Performance-optimized hierarchical models predict neural responses in higher visual cortex

The ventral visual stream underlies key human visual object recognition abilities. However, neural encoding in the higher areas of the ventral stream remains poorly understood. Here, we describe a modeling approach that yields a quantitatively accurate model of inferior temporal (IT) cortex, the hig...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 111; no. 23; pp. 8619 - 8624
Main Authors Yamins, Daniel L. K., Hong, Ha, Cadieu, Charles F., Solomon, Ethan A., Seibert, Darren, DiCarlo, James J.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 10.06.2014
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The ventral visual stream underlies key human visual object recognition abilities. However, neural encoding in the higher areas of the ventral stream remains poorly understood. Here, we describe a modeling approach that yields a quantitatively accurate model of inferior temporal (IT) cortex, the highest ventral cortical area. Using high-throughput computational techniques, we discovered that, within a class of biologically plausible hierarchical neural network models, there is a strong correlation between a model's categorization performance and its ability to predict individual IT neural unit response data. To pursue this idea, we then identified a high-performing neural network that matches human performance on a range of recognition tasks. Critically, even though we did not constrain this model to match neural data, its top output layer turns out to be highly predictive of IT spiking responses to complex naturalistic images at both the single site and population levels. Moreover, the model's intermediate layers are highly predictive of neural responses in the V4 cortex, a midlevel visual area that provides the dominant cortical input to IT. These results show that performance optimization—applied in a biologically appropriate model class— can be used to build quantitative predictive models of neural processing.
AbstractList The ventral visual stream underlies key human visual object recognition abilities. However, neural encoding in the higher areas of the ventral stream remains poorly understood. Here, we describe a modeling approach that yields a quantitatively accurate model of inferior temporal (IT) cortex, the highest ventral cortical area. Using high-throughput computational techniques, we discovered that, within a class of biologically plausible hierarchical neural network models, there is a strong correlation between a model's categorization performance and its ability to predict individual IT neural unit response data. To pursue this idea, we then identified a high-performing neural network that matches human performance on a range of recognition tasks. Critically, even though we did not constrain this model to match neural data, its top output layer turns out to be highly predictive of IT spiking responses to complex naturalistic images at both the single site and population levels. Moreover, the model's intermediate layers are highly predictive of neural responses in the V4 cortex, a midlevel visual area that provides the dominant cortical input to IT. These results show that performance optimization--applied in a biologically appropriate model class--can be used to build quantitative predictive models of neural processing.
Humans and monkeys easily recognize objects in scenes. This ability is known to be supported by a network of hierarchically interconnected brain areas. However, understanding neurons in higher levels of this hierarchy has long remained a major challenge in visual systems neuroscience. We use computational techniques to identify a neural network model that matches human performance on challenging object categorization tasks. Although not explicitly constrained to match neural data, this model turns out to be highly predictive of neural responses in both the V4 and inferior temporal cortex, the top two layers of the ventral visual hierarchy. In addition to yielding greatly improved models of visual cortex, these results suggest that a process of biological performance optimization directly shaped neural mechanisms. The ventral visual stream underlies key human visual object recognition abilities. However, neural encoding in the higher areas of the ventral stream remains poorly understood. Here, we describe a modeling approach that yields a quantitatively accurate model of inferior temporal (IT) cortex, the highest ventral cortical area. Using high-throughput computational techniques, we discovered that, within a class of biologically plausible hierarchical neural network models, there is a strong correlation between a model’s categorization performance and its ability to predict individual IT neural unit response data. To pursue this idea, we then identified a high-performing neural network that matches human performance on a range of recognition tasks. Critically, even though we did not constrain this model to match neural data, its top output layer turns out to be highly predictive of IT spiking responses to complex naturalistic images at both the single site and population levels. Moreover, the model’s intermediate layers are highly predictive of neural responses in the V4 cortex, a midlevel visual area that provides the dominant cortical input to IT. These results show that performance optimization—applied in a biologically appropriate model class—can be used to build quantitative predictive models of neural processing.
Significance Humans and monkeys easily recognize objects in scenes. This ability is known to be supported by a network of hierarchically interconnected brain areas. However, understanding neurons in higher levels of this hierarchy has long remained a major challenge in visual systems neuroscience. We use computational techniques to identify a neural network model that matches human performance on challenging object categorization tasks. Although not explicitly constrained to match neural data, this model turns out to be highly predictive of neural responses in both the V4 and inferior temporal cortex, the top two layers of the ventral visual hierarchy. In addition to yielding greatly improved models of visual cortex, these results suggest that a process of biological performance optimization directly shaped neural mechanisms. The ventral visual stream underlies key human visual object recognition abilities. However, neural encoding in the higher areas of the ventral stream remains poorly understood. Here, we describe a modeling approach that yields a quantitatively accurate model of inferior temporal (IT) cortex, the highest ventral cortical area. Using high-throughput computational techniques, we discovered that, within a class of biologically plausible hierarchical neural network models, there is a strong correlation between a model’s categorization performance and its ability to predict individual IT neural unit response data. To pursue this idea, we then identified a high-performing neural network that matches human performance on a range of recognition tasks. Critically, even though we did not constrain this model to match neural data, its top output layer turns out to be highly predictive of IT spiking responses to complex naturalistic images at both the single site and population levels. Moreover, the model’s intermediate layers are highly predictive of neural responses in the V4 cortex, a midlevel visual area that provides the dominant cortical input to IT. These results show that performance optimization—applied in a biologically appropriate model class—can be used to build quantitative predictive models of neural processing.
Author Hong, Ha
Cadieu, Charles F.
Seibert, Darren
DiCarlo, James J.
Yamins, Daniel L. K.
Solomon, Ethan A.
Author_xml – sequence: 1
  givenname: Daniel L. K.
  surname: Yamins
  fullname: Yamins, Daniel L. K.
– sequence: 2
  givenname: Ha
  surname: Hong
  fullname: Hong, Ha
– sequence: 3
  givenname: Charles F.
  surname: Cadieu
  fullname: Cadieu, Charles F.
– sequence: 4
  givenname: Ethan A.
  surname: Solomon
  fullname: Solomon, Ethan A.
– sequence: 5
  givenname: Darren
  surname: Seibert
  fullname: Seibert, Darren
– sequence: 6
  givenname: James J.
  surname: DiCarlo
  fullname: DiCarlo, James J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24812127$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1v1DAQxS1URLcLZ05AJC5c0nrij8SXSqgqH1IlOPTExXK8k65XiR3spAL--jraZQucOI0085unefPOyIkPHgl5CfQcaM0uRm_SOXDKACoAeEJWQBWUkit6QlaUVnXZ8IqfkrOUdpRSJRr6jJxWvMl8Va_It68YuxAH4y2WYZzc4H7hptg6jCbarbOmL4awwT4VY8SNs1PhcY65GzGNwSdMhfOZv9tiLO5dmvPIhjjhj-fkaWf6hC8OdU1uP1zfXn0qb758_Hz1_qa0QsqpZNAaLrmwBhRtoZbYCUQQjGErpYBKdSA61RqmRGs52M4wbJDXRqm2lWxNLvey49wOuLHop3yeHqMbTPypg3H674l3W30X7jWnktb5iWvy7iAQw_cZ06QHlyz2vfEY5qRBCJBVVUv1HygTktFKQEbf_oPuwhx9fsRCKSaE4CxTF3vKxpBSxO54N1C9JKyXhPVjwnnj9Z92j_zvSDPw5gAsm0c5AF0x3UhYXLzaE7s0hfiowOpaclmzB7rwuPU
CitedBy_id crossref_primary_10_1007_s12021_022_09602_6
crossref_primary_10_1167_jov_21_12_6
crossref_primary_10_1038_s41586_020_2350_5
crossref_primary_10_1371_journal_pbio_3001418
crossref_primary_10_7554_eLife_84357
crossref_primary_10_1142_S2705078522500205
crossref_primary_10_1371_journal_pbio_2005127
crossref_primary_10_3389_fncom_2023_1153572
crossref_primary_10_3390_app9224749
crossref_primary_10_3758_s13423_014_0741_z
crossref_primary_10_1016_j_neuroimage_2017_03_062
crossref_primary_10_1109_TPAMI_2019_2907850
crossref_primary_10_1007_s00422_020_00855_5
crossref_primary_10_1016_j_neuron_2023_03_022
crossref_primary_10_1016_j_isci_2024_109550
crossref_primary_10_1167_19_4_8
crossref_primary_10_1371_journal_pcbi_1005859
crossref_primary_10_1146_annurev_neuro_080317_061936
crossref_primary_10_1016_j_tics_2022_09_003
crossref_primary_10_1177_0963721418801342
crossref_primary_10_1007_s12021_018_9357_1
crossref_primary_10_1098_rspa_2022_0662
crossref_primary_10_1016_j_neuron_2017_05_028
crossref_primary_10_1146_annurev_vision_111815_114621
crossref_primary_10_3390_e24050665
crossref_primary_10_3758_s13423_024_02454_y
crossref_primary_10_3389_fnins_2022_1096737
crossref_primary_10_1038_s41593_022_01237_9
crossref_primary_10_1109_TNNLS_2021_3094205
crossref_primary_10_3389_fncom_2020_580632
crossref_primary_10_3389_fpsyg_2021_641471
crossref_primary_10_1038_s41598_019_40535_4
crossref_primary_10_1016_j_neuroimage_2021_118812
crossref_primary_10_1007_s12021_021_09540_9
crossref_primary_10_1038_s41598_022_20460_9
crossref_primary_10_1016_j_coisb_2017_04_008
crossref_primary_10_1016_j_neuroimage_2023_120007
crossref_primary_10_1016_j_coisb_2017_04_006
crossref_primary_10_1038_s41467_020_15763_2
crossref_primary_10_1038_s42003_022_03036_1
crossref_primary_10_3389_fnins_2019_00692
crossref_primary_10_1371_journal_pcbi_1011086
crossref_primary_10_1016_j_tics_2022_09_019
crossref_primary_10_1038_s42003_018_0110_y
crossref_primary_10_1080_01691864_2021_1943710
crossref_primary_10_1371_journal_pcbi_1004792
crossref_primary_10_1371_journal_pcbi_1011078
crossref_primary_10_1017_S0140525X23001589
crossref_primary_10_1371_journal_pone_0280145
crossref_primary_10_1016_j_neuroimage_2017_12_079
crossref_primary_10_1038_s42256_021_00430_y
crossref_primary_10_1038_s41562_022_01302_0
crossref_primary_10_1016_j_cub_2021_06_090
crossref_primary_10_1016_j_neuroimage_2019_05_039
crossref_primary_10_1098_rstb_2015_0348
crossref_primary_10_1371_journal_pone_0199196
crossref_primary_10_1016_j_neubiorev_2019_04_018
crossref_primary_10_1038_s41467_018_07471_9
crossref_primary_10_1007_s42113_019_00058_7
crossref_primary_10_1038_s41467_021_25409_6
crossref_primary_10_1126_sciadv_abd6127
crossref_primary_10_1016_j_cub_2021_04_014
crossref_primary_10_1371_journal_pcbi_1006908
crossref_primary_10_1146_annurev_vision_093019_115159
crossref_primary_10_1038_s41598_020_74009_9
crossref_primary_10_1523_ENEURO_0113_17_2017
crossref_primary_10_1371_journal_pbio_3001686
crossref_primary_10_1016_j_ejrad_2019_02_038
crossref_primary_10_1162_jocn_a_01135
crossref_primary_10_1038_s44159_024_00276_2
crossref_primary_10_1016_j_neuroscience_2017_02_050
crossref_primary_10_3389_fnins_2022_1082120
crossref_primary_10_1016_j_conb_2019_06_005
crossref_primary_10_1162_neco_a_01197
crossref_primary_10_1371_journal_pbio_3002564
crossref_primary_10_3389_fncom_2017_00100
crossref_primary_10_1016_j_neuron_2019_07_003
crossref_primary_10_1038_s44271_024_00091_8
crossref_primary_10_3389_fninf_2021_748370
crossref_primary_10_1016_j_neuroimage_2023_120220
crossref_primary_10_1007_s00429_022_02495_w
crossref_primary_10_1523_JNEUROSCI_3454_15_2015
crossref_primary_10_1016_j_cognition_2023_105621
crossref_primary_10_1038_s41598_017_13756_8
crossref_primary_10_1063_5_0195680
crossref_primary_10_1371_journal_pcbi_1012127
crossref_primary_10_1186_2047_217X_3_28
crossref_primary_10_1371_journal_pcbi_1011037
crossref_primary_10_1016_j_sigpro_2015_08_017
crossref_primary_10_1126_sciadv_aav7903
crossref_primary_10_1146_annurev_vision_111815_114443
crossref_primary_10_3389_fnhum_2018_00242
crossref_primary_10_3389_fpsyt_2023_1080668
crossref_primary_10_1016_j_neuron_2019_08_034
crossref_primary_10_1109_TPAMI_2018_2849989
crossref_primary_10_1016_j_neuron_2020_11_021
crossref_primary_10_1016_j_neuron_2020_07_040
crossref_primary_10_3389_fnins_2022_975639
crossref_primary_10_1002_hbm_24732
crossref_primary_10_3389_fncom_2022_890447
crossref_primary_10_1152_jn_00195_2021
crossref_primary_10_1177_09637214221083663
crossref_primary_10_1038_s41598_018_23618_6
crossref_primary_10_1016_j_patter_2021_100304
crossref_primary_10_1002_aaai_12148
crossref_primary_10_1016_j_tics_2017_12_002
crossref_primary_10_1016_j_isci_2021_103301
crossref_primary_10_1038_s41928_022_00913_9
crossref_primary_10_1117_1_JEI_26_1_013015
crossref_primary_10_1016_j_neuron_2019_06_005
crossref_primary_10_1523_JNEUROSCI_5181_14_2015
crossref_primary_10_1016_j_conb_2017_06_003
crossref_primary_10_1523_JNEUROSCI_2674_16_2017
crossref_primary_10_3389_fncom_2014_00074
crossref_primary_10_3389_fncom_2016_00131
crossref_primary_10_1038_srep32672
crossref_primary_10_1371_journal_pbio_3002366
crossref_primary_10_1073_pnas_1407198111
crossref_primary_10_1007_s00138_018_0906_2
crossref_primary_10_1016_j_concog_2019_04_002
crossref_primary_10_1371_journal_pcbi_1011486
crossref_primary_10_1162_jocn_a_01544
crossref_primary_10_3389_fninf_2018_00062
crossref_primary_10_1080_23273798_2016_1218033
crossref_primary_10_1007_s00429_021_02415_4
crossref_primary_10_3390_app14083429
crossref_primary_10_1007_s11229_021_03052_4
crossref_primary_10_1371_journal_pcbi_1011483
crossref_primary_10_1016_j_conb_2019_09_009
crossref_primary_10_1016_j_isci_2022_104913
crossref_primary_10_3389_fncom_2022_979258
crossref_primary_10_1016_j_conb_2019_09_002
crossref_primary_10_3758_s13421_023_01485_5
crossref_primary_10_1016_j_tins_2019_07_001
crossref_primary_10_35848_1347_4065_ab77f3
crossref_primary_10_1038_s41467_024_46631_y
crossref_primary_10_1073_pnas_1513198113
crossref_primary_10_1073_pnas_2200800119
crossref_primary_10_1167_jov_21_2_9
crossref_primary_10_1523_JNEUROSCI_1993_20_2021
crossref_primary_10_1080_23273798_2020_1862257
crossref_primary_10_3758_s13428_021_01672_9
crossref_primary_10_1016_j_cub_2021_07_051
crossref_primary_10_3389_fninf_2020_563669
crossref_primary_10_1038_s41593_022_01224_0
crossref_primary_10_1371_journal_pone_0223792
crossref_primary_10_1080_13506285_2017_1324933
crossref_primary_10_3758_s13414_023_02697_2
crossref_primary_10_1016_j_neuroimage_2019_116276
crossref_primary_10_3390_brainsci12121633
crossref_primary_10_1038_s41467_019_12623_6
crossref_primary_10_1126_sciadv_abl8913
crossref_primary_10_1093_cercor_bhaa241
crossref_primary_10_1162_neco_a_01367
crossref_primary_10_3389_fnsys_2017_00012
crossref_primary_10_7554_eLife_56234
crossref_primary_10_1016_j_neuroimage_2019_03_031
crossref_primary_10_7554_eLife_21397
crossref_primary_10_7554_eLife_76384
crossref_primary_10_1038_nn_4128
crossref_primary_10_1016_j_neuroimage_2019_04_079
crossref_primary_10_1371_journal_pcbi_1008017
crossref_primary_10_1016_j_neunet_2022_07_033
crossref_primary_10_1016_j_neunet_2020_03_016
crossref_primary_10_1098_rstb_2019_0664
crossref_primary_10_1038_s42256_020_00242_6
crossref_primary_10_1038_s42256_023_00753_y
crossref_primary_10_1016_j_cobeha_2020_08_008
crossref_primary_10_1038_s41583_023_00756_z
crossref_primary_10_1126_sciadv_aax5979
crossref_primary_10_1162_neco_a_01356
crossref_primary_10_1038_nn_4158
crossref_primary_10_1016_j_cell_2019_04_005
crossref_primary_10_1523_JNEUROSCI_0237_16_2016
crossref_primary_10_1016_j_cogsys_2024_101244
crossref_primary_10_1017_S0140525X17000188
crossref_primary_10_3389_fninf_2021_679838
crossref_primary_10_1016_j_neuron_2020_06_014
crossref_primary_10_1016_j_pneurobio_2019_01_008
crossref_primary_10_1167_jov_20_7_21
crossref_primary_10_1523_ENEURO_0443_17_2018
crossref_primary_10_1016_j_neunet_2022_07_007
crossref_primary_10_7554_eLife_32259
crossref_primary_10_3934_Neuroscience_2020023
crossref_primary_10_1038_s44159_023_00266_w
crossref_primary_10_1093_cercor_bhaa260
crossref_primary_10_3389_fninf_2023_1223687
crossref_primary_10_1093_chemse_bjy043
crossref_primary_10_1016_j_neuroimage_2023_120067
crossref_primary_10_1038_s41467_022_33581_6
crossref_primary_10_1111_cogs_12729
crossref_primary_10_3389_fncel_2022_1006703
crossref_primary_10_1038_s41593_022_01211_5
crossref_primary_10_1038_s42003_024_06316_0
crossref_primary_10_1093_cercor_bhaa269
crossref_primary_10_3390_electronics12204212
crossref_primary_10_1523_JNEUROSCI_1424_22_2022
crossref_primary_10_1016_j_cub_2015_06_009
crossref_primary_10_1016_j_pneurobio_2020_101928
crossref_primary_10_1016_j_pneurobio_2020_101925
crossref_primary_10_1167_jov_20_7_32
crossref_primary_10_1016_j_celrep_2023_112673
crossref_primary_10_1007_s10462_021_10130_z
crossref_primary_10_1162_neco_a_01571
crossref_primary_10_1016_j_neunet_2023_08_022
crossref_primary_10_1016_j_visres_2021_09_004
crossref_primary_10_1016_j_bandc_2018_02_012
crossref_primary_10_1016_j_neunet_2021_12_005
crossref_primary_10_1016_j_neunet_2023_08_021
crossref_primary_10_1016_j_neuroimage_2019_116118
crossref_primary_10_1098_rstb_2021_0446
crossref_primary_10_1016_j_neuroimage_2022_119769
crossref_primary_10_1016_j_neuropsychologia_2021_108053
crossref_primary_10_3389_fphys_2019_00140
crossref_primary_10_1038_s41598_018_30601_8
crossref_primary_10_1016_j_patter_2021_100286
crossref_primary_10_1038_s41467_021_25939_z
crossref_primary_10_1038_sdata_2019_12
crossref_primary_10_3389_frai_2023_1062230
crossref_primary_10_1016_j_visres_2019_12_006
crossref_primary_10_1073_pnas_2410196121
crossref_primary_10_1016_j_neubiorev_2019_01_014
crossref_primary_10_1016_j_isci_2023_108501
crossref_primary_10_1126_sciadv_adh4690
crossref_primary_10_1016_j_neuroimage_2022_119754
crossref_primary_10_1167_jov_22_2_4
crossref_primary_10_1086_708763
crossref_primary_10_1016_j_cognition_2017_10_006
crossref_primary_10_1371_journal_pcbi_1010522
crossref_primary_10_1371_journal_pcbi_1008215
crossref_primary_10_1016_j_patter_2023_100831
crossref_primary_10_3389_fpsyg_2022_988302
crossref_primary_10_1038_s41583_020_00395_8
crossref_primary_10_1371_journal_pcbi_1011618
crossref_primary_10_1016_j_neuroimage_2016_04_012
crossref_primary_10_1038_s41598_020_61409_0
crossref_primary_10_7554_eLife_71736
crossref_primary_10_1088_1741_2552_abb860
crossref_primary_10_1016_j_cognition_2020_104365
crossref_primary_10_3389_fnins_2024_1344114
crossref_primary_10_1162_neco_a_01559
crossref_primary_10_1016_j_neunet_2017_02_008
crossref_primary_10_1073_pnas_1519761112
crossref_primary_10_1016_j_inffus_2024_102447
crossref_primary_10_1371_journal_pone_0174508
crossref_primary_10_1007_s11229_023_04295_z
crossref_primary_10_1016_j_conb_2017_08_016
crossref_primary_10_1371_journal_pcbi_1009572
crossref_primary_10_1016_j_neunet_2023_01_011
crossref_primary_10_3758_s13421_024_01580_1
crossref_primary_10_1162_neco_a_01544
crossref_primary_10_1103_PhysRevX_7_041044
crossref_primary_10_1167_jov_21_8_15
crossref_primary_10_1371_journal_pcbi_1010784
crossref_primary_10_1038_s41467_024_45679_0
crossref_primary_10_1038_s42003_023_05108_2
crossref_primary_10_1167_jov_21_8_10
crossref_primary_10_3389_fncom_2018_00004
crossref_primary_10_7554_eLife_90256
crossref_primary_10_1523_ENEURO_0333_16_2017
crossref_primary_10_1016_j_neunet_2020_09_008
crossref_primary_10_1038_s41467_021_26793_9
crossref_primary_10_1167_jov_20_12_10
crossref_primary_10_1016_j_neuroimage_2016_03_027
crossref_primary_10_1177_26339137231222481
crossref_primary_10_1038_s41467_021_22244_7
crossref_primary_10_7554_eLife_78392
crossref_primary_10_1162_neco_a_01538
crossref_primary_10_1016_j_cell_2022_06_047
crossref_primary_10_1016_j_cobeha_2021_02_006
crossref_primary_10_1016_j_neuroimage_2022_119728
crossref_primary_10_1016_j_tics_2021_11_008
crossref_primary_10_1111_phor_12376
crossref_primary_10_1162_jocn_a_01803
crossref_primary_10_1073_pnas_2219150120
crossref_primary_10_1162_neco_a_01520
crossref_primary_10_1167_jov_22_4_4
crossref_primary_10_1371_journal_pcbi_1009739
crossref_primary_10_1038_s41467_023_40499_0
crossref_primary_10_1523_JNEUROSCI_1061_19_2019
crossref_primary_10_1038_s41562_023_01680_z
crossref_primary_10_1098_rstb_2016_0108
crossref_primary_10_3389_fcomp_2023_1275026
crossref_primary_10_1016_j_neures_2024_06_003
crossref_primary_10_1038_s41467_017_00181_8
crossref_primary_10_1038_s41467_023_38674_4
crossref_primary_10_1162_jocn_a_01819
crossref_primary_10_1016_j_cognition_2017_11_008
crossref_primary_10_1038_s41586_023_06670_9
crossref_primary_10_1038_s41583_021_00502_3
crossref_primary_10_1038_s41593_023_01514_1
crossref_primary_10_1146_annurev_neuro_092322_100402
crossref_primary_10_1073_pnas_1520371113
crossref_primary_10_1073_pnas_2105646118
crossref_primary_10_1002_wcs_1385
crossref_primary_10_1038_s41467_022_35659_7
crossref_primary_10_1146_annurev_vision_091517_034103
crossref_primary_10_1371_journal_pcbi_1009528
crossref_primary_10_1111_apha_12875
crossref_primary_10_1080_23273798_2021_2001023
crossref_primary_10_1007_s10827_021_00778_5
crossref_primary_10_1038_s42003_022_03557_9
crossref_primary_10_1016_j_conb_2019_12_007
crossref_primary_10_1016_j_neucom_2022_02_031
crossref_primary_10_1038_s41598_024_59930_7
crossref_primary_10_1146_annurev_vision_091517_034110
crossref_primary_10_3389_fninf_2021_802938
crossref_primary_10_1093_cercor_bhx268
crossref_primary_10_1038_s42256_020_0170_9
crossref_primary_10_1038_s41928_020_0422_z
crossref_primary_10_1016_j_neuropsychologia_2020_107621
crossref_primary_10_3389_fncom_2015_00008
crossref_primary_10_7554_eLife_56603
crossref_primary_10_1016_j_conb_2019_10_003
crossref_primary_10_1016_j_neuroimage_2016_02_019
crossref_primary_10_3389_fnsyn_2016_00026
crossref_primary_10_1016_j_neuroimage_2016_03_063
crossref_primary_10_1038_s41593_024_01631_5
crossref_primary_10_1167_jov_22_6_8
crossref_primary_10_3389_fnbot_2021_648527
crossref_primary_10_7554_eLife_87197_3
crossref_primary_10_1371_journal_pone_0157109
crossref_primary_10_1038_d41586_019_02212_4
crossref_primary_10_1016_j_cortex_2015_01_020
crossref_primary_10_1167_jov_21_10_17
crossref_primary_10_1162_jocn_a_00919
crossref_primary_10_1038_srep27755
crossref_primary_10_1146_annurev_neuro_102119_103452
crossref_primary_10_1038_s41467_021_27606_9
crossref_primary_10_1016_j_eng_2020_02_004
crossref_primary_10_1371_journal_pcbi_1007514
crossref_primary_10_1038_s41583_023_00705_w
crossref_primary_10_1167_18_13_2
crossref_primary_10_1146_annurev_vision_082114_035733
crossref_primary_10_1038_s41597_019_0052_3
crossref_primary_10_1016_j_neuropsychologia_2017_06_010
crossref_primary_10_1038_s41467_020_20371_1
crossref_primary_10_1038_s41592_018_0152_6
crossref_primary_10_1073_pnas_2011417118
crossref_primary_10_1167_jov_22_2_20
crossref_primary_10_1016_j_cognition_2018_06_015
crossref_primary_10_1016_j_cogsys_2023_101200
crossref_primary_10_1371_journal_pcbi_1009976
crossref_primary_10_12688_bioethopenres_17501_1
crossref_primary_10_1167_19_7_1
crossref_primary_10_1177_0142723720905765
crossref_primary_10_1016_j_neunet_2023_03_020
crossref_primary_10_7554_eLife_55978
crossref_primary_10_1016_j_cub_2023_12_058
crossref_primary_10_1177_2041669517699628
crossref_primary_10_3390_brainsci13101387
crossref_primary_10_3758_s13414_020_02213_w
crossref_primary_10_1016_j_patter_2023_100895
crossref_primary_10_1109_TCDS_2020_3007761
crossref_primary_10_3389_fncom_2021_625804
crossref_primary_10_3389_fncom_2024_1273053
crossref_primary_10_7554_eLife_42870
crossref_primary_10_1371_journal_pcbi_1007973
crossref_primary_10_3758_s13421_020_01130_5
crossref_primary_10_1073_pnas_2005087117
crossref_primary_10_1038_nrn_2017_7
crossref_primary_10_1016_j_ecoinf_2021_101486
crossref_primary_10_1007_s42113_019_00028_z
crossref_primary_10_1016_j_neunet_2023_04_032
crossref_primary_10_1088_1748_3190_ac709b
crossref_primary_10_1109_ACCESS_2022_3208603
crossref_primary_10_1523_JNEUROSCI_1479_23_2024
crossref_primary_10_1016_j_cviu_2016_04_009
crossref_primary_10_3389_fncom_2022_836498
crossref_primary_10_1038_s41539_022_00139_6
crossref_primary_10_3390_vision3040061
crossref_primary_10_1523_JNEUROSCI_0803_23_2023
crossref_primary_10_1007_s11571_023_09989_1
crossref_primary_10_1371_journal_pcbi_1009928
crossref_primary_10_1523_JNEUROSCI_1843_19_2019
crossref_primary_10_1371_journal_pcbi_1006897
crossref_primary_10_1016_j_neures_2019_12_009
crossref_primary_10_1080_13506285_2019_1661927
crossref_primary_10_1016_j_neunet_2017_03_003
crossref_primary_10_1016_j_cub_2017_12_037
crossref_primary_10_1073_pnas_2112566119
crossref_primary_10_1371_journal_pcbi_1005799
crossref_primary_10_1162_jocn_a_02043
crossref_primary_10_1126_sciadv_abj4383
crossref_primary_10_1162_jocn_a_02040
crossref_primary_10_1016_j_neuroscience_2022_02_033
crossref_primary_10_1038_d41586_024_01320_0
crossref_primary_10_1167_jov_24_6_1
crossref_primary_10_1016_j_tics_2016_09_003
crossref_primary_10_1016_j_cognition_2018_05_017
crossref_primary_10_1016_j_tins_2022_06_007
crossref_primary_10_1038_s42003_022_03711_3
crossref_primary_10_1146_annurev_linguistics_031120_122120
crossref_primary_10_1038_s41583_020_00393_w
crossref_primary_10_1016_j_neunet_2022_03_044
crossref_primary_10_1098_rstb_2015_0266
crossref_primary_10_1016_j_neunet_2021_08_024
crossref_primary_10_1016_j_neunet_2022_03_042
crossref_primary_10_3389_fncom_2024_1209082
crossref_primary_10_1016_j_cobeha_2019_07_001
crossref_primary_10_1371_journal_pcbi_1004896
crossref_primary_10_1186_s13408_020_00088_7
crossref_primary_10_1080_21507740_2020_1740352
crossref_primary_10_1016_j_cortex_2023_07_003
crossref_primary_10_2139_ssrn_3155608
crossref_primary_10_1016_j_conb_2016_02_001
crossref_primary_10_1167_jov_21_3_16
crossref_primary_10_1371_journal_pcbi_1006829
crossref_primary_10_1002_hbm_24697
crossref_primary_10_1038_s41467_020_17714_3
crossref_primary_10_1016_j_neuron_2015_09_040
crossref_primary_10_7554_eLife_64615
crossref_primary_10_1038_s41597_023_02471_x
crossref_primary_10_1007_s11229_023_04461_3
crossref_primary_10_1038_s41593_020_0671_1
crossref_primary_10_1016_j_neunet_2022_02_017
crossref_primary_10_7554_eLife_38105
crossref_primary_10_1038_s41467_020_19632_w
crossref_primary_10_1109_TIP_2019_2902831
crossref_primary_10_1167_jov_21_13_6
crossref_primary_10_1371_journal_pcbi_1006613
crossref_primary_10_1254_fpj_19132
crossref_primary_10_1016_j_tics_2019_10_005
crossref_primary_10_1016_j_visres_2020_04_003
crossref_primary_10_1016_j_visres_2020_04_005
crossref_primary_10_1073_pnas_2014196118
crossref_primary_10_1073_pnas_2121331119
crossref_primary_10_1111_desc_12470
crossref_primary_10_1016_j_neuroimage_2020_117328
crossref_primary_10_1146_annurev_vision_082114_035447
crossref_primary_10_1016_j_neunet_2022_02_029
crossref_primary_10_1371_journal_pcbi_1012058
crossref_primary_10_1016_j_isci_2021_103013
crossref_primary_10_1371_journal_pcbi_1012056
crossref_primary_10_1038_s41467_020_15533_0
crossref_primary_10_1038_s41598_020_59175_0
crossref_primary_10_1038_s42003_022_04260_5
crossref_primary_10_3389_fncom_2020_00035
crossref_primary_10_1113_JP282755
crossref_primary_10_3389_fncom_2020_00039
crossref_primary_10_1016_j_cub_2020_04_014
crossref_primary_10_3389_fpsyg_2023_1029808
crossref_primary_10_1016_j_tics_2024_05_001
crossref_primary_10_1103_PhysRevX_11_031059
crossref_primary_10_1016_j_patrec_2019_09_006
crossref_primary_10_1016_j_visres_2020_04_015
crossref_primary_10_1523_JNEUROSCI_1716_20_2021
crossref_primary_10_1152_jn_00433_2018
crossref_primary_10_1016_j_cub_2020_05_050
crossref_primary_10_1021_acschemneuro_6b00319
crossref_primary_10_1038_s41562_022_01510_8
crossref_primary_10_1038_s41467_021_26751_5
crossref_primary_10_1167_jov_21_11_15
crossref_primary_10_1016_j_conb_2019_01_007
crossref_primary_10_1016_j_jmp_2016_10_007
crossref_primary_10_1016_j_jvcir_2016_07_009
crossref_primary_10_1016_j_tins_2020_09_004
crossref_primary_10_1073_pnas_1912336117
crossref_primary_10_3389_fncom_2017_00007
crossref_primary_10_7554_eLife_14320
crossref_primary_10_3390_s20174668
crossref_primary_10_1007_s00422_015_0658_2
crossref_primary_10_1016_j_conb_2016_01_008
crossref_primary_10_1146_annurev_conmatphys_031119_050745
crossref_primary_10_1371_journal_pcbi_1011145
crossref_primary_10_3389_frai_2022_961595
crossref_primary_10_1016_j_celrep_2022_111777
crossref_primary_10_1111_cogs_12676
crossref_primary_10_1126_sciadv_adg1736
crossref_primary_10_1016_j_neuron_2018_06_038
crossref_primary_10_1126_sciadv_abm2219
crossref_primary_10_7554_eLife_72067
crossref_primary_10_1038_s41598_021_03938_w
crossref_primary_10_1162_NECO_a_00929
crossref_primary_10_1016_j_conb_2019_01_011
crossref_primary_10_1515_flin_2023_2034
crossref_primary_10_1038_s41467_024_48114_6
crossref_primary_10_1016_j_isci_2022_105788
crossref_primary_10_1109_LRA_2018_2825473
crossref_primary_10_1038_s41467_021_22856_z
crossref_primary_10_1073_pnas_2022792118
crossref_primary_10_7554_eLife_91685_3
crossref_primary_10_1016_j_cub_2020_04_074
crossref_primary_10_1016_j_neuroimage_2018_04_053
crossref_primary_10_1146_annurev_vision_093019_111701
crossref_primary_10_1016_j_neuron_2021_06_018
crossref_primary_10_1038_s41583_020_0277_3
crossref_primary_10_1016_j_visres_2015_10_015
crossref_primary_10_1162_neco_a_01086
crossref_primary_10_1038_s41593_019_0392_5
crossref_primary_10_1016_j_conb_2016_01_010
crossref_primary_10_1523_JNEUROSCI_0573_15_2015
crossref_primary_10_1016_j_cortex_2017_09_019
crossref_primary_10_1038_s41467_022_34075_1
crossref_primary_10_1073_pnas_2201854119
crossref_primary_10_1016_j_intell_2021_101548
crossref_primary_10_1038_s41467_021_24456_3
crossref_primary_10_1016_j_jmp_2016_10_010
crossref_primary_10_1038_s41598_019_45268_y
crossref_primary_10_3390_biology12101330
crossref_primary_10_1038_s41593_024_01668_6
crossref_primary_10_1016_j_conb_2021_04_004
crossref_primary_10_1167_19_6_13
crossref_primary_10_1162_neco_a_01072
crossref_primary_10_1113_JP279549
crossref_primary_10_3389_fncom_2014_00171
crossref_primary_10_1038_s44159_023_00212_w
crossref_primary_10_3389_fncom_2021_626259
crossref_primary_10_1371_journal_pcbi_1003963
crossref_primary_10_1038_s41598_023_36029_z
crossref_primary_10_1371_journal_pcbi_1003724
crossref_primary_10_1016_j_visres_2022_108058
crossref_primary_10_1016_j_tics_2018_06_006
crossref_primary_10_1007_s42113_022_00126_5
crossref_primary_10_1371_journal_pcbi_1011343
crossref_primary_10_1162_jocn_a_01444
crossref_primary_10_1038_ncomms13276
crossref_primary_10_1523_JNEUROSCI_2918_19_2020
crossref_primary_10_1371_journal_pcbi_1007091
crossref_primary_10_1080_0952813X_2015_1042534
crossref_primary_10_3389_fncir_2023_1172464
crossref_primary_10_3389_fncom_2014_00168
crossref_primary_10_1038_s42256_022_00592_3
crossref_primary_10_1073_pnas_2304085120
crossref_primary_10_1162_neco_a_01048
crossref_primary_10_1016_j_tics_2019_01_009
crossref_primary_10_1038_s41593_023_01460_y
crossref_primary_10_3389_fncom_2023_1274824
crossref_primary_10_3389_fnins_2022_999720
crossref_primary_10_1007_s11023_018_9480_7
crossref_primary_10_1109_TCYB_2020_2972983
crossref_primary_10_1371_journal_pcbi_1009028
crossref_primary_10_1016_j_neuroimage_2016_10_001
crossref_primary_10_1016_j_neuroimage_2017_07_018
crossref_primary_10_1038_s41583_022_00582_9
crossref_primary_10_1371_journal_pcbi_1009267
crossref_primary_10_1371_journal_pcbi_1010484
crossref_primary_10_3389_fncom_2014_00158
crossref_primary_10_7554_eLife_36329
crossref_primary_10_1016_j_neucom_2022_11_035
crossref_primary_10_1038_s41598_018_22160_9
crossref_primary_10_1162_neco_a_01039
crossref_primary_10_1073_pnas_2300558120
crossref_primary_10_3389_fncom_2018_00083
crossref_primary_10_1016_j_robot_2020_103625
crossref_primary_10_1038_s41467_024_44801_6
crossref_primary_10_1016_j_neuroimage_2018_01_009
crossref_primary_10_1016_j_neuroimage_2015_12_036
crossref_primary_10_1167_19_4_29
crossref_primary_10_1073_pnas_2317773121
crossref_primary_10_1016_j_visres_2022_108083
crossref_primary_10_1016_j_neuron_2024_03_021
crossref_primary_10_1007_s11263_020_01405_z
crossref_primary_10_1016_j_visres_2020_06_007
crossref_primary_10_1016_j_cognition_2020_104192
crossref_primary_10_1152_jn_00456_2018
crossref_primary_10_1162_neco_a_01497
crossref_primary_10_1146_annurev_vision_100720_113429
crossref_primary_10_1038_s41598_022_20012_1
crossref_primary_10_1016_j_neuropsychologia_2021_108092
crossref_primary_10_1126_sciadv_abe7547
crossref_primary_10_1007_s00521_021_05863_5
crossref_primary_10_1016_j_neuron_2021_09_010
crossref_primary_10_1146_annurev_vision_091718_014731
crossref_primary_10_1073_pnas_1719397115
crossref_primary_10_1371_journal_pcbi_1011783
crossref_primary_10_7554_eLife_68344
crossref_primary_10_3389_fncom_2018_00056
crossref_primary_10_3389_fncom_2018_00057
crossref_primary_10_1073_pnas_2016569118
crossref_primary_10_1016_j_pneurobio_2017_06_002
crossref_primary_10_1371_journal_pcbi_1003915
crossref_primary_10_1016_j_tics_2016_05_004
crossref_primary_10_1016_j_neuroimage_2017_08_016
crossref_primary_10_1016_j_neuron_2018_04_006
crossref_primary_10_7554_eLife_77599
crossref_primary_10_1162_netn_a_00235
crossref_primary_10_1038_nn_4244
crossref_primary_10_1038_nn_4247
crossref_primary_10_3389_fnbot_2018_00078
crossref_primary_10_1016_j_neucom_2016_04_029
crossref_primary_10_1080_00273171_2023_2229305
crossref_primary_10_1016_j_neuroscience_2024_01_015
crossref_primary_10_1016_j_neunet_2018_09_004
crossref_primary_10_1371_journal_pone_0223660
crossref_primary_10_1016_j_cub_2020_12_017
crossref_primary_10_1016_j_neuroimage_2015_04_006
crossref_primary_10_1109_TPAMI_2020_3008107
crossref_primary_10_1146_annurev_vision_120522_031739
crossref_primary_10_1016_j_neuron_2024_04_018
crossref_primary_10_1146_annurev_vision_091718_014951
crossref_primary_10_1162_jocn_a_01624
crossref_primary_10_1038_ncomms15037
crossref_primary_10_1038_s41598_023_34829_x
crossref_primary_10_1126_sciadv_abd4205
crossref_primary_10_1016_j_jmp_2016_06_009
crossref_primary_10_1016_j_pneurobio_2019_101717
crossref_primary_10_1016_j_neunet_2016_12_001
crossref_primary_10_3389_fcomp_2022_976801
crossref_primary_10_1146_annurev_vision_030320_041306
crossref_primary_10_1523_JNEUROSCI_2458_18_2018
crossref_primary_10_7554_eLife_22341
crossref_primary_10_1162_netn_a_00219
crossref_primary_10_7554_eLife_21492
crossref_primary_10_7554_eLife_60830
crossref_primary_10_1016_j_cub_2014_12_050
crossref_primary_10_1038_d41586_019_01181_y
crossref_primary_10_3389_fncom_2017_00060
crossref_primary_10_1093_bjps_axy073
crossref_primary_10_1371_journal_pcbi_1011792
crossref_primary_10_1038_s41562_021_01194_6
crossref_primary_10_1016_j_neunet_2023_09_028
crossref_primary_10_1016_j_neuroimage_2017_08_033
crossref_primary_10_1162_neco_a_01211
crossref_primary_10_1038_s41467_017_01912_7
crossref_primary_10_1038_s41467_023_36583_0
crossref_primary_10_1016_j_neures_2015_10_012
crossref_primary_10_1162_neco_a_01458
crossref_primary_10_34133_2021_4689869
crossref_primary_10_1089_cmb_2021_0368
crossref_primary_10_3389_fpsyg_2017_01551
crossref_primary_10_1371_journal_pcbi_1007011
crossref_primary_10_1007_s10071_016_0982_5
crossref_primary_10_1371_journal_pone_0253442
crossref_primary_10_3389_fnsys_2020_615129
crossref_primary_10_1371_journal_pcbi_1011506
crossref_primary_10_1016_j_conb_2021_10_010
crossref_primary_10_1109_TCDS_2023_3287184
crossref_primary_10_7554_eLife_82502
crossref_primary_10_1103_PhysRevB_104_235154
crossref_primary_10_1016_j_tics_2018_04_001
crossref_primary_10_1016_j_neuroimage_2022_119635
crossref_primary_10_1073_pnas_1905334117
crossref_primary_10_1038_s42003_020_0945_x
crossref_primary_10_1152_jn_00018_2016
crossref_primary_10_1371_journal_pcbi_1007001
crossref_primary_10_1016_j_neuron_2023_06_007
crossref_primary_10_7554_eLife_91685
crossref_primary_10_1016_j_conb_2019_04_002
crossref_primary_10_1016_j_neuron_2024_01_002
crossref_primary_10_1038_s41598_021_04323_3
crossref_primary_10_7554_eLife_87197
crossref_primary_10_1016_j_neunet_2024_106423
crossref_primary_10_1162_neco_a_01671
crossref_primary_10_1038_s41598_023_37995_0
crossref_primary_10_1016_j_neunet_2022_06_034
crossref_primary_10_1038_s41467_020_14578_5
crossref_primary_10_1162_netn_a_00264
crossref_primary_10_3758_s13414_019_01968_1
crossref_primary_10_1016_j_cub_2022_11_016
crossref_primary_10_1038_s41467_022_28323_7
crossref_primary_10_1371_journal_pcbi_1009212
crossref_primary_10_1162_NECO_a_00890
crossref_primary_10_3389_fcomp_2023_1140723
crossref_primary_10_1016_j_cortex_2021_07_008
crossref_primary_10_1109_TPAMI_2020_2995909
crossref_primary_10_1016_j_neunet_2020_02_009
crossref_primary_10_1016_j_neunet_2020_11_013
crossref_primary_10_1016_j_neuron_2018_03_044
crossref_primary_10_1016_j_cogsys_2023_101158
crossref_primary_10_1038_s41598_021_92805_9
crossref_primary_10_1016_j_cogsys_2023_101156
crossref_primary_10_1371_journal_pcbi_1007265
crossref_primary_10_1016_j_neuroimage_2021_118266
crossref_primary_10_1007_s11229_022_03694_y
crossref_primary_10_1371_journal_pcbi_1010427
crossref_primary_10_3389_fnbot_2020_578803
crossref_primary_10_1146_annurev_vision_100720_103343
crossref_primary_10_1093_cercor_bhw282
crossref_primary_10_1126_sciadv_add2981
crossref_primary_10_1146_annurev_vision_093019_111124
crossref_primary_10_3389_fncir_2023_1092933
crossref_primary_10_7887_jcns_30_120
crossref_primary_10_1073_pnas_1714287115
crossref_primary_10_1371_journal_pcbi_1007210
crossref_primary_10_3389_fnhum_2022_875201
crossref_primary_10_1016_j_imavis_2017_10_001
crossref_primary_10_1017_S0963180122000688
crossref_primary_10_1016_j_cell_2024_02_036
crossref_primary_10_1186_s40708_021_00147_z
crossref_primary_10_1002_cyto_a_23701
crossref_primary_10_3389_fnins_2018_00532
crossref_primary_10_1016_j_visres_2021_107963
crossref_primary_10_1016_j_conb_2018_11_002
crossref_primary_10_1371_journal_pcbi_1011704
crossref_primary_10_3389_fncom_2022_929348
crossref_primary_10_1371_journal_pcbi_1011943
crossref_primary_10_1016_j_scib_2024_02_035
crossref_primary_10_4263_jorthoptic_52T001
crossref_primary_10_1016_j_visres_2020_08_010
crossref_primary_10_1093_cercor_bhaa081
crossref_primary_10_1016_j_neuron_2020_09_005
crossref_primary_10_1016_j_patter_2021_100348
crossref_primary_10_1371_journal_pcbi_1006111
crossref_primary_10_1371_journal_pcbi_1008775
crossref_primary_10_1016_j_neuroscience_2022_11_021
crossref_primary_10_1126_sciadv_abn0984
crossref_primary_10_1016_j_neubiorev_2023_105508
crossref_primary_10_1016_j_tins_2015_02_005
crossref_primary_10_1016_j_patter_2021_100350
crossref_primary_10_1038_s41593_021_00962_x
crossref_primary_10_1093_cercor_bhac276
crossref_primary_10_1073_pnas_2104779118
crossref_primary_10_1016_j_neuron_2020_09_035
crossref_primary_10_3902_jnns_28_183
crossref_primary_10_1038_s41586_024_07349_5
crossref_primary_10_1016_j_neunet_2024_106437
crossref_primary_10_1016_j_neuron_2018_02_031
crossref_primary_10_1162_netn_a_00062
crossref_primary_10_1038_s41593_019_0377_4
crossref_primary_10_1038_s41562_023_01759_7
crossref_primary_10_3390_children10101654
crossref_primary_10_1007_s42113_020_00073_z
crossref_primary_10_1073_pnas_2115302119
crossref_primary_10_1038_s41598_021_86842_7
crossref_primary_10_7554_eLife_82566
crossref_primary_10_1038_s41598_023_38443_9
crossref_primary_10_1523_JNEUROSCI_2072_19_2019
crossref_primary_10_1016_j_tics_2015_05_006
crossref_primary_10_1016_j_conb_2023_102780
crossref_primary_10_3390_sym16020176
crossref_primary_10_3389_fncom_2022_1030707
crossref_primary_10_3389_fninf_2021_677925
crossref_primary_10_7554_eLife_67620
crossref_primary_10_1016_j_conb_2023_102779
crossref_primary_10_3389_fnins_2022_928841
crossref_primary_10_1016_j_neucom_2020_04_069
crossref_primary_10_1371_journal_pcbi_1010628
crossref_primary_10_1109_TCSVT_2022_3178844
crossref_primary_10_1162_imag_a_00155
crossref_primary_10_1371_journal_pcbi_1011713
crossref_primary_10_1162_jocn_a_01914
crossref_primary_10_3389_fncom_2020_586671
crossref_primary_10_1016_j_cognition_2016_10_016
crossref_primary_10_1111_nyas_14320
crossref_primary_10_1371_journal_pcbi_1006557
crossref_primary_10_1016_j_conb_2022_102630
crossref_primary_10_1007_s11023_019_09512_8
crossref_primary_10_1111_lang_12529
crossref_primary_10_1098_rstb_2016_0278
crossref_primary_10_1038_s41598_023_40807_0
crossref_primary_10_1103_PhysRevX_12_031024
crossref_primary_10_1016_j_conb_2019_02_002
crossref_primary_10_1016_j_conb_2019_02_003
crossref_primary_10_1111_mila_12387
crossref_primary_10_7554_eLife_52599
crossref_primary_10_7554_eLife_81499
crossref_primary_10_1371_journal_pcbi_1010808
crossref_primary_10_1016_j_pneurobio_2020_101781
crossref_primary_10_1017_S0140525X16001837
crossref_primary_10_1109_TGRS_2022_3204062
crossref_primary_10_3389_fncir_2015_00007
crossref_primary_10_1016_j_neunet_2021_09_009
crossref_primary_10_1016_j_neulet_2022_136709
crossref_primary_10_1126_science_aav9436
crossref_primary_10_1016_j_isci_2023_107901
crossref_primary_10_1016_j_jneumeth_2019_108318
crossref_primary_10_1038_s41593_023_01468_4
crossref_primary_10_1167_jov_22_7_3
crossref_primary_10_1016_j_neunet_2021_09_011
crossref_primary_10_1098_rsfs_2018_0013
crossref_primary_10_1098_rsfs_2018_0011
crossref_primary_10_1016_j_neuroimage_2021_118098
crossref_primary_10_1016_j_neunet_2021_09_018
crossref_primary_10_1523_JNEUROSCI_1503_22_2022
crossref_primary_10_1016_j_isci_2023_105976
crossref_primary_10_1145_3359158
crossref_primary_10_4103_jpi_jpi_43_18
crossref_primary_10_1073_pnas_1510847113
crossref_primary_10_1038_s41467_017_01000_w
crossref_primary_10_1016_j_neuron_2022_10_003
crossref_primary_10_1098_rsfs_2018_0020
crossref_primary_10_1111_desc_13155
crossref_primary_10_1016_j_bbr_2014_12_053
crossref_primary_10_3390_sym12122083
crossref_primary_10_1073_pnas_1415146112
crossref_primary_10_1016_j_neuroscience_2020_07_040
crossref_primary_10_1146_annurev_vision_102016_061214
crossref_primary_10_1371_journal_pcbi_1005667
crossref_primary_10_1038_s41467_021_22848_z
crossref_primary_10_1016_j_tics_2024_03_003
crossref_primary_10_1111_cogs_13009
crossref_primary_10_3233_JIN_170028
crossref_primary_10_1016_j_neuroimage_2017_04_061
crossref_primary_10_1016_j_neuron_2022_12_028
crossref_primary_10_1098_rstb_2018_0377
crossref_primary_10_1073_pnas_1719616115
crossref_primary_10_1093_scan_nsab010
crossref_primary_10_1371_journal_pbio_3000516
crossref_primary_10_1038_s41593_018_0210_5
crossref_primary_10_1111_nyas_14593
crossref_primary_10_1016_j_neuroimage_2020_116844
crossref_primary_10_1016_j_inffus_2022_11_011
crossref_primary_10_1002_hbm_24006
crossref_primary_10_1098_rspb_2016_0166
crossref_primary_10_1038_srep25025
crossref_primary_10_1016_j_neuroimage_2023_119980
crossref_primary_10_1016_j_tins_2022_12_008
crossref_primary_10_1038_s41467_023_44516_0
crossref_primary_10_1371_journal_pcbi_1008714
crossref_primary_10_1016_j_tics_2019_12_014
crossref_primary_10_1016_j_neuropsychologia_2015_10_023
crossref_primary_10_1109_JETCAS_2020_3037951
crossref_primary_10_1523_ENEURO_0398_21_2021
crossref_primary_10_1038_s41593_018_0310_2
crossref_primary_10_1016_j_cell_2017_05_011
crossref_primary_10_1016_j_neuron_2021_04_024
crossref_primary_10_1146_annurev_vision_102016_061249
crossref_primary_10_2183_pjab_98_007
crossref_primary_10_1017_S0140525X22002813
crossref_primary_10_1016_j_cub_2019_09_039
crossref_primary_10_1038_s41467_023_41584_0
crossref_primary_10_7554_eLife_38242
crossref_primary_10_1371_journal_pone_0201192
crossref_primary_10_1038_s41467_022_28091_4
crossref_primary_10_3389_fpsyg_2017_01726
Cites_doi 10.1016/j.conb.2007.03.002
10.7551/mitpress/7131.003.0061
10.1152/jn.01265.2006
10.1016/j.neuron.2012.01.010
10.1561/9781601982957
10.1038/nn1278
10.7551/mitpress/9780262514620.001.0001
10.1523/JNEUROSCI.0179-10.2010
10.1023/B:VISI.0000029664.99615.94
10.1016/S1364-6613(02)01870-3
10.1007/s11263-007-0118-0
10.1126/science.1117593
10.1007/3-540-46769-6_2
10.1038/nn.2889
10.1038/972
10.1093/cercor/bhj086
10.1093/cercor/1.1.1
10.1146/annurev.ne.19.030196.003045
10.1016/j.neuron.2008.10.043
10.1371/journal.pcbi.1000579
10.1126/science.1194908
10.1152/jn.00024.2007
10.1016/j.tics.2007.06.010
10.1007/BF00344251
10.1073/pnas.0700622104
10.1152/jn.1996.76.4.2718
10.1371/journal.pcbi.0040027
10.1146/annurev.ne.19.030196.000545
10.1523/JNEUROSCI.3726-05.2005
10.1016/S0042-6989(01)00073-6
10.1073/pnas.1217479110
10.1152/jn.1994.71.4.1428
10.1038/nn1786
10.1038/81479
ContentType Journal Article
Copyright copyright © 1993–2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Jun 10, 2014
Copyright_xml – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Jun 10, 2014
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1403112111
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Ecology Abstracts

Virology and AIDS Abstracts

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Architecture
Sciences (General)
DocumentTitleAlternate Predicting higher visual cortex neural responses
EISSN 1091-6490
EndPage 8624
ExternalDocumentID 3346856891
10_1073_pnas_1403112111
24812127
111_23_8619
23776467
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: R01 EY014970
– fundername: NEI NIH HHS
  grantid: F32 EY022845
– fundername: NEI NIH HHS
  grantid: R01-EY014970
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
79B
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASUFR
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F5P
FRP
GX1
HH5
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
DZ
F20
H13
KM
PQEST
X
XHC
ADACV
CGR
CUY
CVF
ECM
EIF
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c566t-31ba4645ca190b176ef5ee1533eb665129f15f9ba395bc41cfa3e8e47a99bb63
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:09:14 EDT 2024
Fri Aug 16 22:46:12 EDT 2024
Sat Oct 05 05:45:06 EDT 2024
Thu Oct 10 18:18:25 EDT 2024
Fri Aug 23 03:01:19 EDT 2024
Sat Sep 28 08:34:58 EDT 2024
Wed Nov 11 00:30:20 EST 2020
Fri Feb 02 07:04:43 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords computer vision
array electrophysiology
computational neuroscience
Language English
License Freely available online through the PNAS open access option.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c566t-31ba4645ca190b176ef5ee1533eb665129f15f9ba395bc41cfa3e8e47a99bb63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
1D.L.K.Y. and H.H. contributed equally to this work.
Author contributions: D.L.K.Y., H.H., and J.J.D. designed research; D.L.K.Y., H.H., and E.A.S. performed research; D.L.K.Y. contributed new reagents/analytic tools; D.L.K.Y., H.H., C.F.C., and D.S. analyzed data; and D.L.K.Y., H.H., and J.J.D. wrote the paper.
Edited by Terrence J. Sejnowski, Salk Institute for Biological Studies, La Jolla, CA, and approved April 8, 2014 (received for review March 3, 2014)
OpenAccessLink https://www.pnas.org/content/pnas/111/23/8619.full.pdf
PMID 24812127
PQID 1539355543
PQPubID 42026
PageCount 6
ParticipantIDs pnas_primary_111_23_8619
proquest_miscellaneous_1551622769
pubmed_primary_24812127
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4060707
crossref_primary_10_1073_pnas_1403112111
jstor_primary_23776467
proquest_journals_1539355543
proquest_miscellaneous_1535630251
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2014-06-10
PublicationDateYYYYMMDD 2014-06-10
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-10
  day: 10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2014
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References 24876274 - Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8327-8
31341311 - Nature. 2019 Jul;571(7766):S15-S17
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
Krizhevsky A (e_1_3_3_36_2) 2012; 25
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_18_2
– ident: e_1_3_3_14_2
  doi: 10.1016/j.conb.2007.03.002
– ident: e_1_3_3_34_2
  doi: 10.7551/mitpress/7131.003.0061
– ident: e_1_3_3_26_2
  doi: 10.1152/jn.01265.2006
– ident: e_1_3_3_9_2
  doi: 10.1016/j.neuron.2012.01.010
– ident: e_1_3_3_19_2
  doi: 10.1561/9781601982957
– ident: e_1_3_3_29_2
  doi: 10.1038/nn1278
– ident: e_1_3_3_37_2
  doi: 10.7551/mitpress/9780262514620.001.0001
– ident: e_1_3_3_12_2
  doi: 10.1523/JNEUROSCI.0179-10.2010
– ident: e_1_3_3_30_2
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: e_1_3_3_3_2
  doi: 10.1016/S1364-6613(02)01870-3
– ident: e_1_3_3_28_2
  doi: 10.1007/s11263-007-0118-0
– ident: e_1_3_3_11_2
  doi: 10.1126/science.1117593
– ident: e_1_3_3_33_2
  doi: 10.1007/3-540-46769-6_2
– volume: 25
  start-page: 1097
  year: 2012
  ident: e_1_3_3_36_2
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
  contributor:
    fullname: Krizhevsky A
– ident: e_1_3_3_31_2
  doi: 10.1038/nn.2889
– ident: e_1_3_3_35_2
  doi: 10.1038/972
– ident: e_1_3_3_32_2
  doi: 10.1093/cercor/bhj086
– ident: e_1_3_3_7_2
  doi: 10.1093/cercor/1.1.1
– ident: e_1_3_3_6_2
  doi: 10.1146/annurev.ne.19.030196.003045
– ident: e_1_3_3_4_2
  doi: 10.1016/j.neuron.2008.10.043
– ident: e_1_3_3_20_2
  doi: 10.1371/journal.pcbi.1000579
– ident: e_1_3_3_13_2
  doi: 10.1126/science.1194908
– ident: e_1_3_3_21_2
  doi: 10.1152/jn.00024.2007
– ident: e_1_3_3_1_2
  doi: 10.1016/j.tics.2007.06.010
– ident: e_1_3_3_15_2
  doi: 10.1007/BF00344251
– ident: e_1_3_3_17_2
  doi: 10.1073/pnas.0700622104
– ident: e_1_3_3_24_2
– ident: e_1_3_3_23_2
  doi: 10.1152/jn.1996.76.4.2718
– ident: e_1_3_3_25_2
  doi: 10.1371/journal.pcbi.0040027
– ident: e_1_3_3_5_2
  doi: 10.1146/annurev.ne.19.030196.000545
– ident: e_1_3_3_10_2
  doi: 10.1523/JNEUROSCI.3726-05.2005
– ident: e_1_3_3_2_2
  doi: 10.1016/S0042-6989(01)00073-6
– ident: e_1_3_3_27_2
  doi: 10.1073/pnas.1217479110
– ident: e_1_3_3_8_2
  doi: 10.1152/jn.1994.71.4.1428
– ident: e_1_3_3_22_2
  doi: 10.1038/nn1786
– ident: e_1_3_3_16_2
  doi: 10.1038/81479
SSID ssj0009580
Score 2.6831393
Snippet The ventral visual stream underlies key human visual object recognition abilities. However, neural encoding in the higher areas of the ventral stream remains...
Significance Humans and monkeys easily recognize objects in scenes. This ability is known to be supported by a network of hierarchically interconnected brain...
Humans and monkeys easily recognize objects in scenes. This ability is known to be supported by a network of hierarchically interconnected brain areas....
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 8619
SubjectTerms Algorithms
Animals
Architectural models
Architecture
Biological Sciences
Humans
Information technology
Macaca mulatta - physiology
Modeling
Models, Neurological
Multilevel models
Nerve Net - physiology
Neural Networks, Computer
Neurons
Neurosciences
Object recognition
Parametric models
Photic Stimulation - methods
Physiology
Predictive modeling
Psychomotor Performance - physiology
Recognition, Psychology - physiology
Visual cortex
Visual Cortex - physiology
Visual Pathways - physiology
Visual Perception - physiology
Title Performance-optimized hierarchical models predict neural responses in higher visual cortex
URI https://www.jstor.org/stable/23776467
http://www.pnas.org/content/111/23/8619.abstract
https://www.ncbi.nlm.nih.gov/pubmed/24812127
https://www.proquest.com/docview/1539355543
https://search.proquest.com/docview/1535630251
https://search.proquest.com/docview/1551622769
https://pubmed.ncbi.nlm.nih.gov/PMC4060707
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BJy6IN6FQuVIP9JDdjR3bmyNCRagSFQcqoV4i23FEJDa72kdV9dcz4zwWKsSBazxOInvsmdF88w3AV4JajKwZx1o4DFC0SGI78jaWThcYjhVJVlDt8O1PdfMr_fEgHzZAdrUwAbTvbDWonyaDunoM2MrZxA07nNjw7vYKjRCx1Aw3YRMVtAvRe6bdcVN3wvH6TXna8floMZzVZjEggrqEiM2oSQxP0cCFljIvrFIDTCS2U5R_y_P8H0D5wiJd78JO60qyy-aX92DD1_uw1x7WBbtoGaW_HcDvu3V5QDzFS2JS_fMFozbYIZGA-8RCS5wFm80pc7NkxHOJT-cNhBZfV9XsMWBC2J9qscIhRzDdv4dwf_39_uombpsqxA49tyXeudZQNtMZdAVsopUvpffk9XmrFJn_MpFlZo3IpHVp4koj_Nin2mSZtUocwVY9rf0JMCNHJZeF9drK1GhutXQhYiwsF4XiEVx0a5rPGuqMPKS8tchpZfP1TkRwFNa8l-NCa4V3eAQnQbSfj-EKF_kYw74IzrqNydtzh6-UVGqMLpKI4Es_jCeG0iCm9tNVkCFSNHTs3pORieJcK_zMcbPX639rdSYC_UoLegFi7H49goocmLtbxT398MxPsI0eW0pYtWR0BlvL-cqfo1e0tJ_DKXgGhMILBQ
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoALUKA0UCBIHMoh2cSO480RVVQLdKseFlRxiWzHUSPY7Go3i1B_PTPOY9sKIcE1nrw0Y8-M5ptvAN4S1CLSahxIbjBBkTwOdGR1IIwsMB0r4qyg3uHpWTr5kny6EBc7IPpeGAfaN7oK6x_zsK4uHbZyOTejHic2Op8eoxMilprRHbiL-zVK-iR94Nodt50nDA_ghCU9o4_ko2Wt1iFR1MVEbUZjYliCLs4Nlbnml1poIvGdovyfYs_bEMprPunkIXzt_6aFonwPN40OzdUtosd__t1H8KCLUv337fIe7Nj6Mex158DaP-rIqt89gW_n286DYIHnz7y6soVPE7ZdjQJNwHfTdtb-ckVFocYnCk28umrRufi4qvYvHdzE_1mtN7hkCAH86ynMTj7MjidBN68hMBgUNnica0WFUqMwytCxTG0prKWA0uo0pciijEWZacUzoU0Sm1JxO7aJVFmmdcr3Ybde1PYAfCWikolCW6lFoiTTUhiXjBaa8SJlHhz1ysqXLStH7qrpkueksnyrYg_2nTIHOcalTNE9eHDgRIf7MRNiPB9jRunBYa_xvNvS-EhBXcwYfXEP3gzLuBmpwqJqu9g4GeJbw5jxbzIiThmTKb7mWWtE22_rjNEDecO8BgEiA7-5gkbjSME7I3n-33e-hnuT2fQ0P_149vkF3MfAMCFIXBwdwm6z2tiXGHw1-pXbar8BMk8s8w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSIgLUKBtoECQOJRDXnZsb46osCqPVnsoUtVLZDuOGsFmo90sQv31zDiP3VaIQ6_x5KUZ299oPn9DyHukWsRaTQLJDCQokiWBjq0OuJEFpGNFkhV4dvj0TJz8SL9e8IutVl-OtG90Fda_5mFdXTluZTM30cATi2anx7AJoUpN1BRldJ88gDkbiyFRH_V2J93pEwqLcErTQdVHsqip1SpEmboE5c2wVQxNYZtzjWW29qaOnoiap2D_L_x5m0a5tS9Nn5DL4Y86OsrPcN3q0FzfEnu80y8_JY97tOp_7Ex2yT1bPyO7_Xqw8o960eoPz8nlbHMCIVjAOjSvrm3hY6dtV6uAUPBd152V3yyxONT6KKUJV5cdSxceV9X-laOd-L-r1RqGDDKB_7wg59PP58cnQd-3ITAADltY1rXCgqlRgDZ0IoUtubUILK0WAhFGmfAy04plXJs0MaVidmJTqbJMa8H2yE69qO0B8RWPS8oLbaXmqZJUS25cUlpoygpBPXI0OCxvOnWO3FXVJcvRbfnGzR7Zcw4d7SiTUsA24ZEDZzreDxkRZfkEMkuPHA5ez_upDY_keJoZUBjzyLtxGCYlVlpUbRdrZ4O6a4Ad_2fDE0GpFPCa_S6QNt_WB6RH5I0QGw1QFPzmCASOEwfvA-Xlne98Sx7OPk3z71_Ovr0ijwAfpsiMS-JDstMu1_Y1YLBWv3Gz7S-anS9z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance-optimized+hierarchical+models+predict+neural+responses+in+higher+visual+cortex&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Yamins%2C+Daniel+L+K&rft.au=Hong%2C+Ha&rft.au=Cadieu%2C+Charles+F&rft.au=Solomon%2C+Ethan+A&rft.date=2014-06-10&rft.eissn=1091-6490&rft.volume=111&rft.issue=23&rft.spage=8619&rft.epage=8624&rft_id=info:doi/10.1073%2Fpnas.1403112111&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F23.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F23.cover.gif