The SARS-CoV-2 receptor ACE2 is expressed in mouse pericytes but not endothelial cells: Implications for COVID-19 vascular research
Humanized mouse models and mouse-adapted SARS-CoV-2 virus are increasingly used to study COVID-19 pathogenesis, so it is important to learn where the SARS-CoV-2 receptor ACE2 is expressed. Here we mapped ACE2 expression during mouse postnatal development and in adulthood. Pericytes in the CNS, heart...
Saved in:
Published in | Stem cell reports Vol. 17; no. 5; pp. 1089 - 1104 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
10.05.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Humanized mouse models and mouse-adapted SARS-CoV-2 virus are increasingly used to study COVID-19 pathogenesis, so it is important to learn where the SARS-CoV-2 receptor ACE2 is expressed. Here we mapped ACE2 expression during mouse postnatal development and in adulthood. Pericytes in the CNS, heart, and pancreas express ACE2 strongly, as do perineurial and adrenal fibroblasts, whereas endothelial cells do not at any location analyzed. In a number of other organs, pericytes do not express ACE2, including in the lung where ACE2 instead is expressed in bronchial epithelium and alveolar type II cells. The onset of ACE2 expression is organ specific: in bronchial epithelium already at birth, in brain pericytes before, and in heart pericytes after postnatal day 10.5. Establishing the vascular localization of ACE2 expression is central to correctly interpret data from modeling COVID-19 in the mouse and may shed light on the cause of vascular COVID-19 complications.
•Detailed Ace2/ACE2 expression patterns are reported for multiple mouse organs•Vascular Ace2/ACE2 expression occurs in pericytes but not endothelial cells•Ace2/ACE2 expression is organotypic and developmentally regulated•Ace2/ACE2 expression in pericytes may suggest their involvement in COVID-19
Through application of scRNA-seq and tissue imaging, we provide a detailed mapping of the expression of Ace2, the mouse ortholog of human ACE2/SARS-CoV-2 receptor. We demonstrate prominent but organotypic expression of Ace2 in certain pericytes, fibroblasts, and epithelial cells, but not in any investigated type of endothelial cells. Knowledge about Ace2 expression is important for COVID-19 modeling in mouse. |
---|---|
AbstractList | Humanized mouse models and mouse-adapted SARS-CoV-2 virus are increasingly used to study COVID-19 pathogenesis, so it is important to learn where the SARS-CoV-2 receptor ACE2 is expressed. Here we mapped ACE2 expression during mouse postnatal development and in adulthood. Pericytes in the CNS, heart, and pancreas express ACE2 strongly, as do perineurial and adrenal fibroblasts, whereas endothelial cells do not at any location analyzed. In a number of other organs, pericytes do not express ACE2, including in the lung where ACE2 instead is expressed in bronchial epithelium and alveolar type II cells. The onset of ACE2 expression is organ specific: in bronchial epithelium already at birth, in brain pericytes before, and in heart pericytes after postnatal day 10.5. Establishing the vascular localization of ACE2 expression is central to correctly interpret data from modeling COVID-19 in the mouse and may shed light on the cause of vascular COVID-19 complications.
•
Detailed
Ace2/
ACE2 expression patterns are reported for multiple mouse organs
•
Vascular
Ace2
/ACE2 expression occurs in pericytes but not endothelial cells
•
Ace2
/ACE2 expression is organotypic and developmentally regulated
•
Ace2/
ACE2 expression in pericytes may suggest their involvement in COVID-19
Through application of scRNA-seq and tissue imaging, we provide a detailed mapping of the expression of
Ace2,
the mouse ortholog of human ACE2/SARS-CoV-2 receptor. We demonstrate prominent but organotypic expression of
Ace2
in certain pericytes, fibroblasts, and epithelial cells, but not in any investigated type of endothelial cells. Knowledge about
Ace2
expression is important for COVID-19 modeling in mouse. Humanized mouse models and mouse-adapted SARS-CoV-2 virus are increasingly used to study COVID-19 pathogenesis, so it is important to learn where the SARS-CoV-2 receptor ACE2 is expressed. Here we mapped ACE2 expression during mouse postnatal development and in adulthood. Pericytes in the CNS, heart, and pancreas express ACE2 strongly, as do perineurial and adrenal fibroblasts, whereas endothelial cells do not at any location analyzed. In a number of other organs, pericytes do not express ACE2, including in the lung where ACE2 instead is expressed in bronchial epithelium and alveolar type II cells. The onset of ACE2 expression is organ specific: in bronchial epithelium already at birth, in brain pericytes before, and in heart pericytes after postnatal day 10.5. Establishing the vascular localization of ACE2 expression is central to correctly interpret data from modeling COVID-19 in the mouse and may shed light on the cause of vascular COVID-19 complications. Humanized mouse models and mouse-adapted SARS-CoV-2 virus are increasingly used to study COVID-19 pathogenesis, so it is important to learn where the SARS-CoV-2 receptor ACE2 is expressed. Here we mapped ACE2 expression during mouse postnatal development and in adulthood. Pericytes in the CNS, heart, and pancreas express ACE2 strongly, as do perineurial and adrenal fibroblasts, whereas endothelial cells do not at any location analyzed. In a number of other organs, pericytes do not express ACE2, including in the lung where ACE2 instead is expressed in bronchial epithelium and alveolar type II cells. The onset of ACE2 expression is organ specific: in bronchial epithelium already at birth, in brain pericytes before, and in heart pericytes after postnatal day 10.5. Establishing the vascular localization of ACE2 expression is central to correctly interpret data from modeling COVID-19 in the mouse and may shed light on the cause of vascular COVID-19 complications. •Detailed Ace2/ACE2 expression patterns are reported for multiple mouse organs•Vascular Ace2/ACE2 expression occurs in pericytes but not endothelial cells•Ace2/ACE2 expression is organotypic and developmentally regulated•Ace2/ACE2 expression in pericytes may suggest their involvement in COVID-19 Through application of scRNA-seq and tissue imaging, we provide a detailed mapping of the expression of Ace2, the mouse ortholog of human ACE2/SARS-CoV-2 receptor. We demonstrate prominent but organotypic expression of Ace2 in certain pericytes, fibroblasts, and epithelial cells, but not in any investigated type of endothelial cells. Knowledge about Ace2 expression is important for COVID-19 modeling in mouse. Humanized mouse models and mouse-adapted SARS-CoV-2 virus are increasingly used to study COVID-19 pathogenesis, so it is important to learn where the SARS-CoV-2 receptor ACE2 is expressed. Here we mapped ACE2 expression during mouse postnatal development and in adulthood. Pericytes in the CNS, heart, and pancreas express ACE2 strongly, as do perineurial and adrenal fibroblasts, whereas endothelial cells do not at any location analyzed. In a number of other organs, pericytes do not express ACE2, including in the lung where ACE2 instead is expressed in bronchial epithelium and alveolar type II cells. The onset of ACE2 expression is organ specific: in bronchial epithelium already at birth, in brain pericytes before, and in heart pericytes after postnatal day 10.5. Establishing the vascular localization of ACE2 expression is central to correctly interpret data from modeling COVID-19 in the mouse and may shed light on the cause of vascular COVID-19 complications.Humanized mouse models and mouse-adapted SARS-CoV-2 virus are increasingly used to study COVID-19 pathogenesis, so it is important to learn where the SARS-CoV-2 receptor ACE2 is expressed. Here we mapped ACE2 expression during mouse postnatal development and in adulthood. Pericytes in the CNS, heart, and pancreas express ACE2 strongly, as do perineurial and adrenal fibroblasts, whereas endothelial cells do not at any location analyzed. In a number of other organs, pericytes do not express ACE2, including in the lung where ACE2 instead is expressed in bronchial epithelium and alveolar type II cells. The onset of ACE2 expression is organ specific: in bronchial epithelium already at birth, in brain pericytes before, and in heart pericytes after postnatal day 10.5. Establishing the vascular localization of ACE2 expression is central to correctly interpret data from modeling COVID-19 in the mouse and may shed light on the cause of vascular COVID-19 complications. Humanized mouse models and mouse-adapted SARS-CoV-2 virus are increasingly used to study COVID-19 pathogenesis, so it is impor-tant to learn where the SARS-CoV-2 receptor ACE2 is expressed. Here we mapped ACE2 expression during mouse postnatal development and in adulthood. Pericytes in the CNS, heart, and pancreas express ACE2 strongly, as do perineurial and adrenal fibroblasts, whereas endothelial cells do not at any location analyzed. In a number of other organs, pericytes do not express ACE2, including in the lung where ACE2 instead is expressed in bronchial epithelium and alveolar type II cells. The onset of ACE2 expression is organ specific: in bronchial epithelium already at birth, in brain pericytes before, andin heart pericytes after postnatal day 10.5. Establishing the vascular localization of ACE2 expression is central to correctly interpret data from modeling COVID-19 in the mouse and may shed light on the cause of vascular COVID-19 complications. |
Author | Sun, Ying Stritt, Simon Genové, Guillem Alitalo, Kari Pietilä, Riikka Betsholtz, Christer Vanlandewijck, Michael Ernfors, Patrik Arnold, Thomas D. Hemanthakumar, Karthik Amudhala Björkegren, Johan Peng, Xiao-Rong Blomgren, Klas Mäkinen, Taija Muhl, Lars Räsänen, Markus Xie, Yuan Liu, Jianping Hansson, Emil M. Hu, Yizhou Lendahl, Urban Zhang, Lei Anisimov, Andrey Osman, Ahmed Andaloussi Mäe, Maarja Mocci, Giuseppe He, Liqun Leptidis, Stefanos |
Author_xml | – sequence: 1 givenname: Lars orcidid: 0000-0003-0952-0507 surname: Muhl fullname: Muhl, Lars organization: Department of Medicine, Huddinge, Karolinska Institutet, Solna, Sweden – sequence: 2 givenname: Liqun surname: He fullname: He, Liqun organization: Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden – sequence: 3 givenname: Ying surname: Sun fullname: Sun, Ying organization: Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden – sequence: 4 givenname: Maarja surname: Andaloussi Mäe fullname: Andaloussi Mäe, Maarja organization: Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden – sequence: 5 givenname: Riikka surname: Pietilä fullname: Pietilä, Riikka organization: Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden – sequence: 6 givenname: Jianping surname: Liu fullname: Liu, Jianping organization: Department of Medicine, Huddinge, Karolinska Institutet, Solna, Sweden – sequence: 7 givenname: Guillem surname: Genové fullname: Genové, Guillem organization: Department of Medicine, Huddinge, Karolinska Institutet, Solna, Sweden – sequence: 8 givenname: Lei surname: Zhang fullname: Zhang, Lei organization: Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an China – sequence: 9 givenname: Yuan surname: Xie fullname: Xie, Yuan organization: Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an China – sequence: 10 givenname: Stefanos surname: Leptidis fullname: Leptidis, Stefanos organization: Department of Medicine, Huddinge, Karolinska Institutet, Solna, Sweden – sequence: 11 givenname: Giuseppe surname: Mocci fullname: Mocci, Giuseppe organization: Department of Medicine, Huddinge, Karolinska Institutet, Solna, Sweden – sequence: 12 givenname: Simon surname: Stritt fullname: Stritt, Simon organization: Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden – sequence: 13 givenname: Ahmed surname: Osman fullname: Osman, Ahmed organization: Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden – sequence: 14 givenname: Andrey surname: Anisimov fullname: Anisimov, Andrey organization: Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland – sequence: 15 givenname: Karthik Amudhala surname: Hemanthakumar fullname: Hemanthakumar, Karthik Amudhala organization: Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland – sequence: 16 givenname: Markus surname: Räsänen fullname: Räsänen, Markus organization: Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland – sequence: 17 givenname: Emil M. surname: Hansson fullname: Hansson, Emil M. organization: Department of Medicine, Huddinge, Karolinska Institutet, Solna, Sweden – sequence: 18 givenname: Johan surname: Björkegren fullname: Björkegren, Johan organization: Department of Medicine, Huddinge, Karolinska Institutet, Solna, Sweden – sequence: 19 givenname: Michael surname: Vanlandewijck fullname: Vanlandewijck, Michael organization: Department of Medicine, Huddinge, Karolinska Institutet, Solna, Sweden – sequence: 20 givenname: Klas surname: Blomgren fullname: Blomgren, Klas organization: Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden – sequence: 21 givenname: Taija surname: Mäkinen fullname: Mäkinen, Taija organization: Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden – sequence: 22 givenname: Xiao-Rong surname: Peng fullname: Peng, Xiao-Rong organization: Cardiovascular, Renal and Metabolism, AstraZeneca BioPharmaceutical R&D, Gothenburg, Sweden – sequence: 23 givenname: Yizhou surname: Hu fullname: Hu, Yizhou organization: Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden – sequence: 24 givenname: Patrik surname: Ernfors fullname: Ernfors, Patrik organization: Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden – sequence: 25 givenname: Thomas D. surname: Arnold fullname: Arnold, Thomas D. organization: Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA – sequence: 26 givenname: Kari surname: Alitalo fullname: Alitalo, Kari organization: Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland – sequence: 27 givenname: Urban surname: Lendahl fullname: Lendahl, Urban email: urban.lendahl@ki.se organization: Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden – sequence: 28 givenname: Christer surname: Betsholtz fullname: Betsholtz, Christer email: christer.betsholtz@igp.uu.se, christer.betsholtz@ki.se organization: Department of Medicine, Huddinge, Karolinska Institutet, Solna, Sweden |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35452595$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-477741$$DView record from Swedish Publication Index http://kipublications.ki.se/Default.aspx?queryparsed=id:149751652$$DView record from Swedish Publication Index |
BookMark | eNqFksFu1DAQhi1UREvpGyDkIwcSbMdOmh6QVmkLK1WqRMteLceZdL0kcWo7Cz33xfF2l6pFAnzxaPzNP-OZeY32BjsAQm8pSSmh-cdV6gP02qWMMJaSLI3OF-iAMZoleUHp3hN7Hx15vyLxlCVlnL5C-5nggolSHKD76yXgq9nXq6Syi4RhBxrGYB2eVWcMG4_h5-jAe2iwGXBvJw94BGf0XQCP6yngwQYMQ2PDEjqjOqyh6_wJnvdjZ7QKxg4et1GwulzMTxNa4rXyeuqUi7k8KKeXb9DLVnUejnb3Ifp2fnZdfUkuLj_Pq9lFokWeh4RBxrWgbRP_BDVVTQMEICu4yIsyU4LTguXHvG0pL3Td5jVtGl2TVm-CND_ODlGy1fU_YJxqOTrTK3cnrTJy5_oeLZBcZCURkf_wV_7ULGbSuhs5TZIXRcFpxD9t8cj20GgYglPds6jnL4NZyhu7lmWcIaN5FHi_E3D2dgIfZG_8pp1qgNh4yXLBWZmVlET03dNcj0l-DzYCfAtoZ7130D4ilMjNCsmV3K6Q3KyQJJkkDyWc_BGmTXgYYqzYdP8L3jUA4hDXBpz02sCgoTFxrYJsrPm3wC90tuZF |
CitedBy_id | crossref_primary_10_1038_s41598_024_59405_9 crossref_primary_10_1007_s10753_024_02208_x crossref_primary_10_1177_11772719221125123 crossref_primary_10_2337_db24_0816 crossref_primary_10_3390_cimb46110703 crossref_primary_10_1038_s41467_024_51867_9 crossref_primary_10_47162_RJME_65_4_02 crossref_primary_10_61900_SPJVS_2023_02_14 crossref_primary_10_3390_hematolrep15020024 crossref_primary_10_1111_imr_13114 crossref_primary_10_1016_j_tcb_2023_06_001 crossref_primary_10_1152_ajplung_00354_2022 crossref_primary_10_1186_s40478_023_01647_1 crossref_primary_10_3390_ijms241713088 crossref_primary_10_3390_ijms242317039 crossref_primary_10_1093_brain_awac272 crossref_primary_10_1016_j_vph_2024_107277 crossref_primary_10_3390_cells12151931 crossref_primary_10_1016_j_vph_2023_107250 crossref_primary_10_1016_j_devcel_2022_09_015 crossref_primary_10_1016_j_vph_2024_107434 crossref_primary_10_1038_s41467_024_55415_3 crossref_primary_10_1111_acel_13729 crossref_primary_10_1007_s00441_024_03900_y crossref_primary_10_1016_j_bbadis_2022_166582 crossref_primary_10_1007_s11897_023_00618_w crossref_primary_10_1016_j_jtos_2024_06_005 crossref_primary_10_3390_cimb46030124 crossref_primary_10_1093_ehjcvp_pvad025 crossref_primary_10_1016_j_lfs_2022_121018 crossref_primary_10_3390_cells13221880 crossref_primary_10_1016_j_brainres_2024_149333 crossref_primary_10_1088_1361_6528_ad27aa crossref_primary_10_1098_rsob_230349 crossref_primary_10_1042_CS20220235 crossref_primary_10_1016_j_nbas_2022_100062 crossref_primary_10_1016_j_scitotenv_2023_162197 crossref_primary_10_1172_jci_insight_184940 crossref_primary_10_1038_s41420_022_01288_8 crossref_primary_10_3390_v16040647 crossref_primary_10_1093_cvr_cvad191 crossref_primary_10_1128_msphere_00558_22 crossref_primary_10_1186_s12987_023_00479_4 crossref_primary_10_1093_cvr_cvac143 crossref_primary_10_1186_s12964_023_01397_6 crossref_primary_10_3390_biomedicines11071790 crossref_primary_10_3390_v15020354 crossref_primary_10_61900_SPJVS_2023_03_14 crossref_primary_10_1007_s10456_023_09876_7 crossref_primary_10_3390_cells12050816 crossref_primary_10_1016_j_neuron_2022_10_006 |
Cites_doi | 10.1128/JVI.00110-21 10.1038/ncpneph0757 10.1038/s41591-021-01443-1 10.1161/CIRCULATIONAHA.120.050907 10.1038/s41591-020-01227-z 10.1038/s41591-020-0868-6 10.1038/nprot.2014.006 10.1016/S0140-6736(20)30937-5 10.1016/j.stemcr.2020.11.009 10.1093/eurheartj/ehaa311 10.1038/s41575-021-00416-6 10.1093/cvr/cvaa078 10.1016/j.cmet.2020.11.006 10.1016/S0140-6736(20)31188-0 10.1016/S2213-8587(20)30238-2 10.1016/j.chom.2020.05.020 10.1016/j.scitotenv.2022.153290 10.1016/j.cell.2020.05.027 10.15252/embr.201948070 10.1126/science.2492115 10.1161/ATVBAHA.120.315595 10.1016/j.cell.2018.06.021 10.1161/CIRCULATIONAHA.120.052824 10.1093/eurheartj/ehaa623 10.1126/science.abd2985 10.1002/path.2357 10.1016/j.ajpath.2021.05.007 10.3389/fendo.2020.596898 10.1152/ajpheart.00331.2008 10.1038/s41467-020-17740-1 10.7554/eLife.58591 10.1128/JVI.02012-06 10.1016/j.stemcr.2020.11.003 10.1002/path.1570 10.1038/sdata.2018.160 10.1681/ASN.2006121304 10.1016/j.cell.2020.04.035 10.1016/j.cell.2020.04.004 10.1038/nature25739 10.1056/NEJMoa2015432 10.1177/0271678X211012836 10.1016/j.stem.2018.10.024 10.1126/science.abd3072 10.1016/S2665-9913(20)30420-3 10.1172/jci.insight.147472 10.1038/s41577-020-0343-0 10.3389/fmicb.2021.761887 10.1016/j.cell.2020.02.052 10.3109/03009734.2015.1064501 10.3390/ijms222111622 10.1038/s41586-018-0590-4 |
ContentType | Journal Article |
Copyright | 2022 The Authors Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved. 2022 The Authors 2022 |
Copyright_xml | – notice: 2022 The Authors – notice: Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2022 The Authors 2022 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTPV AOWAS DF2 D8T ZZAVC |
DOI | 10.1016/j.stemcr.2022.03.016 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Uppsala universitet SWEPUB Freely available online SwePub Articles full text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2213-6711 |
EndPage | 1104 |
ExternalDocumentID | oai_swepub_ki_se_453905 oai_DiVA_org_uu_477741 PMC9022216 35452595 10_1016_j_stemcr_2022_03_016 S2213671122001497 |
Genre | Journal Article |
GroupedDBID | 0R~ 0SF 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAVLU AAXUO ABMAC ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV DIK EBS FDB GROUPED_DOAJ HYE IXB KQ8 M41 M48 M~E NCXOZ O9- OK1 RCE ROL RPM SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADRAZ ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION EJD HZ~ IPNFZ RIG CGR CUY CVF ECM EIF NPM 7X8 5PM ADTPV AOWAS DF2 D8T ZZAVC |
ID | FETCH-LOGICAL-c566t-2e34c51fd711eb1adde0ee37456793a54172684ff147cbf6b1ddcb0fcc51fc483 |
IEDL.DBID | M48 |
ISSN | 2213-6711 |
IngestDate | Mon Aug 25 03:39:05 EDT 2025 Thu Aug 21 06:48:35 EDT 2025 Thu Aug 21 18:23:02 EDT 2025 Fri Jul 11 15:08:46 EDT 2025 Thu Apr 03 07:01:26 EDT 2025 Tue Jul 01 02:44:20 EDT 2025 Thu Apr 24 23:09:21 EDT 2025 Wed May 17 01:44:07 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | COVID-19 single-cell RNA-sequencing SARS-CoV-2 Endothelial Cells Angiotensin converting enzyme 2 (ACE2) pericytes Vasculature |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c566t-2e34c51fd711eb1adde0ee37456793a54172684ff147cbf6b1ddcb0fcc51fc483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally |
ORCID | 0000-0003-0952-0507 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.stemcr.2022.03.016 |
PMID | 35452595 |
PQID | 2654293910 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | swepub_primary_oai_swepub_ki_se_453905 swepub_primary_oai_DiVA_org_uu_477741 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9022216 proquest_miscellaneous_2654293910 pubmed_primary_35452595 crossref_primary_10_1016_j_stemcr_2022_03_016 crossref_citationtrail_10_1016_j_stemcr_2022_03_016 elsevier_sciencedirect_doi_10_1016_j_stemcr_2022_03_016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-10 |
PublicationDateYYYYMMDD | 2022-05-10 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Stem cell reports |
PublicationTitleAlternate | Stem Cell Reports |
PublicationYear | 2022 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Queisser, Mellema, Middleton, Portier, Manne, Denorme, Beswick, Rondina, Campbell, Petrey (bib40) 2021; 6 He, Vanlandewijck, Mäe, Andrae, Ando, del Gaudio, Nahar, Lebouvier, Lavina, Gouveia (bib23) 2018; 5 Cantuti-Castelvetri, Ojha, Pedro, Djannatian, Franz, Kuivanen, van der Meer, Kallio, Kaya, Anastasina (bib8) 2020; 370 McGonagle, Bridgewood, Ramanan, Meaney, Watad (bib32) 2021; 3 Coate, Cha, Shrestha, Wang, Gonçalves, Almaça, Kapp, Fasolino, Morgan, Dai (bib12) 2020; 32 Sun, Chen, Gu, Yang, Wang, Huang, Liu, Zhang, Li, Xiong (bib45) 2020; 28 He, Vanlandewijck, Raschperger, Andaloussi Maë, Jung, Lebouvier, Ando, Hofmann, Keller, Betsholtz (bib22) 2016; 6 Nicosia, Ligresti, Caporarello, Akilesh, Ribatti (bib37) 2021; 191 Zeisel, Hochgerner, Lönnerberg, Johnsson, Memic, van der Zwan, Häring, Braun, Borm, la Manno (bib52) 2018; 174 Gerber, Pereira, Gerber, Tan, Dimitrieva, Yángüez, Suter (bib17) 2021; 10 McCray, Pewe, Wohlford-Lenane, Hickey, Manzel, Shi, Netland, Jia, Halabi, Sigmund (bib31) 2007; 81 Burkert, Lanser, Bellmann-Weiler, Weiss (bib7) 2021; 12 Lovren, Pan, Quan, Teoh, Wang, Shukla, Levitt, Oudit, Al-Omran, Stewart (bib29) 2008; 295 Bocci, Oudenaarden, Sàenz-sardà, Simrén, Edén, Sjölund, Möller, Gisslén, Zetterberg, Englund (bib5) 2021; 22 Teuwen, Geldhof, Pasut, Carmeliet (bib47) 2020; 20 Rauch, Dupont, Goutay, Caplan, Staessens, Moussa, Jeanpierre, Corseaux, Lefevre, Lassalle (bib41) 2020; 142 Bertels, Demeyer, van den Bogaert, Boogaerts, van Nuijs, Delputte, Lahousse (bib4) 2022; 820 Picelli, Faridani, Björklund, Winberg, Sagasser, Sandberg (bib39) 2014; 9 Lendahl, Nilsson, Betsholtz (bib26) 2019; 20 Ornelas, Berthiaume, Bonney, Coelho-Santos, Underly, Kremer, Guérin, Lippens, Shih (bib38) 2021; 41 Schaum, Karkanias, Neff, May, Quake, Wyss-Coray, Darmanis, Batson, Botvinnik, Chen (bib42) 2018; 562 Carr, Toma, Johnston, Steadman, Yuzwa, Mahmud, Frankland, Kaplan, Miller (bib9) 2019; 24 Hamming, Timens, Bulthuis, Lely, Navis, van Goor (bib21) 2004; 203 Deinhardt-Emmer, Böttcher, Häring, Giebeler, Henke, Zell, Jungwirth, Jordan, Werz, Hornung (bib14) 2021; 95 Libby, Lüscher (bib27) 2020; 41 McCracken, Saginc, He, Huseynov, Daniels, Fletcher, Peghaire, Kalna, Andaloussi-Mäe, Muhl (bib30) 2021; 143 Muus, Luecken, Eraslan, Sikkema, Waghray, Heimberg, Kobayashi, Vaishnav, Subramanian, Smillie (bib35) 2021; 27 Apicella, Campopiano, Mantuano, Mazoni, Coppelli, del Prato (bib3) 2020; 8 Claesson-Welsh (bib11) 2015; 120 Ziegler, Allon, Nyquist, Mbano, Miao, Tzouanas, Cao, Yousif, Bals, Hauser (bib53) 2020; 181 Bunge, Wood, Tynan, Bates, Sanes (bib6) 1989; 243 Geurts, van der Vaart, Beumer, Clevers (bib18) 2021; 16 Sungnak, Huang, Bécavin, Berg, Queen, Litvinukova, Talavera-López, Maatz, Reichart, Sampaziotis (bib46) 2020; 26 Yiangou, Davis, Mummery (bib51) 2021; 16 Muhl, Genové, Leptidis, Liu, He, Mocci, Sun, Gustafsson, Buyandelger, Chivukula (bib34) 2020; 11 Guo, Tao, Flavell, Zhu (bib20) 2021; 18 Fignani, Licata, Brusco, Nigi, Grieco, Marselli, Overbergh, Gysemans, Colli, Marchetti (bib16) 2020; 11 Hoffmann, Kleine-Weber, Schroeder, Krüger, Herrler, Erichsen, Schiergens, Herrler, Wu, Nitsche (bib24) 2020; 181 Ackermann, Verleden, Kuehnel, Haverich, Welte, Laenger, Vanstapel, Werlein, Stark, Tzankov (bib1) 2020; 383 Lindenmeyer, Kretzler, Boucherot, Berra, Yasuda, Henger, Eichinger, Gaiser, Schmid, Rastaldi (bib28) 2007; 18 Goldsmith, Miller, Martines, Bullock, Zaki (bib19) 2020; 395 Wang, Sievert, Clark, Lee, Federman, Gastfriend, Shusta, Palecek, Carlin, Gleeson (bib50) 2021; 27 Singh, Winocour, Farrington (bib43) 2008; 4 Chen, Li, Chen, Feng, Xiong (bib10) 2020; 116 Nicin, Abplanalp, Mellentin, Kattih, Tombor, John, Schmitto, Heineke, Emrich, Arsalan (bib36) 2020; 41 Andaloussi Mäe, He, Nordling, Vazquez-Liebanas, Nahar, Jung, Li, Tan, Foo, Cazenave Gassiot (bib2) 2020; 128 Dupont, Rauch, Staessens, Moussa, Rosa, Corseaux, Jeanpierre, Goutay, Caplan, Varlet (bib15) 2021; 41 Varga, Flammer, Steiger, Haberecker, Andermatt, Zinkernagel, Mehra, Schuepbach, Ruschitzka, Moch (bib49) 2020; 395 Vanlandewijck, He, Mäe, Andrae, Ando, del Gaudio, Nahar, Lebouvier, Laviña, Gouveia (bib48) 2018; 554 Daly, Simonetti, Klein, Chen, Williamson, Antón-Plágaro, Shoemark, Simón-Gracia, Bauer, Hollandi (bib13) 2020; 370 Jiang, Liu, Chen, Shan, Zhou, Shen, Li, Zhang, Zhu, Si (bib25) 2020; 182 Sluimer, Gasc, Hamming, van Goor, Michaud, van den Akker, Jütten, Cleutjens, Bijnens, Corvol (bib44) 2008; 215 Monteil, Kwon, Prado, Hagelkrüys, Wimmer, Stahl, Leopoldi, Garreta, Hurtado del Pozo, Prosper (bib33) 2020; 181 Vanlandewijck (10.1016/j.stemcr.2022.03.016_bib48) 2018; 554 Apicella (10.1016/j.stemcr.2022.03.016_bib3) 2020; 8 Bertels (10.1016/j.stemcr.2022.03.016_bib4) 2022; 820 Ackermann (10.1016/j.stemcr.2022.03.016_bib1) 2020; 383 Ornelas (10.1016/j.stemcr.2022.03.016_bib38) 2021; 41 He (10.1016/j.stemcr.2022.03.016_bib22) 2016; 6 Hamming (10.1016/j.stemcr.2022.03.016_bib21) 2004; 203 Chen (10.1016/j.stemcr.2022.03.016_bib10) 2020; 116 Varga (10.1016/j.stemcr.2022.03.016_bib49) 2020; 395 Nicin (10.1016/j.stemcr.2022.03.016_bib36) 2020; 41 Teuwen (10.1016/j.stemcr.2022.03.016_bib47) 2020; 20 He (10.1016/j.stemcr.2022.03.016_bib23) 2018; 5 Fignani (10.1016/j.stemcr.2022.03.016_bib16) 2020; 11 Queisser (10.1016/j.stemcr.2022.03.016_bib40) 2021; 6 Lendahl (10.1016/j.stemcr.2022.03.016_bib26) 2019; 20 Schaum (10.1016/j.stemcr.2022.03.016_bib42) 2018; 562 Yiangou (10.1016/j.stemcr.2022.03.016_bib51) 2021; 16 Ziegler (10.1016/j.stemcr.2022.03.016_bib53) 2020; 181 Andaloussi Mäe (10.1016/j.stemcr.2022.03.016_bib2) 2020; 128 McCray (10.1016/j.stemcr.2022.03.016_bib31) 2007; 81 Sungnak (10.1016/j.stemcr.2022.03.016_bib46) 2020; 26 Bunge (10.1016/j.stemcr.2022.03.016_bib6) 1989; 243 Goldsmith (10.1016/j.stemcr.2022.03.016_bib19) 2020; 395 Sun (10.1016/j.stemcr.2022.03.016_bib45) 2020; 28 Guo (10.1016/j.stemcr.2022.03.016_bib20) 2021; 18 Deinhardt-Emmer (10.1016/j.stemcr.2022.03.016_bib14) 2021; 95 Geurts (10.1016/j.stemcr.2022.03.016_bib18) 2021; 16 McGonagle (10.1016/j.stemcr.2022.03.016_bib32) 2021; 3 Claesson-Welsh (10.1016/j.stemcr.2022.03.016_bib11) 2015; 120 Sluimer (10.1016/j.stemcr.2022.03.016_bib44) 2008; 215 Muhl (10.1016/j.stemcr.2022.03.016_bib34) 2020; 11 Singh (10.1016/j.stemcr.2022.03.016_bib43) 2008; 4 McCracken (10.1016/j.stemcr.2022.03.016_bib30) 2021; 143 Lindenmeyer (10.1016/j.stemcr.2022.03.016_bib28) 2007; 18 Cantuti-Castelvetri (10.1016/j.stemcr.2022.03.016_bib8) 2020; 370 Wang (10.1016/j.stemcr.2022.03.016_bib50) 2021; 27 Muus (10.1016/j.stemcr.2022.03.016_bib35) 2021; 27 Lovren (10.1016/j.stemcr.2022.03.016_bib29) 2008; 295 Monteil (10.1016/j.stemcr.2022.03.016_bib33) 2020; 181 Burkert (10.1016/j.stemcr.2022.03.016_bib7) 2021; 12 Bocci (10.1016/j.stemcr.2022.03.016_bib5) 2021; 22 Libby (10.1016/j.stemcr.2022.03.016_bib27) 2020; 41 Carr (10.1016/j.stemcr.2022.03.016_bib9) 2019; 24 Coate (10.1016/j.stemcr.2022.03.016_bib12) 2020; 32 Hoffmann (10.1016/j.stemcr.2022.03.016_bib24) 2020; 181 Jiang (10.1016/j.stemcr.2022.03.016_bib25) 2020; 182 Dupont (10.1016/j.stemcr.2022.03.016_bib15) 2021; 41 Daly (10.1016/j.stemcr.2022.03.016_bib13) 2020; 370 Zeisel (10.1016/j.stemcr.2022.03.016_bib52) 2018; 174 Picelli (10.1016/j.stemcr.2022.03.016_bib39) 2014; 9 Rauch (10.1016/j.stemcr.2022.03.016_bib41) 2020; 142 Nicosia (10.1016/j.stemcr.2022.03.016_bib37) 2021; 191 Gerber (10.1016/j.stemcr.2022.03.016_bib17) 2021; 10 |
References_xml | – volume: 181 start-page: 271 year: 2020 end-page: 280.e8 ident: bib24 article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor publication-title: Cell – volume: 10 start-page: e58591 year: 2021 ident: bib17 article-title: Transcriptional profiling of mouse peripheral nerves to the single-cell level to build a sciatic nerve atlas (Snat) publication-title: Elife – volume: 22 start-page: 1 year: 2021 end-page: 12 ident: bib5 article-title: Infection of brain pericytes underlying neuropathology of covid-19 patients publication-title: Int. J. Mol. Sci. – volume: 370 start-page: 861 year: 2020 end-page: 865 ident: bib13 article-title: Neuropilin-1 is a host factor for SARS-CoV-2 infection publication-title: Science – volume: 191 start-page: 1374 year: 2021 end-page: 1384 ident: bib37 article-title: COVID-19 vasculopathy: mounting evidence for an indirect mechanism of endothelial injury publication-title: Am. J. Pathol. – volume: 41 start-page: 1760 year: 2021 end-page: 1773 ident: bib15 article-title: Vascular endothelial damage in the pathogenesis of organ injury in severe COVID-19 publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 295 start-page: 1377 year: 2008 end-page: 1384 ident: bib29 article-title: Angiotensin converting enzyme-2 confers endothelial protection and attenuates atherosclerosis publication-title: Am. J. Physiol. Heart Circ. Physiol. – volume: 41 start-page: 1804 year: 2020 end-page: 1806 ident: bib36 article-title: Cell type-specific expression of the putative SARS-CoV-2 receptor ACE2 in human hearts publication-title: Eur. Heart J. – volume: 27 start-page: 546 year: 2021 end-page: 559 ident: bib35 article-title: Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics publication-title: Nat. Med. – volume: 174 start-page: 999 year: 2018 end-page: 1014 ident: bib52 article-title: Molecular architecture of the mouse nervous system publication-title: Cell – volume: 24 start-page: 240 year: 2019 end-page: 256.e9 ident: bib9 article-title: Mesenchymal precursor cells in adult nerves contribute to mammalian tissue repair and regeneration publication-title: Cell Stem Cell – volume: 203 start-page: 631 year: 2004 end-page: 637 ident: bib21 article-title: Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis publication-title: J. Pathol. – volume: 6 start-page: 1 year: 2016 end-page: 13 ident: bib22 article-title: Analysis of the brain mural cell transcriptome publication-title: Sci. Rep. – volume: 142 start-page: 1881 year: 2020 end-page: 1884 ident: bib41 article-title: Endotheliopathy is induced by plasma from critically ill patients and associated with organ failure in severe COVID-19 publication-title: Circulation – volume: 27 start-page: 1600 year: 2021 end-page: 1606 ident: bib50 article-title: A human three-dimensional neural-perivascular ‘assembloid’ promotes astrocytic development and enables modeling of SARS-CoV-2 neuropathology publication-title: Nat. Med. – volume: 28 start-page: 124 year: 2020 end-page: 133.e4 ident: bib45 article-title: A mouse model of SARS-CoV-2 infection and pathogenesis publication-title: Cell Host and Microbe. – volume: 12 start-page: 761887 year: 2021 ident: bib7 article-title: Coronavirus disease 2019: clinics, treatment, and prevention publication-title: Front. Microbiol. – volume: 116 start-page: 1097 year: 2020 end-page: 1100 ident: bib10 article-title: The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2 publication-title: Cardiovasc. Res. – volume: 395 start-page: e99 year: 2020 ident: bib19 article-title: Electron microscopy of SARS-CoV-2: a challenging task publication-title: Lancet – volume: 4 start-page: 216 year: 2008 end-page: 226 ident: bib43 article-title: Mechanisms of disease: the hypoxic tubular hypothesis of diabetic nephropathy publication-title: Nat. Clin. Pract. Nephrol. – volume: 181 start-page: 905 year: 2020 end-page: 913.e7 ident: bib33 article-title: Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2 publication-title: Cell – volume: 41 start-page: 2185 year: 2021 end-page: 2200 ident: bib38 article-title: Three-dimensional ultrastructure of the brain pericyte-endothelial interface publication-title: J. Cereb. Blood Flow Metab. – volume: 11 start-page: 1 year: 2020 end-page: 19 ident: bib16 article-title: SARS-CoV-2 receptor angiotensin I-converting enzyme type 2 (ACE2) is expressed in human pancreatic β-cells and in the human pancreas microvasculature publication-title: Front. Endocrinol. – volume: 20 start-page: e48070 year: 2019 ident: bib26 article-title: Emerging links between cerebrovascular and neurodegenerative diseases-a special role for pericytes publication-title: EMBO Rep. – volume: 18 start-page: 269 year: 2021 end-page: 283 ident: bib20 article-title: Potential intestinal infection and faecal–oral transmission of SARS-CoV-2 publication-title: Nat. Rev. Gastroenterol. Hepatol. – volume: 182 start-page: 50 year: 2020 end-page: 58.e8 ident: bib25 article-title: Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2 publication-title: Cell – volume: 41 start-page: 3038 year: 2020 end-page: 3044 ident: bib27 article-title: COVID-19 is, in the end, an endothelial disease publication-title: Eur. Heart J. – volume: 143 start-page: 865 year: 2021 end-page: 868 ident: bib30 article-title: Lack of evidence of ACE2 expression and replicative infection by SARSCoV-2 in human endothelial cells publication-title: Circulation – volume: 26 start-page: 681 year: 2020 end-page: 687 ident: bib46 article-title: SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes publication-title: Nat. Med. – volume: 243 start-page: 229 year: 1989 end-page: 231 ident: bib6 article-title: Perineurium originates from fibroblasts: demonstration in vitro with a retroviral marker publication-title: Science – volume: 128 start-page: e46 year: 2020 end-page: e62 ident: bib2 article-title: Single-cell analysis of blood-brain barrier response to pericyte loss publication-title: Circ. Res. – volume: 554 start-page: 475 year: 2018 end-page: 480 ident: bib48 article-title: A molecular atlas of cell types and zonation in the brain vasculature publication-title: Nature – volume: 3 start-page: e224 year: 2021 end-page: e233 ident: bib32 article-title: COVID-19 vasculitis and novel vasculitis mimics publication-title: Lancet Rheumatol. – volume: 6 start-page: e147472 year: 2021 ident: bib40 article-title: COVID-19 generates hyaluronan fragments that directly induce endothelial barrier dysfunction publication-title: JCI Insight – volume: 11 start-page: 3953 year: 2020 ident: bib34 article-title: Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell identification and discrimination publication-title: Nat. Commun. – volume: 562 start-page: 367 year: 2018 end-page: 372 ident: bib42 article-title: Single-cell transcriptomics of 20 mouse organs creates a tabula muris publication-title: Nature – volume: 215 start-page: 273 year: 2008 end-page: 279 ident: bib44 article-title: Angiotensin-converting enzyme 2 (ACE2) expression and activity in human carotid atherosclerotic lesions publication-title: J. Pathol. – volume: 820 start-page: 153290 year: 2022 ident: bib4 article-title: Factors influencing SARS-CoV-2 RNA concentrations in wastewater up to the sampling stage: a systematic review publication-title: Sci. Total Environ. – volume: 95 start-page: e00110 year: 2021 end-page: e00121 ident: bib14 article-title: SARS-CoV-2 causes severe epithelial inflammation and barrier dysfunction publication-title: J. Virol. – volume: 81 start-page: 813 year: 2007 end-page: 821 ident: bib31 article-title: Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus publication-title: J. Virol. – volume: 181 start-page: 1016 year: 2020 end-page: 1035.e19 ident: bib53 article-title: SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues publication-title: Cell – volume: 20 start-page: 389 year: 2020 end-page: 391 ident: bib47 article-title: COVID-19: the vasculature unleashed publication-title: Nat. Rev. Immunol. – volume: 5 start-page: 1180160 year: 2018 ident: bib23 article-title: Data descriptor: single-cell RNA sequencing of mouse brain and lung vascular and vessel-associated cell types publication-title: Sci. Data – volume: 395 start-page: 1417 year: 2020 end-page: 1418 ident: bib49 article-title: Endothelial cell infection and endotheliitis in COVID-19 publication-title: Lancet – volume: 8 start-page: 782 year: 2020 end-page: 792 ident: bib3 article-title: COVID-19 in people with diabetes: understanding the reasons for worse outcomes publication-title: Lancet Diabetes Endocrinol. – volume: 370 start-page: 856 year: 2020 end-page: 860 ident: bib8 article-title: Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity publication-title: Science – volume: 16 start-page: 412 year: 2021 end-page: 418 ident: bib18 article-title: The organoid platform: promises and challenges as tools in the fight against COVID-19 publication-title: Stem Cell Rep. – volume: 9 start-page: 171 year: 2014 end-page: 181 ident: bib39 article-title: Full-length RNA-seq from single cells using smart-seq2 publication-title: Nat. Protoc. – volume: 120 start-page: 135 year: 2015 end-page: 143 ident: bib11 article-title: Vascular permeability—the essentials publication-title: Upsala J. Med. Sci. – volume: 383 start-page: 120 year: 2020 end-page: 128 ident: bib1 article-title: Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in covid-19 publication-title: N. Engl. J. Med. – volume: 18 start-page: 1765 year: 2007 end-page: 1776 ident: bib28 article-title: Interstitial vascular rarefaction and reduced VEGF-A expression in human diabetic nephropathy publication-title: J. Am. Soc. Nephrol. – volume: 32 start-page: 1028 year: 2020 end-page: 1040.e4 ident: bib12 article-title: SARS-CoV-2 cell entry factors ACE2 and TMPRSS2 are expressed in the microvasculature and ducts of human pancreas but are not enriched in β cells publication-title: Cell Metab. – volume: 16 start-page: 385 year: 2021 end-page: 397 ident: bib51 article-title: Using cardiovascular cells from human pluripotent Stem cells for COVID-19 research: why the heart fails publication-title: Stem Cell Rep. – volume: 95 start-page: e00110 year: 2021 ident: 10.1016/j.stemcr.2022.03.016_bib14 article-title: SARS-CoV-2 causes severe epithelial inflammation and barrier dysfunction publication-title: J. Virol. doi: 10.1128/JVI.00110-21 – volume: 4 start-page: 216 year: 2008 ident: 10.1016/j.stemcr.2022.03.016_bib43 article-title: Mechanisms of disease: the hypoxic tubular hypothesis of diabetic nephropathy publication-title: Nat. Clin. Pract. Nephrol. doi: 10.1038/ncpneph0757 – volume: 27 start-page: 1600 year: 2021 ident: 10.1016/j.stemcr.2022.03.016_bib50 article-title: A human three-dimensional neural-perivascular ‘assembloid’ promotes astrocytic development and enables modeling of SARS-CoV-2 neuropathology publication-title: Nat. Med. doi: 10.1038/s41591-021-01443-1 – volume: 142 start-page: 1881 year: 2020 ident: 10.1016/j.stemcr.2022.03.016_bib41 article-title: Endotheliopathy is induced by plasma from critically ill patients and associated with organ failure in severe COVID-19 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.120.050907 – volume: 27 start-page: 546 year: 2021 ident: 10.1016/j.stemcr.2022.03.016_bib35 article-title: Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics publication-title: Nat. Med. doi: 10.1038/s41591-020-01227-z – volume: 26 start-page: 681 year: 2020 ident: 10.1016/j.stemcr.2022.03.016_bib46 article-title: SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes publication-title: Nat. Med. doi: 10.1038/s41591-020-0868-6 – volume: 6 start-page: 1 year: 2016 ident: 10.1016/j.stemcr.2022.03.016_bib22 article-title: Analysis of the brain mural cell transcriptome publication-title: Sci. Rep. – volume: 128 start-page: e46 year: 2020 ident: 10.1016/j.stemcr.2022.03.016_bib2 article-title: Single-cell analysis of blood-brain barrier response to pericyte loss publication-title: Circ. Res. – volume: 9 start-page: 171 year: 2014 ident: 10.1016/j.stemcr.2022.03.016_bib39 article-title: Full-length RNA-seq from single cells using smart-seq2 publication-title: Nat. Protoc. doi: 10.1038/nprot.2014.006 – volume: 395 start-page: 1417 year: 2020 ident: 10.1016/j.stemcr.2022.03.016_bib49 article-title: Endothelial cell infection and endotheliitis in COVID-19 publication-title: Lancet doi: 10.1016/S0140-6736(20)30937-5 – volume: 16 start-page: 412 year: 2021 ident: 10.1016/j.stemcr.2022.03.016_bib18 article-title: The organoid platform: promises and challenges as tools in the fight against COVID-19 publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2020.11.009 – volume: 41 start-page: 1804 year: 2020 ident: 10.1016/j.stemcr.2022.03.016_bib36 article-title: Cell type-specific expression of the putative SARS-CoV-2 receptor ACE2 in human hearts publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehaa311 – volume: 18 start-page: 269 year: 2021 ident: 10.1016/j.stemcr.2022.03.016_bib20 article-title: Potential intestinal infection and faecal–oral transmission of SARS-CoV-2 publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/s41575-021-00416-6 – volume: 116 start-page: 1097 year: 2020 ident: 10.1016/j.stemcr.2022.03.016_bib10 article-title: The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2 publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvaa078 – volume: 32 start-page: 1028 year: 2020 ident: 10.1016/j.stemcr.2022.03.016_bib12 article-title: SARS-CoV-2 cell entry factors ACE2 and TMPRSS2 are expressed in the microvasculature and ducts of human pancreas but are not enriched in β cells publication-title: Cell Metab. doi: 10.1016/j.cmet.2020.11.006 – volume: 395 start-page: e99 year: 2020 ident: 10.1016/j.stemcr.2022.03.016_bib19 article-title: Electron microscopy of SARS-CoV-2: a challenging task publication-title: Lancet doi: 10.1016/S0140-6736(20)31188-0 – volume: 8 start-page: 782 year: 2020 ident: 10.1016/j.stemcr.2022.03.016_bib3 article-title: COVID-19 in people with diabetes: understanding the reasons for worse outcomes publication-title: Lancet Diabetes Endocrinol. doi: 10.1016/S2213-8587(20)30238-2 – volume: 28 start-page: 124 year: 2020 ident: 10.1016/j.stemcr.2022.03.016_bib45 article-title: A mouse model of SARS-CoV-2 infection and pathogenesis publication-title: Cell Host and Microbe. doi: 10.1016/j.chom.2020.05.020 – volume: 820 start-page: 153290 year: 2022 ident: 10.1016/j.stemcr.2022.03.016_bib4 article-title: Factors influencing SARS-CoV-2 RNA concentrations in wastewater up to the sampling stage: a systematic review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.153290 – volume: 182 start-page: 50 year: 2020 ident: 10.1016/j.stemcr.2022.03.016_bib25 article-title: Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2 publication-title: Cell doi: 10.1016/j.cell.2020.05.027 – volume: 20 start-page: e48070 year: 2019 ident: 10.1016/j.stemcr.2022.03.016_bib26 article-title: Emerging links between cerebrovascular and neurodegenerative diseases-a special role for pericytes publication-title: EMBO Rep. doi: 10.15252/embr.201948070 – volume: 243 start-page: 229 year: 1989 ident: 10.1016/j.stemcr.2022.03.016_bib6 article-title: Perineurium originates from fibroblasts: demonstration in vitro with a retroviral marker publication-title: Science doi: 10.1126/science.2492115 – volume: 41 start-page: 1760 year: 2021 ident: 10.1016/j.stemcr.2022.03.016_bib15 article-title: Vascular endothelial damage in the pathogenesis of organ injury in severe COVID-19 publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.120.315595 – volume: 174 start-page: 999 year: 2018 ident: 10.1016/j.stemcr.2022.03.016_bib52 article-title: Molecular architecture of the mouse nervous system publication-title: Cell doi: 10.1016/j.cell.2018.06.021 – volume: 143 start-page: 865 year: 2021 ident: 10.1016/j.stemcr.2022.03.016_bib30 article-title: Lack of evidence of ACE2 expression and replicative infection by SARSCoV-2 in human endothelial cells publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.120.052824 – volume: 41 start-page: 3038 year: 2020 ident: 10.1016/j.stemcr.2022.03.016_bib27 article-title: COVID-19 is, in the end, an endothelial disease publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehaa623 – volume: 370 start-page: 856 year: 2020 ident: 10.1016/j.stemcr.2022.03.016_bib8 article-title: Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity publication-title: Science doi: 10.1126/science.abd2985 – volume: 215 start-page: 273 year: 2008 ident: 10.1016/j.stemcr.2022.03.016_bib44 article-title: Angiotensin-converting enzyme 2 (ACE2) expression and activity in human carotid atherosclerotic lesions publication-title: J. Pathol. doi: 10.1002/path.2357 – volume: 191 start-page: 1374 year: 2021 ident: 10.1016/j.stemcr.2022.03.016_bib37 article-title: COVID-19 vasculopathy: mounting evidence for an indirect mechanism of endothelial injury publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2021.05.007 – volume: 11 start-page: 1 year: 2020 ident: 10.1016/j.stemcr.2022.03.016_bib16 article-title: SARS-CoV-2 receptor angiotensin I-converting enzyme type 2 (ACE2) is expressed in human pancreatic β-cells and in the human pancreas microvasculature publication-title: Front. Endocrinol. doi: 10.3389/fendo.2020.596898 – volume: 295 start-page: 1377 year: 2008 ident: 10.1016/j.stemcr.2022.03.016_bib29 article-title: Angiotensin converting enzyme-2 confers endothelial protection and attenuates atherosclerosis publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00331.2008 – volume: 11 start-page: 3953 year: 2020 ident: 10.1016/j.stemcr.2022.03.016_bib34 article-title: Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell identification and discrimination publication-title: Nat. Commun. doi: 10.1038/s41467-020-17740-1 – volume: 10 start-page: e58591 year: 2021 ident: 10.1016/j.stemcr.2022.03.016_bib17 article-title: Transcriptional profiling of mouse peripheral nerves to the single-cell level to build a sciatic nerve atlas (Snat) publication-title: Elife doi: 10.7554/eLife.58591 – volume: 81 start-page: 813 year: 2007 ident: 10.1016/j.stemcr.2022.03.016_bib31 article-title: Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus publication-title: J. Virol. doi: 10.1128/JVI.02012-06 – volume: 16 start-page: 385 year: 2021 ident: 10.1016/j.stemcr.2022.03.016_bib51 article-title: Using cardiovascular cells from human pluripotent Stem cells for COVID-19 research: why the heart fails publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2020.11.003 – volume: 203 start-page: 631 year: 2004 ident: 10.1016/j.stemcr.2022.03.016_bib21 article-title: Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis publication-title: J. Pathol. doi: 10.1002/path.1570 – volume: 5 start-page: 1180160 year: 2018 ident: 10.1016/j.stemcr.2022.03.016_bib23 article-title: Data descriptor: single-cell RNA sequencing of mouse brain and lung vascular and vessel-associated cell types publication-title: Sci. Data doi: 10.1038/sdata.2018.160 – volume: 18 start-page: 1765 year: 2007 ident: 10.1016/j.stemcr.2022.03.016_bib28 article-title: Interstitial vascular rarefaction and reduced VEGF-A expression in human diabetic nephropathy publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2006121304 – volume: 181 start-page: 1016 year: 2020 ident: 10.1016/j.stemcr.2022.03.016_bib53 article-title: SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues publication-title: Cell doi: 10.1016/j.cell.2020.04.035 – volume: 181 start-page: 905 year: 2020 ident: 10.1016/j.stemcr.2022.03.016_bib33 article-title: Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2 publication-title: Cell doi: 10.1016/j.cell.2020.04.004 – volume: 554 start-page: 475 year: 2018 ident: 10.1016/j.stemcr.2022.03.016_bib48 article-title: A molecular atlas of cell types and zonation in the brain vasculature publication-title: Nature doi: 10.1038/nature25739 – volume: 383 start-page: 120 year: 2020 ident: 10.1016/j.stemcr.2022.03.016_bib1 article-title: Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in covid-19 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2015432 – volume: 41 start-page: 2185 year: 2021 ident: 10.1016/j.stemcr.2022.03.016_bib38 article-title: Three-dimensional ultrastructure of the brain pericyte-endothelial interface publication-title: J. Cereb. Blood Flow Metab. doi: 10.1177/0271678X211012836 – volume: 24 start-page: 240 year: 2019 ident: 10.1016/j.stemcr.2022.03.016_bib9 article-title: Mesenchymal precursor cells in adult nerves contribute to mammalian tissue repair and regeneration publication-title: Cell Stem Cell doi: 10.1016/j.stem.2018.10.024 – volume: 370 start-page: 861 year: 2020 ident: 10.1016/j.stemcr.2022.03.016_bib13 article-title: Neuropilin-1 is a host factor for SARS-CoV-2 infection publication-title: Science doi: 10.1126/science.abd3072 – volume: 3 start-page: e224 year: 2021 ident: 10.1016/j.stemcr.2022.03.016_bib32 article-title: COVID-19 vasculitis and novel vasculitis mimics publication-title: Lancet Rheumatol. doi: 10.1016/S2665-9913(20)30420-3 – volume: 6 start-page: e147472 year: 2021 ident: 10.1016/j.stemcr.2022.03.016_bib40 article-title: COVID-19 generates hyaluronan fragments that directly induce endothelial barrier dysfunction publication-title: JCI Insight doi: 10.1172/jci.insight.147472 – volume: 20 start-page: 389 year: 2020 ident: 10.1016/j.stemcr.2022.03.016_bib47 article-title: COVID-19: the vasculature unleashed publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-020-0343-0 – volume: 12 start-page: 761887 year: 2021 ident: 10.1016/j.stemcr.2022.03.016_bib7 article-title: Coronavirus disease 2019: clinics, treatment, and prevention publication-title: Front. Microbiol. doi: 10.3389/fmicb.2021.761887 – volume: 181 start-page: 271 year: 2020 ident: 10.1016/j.stemcr.2022.03.016_bib24 article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor publication-title: Cell doi: 10.1016/j.cell.2020.02.052 – volume: 120 start-page: 135 year: 2015 ident: 10.1016/j.stemcr.2022.03.016_bib11 article-title: Vascular permeability—the essentials publication-title: Upsala J. Med. Sci. doi: 10.3109/03009734.2015.1064501 – volume: 22 start-page: 1 year: 2021 ident: 10.1016/j.stemcr.2022.03.016_bib5 article-title: Infection of brain pericytes underlying neuropathology of covid-19 patients publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms222111622 – volume: 562 start-page: 367 year: 2018 ident: 10.1016/j.stemcr.2022.03.016_bib42 article-title: Single-cell transcriptomics of 20 mouse organs creates a tabula muris publication-title: Nature doi: 10.1038/s41586-018-0590-4 |
SSID | ssj0000991241 |
Score | 2.4836886 |
Snippet | Humanized mouse models and mouse-adapted SARS-CoV-2 virus are increasingly used to study COVID-19 pathogenesis, so it is important to learn where the... Humanized mouse models and mouse-adapted SARS-CoV-2 virus are increasingly used to study COVID-19 pathogenesis, so it is impor-tant to learn where the... |
SourceID | swepub pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1089 |
SubjectTerms | Angiotensin converting enzyme 2 (ACE2) Angiotensin-Converting Enzyme 2 - metabolism Animals Cardiovascular Diseases - virology COVID-19 COVID-19 - complications Endothelial Cells Mice pericytes Pericytes - metabolism SARS-CoV-2 single-cell RNA-sequencing Vasculature |
SummonAdditionalLinks | – databaseName: ScienceDirect Free and Delayed Access Journal dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelMNjL2PeyL26w7U0k1oc_9pa5Le1gGyxryJuwZWn1VpzQOrA-7x_fnWyHmRYKe0uUE3buTqefxN3vGHsbpQ5jnra8EN5zlSQO15yKuSziLPGRr1JBBc6fv8THp-rTSq_2WD7UwlBaZR_7u5geonU_Mu21Od3U9XQhBNGNIV4QAedTRblUaSjiW33c3bMgAsItjM5dJM9pwlBBF9K8iC7ZEjGoEIHtlBqf37xDXUeg1xMpR3SjYYs6us_u9dgS5t3rP2B7rnnI7nTdJq8esT_oErCYf1vwfL3kAvB_uw0euWGeHwqoL8H9DlmxroK6AboScEA8yPYK4SiU2xaadQuuqaho6xz9FujW__IDnPyTlQ4IgiH_ujw54FEGQ54r9JxCZ4_Z6dHh9_yY9z0YuEWg13LhpLIabYZ6w7BO0XDmnEwQd-HKLrRCABSnyvtIJbb0cRlVlS1n3tIki-Z4wvabdeOeMYgtyWjhY58pl7ossTKttMddurAiKSdMDno3ticopz4Z52bIRPtpOmsZspaZSYODE8Z3szYdQcct8slgUjNyNIN7yC0z3wweYHANkoqLxqExjAhdvyQirwl72nnE7l0kNXHXmcbnjnxlJ0D83uNfmvos8HxndBin577rvGo05aBezs364ofZbg0uMQSGE_b-Brl-6Bd-ckZpmc308_9WwQt2l77xwF77ku23F1v3CkFZW74Oq-4v4pc4pw priority: 102 providerName: Elsevier |
Title | The SARS-CoV-2 receptor ACE2 is expressed in mouse pericytes but not endothelial cells: Implications for COVID-19 vascular research |
URI | https://dx.doi.org/10.1016/j.stemcr.2022.03.016 https://www.ncbi.nlm.nih.gov/pubmed/35452595 https://www.proquest.com/docview/2654293910 https://pubmed.ncbi.nlm.nih.gov/PMC9022216 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-477741 http://kipublications.ki.se/Default.aspx?queryparsed=id:149751652 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELfGEGgviG_Kx3RIwJtRYztxgoRQ6TatSAOJ0apvVuLYrKNKR5tK6zP_OHf5KFTrtJcoSnyK47vz_Zycf8fYmyB2OOeFlqfCe660duhzKuIyjRLtA5_HgjY4n3yNjofqyzgc77C2ZmszgIutSzuqJzWcT99f_l59Qof_-C9XiziPLbF7ClFRlgbRLXYbY5OmmgYnDeA_r_EQBrSg3UN3jfAeuyup9nZIVSe2h6urcPRqVuUG92gVr47us3sN0IRebRkP2I4rHrI7denJ1SP2B-0DTnvfT3l_NuICcOJzF7j-hl7_UMBkAe6ySpF1OUwKoO8DDogU2a4Qm0K2LKGYleCKnHZwTdGIgX4BLD7A4L8UdUBEDP1vo8EBDxJok16hIRg6e8yGR4c_-se8KcjALaK-kgsnlQ1RgToIcI6nqbHrnNQIwtDN05AGPIqV94HSNvNRFuS5zbrekpBVsXzCdotZ4Z4xiCy1CYWPfKJc7BJtZZyHHkN2aoXOOky2425sw1ZORTOmpk1LOze14gwpznSlwYsdxtdSFzVbxw3tdatS0yCOGkkYtK8bJF-3FmDQIWmI08KhMoyoSoBJhGEd9rS2iHVfWqvC527YyroBkX1v3ikmZxXpd0Irc3ru29qqNkQOJqOemc1_muXSoL8hSuywd1vaNZd-4ZkzKpRJN3x-bSdfsD16YV5R1b5ku-V86V4hAiuz_erLBR4H48_7lYP9BQXaM7w |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZdx9hexu7LrhpsexOJJdmy95a5LcnWdrC0IW_ClqXVbXFC68D6vD--c2Q7zLRQ2FuQdbBzbvokjr5DyMcgtpDzQsMy7hyTSlmIORkxkUWJcoErYo4XnA8Oo8mx_LYIF1sk7e7CYFllm_ubnO6zdTsybLU5XJXlcMY50o0BXuAe56s75C6gAYXROV183Ry0AASCNQw3XijAUKK7QufrvJAv2SAzKOee7hQ7n9-8RF2HoNcrKXt8o36N2ntEHrbgko6b739Mtmz1hNxr2k1ePSV_wCfobPxzxtLlnHEKf9yuYM9Nx-kup-Ultb99WawtaFlRPBOwFImQzRXgUZqva1ota2qrAm9tnYPjUjz2v_xCp_-UpVNAwTT9MZ_usCChXaErbUmFTp6R473do3TC2iYMzADSqxm3QpoQjAZ6g7yO6XBkrVCo6kRkoQQEFMXSuUAqk7soD4rC5CNnUMjIWDwn29Wysi8JjQzOCbmLXCJtbBNlRFyEDpbpzHCVD4jo9K5Ny1COjTLOdVeKdqoba2m0lh4JDYMDwjZSq4ah45b5qjOp7nmahkXkFskPnQdoCEJUcVZZMIbmvu2XAOg1IC8aj9h8i8Au7mESwnt7vrKZgATf_SdVeeKJvhPcjeN7PzVe1RPZKedjvbz4pddrDTEGyHBAPt8wrx06g19Wy1Ako_DVf6vgPbk_OTrY1_vTw--vyQN8wjyV7RuyXV-s7VtAaHX-zkfgX44sO8c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+SARS-CoV-2+receptor+ACE2+is+expressed+in+mouse+pericytes+but+not+endothelial+cells%3A+Implications+for+COVID-19+vascular+research&rft.jtitle=Stem+cell+reports&rft.au=Muhl%2C+Lars&rft.au=He%2C+Liqun&rft.au=Sun%2C+Ying&rft.au=Andaloussi+M%C3%A4e%2C+Maarja&rft.date=2022-05-10&rft.eissn=2213-6711&rft.volume=17&rft.issue=5&rft.spage=1089&rft_id=info:doi/10.1016%2Fj.stemcr.2022.03.016&rft_id=info%3Apmid%2F35452595&rft.externalDocID=35452595 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-6711&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-6711&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-6711&client=summon |