: 10.1038/nn1786 – ident: e_1_3_3_16_2 doi: 10.1038/81479 |
SSID | ssj0009580 |
Score | 2.6831393 |
Snippet | The ventral visual stream underlies key human visual object recognition abilities. However, neural encoding in the higher areas of the ventral stream remains... Significance Humans and monkeys easily recognize objects in scenes. This ability is known to be supported by a network of hierarchically interconnected brain... Humans and monkeys easily recognize objects in scenes. This ability is known to be supported by a network of hierarchically interconnected brain areas.... |
SourceID | pubmedcentral proquest crossref pubmed pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 8619 |
SubjectTerms | Algorithms Animals Architectural models Architecture Biological Sciences Humans Information technology Macaca mulatta - physiology Modeling Models, Neurological Multilevel models Nerve Net - physiology Neural Networks, Computer Neurons Neurosciences Object recognition Parametric models Photic Stimulation - methods Physiology Predictive modeling Psychomotor Performance - physiology Recognition, Psychology - physiology Visual cortex Visual Cortex - physiology Visual Pathways - physiology Visual Perception - physiology |
Title | Performance-optimized hierarchical models predict neural responses in higher visual cortex |
URI | https://www.jstor.org/stable/23776467 http://www.pnas.org/content/111/23/8619.abstract https://www.ncbi.nlm.nih.gov/pubmed/24812127 https://www.proquest.com/docview/1539355543 https://search.proquest.com/docview/1535630251 https://search.proquest.com/docview/1551622769 https://pubmed.ncbi.nlm.nih.gov/PMC4060707 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BJy6IN6FQuVIP9JDdjR3bmyNCRagSFQcqoV4i23FEJDa72kdV9dcz4zwWKsSBazxOInvsmdF88w3AV4JajKwZx1o4DFC0SGI78jaWThcYjhVJVlDt8O1PdfMr_fEgHzZAdrUwAbTvbDWonyaDunoM2MrZxA07nNjw7vYKjRCx1Aw3YRMVtAvRe6bdcVN3wvH6TXna8floMZzVZjEggrqEiM2oSQxP0cCFljIvrFIDTCS2U5R_y_P8H0D5wiJd78JO60qyy-aX92DD1_uw1x7WBbtoGaW_HcDvu3V5QDzFS2JS_fMFozbYIZGA-8RCS5wFm80pc7NkxHOJT-cNhBZfV9XsMWBC2J9qscIhRzDdv4dwf_39_uombpsqxA49tyXeudZQNtMZdAVsopUvpffk9XmrFJn_MpFlZo3IpHVp4koj_Nin2mSZtUocwVY9rf0JMCNHJZeF9drK1GhutXQhYiwsF4XiEVx0a5rPGuqMPKS8tchpZfP1TkRwFNa8l-NCa4V3eAQnQbSfj-EKF_kYw74IzrqNydtzh6-UVGqMLpKI4Es_jCeG0iCm9tNVkCFSNHTs3pORieJcK_zMcbPX639rdSYC_UoLegFi7H49goocmLtbxT398MxPsI0eW0pYtWR0BlvL-cqfo1e0tJ_DKXgGhMILBQ |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoALUKA0UCBIHMoh2cSO480RVVQLdKseFlRxiWzHUSPY7Go3i1B_PTPOY9sKIcE1nrw0Y8-M5ptvAN4S1CLSahxIbjBBkTwOdGR1IIwsMB0r4qyg3uHpWTr5kny6EBc7IPpeGAfaN7oK6x_zsK4uHbZyOTejHic2Op8eoxMilprRHbiL-zVK-iR94Nodt50nDA_ghCU9o4_ko2Wt1iFR1MVEbUZjYliCLs4Nlbnml1poIvGdovyfYs_bEMprPunkIXzt_6aFonwPN40OzdUtosd__t1H8KCLUv337fIe7Nj6Mex158DaP-rIqt89gW_n286DYIHnz7y6soVPE7ZdjQJNwHfTdtb-ckVFocYnCk28umrRufi4qvYvHdzE_1mtN7hkCAH86ynMTj7MjidBN68hMBgUNnica0WFUqMwytCxTG0prKWA0uo0pciijEWZacUzoU0Sm1JxO7aJVFmmdcr3Ybde1PYAfCWikolCW6lFoiTTUhiXjBaa8SJlHhz1ysqXLStH7qrpkueksnyrYg_2nTIHOcalTNE9eHDgRIf7MRNiPB9jRunBYa_xvNvS-EhBXcwYfXEP3gzLuBmpwqJqu9g4GeJbw5jxbzIiThmTKb7mWWtE22_rjNEDecO8BgEiA7-5gkbjSME7I3n-33e-hnuT2fQ0P_149vkF3MfAMCFIXBwdwm6z2tiXGHw1-pXbar8BMk8s8w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSIgLUKBtoECQOJRDXnZsb46osCqPVnsoUtVLZDuOGsFmo90sQv31zDiP3VaIQ6_x5KUZ299oPn9DyHukWsRaTQLJDCQokiWBjq0OuJEFpGNFkhV4dvj0TJz8SL9e8IutVl-OtG90Fda_5mFdXTluZTM30cATi2anx7AJoUpN1BRldJ88gDkbiyFRH_V2J93pEwqLcErTQdVHsqip1SpEmboE5c2wVQxNYZtzjWW29qaOnoiap2D_L_x5m0a5tS9Nn5DL4Y86OsrPcN3q0FzfEnu80y8_JY97tOp_7Ex2yT1bPyO7_Xqw8o960eoPz8nlbHMCIVjAOjSvrm3hY6dtV6uAUPBd152V3yyxONT6KKUJV5cdSxceV9X-laOd-L-r1RqGDDKB_7wg59PP58cnQd-3ITAADltY1rXCgqlRgDZ0IoUtubUILK0WAhFGmfAy04plXJs0MaVidmJTqbJMa8H2yE69qO0B8RWPS8oLbaXmqZJUS25cUlpoygpBPXI0OCxvOnWO3FXVJcvRbfnGzR7Zcw4d7SiTUsA24ZEDZzreDxkRZfkEMkuPHA5ez_upDY_keJoZUBjzyLtxGCYlVlpUbRdrZ4O6a4Ad_2fDE0GpFPCa_S6QNt_WB6RH5I0QGw1QFPzmCASOEwfvA-Xlne98Sx7OPk3z71_Ovr0ijwAfpsiMS-JDstMu1_Y1YLBWv3Gz7S-anS9z |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance-optimized+hierarchical+models+predict+neural+responses+in+higher+visual+cortex&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Yamins%2C+Daniel+L+K&rft.au=Hong%2C+Ha&rft.au=Cadieu%2C+Charles+F&rft.au=Solomon%2C+Ethan+A&rft.date=2014-06-10&rft.eissn=1091-6490&rft.volume=111&rft.issue=23&rft.spage=8619&rft.epage=8624&rft_id=info:doi/10.1073%2Fpnas.1403112111&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F23.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F23.cover.gif |