A hybrid dependency-based approach for Urdu sentiment analysis

In the digital age, social media has emerged as a significant platform, generating a vast amount of raw data daily. This data reflects the opinions of individuals from diverse backgrounds, races, cultures, and age groups, spanning a wide range of topics. Businesses can leverage this data to extract...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; p. 22075
Main Authors Sehar, Urooba, Kanwal, Summrina, Allheeib, Nasser I., Almari, Sultan, Khan, Faiza, Dashtipur, Kia, Gogate, Mandar, Khashan, Osama A.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 12.12.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the digital age, social media has emerged as a significant platform, generating a vast amount of raw data daily. This data reflects the opinions of individuals from diverse backgrounds, races, cultures, and age groups, spanning a wide range of topics. Businesses can leverage this data to extract valuable insights, improve their services, and effectively reach a broader audience based on users’ expressed opinions on social media platforms. To harness the potential of this extensive and unstructured data, a deep understanding of Natural Language Processing (NLP) is crucial. Existing approaches for sentiment analysis (SA) often rely on word co-occurrence frequencies, which prove inefficient in practical scenarios. Identifying this research gap, this paper presents a framework for concept-level sentiment analysis, aiming to enhance the accuracy of sentiment analysis (SA). A comprehensive Urdu language dataset was constructed by collecting data from YouTube, consisting of various talks and reviews on topics such as movies, politics, and commercial products. The dataset was further enriched by incorporating language rules and Deep Neural Networks (DNN) to optimize polarity detection. For sentiment analysis, the proposed framework employs predefined rules to trigger sentiment flow from words to concepts, leveraging the dependency relations among different words in a sentence based on Urdu language grammatical rules. In cases where predefined patterns are not triggered, the framework seamlessly switches to its sub-symbolic counterpart, passing the data to the DNN for sentence classification. Experimental results demonstrate that the proposed framework surpasses state-of-the-art approaches, including LSTM, CNN, SVM, LR, and MLP, achieving an improvement of 6–7% on Urdu dataset. In conclusion, this research paper introduces a novel framework for concept-level sentiment analysis of Urdu language data sourced from social media platforms. By combining language rules and DNN, the proposed framework demonstrates superior performance compared to existing methodologies, showcasing its effectiveness in accurately analyzing sentiment in Urdu text data.
AbstractList In the digital age, social media has emerged as a significant platform, generating a vast amount of raw data daily. This data reflects the opinions of individuals from diverse backgrounds, races, cultures, and age groups, spanning a wide range of topics. Businesses can leverage this data to extract valuable insights, improve their services, and effectively reach a broader audience based on users' expressed opinions on social media platforms. To harness the potential of this extensive and unstructured data, a deep understanding of Natural Language Processing (NLP) is crucial. Existing approaches for sentiment analysis (SA) often rely on word co-occurrence frequencies, which prove inefficient in practical scenarios. Identifying this research gap, this paper presents a framework for concept-level sentiment analysis, aiming to enhance the accuracy of sentiment analysis (SA). A comprehensive Urdu language dataset was constructed by collecting data from YouTube, consisting of various talks and reviews on topics such as movies, politics, and commercial products. The dataset was further enriched by incorporating language rules and Deep Neural Networks (DNN) to optimize polarity detection. For sentiment analysis, the proposed framework employs predefined rules to trigger sentiment flow from words to concepts, leveraging the dependency relations among different words in a sentence based on Urdu language grammatical rules. In cases where predefined patterns are not triggered, the framework seamlessly switches to its sub-symbolic counterpart, passing the data to the DNN for sentence classification. Experimental results demonstrate that the proposed framework surpasses state-of-the-art approaches, including LSTM, CNN, SVM, LR, and MLP, achieving an improvement of 6-7% on Urdu dataset. In conclusion, this research paper introduces a novel framework for concept-level sentiment analysis of Urdu language data sourced from social media platforms. By combining language rules and DNN, the proposed framework demonstrates superior performance compared to existing methodologies, showcasing its effectiveness in accurately analyzing sentiment in Urdu text data.
In the digital age, social media has emerged as a significant platform, generating a vast amount of raw data daily. This data reflects the opinions of individuals from diverse backgrounds, races, cultures, and age groups, spanning a wide range of topics. Businesses can leverage this data to extract valuable insights, improve their services, and effectively reach a broader audience based on users’ expressed opinions on social media platforms. To harness the potential of this extensive and unstructured data, a deep understanding of Natural Language Processing (NLP) is crucial. Existing approaches for sentiment analysis (SA) often rely on word co-occurrence frequencies, which prove inefficient in practical scenarios. Identifying this research gap, this paper presents a framework for concept-level sentiment analysis, aiming to enhance the accuracy of sentiment analysis (SA). A comprehensive Urdu language dataset was constructed by collecting data from YouTube, consisting of various talks and reviews on topics such as movies, politics, and commercial products. The dataset was further enriched by incorporating language rules and Deep Neural Networks (DNN) to optimize polarity detection. For sentiment analysis, the proposed framework employs predefined rules to trigger sentiment flow from words to concepts, leveraging the dependency relations among different words in a sentence based on Urdu language grammatical rules. In cases where predefined patterns are not triggered, the framework seamlessly switches to its sub-symbolic counterpart, passing the data to the DNN for sentence classification. Experimental results demonstrate that the proposed framework surpasses state-of-the-art approaches, including LSTM, CNN, SVM, LR, and MLP, achieving an improvement of 6–7% on Urdu dataset. In conclusion, this research paper introduces a novel framework for concept-level sentiment analysis of Urdu language data sourced from social media platforms. By combining language rules and DNN, the proposed framework demonstrates superior performance compared to existing methodologies, showcasing its effectiveness in accurately analyzing sentiment in Urdu text data. © 2023, The Author(s).
Abstract In the digital age, social media has emerged as a significant platform, generating a vast amount of raw data daily. This data reflects the opinions of individuals from diverse backgrounds, races, cultures, and age groups, spanning a wide range of topics. Businesses can leverage this data to extract valuable insights, improve their services, and effectively reach a broader audience based on users’ expressed opinions on social media platforms. To harness the potential of this extensive and unstructured data, a deep understanding of Natural Language Processing (NLP) is crucial. Existing approaches for sentiment analysis (SA) often rely on word co-occurrence frequencies, which prove inefficient in practical scenarios. Identifying this research gap, this paper presents a framework for concept-level sentiment analysis, aiming to enhance the accuracy of sentiment analysis (SA). A comprehensive Urdu language dataset was constructed by collecting data from YouTube, consisting of various talks and reviews on topics such as movies, politics, and commercial products. The dataset was further enriched by incorporating language rules and Deep Neural Networks (DNN) to optimize polarity detection. For sentiment analysis, the proposed framework employs predefined rules to trigger sentiment flow from words to concepts, leveraging the dependency relations among different words in a sentence based on Urdu language grammatical rules. In cases where predefined patterns are not triggered, the framework seamlessly switches to its sub-symbolic counterpart, passing the data to the DNN for sentence classification. Experimental results demonstrate that the proposed framework surpasses state-of-the-art approaches, including LSTM, CNN, SVM, LR, and MLP, achieving an improvement of 6–7% on Urdu dataset. In conclusion, this research paper introduces a novel framework for concept-level sentiment analysis of Urdu language data sourced from social media platforms. By combining language rules and DNN, the proposed framework demonstrates superior performance compared to existing methodologies, showcasing its effectiveness in accurately analyzing sentiment in Urdu text data.
Abstract In the digital age, social media has emerged as a significant platform, generating a vast amount of raw data daily. This data reflects the opinions of individuals from diverse backgrounds, races, cultures, and age groups, spanning a wide range of topics. Businesses can leverage this data to extract valuable insights, improve their services, and effectively reach a broader audience based on users’ expressed opinions on social media platforms. To harness the potential of this extensive and unstructured data, a deep understanding of Natural Language Processing (NLP) is crucial. Existing approaches for sentiment analysis (SA) often rely on word co-occurrence frequencies, which prove inefficient in practical scenarios. Identifying this research gap, this paper presents a framework for concept-level sentiment analysis, aiming to enhance the accuracy of sentiment analysis (SA). A comprehensive Urdu language dataset was constructed by collecting data from YouTube, consisting of various talks and reviews on topics such as movies, politics, and commercial products. The dataset was further enriched by incorporating language rules and Deep Neural Networks (DNN) to optimize polarity detection. For sentiment analysis, the proposed framework employs predefined rules to trigger sentiment flow from words to concepts, leveraging the dependency relations among different words in a sentence based on Urdu language grammatical rules. In cases where predefined patterns are not triggered, the framework seamlessly switches to its sub-symbolic counterpart, passing the data to the DNN for sentence classification. Experimental results demonstrate that the proposed framework surpasses state-of-the-art approaches, including LSTM, CNN, SVM, LR, and MLP, achieving an improvement of 6–7% on Urdu dataset. In conclusion, this research paper introduces a novel framework for concept-level sentiment analysis of Urdu language data sourced from social media platforms. By combining language rules and DNN, the proposed framework demonstrates superior performance compared to existing methodologies, showcasing its effectiveness in accurately analyzing sentiment in Urdu text data.
ArticleNumber 22075
Author Allheeib, Nasser I.
Khashan, Osama A.
Kanwal, Summrina
Dashtipur, Kia
Gogate, Mandar
Almari, Sultan
Khan, Faiza
Sehar, Urooba
Author_xml – sequence: 1
  givenname: Urooba
  surname: Sehar
  fullname: Sehar, Urooba
  organization: Capital University of Science & Technology
– sequence: 2
  givenname: Summrina
  surname: Kanwal
  fullname: Kanwal, Summrina
  email: Summrina@kth.se
  organization: Division of Theoretical Computer Science, KTH Royal Institute of Technology Stockholm, Center of Applied Intelligence Systems Research, Halmstad University
– sequence: 3
  givenname: Nasser I.
  surname: Allheeib
  fullname: Allheeib, Nasser I.
  organization: Department of Information Systems, College of Computer and Information Sciences, King Saud University
– sequence: 4
  givenname: Sultan
  surname: Almari
  fullname: Almari, Sultan
  organization: Department of Computing and Informatics, Saudi Electronic University
– sequence: 5
  givenname: Faiza
  surname: Khan
  fullname: Khan, Faiza
  organization: Riphah International University
– sequence: 6
  givenname: Kia
  surname: Dashtipur
  fullname: Dashtipur, Kia
  organization: School of Computing, Edinburgh Napier University
– sequence: 7
  givenname: Mandar
  surname: Gogate
  fullname: Gogate, Mandar
  organization: School of Computing, Edinburgh Napier University
– sequence: 8
  givenname: Osama A.
  surname: Khashan
  fullname: Khashan, Osama A.
  organization: Research and Innovation Centers, Rabdan Academy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38086933$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-52319$$DView record from Swedish Publication Index
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-341705$$DView record from Swedish Publication Index
BookMark eNqFks1u1DAURi1UREvpC7BAkdggoYDtGyf2BjQqf5UqsaFsLce-mWTIxIOdgObtcZOhdFhAFrFln3uc63yPycngByTkKaOvGAX5OhZMKJlTDnkhJaty-YCccVqInAPnJ_fmp-Qixg1Nj-CqYOoROQVJZakAzsibVdbu69C5zOEOB4eD3ee1iegys9sFb2ybNT5kN8FNWcRh7LbplZnB9PvYxSfkYWP6iBeH8ZzcfHj_5fJTfv3549Xl6jq3oizHnKFhziBjAmspActaCpvGuknLoKSt0AgoLXNgaS05VJIKlGBL7qCkDs7J1eJ13mz0LnRbE_bam07PCz6stQljZ3vUeNtz6i7JaGHSGbakBTjaYF2AVEVy5Ysr_sTdVB_Z3nVfV7Pt29hqKFhFReJf_p9vWy04MJXotwud0C06m24rmP6o6Hhn6Fq99j80oxUrGYNkeHEwBP99wjjqbRct9r0Z0E9Rc0W5EgooTejzv9CNn0L6NzNFVcmqWcgXygYfY8Dm7msY1bdh0kuYdAqTnsOkZSp6dr-Pu5Lf0UkAHK4lbQ1rDH_O_of2F7Hx1fI
Cites_doi 10.1155/2022/7605125
10.3390/app12073641
10.1007/s11042-023-15216-0
10.1109/ACCESS.2021.3122025
10.3390/app122010344
10.1109/ACCESS.2022.3150172
10.1109/ACCESS.2023.3325048
10.1016/j.ins.2021.12.080
10.1109/MIS.2018.2882362
10.1155/2021/2529984
10.3390/sym15030645
10.1016/j.tele.2018.08.003
10.3390/ijerph18010218
10.18180/tecciencia.2017.22.5
10.1016/j.neucom.2021.09.057
10.2478/acss-2022-0004
10.3390/app12052694
10.1016/j.eswa.2021.115819
10.1016/j.autcon.2021.104068
10.1016/j.techfore.2021.121070
10.1016/j.ipm.2019.102141
10.1007/s12559-017-9470-8
10.3390/s22114157
10.1109/ACCESS.2021.3093078
10.1038/s41598-022-09381-9
10.1007/s10115-018-1236-4
10.1016/j.procs.2019.01.202
10.1145/3528576
10.51846/vol3iss2pp172-177
10.1007/s12559-021-09819-8
10.1016/j.eswa.2020.113834
10.1109/Confluence51648.2021.9377136
10.18653/v1/D17-1115
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
NPM
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
AAXBQ
ADTPV
AOWAS
D8T
D8Z
ZZAVC
AFDQA
D8V
DOA
DOI 10.1038/s41598-023-48817-8
DatabaseName SpringerOpen
PubMed
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
SWEPUB Högskolan i Halmstad full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Högskolan i Halmstad
SwePub Articles full text
SWEPUB Kungliga Tekniska Högskolan full text
SWEPUB Kungliga Tekniska Högskolan
DOAJ Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
Publicly Available Content Database




MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 22075
ExternalDocumentID oai_doaj_org_article_e2322869c1d04a3ebc6043d0feb43894
oai_DiVA_org_kth_341705
oai_DiVA_org_hh_52319
10_1038_s41598_023_48817_8
38086933
Genre Journal Article
GrantInformation_xml – fundername: Royal Institute of Technology
– fundername: King Saud University
  grantid: RSPD2023R609
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ADBBV
ADRAZ
AENEX
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNT
RNTTT
RPM
SNYQT
UKHRP
NPM
AAYXX
AFPKN
CITATION
7XB
8FK
K9.
PQEST
PQUKI
Q9U
7X8
5PM
AAXBQ
ADTPV
AOWAS
D8T
D8Z
EJD
IPNFZ
ZZAVC
AFDQA
D8V
ID FETCH-LOGICAL-c566t-1ea1dae115eb883e6b85c83ebf1da398c7ea536c1d3c0b8237805e83c62d360d3
IEDL.DBID RPM
ISSN 2045-2322
IngestDate Tue Oct 22 15:12:10 EDT 2024
Sat Aug 24 00:44:35 EDT 2024
Sat Aug 24 00:36:33 EDT 2024
Tue Sep 17 21:29:16 EDT 2024
Fri Oct 25 05:34:17 EDT 2024
Fri Nov 08 20:56:54 EST 2024
Fri Aug 23 03:14:35 EDT 2024
Sat Nov 02 12:20:43 EDT 2024
Fri Oct 11 20:48:08 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c566t-1ea1dae115eb883e6b85c83ebf1da398c7ea536c1d3c0b8237805e83c62d360d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10716113/
PMID 38086933
PQID 2900961713
PQPubID 2041939
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_e2322869c1d04a3ebc6043d0feb43894
swepub_primary_oai_DiVA_org_kth_341705
swepub_primary_oai_DiVA_org_hh_52319
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10716113
proquest_miscellaneous_2902959300
proquest_journals_2900961713
crossref_primary_10_1038_s41598_023_48817_8
pubmed_primary_38086933
springer_journals_10_1038_s41598_023_48817_8
PublicationCentury 2000
PublicationDate 2023-12-12
PublicationDateYYYYMMDD 2023-12-12
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-12
  day: 12
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Aziz, Ullah, Mushtaq, Mughal, Zahra (CR26) 2020
Khan, Amjad, Ashraf, Chang, Gelbukh (CR29) 2021; 9
CR18
CR17
Ashir (CR12) 2021; 2021
CR15
CR14
Chandio, Imran, Bakhtyar, Daudpota, Baber (CR39) 2022; 12
Poria, Majumder, Hazarika, Cambria, Gelbukh, Hussain (CR16) 2018; 33
CR35
Prottasha, Sami, Kowsher, Murad, Bairagi, Masud, Baz (CR11) 2022; 22
Yue, Chen, Li, Zuo, Yin (CR10) 2019; 60
CR33
CR32
Alsayat (CR7) 2021; 2021
Qureshi (CR30) 2022; 10
Kazmaier, van Vuuren (CR21) 2022; 187
Sehar, Kanwal, Dashtipur, Mir, Abbasi, Khan (CR31) 2021; 9
Li, Shao, Ji, Cambria (CR19) 2022; 467
Khan, Amjad, Ashraf (CR37) 2022; 12
Peng, Cambria, Hussain (CR4) 2017; 9
CR2
Wang, Guo, Wu (CR24) 2022; 174
Bueno, Carrasco, Ureña, Herrera-Viedma (CR25) 2022; 589
CR6
CR5
Mukhtar, Khan, Chiragh (CR27) 2018; 35
Khan, Ahmed, Siddiqui, Wasi (CR44) 2023; 2023
Kumar, Srinivasan, Cheng, Zomaya (CR1) 2020; 57
Kanw (CR28) 2022; 131
Bashir, Javed, Arshad, Gadekallu, Shahzad, Beg (CR43) 2023; 22
CR22
Ghulam, Zeng, Li, Xiao (CR34) 2019; 147
Altaf, Anwar, Jamal (CR42) 2023; 82
Valle-Cruz, Fernandez-Cortez, López-Chau, Sandoval-Almazán (CR23) 2022; 14
Aljameel (CR8) 2021; 18
Miranda, Guzmán, Miranda, Guzmán (CR13) 2017; 12
Rao (CR9) 2022; 2022
Li (CR36) 2022; 12
Chakravarthi (CR20) 2022; 2022
Ahmed (CR41) 2023; 15
Rehman, Soomro (CR38) 2022; 27
D’Orazio, Di Giuseppe, Bernardini (CR3) 2022; 134
Khan, Amjad, Afaq, Chang (CR40) 2022; 12
MF Bashir (48817_CR43) 2023; 22
S Poria (48817_CR16) 2018; 33
MA Qureshi (48817_CR30) 2022; 10
L Khan (48817_CR40) 2022; 12
J Kazmaier (48817_CR21) 2022; 187
M D’Orazio (48817_CR3) 2022; 134
A Altaf (48817_CR42) 2023; 82
I Bueno (48817_CR25) 2022; 589
I Rehman (48817_CR38) 2022; 27
MY Khan (48817_CR44) 2023; 2023
D Valle-Cruz (48817_CR23) 2022; 14
48817_CR6
U Sehar (48817_CR31) 2021; 9
L Yue (48817_CR10) 2019; 60
L Rao (48817_CR9) 2022; 2022
48817_CR5
SS Aljameel (48817_CR8) 2021; 18
W Li (48817_CR19) 2022; 467
L Khan (48817_CR37) 2022; 12
H Peng (48817_CR4) 2017; 9
BR Chakravarthi (48817_CR20) 2022; 2022
D Li (48817_CR36) 2022; 12
L Khan (48817_CR29) 2021; 9
48817_CR22
AM Ashir (48817_CR12) 2021; 2021
S Aziz (48817_CR26) 2020
B Kanw (48817_CR28) 2022; 131
48817_CR2
BA Chandio (48817_CR39) 2022; 12
NJ Prottasha (48817_CR11) 2022; 22
N Mukhtar (48817_CR27) 2018; 35
CH Miranda (48817_CR13) 2017; 12
48817_CR18
48817_CR17
A Kumar (48817_CR1) 2020; 57
48817_CR15
K Ahmed (48817_CR41) 2023; 15
A Alsayat (48817_CR7) 2021; 2021
W Wang (48817_CR24) 2022; 174
48817_CR32
48817_CR14
48817_CR35
H Ghulam (48817_CR34) 2019; 147
48817_CR33
References_xml – volume: 2022
  start-page: e7605125
  year: 2022
  ident: CR9
  article-title: Sentiment analysis of english text with multilevel features
  publication-title: Sci. Program.
  doi: 10.1155/2022/7605125
  contributor:
    fullname: Rao
– ident: CR22
– ident: CR18
– volume: 12
  start-page: 3641
  year: 2022
  ident: CR39
  article-title: Attention-based RU-BiLSTM sentiment analysis model for roman Urdu
  publication-title: Appl. Sci.
  doi: 10.3390/app12073641
  contributor:
    fullname: Baber
– volume: 82
  start-page: 41813
  year: 2023
  end-page: 41839
  ident: CR42
  article-title: Exploiting linguistic features for effective sentence-level sentiment analysis in Urdu language
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-023-15216-0
  contributor:
    fullname: Jamal
– ident: CR14
– ident: CR2
– volume: 9
  start-page: 153072
  year: 2021
  end-page: 153082
  ident: CR31
  article-title: Urdu sentiment analysis via multimodal data mining based on deep learning algorithms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3122025
  contributor:
    fullname: Khan
– volume: 131
  start-page: 393
  issue: 1
  year: 2022
  end-page: 413
  ident: CR28
  article-title: Sentiment analysis of roman Urdu on e-commerce reviews using machine learning
  publication-title: CMES-Comput. Model. Eng. Sci.
  contributor:
    fullname: Kanw
– volume: 12
  start-page: 10344
  issue: 20
  year: 2022
  ident: CR36
  article-title: Roman Urdu sentiment analysis using transfer learning
  publication-title: Appl. Sci.
  doi: 10.3390/app122010344
  contributor:
    fullname: Li
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 13
  ident: CR7
  article-title: Improving sentiment analysis for social media applications using an ensemble deep learning language model
  publication-title: Arab. J. Sci. Eng.
  contributor:
    fullname: Alsayat
– volume: 10
  start-page: 24945
  year: 2022
  end-page: 24954
  ident: CR30
  article-title: Sentiment analysis of reviews in natural language: Roman Urdu as a case study
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3150172
  contributor:
    fullname: Qureshi
– ident: CR33
– ident: CR35
– ident: CR6
– volume: 2022
  start-page: 1
  year: 2022
  end-page: 42
  ident: CR20
  article-title: Dravidiancodemix: Sentiment analysis and offensive language identification dataset for dravidian languages in code-mixed text
  publication-title: Lang. Resourc. Eval.
  contributor:
    fullname: Chakravarthi
– volume: 2023
  start-page: 1
  year: 2023
  end-page: 1
  ident: CR44
  article-title: Cognitive relationship-based approach for urdu sarcasm and sentiment classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3325048
  contributor:
    fullname: Wasi
– volume: 589
  start-page: 300
  year: 2022
  end-page: 320
  ident: CR25
  article-title: A business context-aware decision-making approach for selecting the most appropriate sentiment analysis technique in e-marketing situations
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.12.080
  contributor:
    fullname: Herrera-Viedma
– volume: 33
  start-page: 17
  issue: 6
  year: 2018
  end-page: 25
  ident: CR16
  article-title: Multimodal sentiment analysis: Addressing key issues and setting up the baselines
  publication-title: IEEE Intell. Syst.
  doi: 10.1109/MIS.2018.2882362
  contributor:
    fullname: Hussain
– volume: 2021
  start-page: 2529984
  year: 2021
  ident: CR12
  article-title: A generalized method for sentiment analysis across different sources
  publication-title: Appl. Comput. Intell. Soft Comput.
  doi: 10.1155/2021/2529984
  contributor:
    fullname: Ashir
– volume: 15
  start-page: 645
  issue: 3
  year: 2023
  ident: CR41
  article-title: Contextually enriched meta-learning ensemble model for Urdu sentiment analysis
  publication-title: Symmetry
  doi: 10.3390/sym15030645
  contributor:
    fullname: Ahmed
– volume: 35
  start-page: 2173
  issue: 8
  year: 2018
  end-page: 2183
  ident: CR27
  article-title: Lexicon-based approach outperforms supervised machine learning approach for Urdu sentiment analysis in multiple domains
  publication-title: Telem. Inf.
  doi: 10.1016/j.tele.2018.08.003
  contributor:
    fullname: Chiragh
– volume: 18
  start-page: 1
  issue: 1
  year: 2021
  ident: CR8
  article-title: A sentiment analysis approach to predict an individual’s awareness of the precautionary procedures to prevent COVID-19 outbreaks in Saudi Arabia
  publication-title: Int. J. Env. Res. Public Health
  doi: 10.3390/ijerph18010218
  contributor:
    fullname: Aljameel
– volume: 12
  start-page: 35
  issue: 22
  year: 2017
  end-page: 48
  ident: CR13
  article-title: A review of sentiment analysis in spanish
  publication-title: Tecciencia
  doi: 10.18180/tecciencia.2017.22.5
  contributor:
    fullname: Guzmán
– volume: 467
  start-page: 73
  year: 2022
  end-page: 82
  ident: CR19
  article-title: BiERU: Bidirectional emotional recurrent unit for conversational sentiment analysis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.09.057
  contributor:
    fullname: Cambria
– volume: 27
  start-page: 30
  year: 2022
  end-page: 42
  ident: CR38
  article-title: Urdu sentiment analysis
  publication-title: Appl. Comput. Syst.
  doi: 10.2478/acss-2022-0004
  contributor:
    fullname: Soomro
– volume: 12
  start-page: 2694
  year: 2022
  ident: CR40
  article-title: Deep sentiment analysis using CNN-LSTM architecture of english and roman Urdu text shared in social media
  publication-title: Appl. Sci.
  doi: 10.3390/app12052694
  contributor:
    fullname: Chang
– volume: 187
  start-page: 115819
  year: 2022
  ident: CR21
  article-title: The power of ensemble learning in sentiment analysis
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115819
  contributor:
    fullname: van Vuuren
– volume: 134
  start-page: 104068
  year: 2022
  ident: CR3
  article-title: Automatic detection of maintenance requests: Comparison of human manual annotation and sentiment analysis techniques
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.104068
  contributor:
    fullname: Bernardini
– ident: CR15
– volume: 174
  start-page: 121070
  year: 2022
  ident: CR24
  article-title: The merits of a sentiment analysis of antecedent comments for the prediction of online fundraising outcomes
  publication-title: Technol. Forecast. Soc. Change
  doi: 10.1016/j.techfore.2021.121070
  contributor:
    fullname: Wu
– volume: 57
  start-page: 102141
  issue: 1
  year: 2020
  ident: CR1
  article-title: Hybrid context enriched deep learning model for fine-grained sentiment analysis in textual and visual semiotic modality social data
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2019.102141
  contributor:
    fullname: Zomaya
– volume: 9
  start-page: 423
  issue: 4
  year: 2017
  end-page: 435
  ident: CR4
  article-title: A review of sentiment analysis research in Chinese Language
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-017-9470-8
  contributor:
    fullname: Hussain
– ident: CR17
– volume: 22
  start-page: 4157
  year: 2022
  ident: CR11
  article-title: Transfer learning for sentiment analysis using BERT based supervised fine-tuning
  publication-title: Sensors
  doi: 10.3390/s22114157
  contributor:
    fullname: Baz
– volume: 9
  start-page: 97803
  year: 2021
  end-page: 97812
  ident: CR29
  article-title: Urdu sentiment analysis with deep learning methods
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3093078
  contributor:
    fullname: Gelbukh
– volume: 12
  start-page: 5436
  year: 2022
  ident: CR37
  article-title: Multi-class sentiment analysis of Urdu text using multilingual BERT
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-09381-9
  contributor:
    fullname: Ashraf
– ident: CR32
– ident: CR5
– volume: 60
  start-page: 617
  issue: 2
  year: 2019
  end-page: 663
  ident: CR10
  article-title: A survey of sentiment analysis in social media
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-018-1236-4
  contributor:
    fullname: Yin
– volume: 147
  start-page: 131
  year: 2019
  end-page: 135
  ident: CR34
  article-title: Deep learning-based sentiment analysis for roman urdu text
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2019.01.202
  contributor:
    fullname: Xiao
– volume: 22
  start-page: 1
  issue: 5
  year: 2023
  end-page: 30
  ident: CR43
  article-title: Context-aware emotion detection from low-resource urdu language using deep neural network
  publication-title: ACM Trans. Asian Low-Resourc. Lang. Inf. Process.
  doi: 10.1145/3528576
  contributor:
    fullname: Beg
– year: 2020
  ident: CR26
  article-title: Roman Urdu sentiment analysis using machine learning with best parameters and comparative study of machine learning algorithms
  publication-title: Pak. J. Eng. Technol.
  doi: 10.51846/vol3iss2pp172-177
  contributor:
    fullname: Zahra
– volume: 14
  start-page: 372
  issue: 1
  year: 2022
  end-page: 387
  ident: CR23
  article-title: Does twitter affect stock market decisions? financial sentiment analysis during pandemics: A comparative study of the h1n1 and the covid-19 periods
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-021-09819-8
  contributor:
    fullname: Sandoval-Almazán
– volume: 2021
  start-page: 1
  year: 2021
  ident: 48817_CR7
  publication-title: Arab. J. Sci. Eng.
  contributor:
    fullname: A Alsayat
– volume: 131
  start-page: 393
  issue: 1
  year: 2022
  ident: 48817_CR28
  publication-title: CMES-Comput. Model. Eng. Sci.
  contributor:
    fullname: B Kanw
– volume: 9
  start-page: 97803
  year: 2021
  ident: 48817_CR29
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3093078
  contributor:
    fullname: L Khan
– volume: 9
  start-page: 423
  issue: 4
  year: 2017
  ident: 48817_CR4
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-017-9470-8
  contributor:
    fullname: H Peng
– ident: 48817_CR22
– volume: 10
  start-page: 24945
  year: 2022
  ident: 48817_CR30
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3150172
  contributor:
    fullname: MA Qureshi
– ident: 48817_CR35
  doi: 10.1016/j.eswa.2020.113834
– volume: 57
  start-page: 102141
  issue: 1
  year: 2020
  ident: 48817_CR1
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2019.102141
  contributor:
    fullname: A Kumar
– ident: 48817_CR6
  doi: 10.1109/Confluence51648.2021.9377136
– volume: 33
  start-page: 17
  issue: 6
  year: 2018
  ident: 48817_CR16
  publication-title: IEEE Intell. Syst.
  doi: 10.1109/MIS.2018.2882362
  contributor:
    fullname: S Poria
– volume: 174
  start-page: 121070
  year: 2022
  ident: 48817_CR24
  publication-title: Technol. Forecast. Soc. Change
  doi: 10.1016/j.techfore.2021.121070
  contributor:
    fullname: W Wang
– ident: 48817_CR5
– ident: 48817_CR18
– ident: 48817_CR14
– year: 2020
  ident: 48817_CR26
  publication-title: Pak. J. Eng. Technol.
  doi: 10.51846/vol3iss2pp172-177
  contributor:
    fullname: S Aziz
– ident: 48817_CR33
– volume: 15
  start-page: 645
  issue: 3
  year: 2023
  ident: 48817_CR41
  publication-title: Symmetry
  doi: 10.3390/sym15030645
  contributor:
    fullname: K Ahmed
– volume: 12
  start-page: 5436
  year: 2022
  ident: 48817_CR37
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-09381-9
  contributor:
    fullname: L Khan
– volume: 27
  start-page: 30
  year: 2022
  ident: 48817_CR38
  publication-title: Appl. Comput. Syst.
  doi: 10.2478/acss-2022-0004
  contributor:
    fullname: I Rehman
– volume: 12
  start-page: 3641
  year: 2022
  ident: 48817_CR39
  publication-title: Appl. Sci.
  doi: 10.3390/app12073641
  contributor:
    fullname: BA Chandio
– volume: 147
  start-page: 131
  year: 2019
  ident: 48817_CR34
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2019.01.202
  contributor:
    fullname: H Ghulam
– volume: 12
  start-page: 10344
  issue: 20
  year: 2022
  ident: 48817_CR36
  publication-title: Appl. Sci.
  doi: 10.3390/app122010344
  contributor:
    fullname: D Li
– volume: 35
  start-page: 2173
  issue: 8
  year: 2018
  ident: 48817_CR27
  publication-title: Telem. Inf.
  doi: 10.1016/j.tele.2018.08.003
  contributor:
    fullname: N Mukhtar
– volume: 22
  start-page: 4157
  year: 2022
  ident: 48817_CR11
  publication-title: Sensors
  doi: 10.3390/s22114157
  contributor:
    fullname: NJ Prottasha
– volume: 82
  start-page: 41813
  year: 2023
  ident: 48817_CR42
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-023-15216-0
  contributor:
    fullname: A Altaf
– volume: 187
  start-page: 115819
  year: 2022
  ident: 48817_CR21
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115819
  contributor:
    fullname: J Kazmaier
– volume: 22
  start-page: 1
  issue: 5
  year: 2023
  ident: 48817_CR43
  publication-title: ACM Trans. Asian Low-Resourc. Lang. Inf. Process.
  doi: 10.1145/3528576
  contributor:
    fullname: MF Bashir
– volume: 2021
  start-page: 2529984
  year: 2021
  ident: 48817_CR12
  publication-title: Appl. Comput. Intell. Soft Comput.
  doi: 10.1155/2021/2529984
  contributor:
    fullname: AM Ashir
– volume: 14
  start-page: 372
  issue: 1
  year: 2022
  ident: 48817_CR23
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-021-09819-8
  contributor:
    fullname: D Valle-Cruz
– volume: 467
  start-page: 73
  year: 2022
  ident: 48817_CR19
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.09.057
  contributor:
    fullname: W Li
– volume: 589
  start-page: 300
  year: 2022
  ident: 48817_CR25
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.12.080
  contributor:
    fullname: I Bueno
– volume: 134
  start-page: 104068
  year: 2022
  ident: 48817_CR3
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.104068
  contributor:
    fullname: M D’Orazio
– volume: 2022
  start-page: e7605125
  year: 2022
  ident: 48817_CR9
  publication-title: Sci. Program.
  doi: 10.1155/2022/7605125
  contributor:
    fullname: L Rao
– volume: 2023
  start-page: 1
  year: 2023
  ident: 48817_CR44
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3325048
  contributor:
    fullname: MY Khan
– volume: 12
  start-page: 35
  issue: 22
  year: 2017
  ident: 48817_CR13
  publication-title: Tecciencia
  doi: 10.18180/tecciencia.2017.22.5
  contributor:
    fullname: CH Miranda
– volume: 18
  start-page: 1
  issue: 1
  year: 2021
  ident: 48817_CR8
  publication-title: Int. J. Env. Res. Public Health
  doi: 10.3390/ijerph18010218
  contributor:
    fullname: SS Aljameel
– volume: 9
  start-page: 153072
  year: 2021
  ident: 48817_CR31
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3122025
  contributor:
    fullname: U Sehar
– volume: 60
  start-page: 617
  issue: 2
  year: 2019
  ident: 48817_CR10
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-018-1236-4
  contributor:
    fullname: L Yue
– volume: 12
  start-page: 2694
  year: 2022
  ident: 48817_CR40
  publication-title: Appl. Sci.
  doi: 10.3390/app12052694
  contributor:
    fullname: L Khan
– ident: 48817_CR2
– volume: 2022
  start-page: 1
  year: 2022
  ident: 48817_CR20
  publication-title: Lang. Resourc. Eval.
  contributor:
    fullname: BR Chakravarthi
– ident: 48817_CR15
– ident: 48817_CR17
  doi: 10.18653/v1/D17-1115
– ident: 48817_CR32
SSID ssj0000529419
Score 2.4489129
Snippet In the digital age, social media has emerged as a significant platform, generating a vast amount of raw data daily. This data reflects the opinions of...
Abstract In the digital age, social media has emerged as a significant platform, generating a vast amount of raw data daily. This data reflects the opinions of...
Abstract In the digital age, social media has emerged as a significant platform, generating a vast amount of raw data daily. This data reflects the opinions of...
SourceID doaj
swepub
pubmedcentral
proquest
crossref
pubmed
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 22075
SubjectTerms 639/705/117
639/705/258
Datasets
Humanities and Social Sciences
Language
multidisciplinary
Neural networks
Science
Science (multidisciplinary)
Sentiment analysis
Social networks
Urdu language
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1CoNBLaZumdZsGBUIvrYls2Yp0KWzzQQikp27JTVgfxqHghGT3sP--M5K9jdOSXHoy2DKS3mg8T8jzBmAfgx7GgVDnlXYqr1rd5pYSdXEf5ivZtErGKhEX3-XZvDq_rC_vlfqif8KSPHAC7iBgyC-V1K7wvGpEsE7ySnjeBkuFu5MSKNf3NlNJ1bvUVaGHLBku1MEdRirKJitFjmuWPs2TSBQF-__FMv_-WXJ9YvpAXTRGpNOX8GKgkmyWpvAKNkL_Gp6l4pKrLfg6Y92K8rHYWOjWrXIKWp6NQuIMGSub3_oloxSkqPPPmkGl5A3MT09-HJ3lQ7WE3CElW-RFaArfBGR4wSolgrSqdni1Ld4WWrnD0NRCIo7CcUsaNYrXQQknSy8k92IbNvvrPrwDpr2sPSmbSYU-rkiTvrHe0ZGt07atMvg8ImdukiiGiYfZQpmEs0GcTcTZqAy-EbjrliRoHW-gmc1gZvOUmTPYGU1jBi-7M6WOFWtwn53B3vox-gcdejR9uF7GNiWJL3OewdtkyfVIcGLYpcC31cTGk6FOn_RXXdTgxl0zcmXq-Mu4HP6M6zEs9tOSmXRxfPVzFtHoOlMj4dYZfHqs2a9FZ5B9HPL6_f_A9gM8L8kvCipzswObi9tl-IhUa2F3o1f9BmslIw8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1oQUaquIBVJ0689gW0PKoKCU4s2psVP0IqpGzZx2H_fWccJ1UA7WmlxCtPxmPPZ4_nG0JOwemBHwgVK7VTrGx0wywm6sI-zJeybpSMVSK-fZcXi_LrslqmA7dNulY5rIlxofYrh2fkZ4WO1UlgT_Xh6g_DqlEYXU0lNG6TO3nBJV7pmi1n4xkLRrHKXKdcGS7U2Qb8FeaUFYKB5eICPfFHkbb_f1jz3yuTY9z0L47R6JfOH5D7CVDSeW8BD8mt0D0id_sSk_vH5P2ctnvMyqJDuVu3Z-i6PB3oxCngVrpY-x3FRKTI9k_rxFXyhCzOv_z4dMFSzQTmAJhtWR7q3NcBcF6wSokgraoc_NoGHgut3CzUlZAu98Jxi0w1ildBCScLLyT34ik56lZdeE6o9rLyyG8mFcx0hcz0tfUOA7dO26bMyNtBc-aqp8YwMaQtlOn1bEDPJurZqIx8ROWOLZHWOj5YrX-ZNEtMAHxXKKlBPF7WILWTIIDnTbBYpR26PBmGxqS5tjE3lpGR1-NrmCUY-qi7sNrFNgVSMHOekWf9SI6SwIdBlwL-rSZjPBF1-qa7bCMTN-ydATFjx-8Gc7iR65AuTnuTmXTx-fLnPGqjbU0FsFtn5M2hZr-3rQEMMuPVi8NqOSb3CrT4HMvYnJCj7XoXXgKU2tpXcb5cA3g3Gt0
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access(OpenAccess)
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9RAEJ8AxoQXogJaRLMkxBcott122X1Qc34QYqJPnOFt0_2oJZoeHHeJ9987s22PVC7EpybtNjs7O9P5TbbzG4BDDHoYB3wR58rKOK9UFRsq1MU8zOWirKQIXSK-fRfn4_zrZXG5Bn27o06BtytTO-onNZ7-Pvlzs_iADv-uLRmXb28xCFGhWMZjNEf66q7DoyzHTJ1-5evgfsv1nak8VV3tzOpXB_Ep0Pivwp73f6FcnqP-wzka4tTZE9jqACYbtRbxFNZ88wwety0nF9vwfsTqBVVpsb79rV3EFMoc6-nFGeJYNp66OaPCpMD-z8qOu2QHxmdfLj6dx10PhdgiUJvFqS9TV3rEfd5Iyb0wsrB4NRXe5kraU18WXNjUcZsYYq6RSeEltyJzXCSO78JGM2n8C2DKicIR35mQ6PmSmOpL4ywd5FplqjyCo15z-rqlytDhiJtL3epZo5510LOWEXwk5S5HEs11uDGZ_tSd12iPeC-TQqF4SV6i1FagAC6pvKGu7Tjlfr81ujcdnanQxwaz7wgOlo_Ra-gopGz8ZB7GZETJnCQRPG93cikJLgyn5Pi2HOzxQNThk-aqDszcmEsjgqaJj3tzuJPrIV0ctiYzmOLz1Y9R0EZd6wJhuIrgzUPDfs1qjZjkNCn2_mPdL2EzI7NPqbfNPmzMpnP_CvHVzLwOTvMXbdUgKw
  priority: 102
  providerName: Scholars Portal
– databaseName: SpringerOpen
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB-sUuiLtFpr1JYVxJcammSTdfdFuF4VEfTJE9-W7EeICFH07uH-e2c2HyVVhD4dJBtmbmbn5rc3md8AHGDSwzzgizhXVsZ5parYUKMunsNcLspKijAl4vJKnM_yi9vitqPJoV6YUf2ey1_PmGCoCSzjMW41-kX9AGuYgyW9vjUV0-H_FKpY5anq-mLefnSUewJF_1u48vXrkUON9B8-0ZCDzj7Degce2aT19hdY8c0GfGzHSS434WTC6iV1YLF-tK1dxpSmHOupwxliVDZ7cgtGTUeB2Z-VHS_JV5idnV5Pz-NuPkJsEYTN49SXqSs9YjpvpOReGFlY_DQVXuZK2mNfFlzY1HGbGGKlkUnhJbcic1wkjm_BavPQ-G1gyonCEZeZkBjVkljoS-MsFWmtMlUewc_ecvqxpcHQoXzNpW7trNHOOthZywh-k3GHlURhHS6gZ3UXEdojlsukUKhekpeotRWogEsqb2giO4rc612ju7h61pkKM2rwZB3B_nAbI4LKHGXjHxZhTUZ0y0kSwbfWk4Mm-MVQJMen5cjHI1XHd5q7OrBu4zkZ0TEJPuq3w1-93rPFQbtlRiL-3N1MgjXqWhcIsVUEh-8tu5_XGvHGcVLs_J_4XfiUUQSkNMJmD1bnTwv_HWHU3PwI8fMCzwYT8Q
  priority: 102
  providerName: Springer Nature
Title A hybrid dependency-based approach for Urdu sentiment analysis
URI https://link.springer.com/article/10.1038/s41598-023-48817-8
https://www.ncbi.nlm.nih.gov/pubmed/38086933
https://www.proquest.com/docview/2900961713
https://search.proquest.com/docview/2902959300
https://pubmed.ncbi.nlm.nih.gov/PMC10716113
https://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-52319
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-341705
https://doaj.org/article/e2322869c1d04a3ebc6043d0feb43894
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB6SlJZcQt9VmhgVQi-tYkkrrXcvBcdNCAWHUOri26J9KDJt5ODYB__7zq60TtSUHHqRkLSgYR6ab7U73wAcYdLDPGDyKOOKRVnJy0jaQl2ch-mMFiWjrkvE-IKeT7Jv03y6BdTXwrhN-0rOjuvf18f1rHJ7K2-uVd_vE-tfjkc4ZUGgkpD-Nmyjh96bozeM3inPEt5WyMSE9W8xS9lKspRE6K_2s7wLzwhDNM8J6SQkx9v_L7D5cM_kZuH0L5JRl5jOnsNeiyjDYSP5C9gy9Ut42vSYXL-CL8OwWtuyrND3u1XryOYuHXo-8RCBazhZ6FVoK5Ec3X9YtGQlr2FydvpjdB61TRMihchsGSWmSHRhEOgZyRgxVLJc4VmWeJtwpgamyAlViSYqlpaqhsW5YUTRVBMaa_IGdup5bd5ByDXNtSU4owxDnVlq-kJqZVduFZdlFsAnrzlx03BjCLemTZhoVC5Q5cKpXLAATqxyNyMtr7W7MV9cida6wiDAS9EsKF6cFSi1oiiAjksjbZt2fOWBN41og-1WpNw1rsHpdgAfNo8xTOzaR1Gb-cqNSS0HcxwH8Lax5EYS7wkBsI6NO6J2n6BnOipu74kBfPbucCfXY7o4alym84qvs59Dp42qEjnibh7Ax8eG_VpWAkHIIM73_1_y97Cb2sBIbI-bA9hZLlbmEHHWUvYwuKaDHjw5Ob24_I5XIzrquX8WeBxnrOfC7g8vJClZ
link.rule.ids 230,315,730,783,787,867,888,2109,12068,21400,24330,27936,27937,31731,31732,33756,33757,41132,42201,43322,43817,51588,53804,53806,74073,74630
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagFYIL4k2gBSNVXCCqEyeuc6HallYLtCuEuqg3K36EVEjZso_D_ntmHCdVKNpTpMSRJ-Ox57Mn8w0he-D0wA-4PM4KI-OsKqpYY6Iu7MNsJspKCl8l4nwixtPs62V-GQ7cFuG3ym5N9Au1nRk8I99PC1-dBPZUh9d_YqwahdHVUELjLtlGqirYfG0fnUy-_-hPWTCOlSVFyJZhXO4vwGNhVlnKY7BdXKIHHskT9_8Pbd7-abKPnP7DMuo90-kj8jBASjpqbeAxueOaJ-ReW2Ry_ZR8GtF6jXlZtCt4a9YxOi9LO0JxCsiVTud2RTEVyfP90zKwlTwj09OTi-NxHKomxAag2TJOXJnY0gHSc1pK7oSWuYGrruA2L6Q5cGXOhUksN0wjV41kuZPciNRywSx_TraaWeNeElpYkVtkOBMS5rpEbvpSW4OhW1PoKovIh05z6rolx1A-qM2lavWsQM_K61nJiByhcvuWSGztb8zmv1SYJ8oBwkulKEA8lpUgtREggGWV01inHbrc6YZGhdm2UDe2EZF3_WOYJxj8KBs3W_k2KZIwMxaRF-1I9pLAh0GXHN6WgzEeiDp80lzVnosbds-AmbHjj5053Mi1SRd7rckMuvh89XPktVHXKgfgXUTk_aZmv5e1AhRywPJXm9XyltwfX5yfqbMvk2-vyYMUrT_BojY7ZGs5X7ldAFZL_SbMnr-7Ax8z
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BViAuiGdJKRCkigtE68SJ17mAtrSr8lpViEW9WYntkAop2-7jsP-eGcdJtYD2FClx5Ml4xvM5Y38DcIRBD-OAzaI01zJKq7yKSjqoi-swk4qiksJVifg2FWez9PNFduH3Py39tspuTnQTtZlr-kc-THJXnQTXVMPKb4s4P5l8uLqOqIIUZVp9OY3bsDdKBWcD2Ds-nZ5_7_-4UE4rjXN_coZxOVxi9KITZgmP0I5put6KTo7E_3_I898NlH0W9S_GURelJg_gvoeX4bi1h4dwyzaP4E5bcHLzGN6Pw3pDZ7TCrvit3kQUyEzYkYuHiGLD2cKsQzqW5Lj_w8IzlzyB2eT0x8ezyFdQiDTCtFUU2yI2hUXUZ0spuRWlzDReywpv81zqkS0yLnRsuGYl8dZIllnJtUgMF8zwpzBo5o19BmFuRGaI7UxI9HtJPPVFaTSlcXVeVmkAbzvNqauWKEO5BDeXqtWzQj0rp2clAzgm5fYtieTa3ZgvfinvM8oi2kukyFE8lhYotRYogGGVLalmO3Z52A2N8p63VDd2EsDr_jH6DCVCisbO165NQoTMjAWw345kLwl-GHbJ8W25NcZbom4_aS5rx8uNK2nEz9Txu84cbuTapYuj1mS2uji5_Dl22qhrlSEIzwN4s6vZ71WtEJGMWHawWy2v4C46jvr6afrlOdxLyPhjqm9zCIPVYm1fIMZalS-98_wBSg0jYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+dependency-based+approach+for+Urdu+sentiment+analysis&rft.jtitle=Scientific+reports&rft.au=Sehar%2C+Urooba&rft.au=Kanwal%2C+Summrina&rft.au=Allheeib%2C+Nasser+I&rft.au=Almari%2C+Sultan&rft.date=2023-12-12&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=22075&rft.epage=22075&rft_id=info:doi/10.1038%2Fs41598-023-48817-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon