PEGylated Polypyrrole Nanoparticles Conjugating Gadolinium Chelates for Dual-Modal MRI/Photoacoustic Imaging Guided Photothermal Therapy of Cancer
Polypyrrole nanoparticles conjugating gadolinium chelates were successfully fabricated for dual‐modal magnetic resonance imaging (MRI) and photoacoustic imaging guided photothermal therapy of cancer, from a mixture of pyrrole and pyrrole‐1‐propanoic acid through a facile one‐step aqueous dispersion...
Saved in:
Published in | Advanced functional materials Vol. 25; no. 9; pp. 1451 - 1462 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Blackwell Publishing Ltd
04.03.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Polypyrrole nanoparticles conjugating gadolinium chelates were successfully fabricated for dual‐modal magnetic resonance imaging (MRI) and photoacoustic imaging guided photothermal therapy of cancer, from a mixture of pyrrole and pyrrole‐1‐propanoic acid through a facile one‐step aqueous dispersion polymerization, followed by covalent attachment of gadolinium chelate, using polyethylene glycol as a linker. The obtained PEGylated polypyrrole nanoparticles conjugating gadolinium chelates (Gd‐PEG‐PPy NPs), sized around around 70 nm, exhibited a high T1 relaxivity coefficient of 10.61 L mm−1 s−1, more than twice as high as that of the relating free Gd3+ complex (4.2 L mm–1 s−1). After 24 h intravenous injection of Gd‐PEG‐PPy NPs, the tumor sites exhibited obvious enhancement in both T1‐weighted MRI intensity and photoacoustic signal compared with that before injection, indicating the efficient accumulation of Gd‐PEG‐PPy NPs due to the introduction of the PEG layer onto the particle surface. In addition, tumor growth could be effectively inhibited after treatment with Gd‐PEG‐PPy NPs in combination with near‐infrared laser irradiation. The passive targeting and high MRI/photoacoustic contrast capability of Gd‐PEG‐PPy NPs are quite favorable for precise cancer diagnosing and locating the tumor site to guide the external laser irradiation for photothermal ablation of tumors without damaging the surrounding healthy tissues. Therefore, Gd‐PEG‐PPy NPs may assist in better monitoring the therapeutic process, and contribute to developing more effective “personalized medicine,” showing great potential for cancer diagnosis and therapy.
A theranostic agent with excellent physiological stability, strong NIR absorption, and high magnetization is fabricated from PEGylated polypyrrole nanoparticles conjugating gadolinium chelates (Gd‐PEG‐PPy NPs). The passive targeting and high MRI/photoacoustic contrast capability of Gd‐PEG‐PPy NPs are favorable for precise cancer diagnosing and locating tumor sites to guide external laser irradiation for photothermal ablation of tumors without damaging surrounding healthy tissue. |
---|---|
AbstractList | Polypyrrole nanoparticles conjugating gadolinium chelates were successfully fabricated for dual-modal magnetic resonance imaging (MRI) and photoacoustic imaging guided photothermal therapy of cancer, from a mixture of pyrrole and pyrrole-1-propanoic acid through a facile one-step aqueous dispersion polymerization, followed by covalent attachment of gadolinium chelate, using polyethylene glycol as a linker. The obtained PEGylated poly-pyrrole nanoparticles conjugating gadolinium chelates (Gd-PEG-PPy NPs), sized around around 70 nm, exhibited a high T sub(1) relaxivity coefficient of 10.61 L mm super(-1) s super(-1), more than twice as high as that of the relating free Gd super(3+) complex (4.2 L mm super(-1) s super(-1)). After 24 h intravenous injection of Gd-PEG-PPy NPs, the tumor sites exhibited obvious enhancement in both T sub(1)-weighted MRI intensity and photoacoustic signal compared with that before injection, indicating the efficient accumulation of Gd-PEG-PPy NPs due to the introduction of the PEG layer onto the particle surface. In addition, tumor growth could be effectively inhibited after treatment with Gd-PEG-PPy NPs in combination with near-infrared laser irradiation. The passive targeting and high MRI/photo-acoustic contrast capability of Gd-PEG-PPy NPs are quite favorable for precise cancer diagnosing and locating the tumor site to guide the external laser irradiation for photothermal ablation of tumors without damaging the surrounding healthy tissues. Therefore, Gd-PEG-PPy NPs may assist in better monitoring the therapeutic process, and contribute to developing more effective "personalized medicine," showing great potential for cancer diagnosis and therapy. A theranostic agent with excellent physiological stability, strong NIR absorption, and high magnetization is fabricated from PEGylated polypyrrole nanoparticles conjugating gadolinium chelates (Gd-PEG-PPy NPs). The passive targeting and high MRI/photoacoustic contrast capability of Gd-PEG-PPy NPs are favorable for precise cancer diagnosing and locating tumor sites to guide external laser irradiation for photothermal ablation of tumors without damaging surrounding healthy tissue. Polypyrrole nanoparticles conjugating gadolinium chelates were successfully fabricated for dual‐modal magnetic resonance imaging (MRI) and photoacoustic imaging guided photothermal therapy of cancer, from a mixture of pyrrole and pyrrole‐1‐propanoic acid through a facile one‐step aqueous dispersion polymerization, followed by covalent attachment of gadolinium chelate, using polyethylene glycol as a linker. The obtained PEGylated polypyrrole nanoparticles conjugating gadolinium chelates (Gd‐PEG‐PPy NPs), sized around around 70 nm, exhibited a high T1 relaxivity coefficient of 10.61 L mm−1 s−1, more than twice as high as that of the relating free Gd3+ complex (4.2 L mm–1 s−1). After 24 h intravenous injection of Gd‐PEG‐PPy NPs, the tumor sites exhibited obvious enhancement in both T1‐weighted MRI intensity and photoacoustic signal compared with that before injection, indicating the efficient accumulation of Gd‐PEG‐PPy NPs due to the introduction of the PEG layer onto the particle surface. In addition, tumor growth could be effectively inhibited after treatment with Gd‐PEG‐PPy NPs in combination with near‐infrared laser irradiation. The passive targeting and high MRI/photoacoustic contrast capability of Gd‐PEG‐PPy NPs are quite favorable for precise cancer diagnosing and locating the tumor site to guide the external laser irradiation for photothermal ablation of tumors without damaging the surrounding healthy tissues. Therefore, Gd‐PEG‐PPy NPs may assist in better monitoring the therapeutic process, and contribute to developing more effective “personalized medicine,” showing great potential for cancer diagnosis and therapy. A theranostic agent with excellent physiological stability, strong NIR absorption, and high magnetization is fabricated from PEGylated polypyrrole nanoparticles conjugating gadolinium chelates (Gd‐PEG‐PPy NPs). The passive targeting and high MRI/photoacoustic contrast capability of Gd‐PEG‐PPy NPs are favorable for precise cancer diagnosing and locating tumor sites to guide external laser irradiation for photothermal ablation of tumors without damaging surrounding healthy tissue. Polypyrrole nanoparticles conjugating gadolinium chelates were successfully fabricated for dual‐modal magnetic resonance imaging (MRI) and photoacoustic imaging guided photothermal therapy of cancer, from a mixture of pyrrole and pyrrole‐1‐propanoic acid through a facile one‐step aqueous dispersion polymerization, followed by covalent attachment of gadolinium chelate, using polyethylene glycol as a linker. The obtained PEGylated polypyrrole nanoparticles conjugating gadolinium chelates (Gd‐PEG‐PPy NPs), sized around around 70 nm, exhibited a high T 1 relaxivity coefficient of 10.61 L m m −1 s −1 , more than twice as high as that of the relating free Gd 3+ complex (4.2 L m m –1 s −1 ). After 24 h intravenous injection of Gd‐PEG‐PPy NPs, the tumor sites exhibited obvious enhancement in both T 1 ‐weighted MRI intensity and photoacoustic signal compared with that before injection, indicating the efficient accumulation of Gd‐PEG‐PPy NPs due to the introduction of the PEG layer onto the particle surface. In addition, tumor growth could be effectively inhibited after treatment with Gd‐PEG‐PPy NPs in combination with near‐infrared laser irradiation. The passive targeting and high MRI/photoacoustic contrast capability of Gd‐PEG‐PPy NPs are quite favorable for precise cancer diagnosing and locating the tumor site to guide the external laser irradiation for photothermal ablation of tumors without damaging the surrounding healthy tissues. Therefore, Gd‐PEG‐PPy NPs may assist in better monitoring the therapeutic process, and contribute to developing more effective “personalized medicine,” showing great potential for cancer diagnosis and therapy. |
Author | Jing, Lijia Dai, Zhifei Deng, Zijian Li, Yanyan Li, Xiaoda Yue, Xiuli Li, Changhui Liang, Xiaolong |
Author_xml | – sequence: 1 givenname: Xiaolong surname: Liang fullname: Liang, Xiaolong email: xiaolong.liang@moon.ibp.ac.cn organization: Department of Biomedical Engneering, College of Engineering, Peking University, 100871, Beijing, P.R. China – sequence: 2 givenname: Yanyan surname: Li fullname: Li, Yanyan organization: Nanomedicine and Biosensor Laboratory, School of Life Science and Technology, Harbin Institute of Technology, 150080, Harbin, P.R. China – sequence: 3 givenname: Xiaoda surname: Li fullname: Li, Xiaoda organization: Nanomedicine and Biosensor Laboratory, School of Life Science and Technology, Harbin Institute of Technology, 150080, Harbin, P.R. China – sequence: 4 givenname: Lijia surname: Jing fullname: Jing, Lijia organization: Nanomedicine and Biosensor Laboratory, School of Life Science and Technology, Harbin Institute of Technology, 150080, Harbin, P.R. China – sequence: 5 givenname: Zijian surname: Deng fullname: Deng, Zijian organization: Department of Biomedical Engneering, College of Engineering, Peking University, 100871, Beijing, P.R. China – sequence: 6 givenname: Xiuli surname: Yue fullname: Yue, Xiuli organization: Nanomedicine and Biosensor Laboratory, School of Life Science and Technology, Harbin Institute of Technology, 150080, Harbin, P.R. China – sequence: 7 givenname: Changhui surname: Li fullname: Li, Changhui organization: Department of Biomedical Engneering, College of Engineering, Peking University, 100871, Beijing, P.R. China – sequence: 8 givenname: Zhifei surname: Dai fullname: Dai, Zhifei email: xiaolong.liang@moon.ibp.ac.cn organization: Department of Biomedical Engneering, College of Engineering, Peking University, 100871, Beijing, P.R. China |
BookMark | eNqFkEtP20AUha2KSgXabdez7MZhHn5lSQ2ECEJTBGrVzeh6HsnQscfM2Gr9N_jF2ARFVaWqq3ule75zrs5RdNC4RkXRR4JnBGN6AlLXM4pJgiljxZvokGQkixmmxcF-J9_fRUchPGBM8pwlh9HT-nwxWOiURGtnh3bw3lmFbqBxLfjOCKsCKl3z0G-gM80GLUA6axrT16jcqokMSDuPznqw8cpJsGh1uzxZb13nQLg-jB5oWcPmBe6NnJKmY7dVvh7Vd-OEdkBOoxIaofz76K0GG9SH13kc3V-c35WX8fWXxbI8vY5FmmVFnM1JpWWhqE7ziqgKiEpkniZMCmBYqEIIBjLVVIOgRQWVrogogFaSzVOgCTuOPu18W-8eexU6XpsglLXQqPFvTrJsXqSE4kk620mFdyF4pXnrTQ1-4ATzqXw-lc_35Y9A8hcgTDcW6JrOg7H_xuY77JexavhPCD89u1j9ycY71oRO_d6z4H_yLGd5yr_dLHjy-fLH6vbrFc_YM9Jsr1M |
CitedBy_id | crossref_primary_10_1021_acsami_5b09274 crossref_primary_10_1039_D2BM00692H crossref_primary_10_1002_adfm_201603758 crossref_primary_10_1016_j_jconrel_2019_08_035 crossref_primary_10_2174_0929867324666170921103152 crossref_primary_10_1021_acsami_8b09670 crossref_primary_10_1039_C6BM00600K crossref_primary_10_1021_acsabm_8b00635 crossref_primary_10_1021_acsanm_0c03346 crossref_primary_10_1016_j_biomaterials_2017_08_004 crossref_primary_10_1002_adhm_201701201 crossref_primary_10_1039_C7SC05115H crossref_primary_10_1021_acsami_8b12394 crossref_primary_10_1039_C5TB01314C crossref_primary_10_1039_C9BM01017C crossref_primary_10_1016_j_biomaterials_2019_05_024 crossref_primary_10_1088_2040_8986_ab3b1a crossref_primary_10_1002_adhm_201600865 crossref_primary_10_1002_cnma_201700278 crossref_primary_10_1016_j_biomaterials_2018_07_042 crossref_primary_10_1002_adhm_202001300 crossref_primary_10_1039_C5TB01827G crossref_primary_10_1002_cbic_201800818 crossref_primary_10_1016_j_colsurfb_2021_111630 crossref_primary_10_1016_j_cej_2025_161885 crossref_primary_10_1080_17435390_2017_1353155 crossref_primary_10_1002_ange_202004181 crossref_primary_10_1016_j_jconrel_2020_08_064 crossref_primary_10_1021_acsbiomaterials_8b00176 crossref_primary_10_1002_adfm_201601478 crossref_primary_10_1002_adfm_201603776 crossref_primary_10_1039_D1TB00358E crossref_primary_10_1039_C6NR09046J crossref_primary_10_1039_C6TB02740G crossref_primary_10_1002_smll_201601029 crossref_primary_10_1002_ange_201707137 crossref_primary_10_1021_acsabm_1c00018 crossref_primary_10_1016_j_biomaterials_2019_119443 crossref_primary_10_3389_fbioe_2021_746815 crossref_primary_10_1002_advs_201700085 crossref_primary_10_1016_j_msec_2021_112143 crossref_primary_10_1002_smll_201803101 crossref_primary_10_1016_j_biomaterials_2017_10_043 crossref_primary_10_1021_acsapm_0c00680 crossref_primary_10_1021_acsami_7b14125 crossref_primary_10_1002_anie_201707137 crossref_primary_10_1016_j_carbpol_2020_116224 crossref_primary_10_1002_adfm_201706710 crossref_primary_10_1039_C7BM01210A crossref_primary_10_1021_acsami_7b04488 crossref_primary_10_1021_acsami_9b22654 crossref_primary_10_1002_adfm_201706398 crossref_primary_10_1039_C8BM01672K crossref_primary_10_1002_cplu_201800430 crossref_primary_10_1016_j_jcis_2019_04_022 crossref_primary_10_1039_C8NR01215F crossref_primary_10_1002_adfm_201801787 crossref_primary_10_1002_marc_201900263 crossref_primary_10_1002_smll_201602896 crossref_primary_10_1021_acsami_7b17323 crossref_primary_10_1039_C5CS00499C crossref_primary_10_1002_adtp_201800051 crossref_primary_10_3389_fbioe_2021_721617 crossref_primary_10_1021_acsabm_0c00702 crossref_primary_10_3390_nano11092457 crossref_primary_10_1021_acsami_8b21483 crossref_primary_10_1002_wnan_1510 crossref_primary_10_1002_VIW_20200176 crossref_primary_10_1016_j_cis_2017_02_009 crossref_primary_10_1021_acsami_6b05495 crossref_primary_10_1039_D4TB01825G crossref_primary_10_1007_s11051_018_4157_y crossref_primary_10_1002_adhm_201900672 crossref_primary_10_1016_j_ejpb_2017_11_007 crossref_primary_10_1016_j_nano_2020_102219 crossref_primary_10_1016_j_scib_2018_12_025 crossref_primary_10_1016_j_micromeso_2021_111431 crossref_primary_10_1039_D1NR05508A crossref_primary_10_1039_C9NR02955A crossref_primary_10_1039_C8BM01444B crossref_primary_10_1002_ppsc_202000044 crossref_primary_10_1002_smll_201900309 crossref_primary_10_1016_j_synthmet_2021_116869 crossref_primary_10_1016_j_cclet_2018_10_017 crossref_primary_10_1021_acsami_6b16486 crossref_primary_10_1039_C5RA24775F crossref_primary_10_1039_D0NR09058A crossref_primary_10_1039_C6NR09042G crossref_primary_10_1002_adfm_201601703 crossref_primary_10_1016_j_biomaterials_2019_119252 crossref_primary_10_1021_acsbiomaterials_8b01618 crossref_primary_10_1016_j_colsurfb_2018_06_014 crossref_primary_10_1021_acsnano_5b04606 crossref_primary_10_1039_C8CS00618K crossref_primary_10_1021_acsami_7b05463 crossref_primary_10_1039_D0TA03347B crossref_primary_10_1002_advs_201903341 crossref_primary_10_1039_D0BM01863E crossref_primary_10_1021_acsnano_7b03062 crossref_primary_10_2174_2210681210666200108125840 crossref_primary_10_1039_C9SC02674F crossref_primary_10_1039_D4OB00600C crossref_primary_10_1002_adma_201602197 crossref_primary_10_1039_D2GC04877A crossref_primary_10_1039_C8NR08095J crossref_primary_10_1073_pnas_1701976114 crossref_primary_10_1016_j_biomaterials_2018_05_033 crossref_primary_10_1039_C7NJ03078A crossref_primary_10_1021_acs_chemrev_3c00705 crossref_primary_10_1002_adfm_201802159 crossref_primary_10_1002_adfm_202005029 crossref_primary_10_1002_anie_202004181 crossref_primary_10_2217_nnm_2016_0438 crossref_primary_10_1039_C6NR03336A crossref_primary_10_1021_acsabm_9b00435 crossref_primary_10_1016_j_biomaterials_2018_01_026 crossref_primary_10_1021_jacs_8b13659 crossref_primary_10_1039_C6BM00076B crossref_primary_10_1002_adfm_201800310 crossref_primary_10_1039_C7BM00409E crossref_primary_10_1002_adfm_201807859 crossref_primary_10_1021_acsami_8b14968 crossref_primary_10_1021_acsami_6b04639 crossref_primary_10_1016_j_jconrel_2022_09_016 crossref_primary_10_1002_adfm_201605094 crossref_primary_10_1039_C7SC05130A crossref_primary_10_1039_C9CC02148E crossref_primary_10_1016_j_ccr_2017_09_002 crossref_primary_10_1002_ppsc_201800208 crossref_primary_10_1002_smll_202307078 crossref_primary_10_1016_j_addr_2017_04_007 crossref_primary_10_1039_C9TB02766A crossref_primary_10_1021_acsami_6b00251 crossref_primary_10_1007_s11051_018_4418_9 crossref_primary_10_1002_adhm_201900661 crossref_primary_10_3390_polym8100373 crossref_primary_10_1002_app_49239 crossref_primary_10_1111_php_12956 crossref_primary_10_1021_acsapm_0c00704 crossref_primary_10_2217_nnm_2018_0106 crossref_primary_10_1016_j_biomaterials_2016_08_022 crossref_primary_10_1002_ange_201916147 crossref_primary_10_1016_j_cej_2021_129769 crossref_primary_10_3390_nano12213889 crossref_primary_10_1002_adhm_201700073 crossref_primary_10_1039_C9TB02254F crossref_primary_10_1039_D0BM00128G crossref_primary_10_1002_ange_201510597 crossref_primary_10_1021_acsomega_6b00514 crossref_primary_10_1002_adhm_202001042 crossref_primary_10_1002_adfm_202008406 crossref_primary_10_1038_s41467_018_06499_1 crossref_primary_10_1155_2016_5810952 crossref_primary_10_1002_anie_201916147 crossref_primary_10_1016_j_biomaterials_2016_10_028 crossref_primary_10_1021_acsami_1c25179 crossref_primary_10_1039_C9NJ00263D crossref_primary_10_1016_j_xphs_2018_10_042 crossref_primary_10_1021_acsami_5b07856 crossref_primary_10_1021_acsnano_7b03226 crossref_primary_10_1002_anie_201510597 crossref_primary_10_3390_nano11010116 crossref_primary_10_1039_C8CS00001H crossref_primary_10_1039_C8NR08771G crossref_primary_10_1039_C5NR06840A crossref_primary_10_1007_s12274_017_1871_1 crossref_primary_10_1002_advs_201800581 crossref_primary_10_1016_j_jconrel_2016_01_004 crossref_primary_10_1039_C6TB02249A crossref_primary_10_1039_C7NR03086J crossref_primary_10_2217_nnm_2021_0241 crossref_primary_10_1002_adma_202000013 crossref_primary_10_1039_C6NR00267F crossref_primary_10_1021_acs_langmuir_9b03001 crossref_primary_10_1039_C7TB02648J crossref_primary_10_1002_adma_201907855 crossref_primary_10_1021_acsami_5b09585 crossref_primary_10_1016_j_carbpol_2019_03_043 crossref_primary_10_1039_C6TB03218D crossref_primary_10_1016_j_biomaterials_2015_09_018 crossref_primary_10_1002_adfm_202401208 crossref_primary_10_1016_j_ijbiomac_2022_02_095 crossref_primary_10_1016_j_polymer_2018_12_020 crossref_primary_10_1021_acs_langmuir_9b02824 crossref_primary_10_1016_j_biomaterials_2021_120915 crossref_primary_10_1016_j_talanta_2024_126528 crossref_primary_10_1002_adhm_202200183 crossref_primary_10_1002_adma_201604157 crossref_primary_10_1186_s11671_018_2787_8 crossref_primary_10_1007_s10118_019_2193_4 crossref_primary_10_1002_adfm_201504185 crossref_primary_10_1039_C9BM01248F crossref_primary_10_1016_j_carbon_2018_04_058 crossref_primary_10_1021_acsbiomaterials_7b00480 crossref_primary_10_1021_acs_langmuir_9b01387 crossref_primary_10_1039_C9TB01509D crossref_primary_10_1002_adhm_201601419 crossref_primary_10_1186_s12951_021_01080_3 crossref_primary_10_1002_slct_202001234 crossref_primary_10_1002_smll_201601050 crossref_primary_10_1021_acsbiomaterials_1c01389 crossref_primary_10_1002_adfm_202102832 crossref_primary_10_1002_adfm_201807960 crossref_primary_10_1039_D0RA03069D crossref_primary_10_1039_C9NR05236D crossref_primary_10_1002_sstr_202200220 crossref_primary_10_1002_adtp_201900076 |
Cites_doi | 10.1016/j.biomaterials.2010.08.096 10.1039/c3nr00541k 10.1021/cr010379n 10.1097/01.rli.0000251565.61487.1a 10.1038/srep02360 10.1016/j.ejrad.2009.01.042 10.1002/adfm.201001329 10.1002/smll.201100472 10.1098/rsfs.2011.0028 10.3322/CA.2007.0003 10.1016/0014-5793(84)80208-2 10.1002/adma.201202625 10.2214/ajr.174.2.1740323 10.1002/adfm.201201663 10.1021/nl100996u 10.1002/adma.201104964 10.1002/adma.201202211 10.1021/ar200061q 10.1002/anie.201005075 10.1021/bc400477q 10.1117/1.JBO.17.6.061202 10.1002/adma.201101295 10.1021/nl900031y 10.1021/la203832h 10.1161/01.ATV.0000053183.08854.A4 10.1039/C3TB21281E 10.1021/nn201100m 10.1021/bc500092h 10.1073/pnas.0813019106 10.1002/smll.200902231 10.1002/jmri.1101 10.1016/j.biomaterials.2011.11.064 10.1002/jbm.a.20065 10.1039/C2TB00294A 10.1073/pnas.0702393104 10.1039/b510982p 10.1002/anie.201004867 10.1038/nbt1220 10.1002/jmri.20976 10.1016/j.biomaterials.2014.04.005 10.2217/17435889.1.2.209 10.2165/11539140-000000000-00000 10.1021/ar200022e 10.1021/nl902715v 10.1039/c3nr00627a 10.1021/cr9003538 10.1002/smll.200902216 10.1007/s10103-007-0470-x 10.1021/bc200151q 10.1016/j.chembiol.2010.05.009 10.1039/c2cc34463g 10.1006/mvre.1996.0041 10.1021/ja801482d 10.1002/mrm.1910040306 10.1021/ar800245h 10.2463/mrms.4.145 10.1016/j.biomaterials.2011.09.026 10.1016/j.addr.2012.06.012 10.1016/j.biomaterials.2004.09.037 10.1016/j.biomaterials.2011.05.089 10.1021/ja106855m 10.1002/anie.200602471 10.1016/j.bmcl.2009.10.003 10.1002/wnan.116 10.1039/c3cs60036j 10.1211/jpp.59.2.0017 10.1016/j.ejrad.2013.09.010 10.1021/ja710193c 10.1021/nn301539m 10.1016/j.msec.2007.10.058 10.1593/tlo.10139 10.1038/nphoton.2009.157 10.1002/adma.201104714 |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION 7SC 7SP 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D |
DOI | 10.1002/adfm.201402338 |
DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | 1462 |
ExternalDocumentID | 10_1002_adfm_201402338 ADFM201402338 ark_67375_WNG_4BHZMRQK_6 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation for Distinguished Young Scholars funderid: 81225011 – fundername: China Postdoctoral Science Foundation funderid: 2013M530014 – fundername: State Key Program of National Natural Science of China funderid: 81230036 – fundername: National Natural Science Foundation of China funderid: 81371580; 81201186 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7SC 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c5668-691bfd8e2f57b1eba1e4d7543dca30ce8cc3ad5f2fac28babfb1c8a2bd395a243 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 11 00:31:10 EDT 2025 Tue Jul 01 01:30:17 EDT 2025 Thu Apr 24 22:54:55 EDT 2025 Wed Jan 22 16:35:19 EST 2025 Wed Oct 30 09:52:58 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5668-691bfd8e2f57b1eba1e4d7543dca30ce8cc3ad5f2fac28babfb1c8a2bd395a243 |
Notes | State Key Program of National Natural Science of China - No. 81230036 istex:20975D9BD310DC80D16A5D02956BB029519BFBCA ark:/67375/WNG-4BHZMRQK-6 China Postdoctoral Science Foundation - No. 2013M530014 National Natural Science Foundation of China - No. 81371580; No. 81201186 ArticleID:ADFM201402338 National Natural Science Foundation for Distinguished Young Scholars - No. 81225011 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1669851204 |
PQPubID | 23500 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1669851204 crossref_primary_10_1002_adfm_201402338 crossref_citationtrail_10_1002_adfm_201402338 wiley_primary_10_1002_adfm_201402338_ADFM201402338 istex_primary_ark_67375_WNG_4BHZMRQK_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 4, 2015 |
PublicationDateYYYYMMDD | 2015-03-04 |
PublicationDate_xml | – month: 03 year: 2015 text: March 4, 2015 day: 04 |
PublicationDecade | 2010 |
PublicationTitle | Advanced functional materials |
PublicationTitleAlternate | Adv. Funct. Mater |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | M. Chen, X. Fang, S. Tang, N. Zheng, Chem. Commun. 2012, 48. 8934. S. Jalota, S. B. Bhaduri, A. C. Tas, Mater. Sci. Eng. C 2008, 28, 129. S. Wang, Z. Dai, H. Ke, E. Qu, X. Qi, K. Zhang, J. Wang, Eur. J. Radiol. 2014, 83, 117. J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, Y. Xia, Small 2010, 6, 811. A. Vogel, V. Venugopalan, Chem. Rev. 2003, 103, 577. J. Chen, M. Yang, Q. Zhang, E. C. Cho, C. M. Cobley, C. Kim, C. Glaus, L. V. Wang, M. J. Welch, Y. Xia, Adv. Funct. Mater. 2010, 20, 3684. H. Chong, C. Nie, C. Zhu, Q. Yang, L. Liu, F. Lv, S. Wang, Langmuir 2012, 28, 2091. Y. Ling, K. Wei, Y. Luo, X. Gao, S. Zhong, Biomaterials 2011, 32, 7139. X. Li, X. Liang, X. Yue, J. Wang, C. Li, Z. Deng, L. Jing, L. Lin, E. Qu, S. Wang, C. Wu, H. Wu, Z. Dai, J. Mater. Chem. B 2014, 2, 217. H. F. Zhang, K. Maslov, G. Stoica, L. V. Wang, Nat. Biotechnol. 2006, 24, 848. Z. Zhang, L. Wang, J. Wang, X. Jiang, X. Li, Z. Hu, Y. Ji, X. Wu, C. Chen, Adv. Mater. 2012, 24, 1418. Y. Xia, W. Li, C. M. Cobley, J. Chen, X. Xia, Q. Zhang, M. E. Yang, C. Cho, P. K. Brown, Acc. Chem. Res. 2011, 44, 914. J. L. Major, T. J. Meade, Acc. Chem. Res. 2009, 42, 893. A. Ramanaviciene, A. Kausaite, S. Tautkus, A. Ramanavicius, J. Pharm. Pharmacol. 2007, 59, 311. E. Kim, K. Lee, Y.-M. Huh, S. Haam, J. Mater. Chem. B 2013, 1, 729. J. A. Feshitan, F. Vlachos, S. R. Sirsi, E. E. Konofagou, M. A. Borden, Biomaterials 2012, 3, 247. C. W. Chen, J. S. Cohen, C. E. Myers, M. Sohn, FEBS Lett. 1984, 168, 70. K. Yang, L. Hu, X. Ma, S. Ye, L. Cheng, X. Shi, C. Li, Y. Li, Z. Liu, Adv. Mater. 2012, 24, 1868. P. Beard, Interface Focus 2011, 1, 602. U. I. Tromsdorf, O. T. Bruns, S. C. Salmen, U. Beisiegel, H. Weller, Nano Lett. 2009, 9, 4434. Y. Ma, X. Liang, S. Tong, G. Bao, Q. Ren, Z. Dai, Adv. Funct. Mater. 2013, 23, 815. J. Kim, S. Park, J. E. Lee, S. M. Jin, J. H. Lee, I. S. Lee, I. Yang, J. S. Kim, S. K. Kim, M. H. Cho, T. Hyeon, Angew. Chem. Int. Ed. 2006, 45, 7754. L. H. Wang, Nat. Photonics 2009, 3, 503. K. Yang, J. Wan, S. Zhang, B. Tian, Y. Zhang, Z. Liu, Biomaterials 2012, 33, 2206. M. Zhou, R. Zhang, M. Huang, W. Lu, S. Song, M. P. Melancon, M. Tian, D. Liang, C. Li, J. Am. Chem. Soc. 2010, 132, 15351. Z. Zha, S. Wang, S. Zhang, E. Qu, H. Ke, J. Wang, Z. Dai, Nanoscale 2013, 5, 3216. D. Pan, G. M. Lanza, S. A. Wickline, S. D. Caruthers, Eur. J. Radiol. 2009, 70, 274. S. M. Lee, Y. Song, B. J. Hong, K. W MacRenaris, D. J. Mastarone, T. V. O'Halloran, T. J. Meade, S. T. Nguyen, Angew. Chem. Int. Ed. 2010, 17, 9960. G. Stephen, G. H. Worthley, V. Fuster, Z. A. Fayad, M. Shinnar, L. A. Minkoff, Arterioscler. Thromb. Vasc. Biol. 2003, 23, 346. X. Huang, P. K. Jain, I. H. El-Sayed, M. A. El-Sayed, Lasers Med. Sci. 2008, 23, 217. Z. Zha, X. Yue, Q. Ren, Z. Dai, Adv. Mater. 2013, 25, 777. J.-Y. Hong, H. Yoon, J. Jang, Small 2010, 6, 679. P. Bourrinet, E. Martel, A. I. El Amrani, P. Champeroux, S. Richard, N. Fauchou, F. Le Coz, M. Drici, B. Bonnemain, S. Gaillard, Invest. Radiol. 2007, 42, 63. K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, Z. Liu, Nano Lett. 2010, 10, 3318. X. A. Zhang, K. S. Lovejoy, A. Jasanoff, S. J. Lippard, Proc. Natl Acad. Sci. U.S.A. 2007, 104, 10780. V. U. Fiedler, H.-J. Schwarzmaier, F. Eickmeyer, F. P. Müller, C. Schoepp, P. Verreet, J . Magn. Reson. Imaging 2001, 13, 729. J. Yang, J. Choi, D. Bang, E. Kim, E. K. Lim, H. Park, J. S. Suh, K. Lee, K. H. Yoo, E. K. Kim, Y. M. Huh, S. Haam, Angew. Chem. Int. Ed. 2011, 50, 441. Z. Zhang, R. He, K. Yan, Q. N. Guo, Y. G. Lu, X. X. Wang, H. Lei, Z. Y. Li, Bioorg. Med. Chem. Lett. 2009, 19, 6675. B. Cox, J. G. Laufer, S. R. Arridge, P. C. Beard, J. Biomed. Opt. 2012, 17, 061202. M. K. Yu, D. Kim, I. H. Lee, J. S. So, Y. Y. Jeong, S. Jon, Small 2011, 7, 2241. L. Jing, X. Liang, Z. Deng, S. Feng, X. Li, M. Huang, C. Li, Z. Dai, Biomaterials 2014, 35, 5814. X. Liu, H. Tao, K. Yang, S. Zhang, S. T. Lee, Z. Liu, Biomaterials 2011, 32, 144. C. L. Peng, Y. H. Shih, P. C. Lee, T. M. Hsieh, T. Y. Luo, M. J. Shieh, ACS Nano 2011, 5, 5594. J. H. Ryu, H. Koo, I. C. Sun, S. H. Yuk, K. Choi, K. Kim, I. C. Kwon, Adv. Drug Delivery Rev. 2012, 64, 1447. C. Guo, Y. Jin, Z. Dai, Bioconjugate Chem. 2014, 25, 840. Z. Zha, Z. Deng, Y. Li, C. Li, J. Wang, S. Wang, E. Qu, Z. Dai, Nanoscale 2013, 5, 4462. M. N. Rhyner, A. M. Smith, X. H. Gao, H. Mao, L. L. Yang, S. M. Nie, Nanomedicine 2006, 1, 209. P. Caravan. Chem. Soc. Rev. 2006, 35, 512. L. S. Boucharda, M. S. Anwar, G. L. Liu, B. Hann, Z. H. Xie, J. W. Gray, Proc. Natl Acad. Sci. U.S.A. 2008, 106, 4085. Z. Zha, X. Yue, Q. Ren, Z. Dai, Adv. Mater. 2012, 25, 777. D. Pan, S. D. Caruthers, G. Hu, A. Senpan, M. J. Scott, P. J. Gaffney, S. A. Wickline, G. M. Lanza, J. Am. Chem. Soc. 2008, 130, 9186. Q. Tian, M. Tang, Y. Sun, R. Zou, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, J. Hu, Adv. Mater. 2011, 23, 3542. T. Lee, X. Zhang, S. Dhar, H. Faas, S. J. Lippard, A. Jasanoff, Chem. Biol. 2010, 17, 665. L. Cheng, K. Yang, Q. Chen, Z. Liu, ACS Nano. 2012, 6, 5605. L. Feng, C. Zhu, H. Yuan, L. Liu, F. Lv, S. Wang, Chem. Soc. Rev. 2013, 42, 6620. M. Das, R. Jain, A. K. Agrawal, K. Thanki, S. Jain, Bioconjugate Chem. 2014, 25, 501. S. D. Perrault, C. Walkey, T. Jennings, H. C. Fischer, W. C. Chan, Nano Lett. 2009, 9, 1909. M. P. Melancon, M. Zhou, C. Li, Acc. Chem. Res. 2011, 44, 947. Z. Zha, J. Wang, E. Qu, S. Zhang, Y. Jin, S. Wang, Z. Dai, Sci. Rep. 2013, 3, 2360. M. Sasaki, E. Shibata, Y. Kanbara, S. Ehara. Magn. Reson. Med. Sci. 2005, 4, 145. X. Wang, L. Yang, Z. G. Chen, D. M. Shin, Ca-Cancer J. Clin. 2008, 58, 97. K. Yang, H. Xu, L. Cheng, C. Sun, J. Wang, Z. Liu, Adv. Mater. 2012, 24, 5586. S. N. Goldberg, G. S. Gazelle, P. R. Mueller, AJR Am. J. Roentgenol 2000, 174, 323. H. Sakuma, J. Magn. Reson. Imaging 2007, 26, 3. D. Pan, S. D. Caruthers, A. Senpan, A. H. Schmieder, S. A. Wickline, G. M. Lanza, WIRES Nanomed. Nanobi. 2011, 3, 162. P. A. Netti, S. Roberge, Y. Boucher, L. T. Baxter, R. K. Jain, Microvasc. Res. 1996, 52, 27. K. M. L. Taylor, J. S. Kim, W. J. Rieter, H. An, W. L. Lin, W. B. Lin, J. Am. Chem. Soc. 2008, 130, 2154. A. Louie, Chem. Rev. 2010, 110, 3146. S. S. Kelkar, T. M. Reineke, Bioconjugate Chem. 2011, 22, 1879. L. Sampath, S. Kwon, M. A. Hall, R. E. Price, E. M. Sevick-Muraca, Transl. Oncol. 2010, 3, 307. X. Wang, X. Gu, C. Yuan, S. Chen, P. Zhang, T. Zhang, J. Yao, F. Chen, G. Chen, J. Biomed. Mater. Res. A 2004, 68, 411. T. Ishiguchi, S. Takahashi, Drugs R&D. 2010, 10, 133. P. M. George, A. W. Lyckman, D. A. Lavan, A. Hegde, Y. Leung, R. Avasare, C. Testa, P. M. Alexander, R. Langer, M. Sur, Biomaterials 2005, 26, 3511. S. H. Koenig, R. D. Brown 3rd, M. Spiller, Magn. Reson. Med. 1987, 4, 252. 2007; 104 2010; 10 2013; 3 2013; 25 2013; 1 2009; 42 1984; 168 2006; 35 2010; 17 2013; 23 1987; 4 2004; 68 2014; 25 2008; 106 2000; 174 2012; 17 2005; 26 2013; 5 2010; 20 2014; 2 2006; 24 2008; 28 2010; 110 2011; 22 2008; 23 2011; 23 2012; 28 2012; 25 2010; 3 2012; 24 2009; 19 2001; 13 2010; 6 2012; 64 2007; 26 2011; 1 2013; 42 2008; 58 1996; 52 2011; 32 2006; 1 2011; 3 2014; 83 2011; 5 2012; 33 2011; 7 2007; 59 2012; 3 2006; 45 2009; 70 2011; 50 2010; 132 2005; 4 2011; 44 2009; 9 2014; 35 2012; 48 2009; 3 2012; 6 2007; 42 2003; 103 2008; 130 2003; 23 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
References_xml | – reference: A. Vogel, V. Venugopalan, Chem. Rev. 2003, 103, 577. – reference: S. M. Lee, Y. Song, B. J. Hong, K. W MacRenaris, D. J. Mastarone, T. V. O'Halloran, T. J. Meade, S. T. Nguyen, Angew. Chem. Int. Ed. 2010, 17, 9960. – reference: H. Sakuma, J. Magn. Reson. Imaging 2007, 26, 3. – reference: S. H. Koenig, R. D. Brown 3rd, M. Spiller, Magn. Reson. Med. 1987, 4, 252. – reference: X. Liu, H. Tao, K. Yang, S. Zhang, S. T. Lee, Z. Liu, Biomaterials 2011, 32, 144. – reference: U. I. Tromsdorf, O. T. Bruns, S. C. Salmen, U. Beisiegel, H. Weller, Nano Lett. 2009, 9, 4434. – reference: L. Feng, C. Zhu, H. Yuan, L. Liu, F. Lv, S. Wang, Chem. Soc. Rev. 2013, 42, 6620. – reference: M. P. Melancon, M. Zhou, C. Li, Acc. Chem. Res. 2011, 44, 947. – reference: D. Pan, S. D. Caruthers, A. Senpan, A. H. Schmieder, S. A. Wickline, G. M. Lanza, WIRES Nanomed. Nanobi. 2011, 3, 162. – reference: B. Cox, J. G. Laufer, S. R. Arridge, P. C. Beard, J. Biomed. Opt. 2012, 17, 061202. – reference: Y. Xia, W. Li, C. M. Cobley, J. Chen, X. Xia, Q. Zhang, M. E. Yang, C. Cho, P. K. Brown, Acc. Chem. Res. 2011, 44, 914. – reference: S. S. Kelkar, T. M. Reineke, Bioconjugate Chem. 2011, 22, 1879. – reference: X. Wang, X. Gu, C. Yuan, S. Chen, P. Zhang, T. Zhang, J. Yao, F. Chen, G. Chen, J. Biomed. Mater. Res. A 2004, 68, 411. – reference: Z. Zha, X. Yue, Q. Ren, Z. Dai, Adv. Mater. 2013, 25, 777. – reference: K. Yang, H. Xu, L. Cheng, C. Sun, J. Wang, Z. Liu, Adv. Mater. 2012, 24, 5586. – reference: Z. Zhang, L. Wang, J. Wang, X. Jiang, X. Li, Z. Hu, Y. Ji, X. Wu, C. Chen, Adv. Mater. 2012, 24, 1418. – reference: G. Stephen, G. H. Worthley, V. Fuster, Z. A. Fayad, M. Shinnar, L. A. Minkoff, Arterioscler. Thromb. Vasc. Biol. 2003, 23, 346. – reference: M. Das, R. Jain, A. K. Agrawal, K. Thanki, S. Jain, Bioconjugate Chem. 2014, 25, 501. – reference: Z. Zha, S. Wang, S. Zhang, E. Qu, H. Ke, J. Wang, Z. Dai, Nanoscale 2013, 5, 3216. – reference: L. S. Boucharda, M. S. Anwar, G. L. Liu, B. Hann, Z. H. Xie, J. W. Gray, Proc. Natl Acad. Sci. U.S.A. 2008, 106, 4085. – reference: Q. Tian, M. Tang, Y. Sun, R. Zou, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, J. Hu, Adv. Mater. 2011, 23, 3542. – reference: M. K. Yu, D. Kim, I. H. Lee, J. S. So, Y. Y. Jeong, S. Jon, Small 2011, 7, 2241. – reference: E. Kim, K. Lee, Y.-M. Huh, S. Haam, J. Mater. Chem. B 2013, 1, 729. – reference: S. N. Goldberg, G. S. Gazelle, P. R. Mueller, AJR Am. J. Roentgenol 2000, 174, 323. – reference: K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, Z. Liu, Nano Lett. 2010, 10, 3318. – reference: H. Chong, C. Nie, C. Zhu, Q. Yang, L. Liu, F. Lv, S. Wang, Langmuir 2012, 28, 2091. – reference: P. Bourrinet, E. Martel, A. I. El Amrani, P. Champeroux, S. Richard, N. Fauchou, F. Le Coz, M. Drici, B. Bonnemain, S. Gaillard, Invest. Radiol. 2007, 42, 63. – reference: X. Huang, P. K. Jain, I. H. El-Sayed, M. A. El-Sayed, Lasers Med. Sci. 2008, 23, 217. – reference: T. Lee, X. Zhang, S. Dhar, H. Faas, S. J. Lippard, A. Jasanoff, Chem. Biol. 2010, 17, 665. – reference: C. L. Peng, Y. H. Shih, P. C. Lee, T. M. Hsieh, T. Y. Luo, M. J. Shieh, ACS Nano 2011, 5, 5594. – reference: J. Kim, S. Park, J. E. Lee, S. M. Jin, J. H. Lee, I. S. Lee, I. Yang, J. S. Kim, S. K. Kim, M. H. Cho, T. Hyeon, Angew. Chem. Int. Ed. 2006, 45, 7754. – reference: H. F. Zhang, K. Maslov, G. Stoica, L. V. Wang, Nat. Biotechnol. 2006, 24, 848. – reference: J. Yang, J. Choi, D. Bang, E. Kim, E. K. Lim, H. Park, J. S. Suh, K. Lee, K. H. Yoo, E. K. Kim, Y. M. Huh, S. Haam, Angew. Chem. Int. Ed. 2011, 50, 441. – reference: K. Yang, J. Wan, S. Zhang, B. Tian, Y. Zhang, Z. Liu, Biomaterials 2012, 33, 2206. – reference: M. Zhou, R. Zhang, M. Huang, W. Lu, S. Song, M. P. Melancon, M. Tian, D. Liang, C. Li, J. Am. Chem. Soc. 2010, 132, 15351. – reference: C. Guo, Y. Jin, Z. Dai, Bioconjugate Chem. 2014, 25, 840. – reference: Y. Ma, X. Liang, S. Tong, G. Bao, Q. Ren, Z. Dai, Adv. Funct. Mater. 2013, 23, 815. – reference: P. Caravan. Chem. Soc. Rev. 2006, 35, 512. – reference: C. W. Chen, J. S. Cohen, C. E. Myers, M. Sohn, FEBS Lett. 1984, 168, 70. – reference: J. A. Feshitan, F. Vlachos, S. R. Sirsi, E. E. Konofagou, M. A. Borden, Biomaterials 2012, 3, 247. – reference: K. M. L. Taylor, J. S. Kim, W. J. Rieter, H. An, W. L. Lin, W. B. Lin, J. Am. Chem. Soc. 2008, 130, 2154. – reference: P. M. George, A. W. Lyckman, D. A. Lavan, A. Hegde, Y. Leung, R. Avasare, C. Testa, P. M. Alexander, R. Langer, M. Sur, Biomaterials 2005, 26, 3511. – reference: J. H. Ryu, H. Koo, I. C. Sun, S. H. Yuk, K. Choi, K. Kim, I. C. Kwon, Adv. Drug Delivery Rev. 2012, 64, 1447. – reference: Z. Zha, Z. Deng, Y. Li, C. Li, J. Wang, S. Wang, E. Qu, Z. Dai, Nanoscale 2013, 5, 4462. – reference: D. Pan, S. D. Caruthers, G. Hu, A. Senpan, M. J. Scott, P. J. Gaffney, S. A. Wickline, G. M. Lanza, J. Am. Chem. Soc. 2008, 130, 9186. – reference: P. Beard, Interface Focus 2011, 1, 602. – reference: S. Wang, Z. Dai, H. Ke, E. Qu, X. Qi, K. Zhang, J. Wang, Eur. J. Radiol. 2014, 83, 117. – reference: X. A. Zhang, K. S. Lovejoy, A. Jasanoff, S. J. Lippard, Proc. Natl Acad. Sci. U.S.A. 2007, 104, 10780. – reference: X. Wang, L. Yang, Z. G. Chen, D. M. Shin, Ca-Cancer J. Clin. 2008, 58, 97. – reference: T. Ishiguchi, S. Takahashi, Drugs R&D. 2010, 10, 133. – reference: A. Louie, Chem. Rev. 2010, 110, 3146. – reference: L. Cheng, K. Yang, Q. Chen, Z. Liu, ACS Nano. 2012, 6, 5605. – reference: Z. Zhang, R. He, K. Yan, Q. N. Guo, Y. G. Lu, X. X. Wang, H. Lei, Z. Y. Li, Bioorg. Med. Chem. Lett. 2009, 19, 6675. – reference: L. Sampath, S. Kwon, M. A. Hall, R. E. Price, E. M. Sevick-Muraca, Transl. Oncol. 2010, 3, 307. – reference: Z. Zha, X. Yue, Q. Ren, Z. Dai, Adv. Mater. 2012, 25, 777. – reference: Z. Zha, J. Wang, E. Qu, S. Zhang, Y. Jin, S. Wang, Z. Dai, Sci. Rep. 2013, 3, 2360. – reference: J.-Y. Hong, H. Yoon, J. Jang, Small 2010, 6, 679. – reference: A. Ramanaviciene, A. Kausaite, S. Tautkus, A. Ramanavicius, J. Pharm. Pharmacol. 2007, 59, 311. – reference: D. Pan, G. M. Lanza, S. A. Wickline, S. D. Caruthers, Eur. J. Radiol. 2009, 70, 274. – reference: J. L. Major, T. J. Meade, Acc. Chem. Res. 2009, 42, 893. – reference: X. Li, X. Liang, X. Yue, J. Wang, C. Li, Z. Deng, L. Jing, L. Lin, E. Qu, S. Wang, C. Wu, H. Wu, Z. Dai, J. Mater. Chem. B 2014, 2, 217. – reference: V. U. Fiedler, H.-J. Schwarzmaier, F. Eickmeyer, F. P. Müller, C. Schoepp, P. Verreet, J . Magn. Reson. Imaging 2001, 13, 729. – reference: K. Yang, L. Hu, X. Ma, S. Ye, L. Cheng, X. Shi, C. Li, Y. Li, Z. Liu, Adv. Mater. 2012, 24, 1868. – reference: L. H. Wang, Nat. Photonics 2009, 3, 503. – reference: P. A. Netti, S. Roberge, Y. Boucher, L. T. Baxter, R. K. Jain, Microvasc. Res. 1996, 52, 27. – reference: S. Jalota, S. B. Bhaduri, A. C. Tas, Mater. Sci. Eng. C 2008, 28, 129. – reference: J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, Y. Xia, Small 2010, 6, 811. – reference: J. Chen, M. Yang, Q. Zhang, E. C. Cho, C. M. Cobley, C. Kim, C. Glaus, L. V. Wang, M. J. Welch, Y. Xia, Adv. Funct. Mater. 2010, 20, 3684. – reference: L. Jing, X. Liang, Z. Deng, S. Feng, X. Li, M. Huang, C. Li, Z. Dai, Biomaterials 2014, 35, 5814. – reference: S. D. Perrault, C. Walkey, T. Jennings, H. C. Fischer, W. C. Chan, Nano Lett. 2009, 9, 1909. – reference: Y. Ling, K. Wei, Y. Luo, X. Gao, S. Zhong, Biomaterials 2011, 32, 7139. – reference: M. Sasaki, E. Shibata, Y. Kanbara, S. Ehara. Magn. Reson. Med. Sci. 2005, 4, 145. – reference: M. Chen, X. Fang, S. Tang, N. Zheng, Chem. Commun. 2012, 48. 8934. – reference: M. N. Rhyner, A. M. Smith, X. H. Gao, H. Mao, L. L. Yang, S. M. Nie, Nanomedicine 2006, 1, 209. – volume: 26 start-page: 3 year: 2007 publication-title: J. Magn. Reson. Imaging – volume: 130 start-page: 2154 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 103 start-page: 577 year: 2003 publication-title: Chem. Rev. – volume: 110 start-page: 3146 year: 2010 publication-title: Chem. Rev. – volume: 50 start-page: 441 year: 2011 publication-title: Angew. Chem. Int. Ed. – volume: 25 start-page: 777 year: 2012 publication-title: Adv. Mater. – volume: 22 start-page: 1879 year: 2011 publication-title: Bioconjugate Chem. – volume: 19 start-page: 6675 year: 2009 publication-title: Bioorg. Med. Chem. Lett. – volume: 58 start-page: 97 year: 2008 publication-title: Ca‐Cancer J. Clin. – volume: 45 start-page: 7754 year: 2006 publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 145 year: 2005 publication-title: Magn. Reson. Med. Sci. – volume: 5 start-page: 4462 year: 2013 publication-title: Nanoscale – volume: 70 start-page: 274 year: 2009 publication-title: Eur. J. Radiol. – volume: 42 start-page: 893 year: 2009 publication-title: Acc. Chem. Res. – volume: 10 start-page: 133 year: 2010 publication-title: Drugs R&D. – volume: 1 start-page: 209 year: 2006 publication-title: Nanomedicine – volume: 5 start-page: 5594 year: 2011 publication-title: ACS Nano – volume: 24 start-page: 5586 year: 2012 publication-title: Adv. Mater. – volume: 35 start-page: 5814 year: 2014 publication-title: Biomaterials – volume: 9 start-page: 4434 year: 2009 publication-title: Nano Lett. – volume: 83 start-page: 117 year: 2014 publication-title: Eur. J. Radiol. – volume: 24 start-page: 1868 year: 2012 publication-title: Adv. Mater. – volume: 174 start-page: 323 year: 2000 publication-title: AJR Am. J. Roentgenol – volume: 4 start-page: 252 year: 1987 publication-title: Magn. Reson. Med. – volume: 23 start-page: 217 year: 2008 publication-title: Lasers Med. Sci. – volume: 24 start-page: 1418 year: 2012 publication-title: Adv. Mater. – volume: 5 start-page: 3216 year: 2013 publication-title: Nanoscale – volume: 104 start-page: 10780 year: 2007 publication-title: Proc. Natl Acad. Sci. U.S.A. – volume: 20 start-page: 3684 year: 2010 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 2360 year: 2013 publication-title: Sci. Rep. – volume: 28 start-page: 2091 year: 2012 publication-title: Langmuir – volume: 23 start-page: 815 year: 2013 publication-title: Adv. Funct. Mater. – volume: 28 start-page: 129 year: 2008 publication-title: Mater. Sci. Eng. C – volume: 23 start-page: 3542 year: 2011 publication-title: Adv. Mater. – volume: 32 start-page: 144 year: 2011 publication-title: Biomaterials – volume: 24 start-page: 848 year: 2006 publication-title: Nat. Biotechnol. – volume: 42 start-page: 6620 year: 2013 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 5605 year: 2012 publication-title: ACS Nano. – volume: 17 start-page: 061202 year: 2012 publication-title: J. Biomed. Opt. – volume: 25 start-page: 777 year: 2013 publication-title: Adv. Mater. – volume: 23 start-page: 346 year: 2003 publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 17 start-page: 9960 year: 2010 publication-title: Angew. Chem. Int. Ed. – volume: 68 start-page: 411 year: 2004 publication-title: J. Biomed. Mater. Res. A – volume: 3 start-page: 503 year: 2009 publication-title: Nat. Photonics – volume: 6 start-page: 679 year: 2010 publication-title: Small – volume: 44 start-page: 914 year: 2011 publication-title: Acc. Chem. Res. – volume: 33 start-page: 2206 year: 2012 publication-title: Biomaterials – volume: 48 start-page: 8934 year: 2012 publication-title: Chem. Commun. – volume: 13 start-page: 729 year: 2001 publication-title: J . Magn. Reson. Imaging – volume: 25 start-page: 501 year: 2014 publication-title: Bioconjugate Chem. – volume: 26 start-page: 3511 year: 2005 publication-title: Biomaterials – volume: 59 start-page: 311 year: 2007 publication-title: J. Pharm. Pharmacol. – volume: 44 start-page: 947 year: 2011 publication-title: Acc. Chem. Res. – volume: 17 start-page: 665 year: 2010 publication-title: Chem. Biol. – volume: 1 start-page: 602 year: 2011 publication-title: Interface Focus – volume: 6 start-page: 811 year: 2010 publication-title: Small – volume: 3 start-page: 307 year: 2010 publication-title: Transl. Oncol. – volume: 1 start-page: 729 year: 2013 publication-title: J. Mater. Chem. B – volume: 42 start-page: 63 year: 2007 publication-title: Invest. Radiol. – volume: 106 start-page: 4085 year: 2008 publication-title: Proc. Natl Acad. Sci. U.S.A. – volume: 168 start-page: 70 year: 1984 publication-title: FEBS Lett. – volume: 2 start-page: 217 year: 2014 publication-title: J. Mater. Chem. B – volume: 130 start-page: 9186 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 162 year: 2011 publication-title: WIRES Nanomed. Nanobi. – volume: 9 start-page: 1909 year: 2009 publication-title: Nano Lett. – volume: 32 start-page: 7139 year: 2011 publication-title: Biomaterials – volume: 7 start-page: 2241 year: 2011 publication-title: Small – volume: 52 start-page: 27 year: 1996 publication-title: Microvasc. Res. – volume: 25 start-page: 840 year: 2014 publication-title: Bioconjugate Chem. – volume: 3 start-page: 247 year: 2012 publication-title: Biomaterials – volume: 35 start-page: 512 year: 2006 publication-title: Chem. Soc. Rev. – volume: 64 start-page: 1447 year: 2012 publication-title: Adv. Drug Delivery Rev. – volume: 132 start-page: 15351 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 3318 year: 2010 publication-title: Nano Lett. – ident: e_1_2_6_40_1 doi: 10.1016/j.biomaterials.2010.08.096 – ident: e_1_2_6_44_1 doi: 10.1039/c3nr00541k – ident: e_1_2_6_4_1 doi: 10.1021/cr010379n – ident: e_1_2_6_57_1 doi: 10.1097/01.rli.0000251565.61487.1a – ident: e_1_2_6_53_1 doi: 10.1038/srep02360 – ident: e_1_2_6_65_1 doi: 10.1016/j.ejrad.2009.01.042 – ident: e_1_2_6_37_1 doi: 10.1002/adfm.201001329 – ident: e_1_2_6_6_1 doi: 10.1002/smll.201100472 – ident: e_1_2_6_30_1 doi: 10.1098/rsfs.2011.0028 – ident: e_1_2_6_62_1 doi: 10.3322/CA.2007.0003 – ident: e_1_2_6_26_1 doi: 10.1016/0014-5793(84)80208-2 – ident: e_1_2_6_47_1 doi: 10.1002/adma.201202625 – ident: e_1_2_6_56_1 doi: 10.2214/ajr.174.2.1740323 – ident: e_1_2_6_34_1 doi: 10.1002/adfm.201201663 – ident: e_1_2_6_41_1 doi: 10.1021/nl100996u – ident: e_1_2_6_8_1 doi: 10.1002/adma.201104964 – ident: e_1_2_6_52_1 doi: 10.1002/adma.201202211 – ident: e_1_2_6_38_1 doi: 10.1021/ar200061q – ident: e_1_2_6_45_1 doi: 10.1002/anie.201005075 – ident: e_1_2_6_14_1 doi: 10.1021/bc400477q – ident: e_1_2_6_31_1 doi: 10.1117/1.JBO.17.6.061202 – ident: e_1_2_6_43_1 doi: 10.1002/adma.201101295 – ident: e_1_2_6_63_1 doi: 10.1021/nl900031y – ident: e_1_2_6_46_1 doi: 10.1021/la203832h – ident: e_1_2_6_20_1 doi: 10.1161/01.ATV.0000053183.08854.A4 – ident: e_1_2_6_32_1 doi: 10.1039/C3TB21281E – ident: e_1_2_6_7_1 doi: 10.1021/nn201100m – ident: e_1_2_6_13_1 doi: 10.1021/bc500092h – ident: e_1_2_6_19_1 doi: 10.1073/pnas.0813019106 – ident: e_1_2_6_55_1 doi: 10.1002/smll.200902231 – ident: e_1_2_6_5_1 doi: 10.1002/jmri.1101 – ident: e_1_2_6_39_1 doi: 10.1016/j.biomaterials.2011.11.064 – ident: e_1_2_6_3_1 doi: 10.1016/j.biomaterials.2010.08.096 – ident: e_1_2_6_69_1 doi: 10.1002/jbm.a.20065 – ident: e_1_2_6_9_1 doi: 10.1039/C2TB00294A – ident: e_1_2_6_23_1 doi: 10.1073/pnas.0702393104 – ident: e_1_2_6_60_1 doi: 10.1039/b510982p – ident: e_1_2_6_11_1 doi: 10.1002/anie.201004867 – ident: e_1_2_6_29_1 doi: 10.1038/nbt1220 – ident: e_1_2_6_15_1 doi: 10.1002/jmri.20976 – ident: e_1_2_6_75_1 doi: 10.1016/j.biomaterials.2014.04.005 – ident: e_1_2_6_61_1 doi: 10.2217/17435889.1.2.209 – ident: e_1_2_6_2_1 doi: 10.1021/nl100996u – ident: e_1_2_6_58_1 doi: 10.2165/11539140-000000000-00000 – ident: e_1_2_6_1_1 doi: 10.1021/ar200022e – ident: e_1_2_6_17_1 doi: 10.1021/nl902715v – ident: e_1_2_6_54_1 doi: 10.1039/c3nr00627a – ident: e_1_2_6_33_1 doi: 10.1021/cr9003538 – ident: e_1_2_6_36_1 doi: 10.1002/smll.200902216 – ident: e_1_2_6_67_1 doi: 10.1007/s10103-007-0470-x – ident: e_1_2_6_12_1 doi: 10.1021/bc200151q – ident: e_1_2_6_18_1 doi: 10.1016/j.chembiol.2010.05.009 – ident: e_1_2_6_49_1 doi: 10.1039/c2cc34463g – ident: e_1_2_6_64_1 doi: 10.1006/mvre.1996.0041 – ident: e_1_2_6_22_1 doi: 10.1021/ja801482d – ident: e_1_2_6_27_1 doi: 10.1002/mrm.1910040306 – ident: e_1_2_6_48_1 doi: 10.1002/adma.201202211 – ident: e_1_2_6_16_1 doi: 10.1021/ar800245h – ident: e_1_2_6_59_1 doi: 10.2463/mrms.4.145 – ident: e_1_2_6_74_1 doi: 10.1016/j.biomaterials.2011.09.026 – ident: e_1_2_6_66_1 doi: 10.1016/j.addr.2012.06.012 – ident: e_1_2_6_68_1 doi: 10.1016/j.biomaterials.2004.09.037 – ident: e_1_2_6_72_1 doi: 10.1016/j.biomaterials.2011.05.089 – ident: e_1_2_6_42_1 doi: 10.1021/ja106855m – ident: e_1_2_6_10_1 doi: 10.1002/anie.200602471 – ident: e_1_2_6_25_1 doi: 10.1016/j.bmcl.2009.10.003 – ident: e_1_2_6_24_1 doi: 10.1002/wnan.116 – ident: e_1_2_6_51_1 doi: 10.1039/c3cs60036j – ident: e_1_2_6_70_1 doi: 10.1211/jpp.59.2.0017 – ident: e_1_2_6_76_1 doi: 10.1016/j.ejrad.2013.09.010 – ident: e_1_2_6_21_1 doi: 10.1021/ja710193c – ident: e_1_2_6_50_1 doi: 10.1021/nn301539m – ident: e_1_2_6_71_1 doi: 10.1016/j.msec.2007.10.058 – ident: e_1_2_6_73_1 doi: 10.1593/tlo.10139 – ident: e_1_2_6_28_1 doi: 10.1038/nphoton.2009.157 – ident: e_1_2_6_35_1 doi: 10.1002/adma.201104714 |
SSID | ssj0017734 |
Score | 2.568526 |
Snippet | Polypyrrole nanoparticles conjugating gadolinium chelates were successfully fabricated for dual‐modal magnetic resonance imaging (MRI) and photoacoustic... Polypyrrole nanoparticles conjugating gadolinium chelates were successfully fabricated for dual-modal magnetic resonance imaging (MRI) and photoacoustic... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1451 |
SubjectTerms | Cancer Chelates Gadolinium gadolinium complex Magnetic resonance imaging Nanoparticles photoacoustic imaging photothermal therapy polypyrrole nanoparticles Polypyrroles Therapy Tumors |
Title | PEGylated Polypyrrole Nanoparticles Conjugating Gadolinium Chelates for Dual-Modal MRI/Photoacoustic Imaging Guided Photothermal Therapy of Cancer |
URI | https://api.istex.fr/ark:/67375/WNG-4BHZMRQK-6/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201402338 https://www.proquest.com/docview/1669851204 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LjtMwFLXQzAYWvBHlMTISglWmtePEybK003aAjkqZERUby4-EKdMmo9JIlBWfwIIv5Eu4N2lDi4SQYJfE17Lj3Gsfx8fHhDyVkYhio5HdHzpPMMs9rVuJZ3XsR9JG4FQly_ckHJyJl5NgsrWLv9KHqH-4YWSU_TUGuDafmr9EQ7VLcSc5TBA4TLOgE0bCFqKica0fxaSslpVDhgQvNtmoNrZ4czf7zqi0jw38eQdybgPXcuTp3SB6U-eKcHJxWCzNof3ym5zj_7zUTXJ9DUtpu_KjW-RKkt0m17bECu-Q76Oj_moG0NTRUT5bXa4WyEyk0D3DvHtNr6OdPPtYoGhH9oH2US1qmk2LOe2cI-cO0gEi026hZz--fhvmDkocjo-bo_N8mUPPXB4sRo_n5cFJtF9MHZaFiYhS52B9Wmkg0DylHXTXxV1y1js67Qy89ZkOngXgGHlhzEzqooSngTQsMZolwslA-M5qv2WTyFpfuyDlqbY8MtqkhtlIc-P8ONBc-PfIXpZnyX1CORPw1MJM2kkRJ9K4VAsZWz-QTgNOaRBv802VXQue47kbM1VJNXOFra3q1m6Q57X9ZSX18UfLZ6WL1GZ6cYEEORmodyd9JV4M3g_Hb14pqMKTjQ8pCFtci9FZAs2pWBjGAHZ5SzQILz3iL2Wqdrc3rO8e_Eumh-QqXAclg048InvLRZE8Bki1NAdkv90dvn57UIbPT0FjHcs |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgewAeuCPK1UgInrI2jhMnj6NdL2ytStWJiRfLl2Tr1iZT1UiUJ34CD_xCfgnnJE1YkRASPMaxZcc5tr9jf_4OIa9FyMNIK2T3B9bhrmGOUq3YMSryQmFCMKqC5TsK-sf8_YlfsQnxLkypD1FvuOHIKOZrHOC4Id38pRqqbIJXycFDYOBnXSe7GNYb5fM7k1pByhWiPFgOXKR4uSeVbmOLNbfLb61Lu9jFn7dA51XoWqw93TtEV60uKScXe_lK75kvvwk6_tdn3SW3N8iU7pemdI9ci9P75NYVvcIH5Pv4oLeeAzq1dJzN15frJZITKczQ4HpvGHa0naXnOep2pKe0h4JRs3SWL2j7DGl38B5QMu3kav7j67dhZqHG4WTQHJ9lqwwm5yK2GB0sithJtJfPLNaFLxGoLiD3tJRBoFlC22ixy4fkuHswbfedTVgHxwB2DJ0gcnViw5glvtBurJUbcyt87lmjvJaJQ2M8Zf2EJcqwUCudaNeEimnrRb5i3HtEdtIsjR8TylwOqQacaSt4FAttE8VFZDxfWAVQpUGc6qdKs9E8x9Abc1mqNTOJvS3r3m6Qt3X-y1Lt44853xQ2UmdTywvkyAlffhz1JH_X_zScfDiU0IRXlRFJGLl4HKPSGLpTukEQAd5lLd4grDCJv9Qp9zvdYf305F8KvSQ3-tPhkTwajA6fkpuQ7heEOv6M7KyWefwcENZKvyjG0E8FfyBT |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LjtMwFLVgRkKw4I3o8DISglWmtePEyXJopw-GVqWaEdVsLL_CdKZNqqqRKCs-gQVfyJdwnbShRUJIsIwfsuNc2-fGx-ci9IpHLIqVdOz-0HiMaOpJ2bCelrEfcR2BURUs30HYPWPvxsF46xZ_qQ9R_XBzM6NYr90En5uk_ks0VJrE3SQHB4GCm3Ud7bOwEbvgDa1RJSBFOC_PlUPiGF5kvJFtbND6bv2dbWnfjfDnHcy5jVyLrad9B8lNp0vGydVhvlSH-stveo7_81Z30e01LsVHpSHdQ9dseh_d2lIrfIC-D487qylgU4OH2XQ1Xy0cNRHD-gyO95pfh5tZepk71Y70E-44uahJOslnuHnhSHeQDxgZt3I5_fH1Wz8z0GJ_1KsPL7JlBktzEVkM92ZF5CTcySfGteUyHUydQenTUgQBZwluOntdPERn7ePTZtdbB3XwNCDHyAtjohITWZoEXBGrJLHM8ID5Rku_oW2ktS9NkNBEahopqRJFdCSpMn4cSMr8R2gvzVL7GGFKGKRqcKUNZ7HlyiSS8Vj7ATcSgEoNeZtvKvRa8dwF3piKUquZCjfaohrtGnpTlZ-XWh9_LPm6MJGqmFxcOYYcD8THQUewt93z_ujDiYAuvNzYkIB56w5jZGphOAUJwxjQLm2wGqKFRfylTXHUaverp4N_qfQC3Ri22uJ9b3DyBN2E5KBg07GnaG-5yO0zgFdL9byYQT8BkC0fAg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PEGylated+Polypyrrole+Nanoparticles+Conjugating+Gadolinium+Chelates+for+Dual-Modal+MRI%2FPhotoacoustic+Imaging+Guided+Photothermal+Therapy+of+Cancer&rft.jtitle=Advanced+functional+materials&rft.au=Liang%2C+Xiaolong&rft.au=Li%2C+Yanyan&rft.au=Li%2C+Xiaoda&rft.au=Jing%2C+Lijia&rft.date=2015-03-04&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=25&rft.issue=9&rft.spage=1451&rft.epage=1462&rft_id=info:doi/10.1002%2Fadfm.201402338&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |