A hybrid dependency-based approach for Urdu sentiment analysis
In the digital age, social media has emerged as a significant platform, generating a vast amount of raw data daily. This data reflects the opinions of individuals from diverse backgrounds, races, cultures, and age groups, spanning a wide range of topics. Businesses can leverage this data to extract...
Saved in:
Published in | Scientific reports Vol. 13; no. 1; p. 22075 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
12.12.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the digital age, social media has emerged as a significant platform, generating a vast amount of raw data daily. This data reflects the opinions of individuals from diverse backgrounds, races, cultures, and age groups, spanning a wide range of topics. Businesses can leverage this data to extract valuable insights, improve their services, and effectively reach a broader audience based on users’ expressed opinions on social media platforms. To harness the potential of this extensive and unstructured data, a deep understanding of Natural Language Processing (NLP) is crucial. Existing approaches for sentiment analysis (SA) often rely on word co-occurrence frequencies, which prove inefficient in practical scenarios. Identifying this research gap, this paper presents a framework for concept-level sentiment analysis, aiming to enhance the accuracy of sentiment analysis (SA). A comprehensive Urdu language dataset was constructed by collecting data from YouTube, consisting of various talks and reviews on topics such as movies, politics, and commercial products. The dataset was further enriched by incorporating language rules and Deep Neural Networks (DNN) to optimize polarity detection. For sentiment analysis, the proposed framework employs predefined rules to trigger sentiment flow from words to concepts, leveraging the dependency relations among different words in a sentence based on Urdu language grammatical rules. In cases where predefined patterns are not triggered, the framework seamlessly switches to its sub-symbolic counterpart, passing the data to the DNN for sentence classification. Experimental results demonstrate that the proposed framework surpasses state-of-the-art approaches, including LSTM, CNN, SVM, LR, and MLP, achieving an improvement of 6–7% on Urdu dataset. In conclusion, this research paper introduces a novel framework for concept-level sentiment analysis of Urdu language data sourced from social media platforms. By combining language rules and DNN, the proposed framework demonstrates superior performance compared to existing methodologies, showcasing its effectiveness in accurately analyzing sentiment in Urdu text data. |
---|---|
AbstractList | In the digital age, social media has emerged as a significant platform, generating a vast amount of raw data daily. This data reflects the opinions of individuals from diverse backgrounds, races, cultures, and age groups, spanning a wide range of topics. Businesses can leverage this data to extract valuable insights, improve their services, and effectively reach a broader audience based on users' expressed opinions on social media platforms. To harness the potential of this extensive and unstructured data, a deep understanding of Natural Language Processing (NLP) is crucial. Existing approaches for sentiment analysis (SA) often rely on word co-occurrence frequencies, which prove inefficient in practical scenarios. Identifying this research gap, this paper presents a framework for concept-level sentiment analysis, aiming to enhance the accuracy of sentiment analysis (SA). A comprehensive Urdu language dataset was constructed by collecting data from YouTube, consisting of various talks and reviews on topics such as movies, politics, and commercial products. The dataset was further enriched by incorporating language rules and Deep Neural Networks (DNN) to optimize polarity detection. For sentiment analysis, the proposed framework employs predefined rules to trigger sentiment flow from words to concepts, leveraging the dependency relations among different words in a sentence based on Urdu language grammatical rules. In cases where predefined patterns are not triggered, the framework seamlessly switches to its sub-symbolic counterpart, passing the data to the DNN for sentence classification. Experimental results demonstrate that the proposed framework surpasses state-of-the-art approaches, including LSTM, CNN, SVM, LR, and MLP, achieving an improvement of 6-7% on Urdu dataset. In conclusion, this research paper introduces a novel framework for concept-level sentiment analysis of Urdu language data sourced from social media platforms. By combining language rules and DNN, the proposed framework demonstrates superior performance compared to existing methodologies, showcasing its effectiveness in accurately analyzing sentiment in Urdu text data. In the digital age, social media has emerged as a significant platform, generating a vast amount of raw data daily. This data reflects the opinions of individuals from diverse backgrounds, races, cultures, and age groups, spanning a wide range of topics. Businesses can leverage this data to extract valuable insights, improve their services, and effectively reach a broader audience based on users’ expressed opinions on social media platforms. To harness the potential of this extensive and unstructured data, a deep understanding of Natural Language Processing (NLP) is crucial. Existing approaches for sentiment analysis (SA) often rely on word co-occurrence frequencies, which prove inefficient in practical scenarios. Identifying this research gap, this paper presents a framework for concept-level sentiment analysis, aiming to enhance the accuracy of sentiment analysis (SA). A comprehensive Urdu language dataset was constructed by collecting data from YouTube, consisting of various talks and reviews on topics such as movies, politics, and commercial products. The dataset was further enriched by incorporating language rules and Deep Neural Networks (DNN) to optimize polarity detection. For sentiment analysis, the proposed framework employs predefined rules to trigger sentiment flow from words to concepts, leveraging the dependency relations among different words in a sentence based on Urdu language grammatical rules. In cases where predefined patterns are not triggered, the framework seamlessly switches to its sub-symbolic counterpart, passing the data to the DNN for sentence classification. Experimental results demonstrate that the proposed framework surpasses state-of-the-art approaches, including LSTM, CNN, SVM, LR, and MLP, achieving an improvement of 6–7% on Urdu dataset. In conclusion, this research paper introduces a novel framework for concept-level sentiment analysis of Urdu language data sourced from social media platforms. By combining language rules and DNN, the proposed framework demonstrates superior performance compared to existing methodologies, showcasing its effectiveness in accurately analyzing sentiment in Urdu text data. © 2023, The Author(s). Abstract In the digital age, social media has emerged as a significant platform, generating a vast amount of raw data daily. This data reflects the opinions of individuals from diverse backgrounds, races, cultures, and age groups, spanning a wide range of topics. Businesses can leverage this data to extract valuable insights, improve their services, and effectively reach a broader audience based on users’ expressed opinions on social media platforms. To harness the potential of this extensive and unstructured data, a deep understanding of Natural Language Processing (NLP) is crucial. Existing approaches for sentiment analysis (SA) often rely on word co-occurrence frequencies, which prove inefficient in practical scenarios. Identifying this research gap, this paper presents a framework for concept-level sentiment analysis, aiming to enhance the accuracy of sentiment analysis (SA). A comprehensive Urdu language dataset was constructed by collecting data from YouTube, consisting of various talks and reviews on topics such as movies, politics, and commercial products. The dataset was further enriched by incorporating language rules and Deep Neural Networks (DNN) to optimize polarity detection. For sentiment analysis, the proposed framework employs predefined rules to trigger sentiment flow from words to concepts, leveraging the dependency relations among different words in a sentence based on Urdu language grammatical rules. In cases where predefined patterns are not triggered, the framework seamlessly switches to its sub-symbolic counterpart, passing the data to the DNN for sentence classification. Experimental results demonstrate that the proposed framework surpasses state-of-the-art approaches, including LSTM, CNN, SVM, LR, and MLP, achieving an improvement of 6–7% on Urdu dataset. In conclusion, this research paper introduces a novel framework for concept-level sentiment analysis of Urdu language data sourced from social media platforms. By combining language rules and DNN, the proposed framework demonstrates superior performance compared to existing methodologies, showcasing its effectiveness in accurately analyzing sentiment in Urdu text data. Abstract In the digital age, social media has emerged as a significant platform, generating a vast amount of raw data daily. This data reflects the opinions of individuals from diverse backgrounds, races, cultures, and age groups, spanning a wide range of topics. Businesses can leverage this data to extract valuable insights, improve their services, and effectively reach a broader audience based on users’ expressed opinions on social media platforms. To harness the potential of this extensive and unstructured data, a deep understanding of Natural Language Processing (NLP) is crucial. Existing approaches for sentiment analysis (SA) often rely on word co-occurrence frequencies, which prove inefficient in practical scenarios. Identifying this research gap, this paper presents a framework for concept-level sentiment analysis, aiming to enhance the accuracy of sentiment analysis (SA). A comprehensive Urdu language dataset was constructed by collecting data from YouTube, consisting of various talks and reviews on topics such as movies, politics, and commercial products. The dataset was further enriched by incorporating language rules and Deep Neural Networks (DNN) to optimize polarity detection. For sentiment analysis, the proposed framework employs predefined rules to trigger sentiment flow from words to concepts, leveraging the dependency relations among different words in a sentence based on Urdu language grammatical rules. In cases where predefined patterns are not triggered, the framework seamlessly switches to its sub-symbolic counterpart, passing the data to the DNN for sentence classification. Experimental results demonstrate that the proposed framework surpasses state-of-the-art approaches, including LSTM, CNN, SVM, LR, and MLP, achieving an improvement of 6–7% on Urdu dataset. In conclusion, this research paper introduces a novel framework for concept-level sentiment analysis of Urdu language data sourced from social media platforms. By combining language rules and DNN, the proposed framework demonstrates superior performance compared to existing methodologies, showcasing its effectiveness in accurately analyzing sentiment in Urdu text data. |
ArticleNumber | 22075 |
Author | Allheeib, Nasser I. Khashan, Osama A. Kanwal, Summrina Dashtipur, Kia Gogate, Mandar Almari, Sultan Khan, Faiza Sehar, Urooba |
Author_xml | – sequence: 1 givenname: Urooba surname: Sehar fullname: Sehar, Urooba organization: Capital University of Science & Technology – sequence: 2 givenname: Summrina surname: Kanwal fullname: Kanwal, Summrina email: Summrina@kth.se organization: Division of Theoretical Computer Science, KTH Royal Institute of Technology Stockholm, Center of Applied Intelligence Systems Research, Halmstad University – sequence: 3 givenname: Nasser I. surname: Allheeib fullname: Allheeib, Nasser I. organization: Department of Information Systems, College of Computer and Information Sciences, King Saud University – sequence: 4 givenname: Sultan surname: Almari fullname: Almari, Sultan organization: Department of Computing and Informatics, Saudi Electronic University – sequence: 5 givenname: Faiza surname: Khan fullname: Khan, Faiza organization: Riphah International University – sequence: 6 givenname: Kia surname: Dashtipur fullname: Dashtipur, Kia organization: School of Computing, Edinburgh Napier University – sequence: 7 givenname: Mandar surname: Gogate fullname: Gogate, Mandar organization: School of Computing, Edinburgh Napier University – sequence: 8 givenname: Osama A. surname: Khashan fullname: Khashan, Osama A. organization: Research and Innovation Centers, Rabdan Academy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38086933$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-52319$$DView record from Swedish Publication Index https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-341705$$DView record from Swedish Publication Index |
BookMark | eNqFks1u1DAURi1UREvpC7BAkdggoYDtGyf2BjQqf5UqsaFsLce-mWTIxIOdgObtcZOhdFhAFrFln3uc63yPycngByTkKaOvGAX5OhZMKJlTDnkhJaty-YCccVqInAPnJ_fmp-Qixg1Nj-CqYOoROQVJZakAzsibVdbu69C5zOEOB4eD3ee1iegys9sFb2ybNT5kN8FNWcRh7LbplZnB9PvYxSfkYWP6iBeH8ZzcfHj_5fJTfv3549Xl6jq3oizHnKFhziBjAmspActaCpvGuknLoKSt0AgoLXNgaS05VJIKlGBL7qCkDs7J1eJ13mz0LnRbE_bam07PCz6stQljZ3vUeNtz6i7JaGHSGbakBTjaYF2AVEVy5Ysr_sTdVB_Z3nVfV7Pt29hqKFhFReJf_p9vWy04MJXotwud0C06m24rmP6o6Hhn6Fq99j80oxUrGYNkeHEwBP99wjjqbRct9r0Z0E9Rc0W5EgooTejzv9CNn0L6NzNFVcmqWcgXygYfY8Dm7msY1bdh0kuYdAqTnsOkZSp6dr-Pu5Lf0UkAHK4lbQ1rDH_O_of2F7Hx1fI |
Cites_doi | 10.1155/2022/7605125 10.3390/app12073641 10.1007/s11042-023-15216-0 10.1109/ACCESS.2021.3122025 10.3390/app122010344 10.1109/ACCESS.2022.3150172 10.1109/ACCESS.2023.3325048 10.1016/j.ins.2021.12.080 10.1109/MIS.2018.2882362 10.1155/2021/2529984 10.3390/sym15030645 10.1016/j.tele.2018.08.003 10.3390/ijerph18010218 10.18180/tecciencia.2017.22.5 10.1016/j.neucom.2021.09.057 10.2478/acss-2022-0004 10.3390/app12052694 10.1016/j.eswa.2021.115819 10.1016/j.autcon.2021.104068 10.1016/j.techfore.2021.121070 10.1016/j.ipm.2019.102141 10.1007/s12559-017-9470-8 10.3390/s22114157 10.1109/ACCESS.2021.3093078 10.1038/s41598-022-09381-9 10.1007/s10115-018-1236-4 10.1016/j.procs.2019.01.202 10.1145/3528576 10.51846/vol3iss2pp172-177 10.1007/s12559-021-09819-8 10.1016/j.eswa.2020.113834 10.1109/Confluence51648.2021.9377136 10.18653/v1/D17-1115 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C NPM AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PIMPY PQEST PQQKQ PQUKI Q9U 7X8 5PM AAXBQ ADTPV AOWAS D8T D8Z ZZAVC AFDQA D8V DOA |
DOI | 10.1038/s41598-023-48817-8 |
DatabaseName | SpringerOpen PubMed CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Biological Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) SWEPUB Högskolan i Halmstad full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Högskolan i Halmstad SwePub Articles full text SWEPUB Kungliga Tekniska Högskolan full text SWEPUB Kungliga Tekniska Högskolan DOAJ Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 22075 |
ExternalDocumentID | oai_doaj_org_article_e2322869c1d04a3ebc6043d0feb43894 oai_DiVA_org_kth_341705 oai_DiVA_org_hh_52319 10_1038_s41598_023_48817_8 38086933 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Royal Institute of Technology – fundername: King Saud University grantid: RSPD2023R609 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ADBBV ADRAZ AENEX AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RIG RNT RNTTT RPM SNYQT UKHRP NPM AAYXX AFPKN CITATION 7XB 8FK K9. PQEST PQUKI Q9U 7X8 5PM AAXBQ ADTPV AOWAS D8T D8Z EJD IPNFZ ZZAVC AFDQA D8V |
ID | FETCH-LOGICAL-c566t-1ea1dae115eb883e6b85c83ebf1da398c7ea536c1d3c0b8237805e83c62d360d3 |
IEDL.DBID | RPM |
ISSN | 2045-2322 |
IngestDate | Tue Oct 22 15:12:10 EDT 2024 Sat Aug 24 00:44:35 EDT 2024 Sat Aug 24 00:36:33 EDT 2024 Tue Sep 17 21:29:16 EDT 2024 Fri Oct 25 05:34:17 EDT 2024 Fri Nov 08 20:56:54 EST 2024 Fri Aug 23 03:14:35 EDT 2024 Sat Nov 02 12:20:43 EDT 2024 Fri Oct 11 20:48:08 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c566t-1ea1dae115eb883e6b85c83ebf1da398c7ea536c1d3c0b8237805e83c62d360d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10716113/ |
PMID | 38086933 |
PQID | 2900961713 |
PQPubID | 2041939 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e2322869c1d04a3ebc6043d0feb43894 swepub_primary_oai_DiVA_org_kth_341705 swepub_primary_oai_DiVA_org_hh_52319 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10716113 proquest_miscellaneous_2902959300 proquest_journals_2900961713 crossref_primary_10_1038_s41598_023_48817_8 pubmed_primary_38086933 springer_journals_10_1038_s41598_023_48817_8 |
PublicationCentury | 2000 |
PublicationDate | 2023-12-12 |
PublicationDateYYYYMMDD | 2023-12-12 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Aziz, Ullah, Mushtaq, Mughal, Zahra (CR26) 2020 Khan, Amjad, Ashraf, Chang, Gelbukh (CR29) 2021; 9 CR18 CR17 Ashir (CR12) 2021; 2021 CR15 CR14 Chandio, Imran, Bakhtyar, Daudpota, Baber (CR39) 2022; 12 Poria, Majumder, Hazarika, Cambria, Gelbukh, Hussain (CR16) 2018; 33 CR35 Prottasha, Sami, Kowsher, Murad, Bairagi, Masud, Baz (CR11) 2022; 22 Yue, Chen, Li, Zuo, Yin (CR10) 2019; 60 CR33 CR32 Alsayat (CR7) 2021; 2021 Qureshi (CR30) 2022; 10 Kazmaier, van Vuuren (CR21) 2022; 187 Sehar, Kanwal, Dashtipur, Mir, Abbasi, Khan (CR31) 2021; 9 Li, Shao, Ji, Cambria (CR19) 2022; 467 Khan, Amjad, Ashraf (CR37) 2022; 12 Peng, Cambria, Hussain (CR4) 2017; 9 CR2 Wang, Guo, Wu (CR24) 2022; 174 Bueno, Carrasco, Ureña, Herrera-Viedma (CR25) 2022; 589 CR6 CR5 Mukhtar, Khan, Chiragh (CR27) 2018; 35 Khan, Ahmed, Siddiqui, Wasi (CR44) 2023; 2023 Kumar, Srinivasan, Cheng, Zomaya (CR1) 2020; 57 Kanw (CR28) 2022; 131 Bashir, Javed, Arshad, Gadekallu, Shahzad, Beg (CR43) 2023; 22 CR22 Ghulam, Zeng, Li, Xiao (CR34) 2019; 147 Altaf, Anwar, Jamal (CR42) 2023; 82 Valle-Cruz, Fernandez-Cortez, López-Chau, Sandoval-Almazán (CR23) 2022; 14 Aljameel (CR8) 2021; 18 Miranda, Guzmán, Miranda, Guzmán (CR13) 2017; 12 Rao (CR9) 2022; 2022 Li (CR36) 2022; 12 Chakravarthi (CR20) 2022; 2022 Ahmed (CR41) 2023; 15 Rehman, Soomro (CR38) 2022; 27 D’Orazio, Di Giuseppe, Bernardini (CR3) 2022; 134 Khan, Amjad, Afaq, Chang (CR40) 2022; 12 MF Bashir (48817_CR43) 2023; 22 S Poria (48817_CR16) 2018; 33 MA Qureshi (48817_CR30) 2022; 10 L Khan (48817_CR40) 2022; 12 J Kazmaier (48817_CR21) 2022; 187 M D’Orazio (48817_CR3) 2022; 134 A Altaf (48817_CR42) 2023; 82 I Bueno (48817_CR25) 2022; 589 I Rehman (48817_CR38) 2022; 27 MY Khan (48817_CR44) 2023; 2023 D Valle-Cruz (48817_CR23) 2022; 14 48817_CR6 U Sehar (48817_CR31) 2021; 9 L Yue (48817_CR10) 2019; 60 L Rao (48817_CR9) 2022; 2022 48817_CR5 SS Aljameel (48817_CR8) 2021; 18 W Li (48817_CR19) 2022; 467 L Khan (48817_CR37) 2022; 12 H Peng (48817_CR4) 2017; 9 BR Chakravarthi (48817_CR20) 2022; 2022 D Li (48817_CR36) 2022; 12 L Khan (48817_CR29) 2021; 9 48817_CR22 AM Ashir (48817_CR12) 2021; 2021 S Aziz (48817_CR26) 2020 B Kanw (48817_CR28) 2022; 131 48817_CR2 BA Chandio (48817_CR39) 2022; 12 NJ Prottasha (48817_CR11) 2022; 22 N Mukhtar (48817_CR27) 2018; 35 CH Miranda (48817_CR13) 2017; 12 48817_CR18 48817_CR17 A Kumar (48817_CR1) 2020; 57 48817_CR15 K Ahmed (48817_CR41) 2023; 15 A Alsayat (48817_CR7) 2021; 2021 W Wang (48817_CR24) 2022; 174 48817_CR32 48817_CR14 48817_CR35 H Ghulam (48817_CR34) 2019; 147 48817_CR33 |
References_xml | – volume: 2022 start-page: e7605125 year: 2022 ident: CR9 article-title: Sentiment analysis of english text with multilevel features publication-title: Sci. Program. doi: 10.1155/2022/7605125 contributor: fullname: Rao – ident: CR22 – ident: CR18 – volume: 12 start-page: 3641 year: 2022 ident: CR39 article-title: Attention-based RU-BiLSTM sentiment analysis model for roman Urdu publication-title: Appl. Sci. doi: 10.3390/app12073641 contributor: fullname: Baber – volume: 82 start-page: 41813 year: 2023 end-page: 41839 ident: CR42 article-title: Exploiting linguistic features for effective sentence-level sentiment analysis in Urdu language publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-023-15216-0 contributor: fullname: Jamal – ident: CR14 – ident: CR2 – volume: 9 start-page: 153072 year: 2021 end-page: 153082 ident: CR31 article-title: Urdu sentiment analysis via multimodal data mining based on deep learning algorithms publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3122025 contributor: fullname: Khan – volume: 131 start-page: 393 issue: 1 year: 2022 end-page: 413 ident: CR28 article-title: Sentiment analysis of roman Urdu on e-commerce reviews using machine learning publication-title: CMES-Comput. Model. Eng. Sci. contributor: fullname: Kanw – volume: 12 start-page: 10344 issue: 20 year: 2022 ident: CR36 article-title: Roman Urdu sentiment analysis using transfer learning publication-title: Appl. Sci. doi: 10.3390/app122010344 contributor: fullname: Li – volume: 2021 start-page: 1 year: 2021 end-page: 13 ident: CR7 article-title: Improving sentiment analysis for social media applications using an ensemble deep learning language model publication-title: Arab. J. Sci. Eng. contributor: fullname: Alsayat – volume: 10 start-page: 24945 year: 2022 end-page: 24954 ident: CR30 article-title: Sentiment analysis of reviews in natural language: Roman Urdu as a case study publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3150172 contributor: fullname: Qureshi – ident: CR33 – ident: CR35 – ident: CR6 – volume: 2022 start-page: 1 year: 2022 end-page: 42 ident: CR20 article-title: Dravidiancodemix: Sentiment analysis and offensive language identification dataset for dravidian languages in code-mixed text publication-title: Lang. Resourc. Eval. contributor: fullname: Chakravarthi – volume: 2023 start-page: 1 year: 2023 end-page: 1 ident: CR44 article-title: Cognitive relationship-based approach for urdu sarcasm and sentiment classification publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3325048 contributor: fullname: Wasi – volume: 589 start-page: 300 year: 2022 end-page: 320 ident: CR25 article-title: A business context-aware decision-making approach for selecting the most appropriate sentiment analysis technique in e-marketing situations publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.12.080 contributor: fullname: Herrera-Viedma – volume: 33 start-page: 17 issue: 6 year: 2018 end-page: 25 ident: CR16 article-title: Multimodal sentiment analysis: Addressing key issues and setting up the baselines publication-title: IEEE Intell. Syst. doi: 10.1109/MIS.2018.2882362 contributor: fullname: Hussain – volume: 2021 start-page: 2529984 year: 2021 ident: CR12 article-title: A generalized method for sentiment analysis across different sources publication-title: Appl. Comput. Intell. Soft Comput. doi: 10.1155/2021/2529984 contributor: fullname: Ashir – volume: 15 start-page: 645 issue: 3 year: 2023 ident: CR41 article-title: Contextually enriched meta-learning ensemble model for Urdu sentiment analysis publication-title: Symmetry doi: 10.3390/sym15030645 contributor: fullname: Ahmed – volume: 35 start-page: 2173 issue: 8 year: 2018 end-page: 2183 ident: CR27 article-title: Lexicon-based approach outperforms supervised machine learning approach for Urdu sentiment analysis in multiple domains publication-title: Telem. Inf. doi: 10.1016/j.tele.2018.08.003 contributor: fullname: Chiragh – volume: 18 start-page: 1 issue: 1 year: 2021 ident: CR8 article-title: A sentiment analysis approach to predict an individual’s awareness of the precautionary procedures to prevent COVID-19 outbreaks in Saudi Arabia publication-title: Int. J. Env. Res. Public Health doi: 10.3390/ijerph18010218 contributor: fullname: Aljameel – volume: 12 start-page: 35 issue: 22 year: 2017 end-page: 48 ident: CR13 article-title: A review of sentiment analysis in spanish publication-title: Tecciencia doi: 10.18180/tecciencia.2017.22.5 contributor: fullname: Guzmán – volume: 467 start-page: 73 year: 2022 end-page: 82 ident: CR19 article-title: BiERU: Bidirectional emotional recurrent unit for conversational sentiment analysis publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.09.057 contributor: fullname: Cambria – volume: 27 start-page: 30 year: 2022 end-page: 42 ident: CR38 article-title: Urdu sentiment analysis publication-title: Appl. Comput. Syst. doi: 10.2478/acss-2022-0004 contributor: fullname: Soomro – volume: 12 start-page: 2694 year: 2022 ident: CR40 article-title: Deep sentiment analysis using CNN-LSTM architecture of english and roman Urdu text shared in social media publication-title: Appl. Sci. doi: 10.3390/app12052694 contributor: fullname: Chang – volume: 187 start-page: 115819 year: 2022 ident: CR21 article-title: The power of ensemble learning in sentiment analysis publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115819 contributor: fullname: van Vuuren – volume: 134 start-page: 104068 year: 2022 ident: CR3 article-title: Automatic detection of maintenance requests: Comparison of human manual annotation and sentiment analysis techniques publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.104068 contributor: fullname: Bernardini – ident: CR15 – volume: 174 start-page: 121070 year: 2022 ident: CR24 article-title: The merits of a sentiment analysis of antecedent comments for the prediction of online fundraising outcomes publication-title: Technol. Forecast. Soc. Change doi: 10.1016/j.techfore.2021.121070 contributor: fullname: Wu – volume: 57 start-page: 102141 issue: 1 year: 2020 ident: CR1 article-title: Hybrid context enriched deep learning model for fine-grained sentiment analysis in textual and visual semiotic modality social data publication-title: Inf. Process. Manage. doi: 10.1016/j.ipm.2019.102141 contributor: fullname: Zomaya – volume: 9 start-page: 423 issue: 4 year: 2017 end-page: 435 ident: CR4 article-title: A review of sentiment analysis research in Chinese Language publication-title: Cogn. Comput. doi: 10.1007/s12559-017-9470-8 contributor: fullname: Hussain – ident: CR17 – volume: 22 start-page: 4157 year: 2022 ident: CR11 article-title: Transfer learning for sentiment analysis using BERT based supervised fine-tuning publication-title: Sensors doi: 10.3390/s22114157 contributor: fullname: Baz – volume: 9 start-page: 97803 year: 2021 end-page: 97812 ident: CR29 article-title: Urdu sentiment analysis with deep learning methods publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3093078 contributor: fullname: Gelbukh – volume: 12 start-page: 5436 year: 2022 ident: CR37 article-title: Multi-class sentiment analysis of Urdu text using multilingual BERT publication-title: Sci. Rep. doi: 10.1038/s41598-022-09381-9 contributor: fullname: Ashraf – ident: CR32 – ident: CR5 – volume: 60 start-page: 617 issue: 2 year: 2019 end-page: 663 ident: CR10 article-title: A survey of sentiment analysis in social media publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-018-1236-4 contributor: fullname: Yin – volume: 147 start-page: 131 year: 2019 end-page: 135 ident: CR34 article-title: Deep learning-based sentiment analysis for roman urdu text publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2019.01.202 contributor: fullname: Xiao – volume: 22 start-page: 1 issue: 5 year: 2023 end-page: 30 ident: CR43 article-title: Context-aware emotion detection from low-resource urdu language using deep neural network publication-title: ACM Trans. Asian Low-Resourc. Lang. Inf. Process. doi: 10.1145/3528576 contributor: fullname: Beg – year: 2020 ident: CR26 article-title: Roman Urdu sentiment analysis using machine learning with best parameters and comparative study of machine learning algorithms publication-title: Pak. J. Eng. Technol. doi: 10.51846/vol3iss2pp172-177 contributor: fullname: Zahra – volume: 14 start-page: 372 issue: 1 year: 2022 end-page: 387 ident: CR23 article-title: Does twitter affect stock market decisions? financial sentiment analysis during pandemics: A comparative study of the h1n1 and the covid-19 periods publication-title: Cogn. Comput. doi: 10.1007/s12559-021-09819-8 contributor: fullname: Sandoval-Almazán – volume: 2021 start-page: 1 year: 2021 ident: 48817_CR7 publication-title: Arab. J. Sci. Eng. contributor: fullname: A Alsayat – volume: 131 start-page: 393 issue: 1 year: 2022 ident: 48817_CR28 publication-title: CMES-Comput. Model. Eng. Sci. contributor: fullname: B Kanw – volume: 9 start-page: 97803 year: 2021 ident: 48817_CR29 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3093078 contributor: fullname: L Khan – volume: 9 start-page: 423 issue: 4 year: 2017 ident: 48817_CR4 publication-title: Cogn. Comput. doi: 10.1007/s12559-017-9470-8 contributor: fullname: H Peng – ident: 48817_CR22 – volume: 10 start-page: 24945 year: 2022 ident: 48817_CR30 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3150172 contributor: fullname: MA Qureshi – ident: 48817_CR35 doi: 10.1016/j.eswa.2020.113834 – volume: 57 start-page: 102141 issue: 1 year: 2020 ident: 48817_CR1 publication-title: Inf. Process. Manage. doi: 10.1016/j.ipm.2019.102141 contributor: fullname: A Kumar – ident: 48817_CR6 doi: 10.1109/Confluence51648.2021.9377136 – volume: 33 start-page: 17 issue: 6 year: 2018 ident: 48817_CR16 publication-title: IEEE Intell. Syst. doi: 10.1109/MIS.2018.2882362 contributor: fullname: S Poria – volume: 174 start-page: 121070 year: 2022 ident: 48817_CR24 publication-title: Technol. Forecast. Soc. Change doi: 10.1016/j.techfore.2021.121070 contributor: fullname: W Wang – ident: 48817_CR5 – ident: 48817_CR18 – ident: 48817_CR14 – year: 2020 ident: 48817_CR26 publication-title: Pak. J. Eng. Technol. doi: 10.51846/vol3iss2pp172-177 contributor: fullname: S Aziz – ident: 48817_CR33 – volume: 15 start-page: 645 issue: 3 year: 2023 ident: 48817_CR41 publication-title: Symmetry doi: 10.3390/sym15030645 contributor: fullname: K Ahmed – volume: 12 start-page: 5436 year: 2022 ident: 48817_CR37 publication-title: Sci. Rep. doi: 10.1038/s41598-022-09381-9 contributor: fullname: L Khan – volume: 27 start-page: 30 year: 2022 ident: 48817_CR38 publication-title: Appl. Comput. Syst. doi: 10.2478/acss-2022-0004 contributor: fullname: I Rehman – volume: 12 start-page: 3641 year: 2022 ident: 48817_CR39 publication-title: Appl. Sci. doi: 10.3390/app12073641 contributor: fullname: BA Chandio – volume: 147 start-page: 131 year: 2019 ident: 48817_CR34 publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2019.01.202 contributor: fullname: H Ghulam – volume: 12 start-page: 10344 issue: 20 year: 2022 ident: 48817_CR36 publication-title: Appl. Sci. doi: 10.3390/app122010344 contributor: fullname: D Li – volume: 35 start-page: 2173 issue: 8 year: 2018 ident: 48817_CR27 publication-title: Telem. Inf. doi: 10.1016/j.tele.2018.08.003 contributor: fullname: N Mukhtar – volume: 22 start-page: 4157 year: 2022 ident: 48817_CR11 publication-title: Sensors doi: 10.3390/s22114157 contributor: fullname: NJ Prottasha – volume: 82 start-page: 41813 year: 2023 ident: 48817_CR42 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-023-15216-0 contributor: fullname: A Altaf – volume: 187 start-page: 115819 year: 2022 ident: 48817_CR21 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115819 contributor: fullname: J Kazmaier – volume: 22 start-page: 1 issue: 5 year: 2023 ident: 48817_CR43 publication-title: ACM Trans. Asian Low-Resourc. Lang. Inf. Process. doi: 10.1145/3528576 contributor: fullname: MF Bashir – volume: 2021 start-page: 2529984 year: 2021 ident: 48817_CR12 publication-title: Appl. Comput. Intell. Soft Comput. doi: 10.1155/2021/2529984 contributor: fullname: AM Ashir – volume: 14 start-page: 372 issue: 1 year: 2022 ident: 48817_CR23 publication-title: Cogn. Comput. doi: 10.1007/s12559-021-09819-8 contributor: fullname: D Valle-Cruz – volume: 467 start-page: 73 year: 2022 ident: 48817_CR19 publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.09.057 contributor: fullname: W Li – volume: 589 start-page: 300 year: 2022 ident: 48817_CR25 publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.12.080 contributor: fullname: I Bueno – volume: 134 start-page: 104068 year: 2022 ident: 48817_CR3 publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.104068 contributor: fullname: M D’Orazio – volume: 2022 start-page: e7605125 year: 2022 ident: 48817_CR9 publication-title: Sci. Program. doi: 10.1155/2022/7605125 contributor: fullname: L Rao – volume: 2023 start-page: 1 year: 2023 ident: 48817_CR44 publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3325048 contributor: fullname: MY Khan – volume: 12 start-page: 35 issue: 22 year: 2017 ident: 48817_CR13 publication-title: Tecciencia doi: 10.18180/tecciencia.2017.22.5 contributor: fullname: CH Miranda – volume: 18 start-page: 1 issue: 1 year: 2021 ident: 48817_CR8 publication-title: Int. J. Env. Res. Public Health doi: 10.3390/ijerph18010218 contributor: fullname: SS Aljameel – volume: 9 start-page: 153072 year: 2021 ident: 48817_CR31 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3122025 contributor: fullname: U Sehar – volume: 60 start-page: 617 issue: 2 year: 2019 ident: 48817_CR10 publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-018-1236-4 contributor: fullname: L Yue – volume: 12 start-page: 2694 year: 2022 ident: 48817_CR40 publication-title: Appl. Sci. doi: 10.3390/app12052694 contributor: fullname: L Khan – ident: 48817_CR2 – volume: 2022 start-page: 1 year: 2022 ident: 48817_CR20 publication-title: Lang. Resourc. Eval. contributor: fullname: BR Chakravarthi – ident: 48817_CR15 – ident: 48817_CR17 doi: 10.18653/v1/D17-1115 – ident: 48817_CR32 |
SSID | ssj0000529419 |
Score | 2.4489129 |
Snippet | In the digital age, social media has emerged as a significant platform, generating a vast amount of raw data daily. This data reflects the opinions of... Abstract In the digital age, social media has emerged as a significant platform, generating a vast amount of raw data daily. This data reflects the opinions of... Abstract In the digital age, social media has emerged as a significant platform, generating a vast amount of raw data daily. This data reflects the opinions of... |
SourceID | doaj swepub pubmedcentral proquest crossref pubmed springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 22075 |
SubjectTerms | 639/705/117 639/705/258 Datasets Humanities and Social Sciences Language multidisciplinary Neural networks Science Science (multidisciplinary) Sentiment analysis Social networks Urdu language |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1CoNBLaZumdZsGBUIvrYls2Yp0KWzzQQikp27JTVgfxqHghGT3sP--M5K9jdOSXHoy2DKS3mg8T8jzBmAfgx7GgVDnlXYqr1rd5pYSdXEf5ivZtErGKhEX3-XZvDq_rC_vlfqif8KSPHAC7iBgyC-V1K7wvGpEsE7ySnjeBkuFu5MSKNf3NlNJ1bvUVaGHLBku1MEdRirKJitFjmuWPs2TSBQF-__FMv_-WXJ9YvpAXTRGpNOX8GKgkmyWpvAKNkL_Gp6l4pKrLfg6Y92K8rHYWOjWrXIKWp6NQuIMGSub3_oloxSkqPPPmkGl5A3MT09-HJ3lQ7WE3CElW-RFaArfBGR4wSolgrSqdni1Ld4WWrnD0NRCIo7CcUsaNYrXQQknSy8k92IbNvvrPrwDpr2sPSmbSYU-rkiTvrHe0ZGt07atMvg8ImdukiiGiYfZQpmEs0GcTcTZqAy-EbjrliRoHW-gmc1gZvOUmTPYGU1jBi-7M6WOFWtwn53B3vox-gcdejR9uF7GNiWJL3OewdtkyfVIcGLYpcC31cTGk6FOn_RXXdTgxl0zcmXq-Mu4HP6M6zEs9tOSmXRxfPVzFtHoOlMj4dYZfHqs2a9FZ5B9HPL6_f_A9gM8L8kvCipzswObi9tl-IhUa2F3o1f9BmslIw8 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1oQUaquIBVJ0689gW0PKoKCU4s2psVP0IqpGzZx2H_fWccJ1UA7WmlxCtPxmPPZ4_nG0JOwemBHwgVK7VTrGx0wywm6sI-zJeybpSMVSK-fZcXi_LrslqmA7dNulY5rIlxofYrh2fkZ4WO1UlgT_Xh6g_DqlEYXU0lNG6TO3nBJV7pmi1n4xkLRrHKXKdcGS7U2Qb8FeaUFYKB5eICPfFHkbb_f1jz3yuTY9z0L47R6JfOH5D7CVDSeW8BD8mt0D0id_sSk_vH5P2ctnvMyqJDuVu3Z-i6PB3oxCngVrpY-x3FRKTI9k_rxFXyhCzOv_z4dMFSzQTmAJhtWR7q3NcBcF6wSokgraoc_NoGHgut3CzUlZAu98Jxi0w1ildBCScLLyT34ik56lZdeE6o9rLyyG8mFcx0hcz0tfUOA7dO26bMyNtBc-aqp8YwMaQtlOn1bEDPJurZqIx8ROWOLZHWOj5YrX-ZNEtMAHxXKKlBPF7WILWTIIDnTbBYpR26PBmGxqS5tjE3lpGR1-NrmCUY-qi7sNrFNgVSMHOekWf9SI6SwIdBlwL-rSZjPBF1-qa7bCMTN-ydATFjx-8Gc7iR65AuTnuTmXTx-fLnPGqjbU0FsFtn5M2hZr-3rQEMMuPVi8NqOSb3CrT4HMvYnJCj7XoXXgKU2tpXcb5cA3g3Gt0 priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access(OpenAccess) dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9RAEJ8AxoQXogJaRLMkxBcott122X1Qc34QYqJPnOFt0_2oJZoeHHeJ9987s22PVC7EpybtNjs7O9P5TbbzG4BDDHoYB3wR58rKOK9UFRsq1MU8zOWirKQIXSK-fRfn4_zrZXG5Bn27o06BtytTO-onNZ7-Pvlzs_iADv-uLRmXb28xCFGhWMZjNEf66q7DoyzHTJ1-5evgfsv1nak8VV3tzOpXB_Ep0Pivwp73f6FcnqP-wzka4tTZE9jqACYbtRbxFNZ88wwety0nF9vwfsTqBVVpsb79rV3EFMoc6-nFGeJYNp66OaPCpMD-z8qOu2QHxmdfLj6dx10PhdgiUJvFqS9TV3rEfd5Iyb0wsrB4NRXe5kraU18WXNjUcZsYYq6RSeEltyJzXCSO78JGM2n8C2DKicIR35mQ6PmSmOpL4ywd5FplqjyCo15z-rqlytDhiJtL3epZo5510LOWEXwk5S5HEs11uDGZ_tSd12iPeC-TQqF4SV6i1FagAC6pvKGu7Tjlfr81ujcdnanQxwaz7wgOlo_Ra-gopGz8ZB7GZETJnCQRPG93cikJLgyn5Pi2HOzxQNThk-aqDszcmEsjgqaJj3tzuJPrIV0ctiYzmOLz1Y9R0EZd6wJhuIrgzUPDfs1qjZjkNCn2_mPdL2EzI7NPqbfNPmzMpnP_CvHVzLwOTvMXbdUgKw priority: 102 providerName: Scholars Portal – databaseName: SpringerOpen dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB-sUuiLtFpr1JYVxJcammSTdfdFuF4VEfTJE9-W7EeICFH07uH-e2c2HyVVhD4dJBtmbmbn5rc3md8AHGDSwzzgizhXVsZ5parYUKMunsNcLspKijAl4vJKnM_yi9vitqPJoV6YUf2ey1_PmGCoCSzjMW41-kX9AGuYgyW9vjUV0-H_FKpY5anq-mLefnSUewJF_1u48vXrkUON9B8-0ZCDzj7Degce2aT19hdY8c0GfGzHSS434WTC6iV1YLF-tK1dxpSmHOupwxliVDZ7cgtGTUeB2Z-VHS_JV5idnV5Pz-NuPkJsEYTN49SXqSs9YjpvpOReGFlY_DQVXuZK2mNfFlzY1HGbGGKlkUnhJbcic1wkjm_BavPQ-G1gyonCEZeZkBjVkljoS-MsFWmtMlUewc_ecvqxpcHQoXzNpW7trNHOOthZywh-k3GHlURhHS6gZ3UXEdojlsukUKhekpeotRWogEsqb2giO4rc612ju7h61pkKM2rwZB3B_nAbI4LKHGXjHxZhTUZ0y0kSwbfWk4Mm-MVQJMen5cjHI1XHd5q7OrBu4zkZ0TEJPuq3w1-93rPFQbtlRiL-3N1MgjXqWhcIsVUEh-8tu5_XGvHGcVLs_J_4XfiUUQSkNMJmD1bnTwv_HWHU3PwI8fMCzwYT8Q priority: 102 providerName: Springer Nature |
Title | A hybrid dependency-based approach for Urdu sentiment analysis |
URI | https://link.springer.com/article/10.1038/s41598-023-48817-8 https://www.ncbi.nlm.nih.gov/pubmed/38086933 https://www.proquest.com/docview/2900961713 https://search.proquest.com/docview/2902959300 https://pubmed.ncbi.nlm.nih.gov/PMC10716113 https://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-52319 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-341705 https://doaj.org/article/e2322869c1d04a3ebc6043d0feb43894 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB6SlJZcQt9VmhgVQi-tYkkrrXcvBcdNCAWHUOri26J9KDJt5ODYB__7zq60TtSUHHqRkLSgYR6ab7U73wAcYdLDPGDyKOOKRVnJy0jaQl2ch-mMFiWjrkvE-IKeT7Jv03y6BdTXwrhN-0rOjuvf18f1rHJ7K2-uVd_vE-tfjkc4ZUGgkpD-Nmyjh96bozeM3inPEt5WyMSE9W8xS9lKspRE6K_2s7wLzwhDNM8J6SQkx9v_L7D5cM_kZuH0L5JRl5jOnsNeiyjDYSP5C9gy9Ut42vSYXL-CL8OwWtuyrND3u1XryOYuHXo-8RCBazhZ6FVoK5Ec3X9YtGQlr2FydvpjdB61TRMihchsGSWmSHRhEOgZyRgxVLJc4VmWeJtwpgamyAlViSYqlpaqhsW5YUTRVBMaa_IGdup5bd5ByDXNtSU4owxDnVlq-kJqZVduFZdlFsAnrzlx03BjCLemTZhoVC5Q5cKpXLAATqxyNyMtr7W7MV9cida6wiDAS9EsKF6cFSi1oiiAjksjbZt2fOWBN41og-1WpNw1rsHpdgAfNo8xTOzaR1Gb-cqNSS0HcxwH8Lax5EYS7wkBsI6NO6J2n6BnOipu74kBfPbucCfXY7o4alym84qvs59Dp42qEjnibh7Ax8eG_VpWAkHIIM73_1_y97Cb2sBIbI-bA9hZLlbmEHHWUvYwuKaDHjw5Ob24_I5XIzrquX8WeBxnrOfC7g8vJClZ |
link.rule.ids | 230,315,730,783,787,867,888,2109,12068,21400,24330,27936,27937,31731,31732,33756,33757,41132,42201,43322,43817,51588,53804,53806,74073,74630 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagFYIL4k2gBSNVXCCqEyeuc6HallYLtCuEuqg3K36EVEjZso_D_ntmHCdVKNpTpMSRJ-Ox57Mn8w0he-D0wA-4PM4KI-OsKqpYY6Iu7MNsJspKCl8l4nwixtPs62V-GQ7cFuG3ym5N9Au1nRk8I99PC1-dBPZUh9d_YqwahdHVUELjLtlGqirYfG0fnUy-_-hPWTCOlSVFyJZhXO4vwGNhVlnKY7BdXKIHHskT9_8Pbd7-abKPnP7DMuo90-kj8jBASjpqbeAxueOaJ-ReW2Ry_ZR8GtF6jXlZtCt4a9YxOi9LO0JxCsiVTud2RTEVyfP90zKwlTwj09OTi-NxHKomxAag2TJOXJnY0gHSc1pK7oSWuYGrruA2L6Q5cGXOhUksN0wjV41kuZPciNRywSx_TraaWeNeElpYkVtkOBMS5rpEbvpSW4OhW1PoKovIh05z6rolx1A-qM2lavWsQM_K61nJiByhcvuWSGztb8zmv1SYJ8oBwkulKEA8lpUgtREggGWV01inHbrc6YZGhdm2UDe2EZF3_WOYJxj8KBs3W_k2KZIwMxaRF-1I9pLAh0GXHN6WgzEeiDp80lzVnosbds-AmbHjj5053Mi1SRd7rckMuvh89XPktVHXKgfgXUTk_aZmv5e1AhRywPJXm9XyltwfX5yfqbMvk2-vyYMUrT_BojY7ZGs5X7ldAFZL_SbMnr-7Ax8z |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BViAuiGdJKRCkigtE68SJ17mAtrSr8lpViEW9WYntkAop2-7jsP-eGcdJtYD2FClx5Ml4xvM5Y38DcIRBD-OAzaI01zJKq7yKSjqoi-swk4qiksJVifg2FWez9PNFduH3Py39tspuTnQTtZlr-kc-THJXnQTXVMPKb4s4P5l8uLqOqIIUZVp9OY3bsDdKBWcD2Ds-nZ5_7_-4UE4rjXN_coZxOVxi9KITZgmP0I5put6KTo7E_3_I898NlH0W9S_GURelJg_gvoeX4bi1h4dwyzaP4E5bcHLzGN6Pw3pDZ7TCrvit3kQUyEzYkYuHiGLD2cKsQzqW5Lj_w8IzlzyB2eT0x8ezyFdQiDTCtFUU2yI2hUXUZ0spuRWlzDReywpv81zqkS0yLnRsuGYl8dZIllnJtUgMF8zwpzBo5o19BmFuRGaI7UxI9HtJPPVFaTSlcXVeVmkAbzvNqauWKEO5BDeXqtWzQj0rp2clAzgm5fYtieTa3ZgvfinvM8oi2kukyFE8lhYotRYogGGVLalmO3Z52A2N8p63VDd2EsDr_jH6DCVCisbO165NQoTMjAWw345kLwl-GHbJ8W25NcZbom4_aS5rx8uNK2nEz9Txu84cbuTapYuj1mS2uji5_Dl22qhrlSEIzwN4s6vZ71WtEJGMWHawWy2v4C46jvr6afrlOdxLyPhjqm9zCIPVYm1fIMZalS-98_wBSg0jYQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+dependency-based+approach+for+Urdu+sentiment+analysis&rft.jtitle=Scientific+reports&rft.au=Sehar%2C+Urooba&rft.au=Kanwal%2C+Summrina&rft.au=Allheeib%2C+Nasser+I&rft.au=Almari%2C+Sultan&rft.date=2023-12-12&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=22075&rft.epage=22075&rft_id=info:doi/10.1038%2Fs41598-023-48817-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |