PEGylated Polypyrrole Nanoparticles Conjugating Gadolinium Chelates for Dual-Modal MRI/Photoacoustic Imaging Guided Photothermal Therapy of Cancer

Polypyrrole nanoparticles conjugating gadolinium chelates were successfully fabricated for dual‐modal magnetic resonance imaging (MRI) and photoacoustic imaging guided photothermal therapy of cancer, from a mixture of pyrrole and pyrrole‐1‐propanoic acid through a facile one‐step aqueous dispersion...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 25; no. 9; pp. 1451 - 1462
Main Authors Liang, Xiaolong, Li, Yanyan, Li, Xiaoda, Jing, Lijia, Deng, Zijian, Yue, Xiuli, Li, Changhui, Dai, Zhifei
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 04.03.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Polypyrrole nanoparticles conjugating gadolinium chelates were successfully fabricated for dual‐modal magnetic resonance imaging (MRI) and photoacoustic imaging guided photothermal therapy of cancer, from a mixture of pyrrole and pyrrole‐1‐propanoic acid through a facile one‐step aqueous dispersion polymerization, followed by covalent attachment of gadolinium chelate, using polyethylene glycol as a linker. The obtained PEGylated poly­pyrrole nanoparticles conjugating gadolinium chelates (Gd‐PEG‐PPy NPs), sized around around 70 nm, exhibited a high T1 relaxivity coefficient of 10.61 L mm−1 s−1, more than twice as high as that of the relating free Gd3+ complex (4.2 L mm–1 s−1). After 24 h intravenous injection of Gd‐PEG‐PPy NPs, the tumor sites exhibited obvious enhancement in both T1‐weighted MRI intensity and photoacoustic signal compared with that before injection, indicating the efficient accumulation of Gd‐PEG‐PPy NPs due to the introduction of the PEG layer onto the particle surface. In addition, tumor growth could be effectively inhibited after treatment with Gd‐PEG‐PPy NPs in combination with near‐infrared laser irradiation. The passive targeting and high MRI/photo­acoustic contrast capability of Gd‐PEG‐PPy NPs are quite favorable for precise cancer diagnosing and locating the tumor site to guide the external laser irradiation for photothermal ablation of tumors without damaging the surrounding healthy tissues. Therefore, Gd‐PEG‐PPy NPs may assist in better monitoring the therapeutic process, and contribute to developing more effective “personalized medicine,” showing great potential for cancer diagnosis and therapy. A theranostic agent with excellent physiological stability, strong NIR absorption, and high magnetization is fabricated from PEGylated polypyrrole nanoparticles conjugating gadolinium chelates (Gd‐PEG‐PPy NPs). The passive targeting and high MRI/photoacoustic contrast capability of Gd‐PEG‐PPy NPs are favorable for precise cancer diagnosing and locating tumor sites to guide external laser irradiation for photothermal ablation of tumors without damaging surrounding healthy tissue.
AbstractList Polypyrrole nanoparticles conjugating gadolinium chelates were successfully fabricated for dual-modal magnetic resonance imaging (MRI) and photoacoustic imaging guided photothermal therapy of cancer, from a mixture of pyrrole and pyrrole-1-propanoic acid through a facile one-step aqueous dispersion polymerization, followed by covalent attachment of gadolinium chelate, using polyethylene glycol as a linker. The obtained PEGylated poly-pyrrole nanoparticles conjugating gadolinium chelates (Gd-PEG-PPy NPs), sized around around 70 nm, exhibited a high T sub(1) relaxivity coefficient of 10.61 L mm super(-1) s super(-1), more than twice as high as that of the relating free Gd super(3+) complex (4.2 L mm super(-1) s super(-1)). After 24 h intravenous injection of Gd-PEG-PPy NPs, the tumor sites exhibited obvious enhancement in both T sub(1)-weighted MRI intensity and photoacoustic signal compared with that before injection, indicating the efficient accumulation of Gd-PEG-PPy NPs due to the introduction of the PEG layer onto the particle surface. In addition, tumor growth could be effectively inhibited after treatment with Gd-PEG-PPy NPs in combination with near-infrared laser irradiation. The passive targeting and high MRI/photo-acoustic contrast capability of Gd-PEG-PPy NPs are quite favorable for precise cancer diagnosing and locating the tumor site to guide the external laser irradiation for photothermal ablation of tumors without damaging the surrounding healthy tissues. Therefore, Gd-PEG-PPy NPs may assist in better monitoring the therapeutic process, and contribute to developing more effective "personalized medicine," showing great potential for cancer diagnosis and therapy. A theranostic agent with excellent physiological stability, strong NIR absorption, and high magnetization is fabricated from PEGylated polypyrrole nanoparticles conjugating gadolinium chelates (Gd-PEG-PPy NPs). The passive targeting and high MRI/photoacoustic contrast capability of Gd-PEG-PPy NPs are favorable for precise cancer diagnosing and locating tumor sites to guide external laser irradiation for photothermal ablation of tumors without damaging surrounding healthy tissue.
Polypyrrole nanoparticles conjugating gadolinium chelates were successfully fabricated for dual‐modal magnetic resonance imaging (MRI) and photoacoustic imaging guided photothermal therapy of cancer, from a mixture of pyrrole and pyrrole‐1‐propanoic acid through a facile one‐step aqueous dispersion polymerization, followed by covalent attachment of gadolinium chelate, using polyethylene glycol as a linker. The obtained PEGylated poly­pyrrole nanoparticles conjugating gadolinium chelates (Gd‐PEG‐PPy NPs), sized around around 70 nm, exhibited a high T1 relaxivity coefficient of 10.61 L mm−1 s−1, more than twice as high as that of the relating free Gd3+ complex (4.2 L mm–1 s−1). After 24 h intravenous injection of Gd‐PEG‐PPy NPs, the tumor sites exhibited obvious enhancement in both T1‐weighted MRI intensity and photoacoustic signal compared with that before injection, indicating the efficient accumulation of Gd‐PEG‐PPy NPs due to the introduction of the PEG layer onto the particle surface. In addition, tumor growth could be effectively inhibited after treatment with Gd‐PEG‐PPy NPs in combination with near‐infrared laser irradiation. The passive targeting and high MRI/photo­acoustic contrast capability of Gd‐PEG‐PPy NPs are quite favorable for precise cancer diagnosing and locating the tumor site to guide the external laser irradiation for photothermal ablation of tumors without damaging the surrounding healthy tissues. Therefore, Gd‐PEG‐PPy NPs may assist in better monitoring the therapeutic process, and contribute to developing more effective “personalized medicine,” showing great potential for cancer diagnosis and therapy. A theranostic agent with excellent physiological stability, strong NIR absorption, and high magnetization is fabricated from PEGylated polypyrrole nanoparticles conjugating gadolinium chelates (Gd‐PEG‐PPy NPs). The passive targeting and high MRI/photoacoustic contrast capability of Gd‐PEG‐PPy NPs are favorable for precise cancer diagnosing and locating tumor sites to guide external laser irradiation for photothermal ablation of tumors without damaging surrounding healthy tissue.
Polypyrrole nanoparticles conjugating gadolinium chelates were successfully fabricated for dual‐modal magnetic resonance imaging (MRI) and photoacoustic imaging guided photothermal therapy of cancer, from a mixture of pyrrole and pyrrole‐1‐propanoic acid through a facile one‐step aqueous dispersion polymerization, followed by covalent attachment of gadolinium chelate, using polyethylene glycol as a linker. The obtained PEGylated poly­pyrrole nanoparticles conjugating gadolinium chelates (Gd‐PEG‐PPy NPs), sized around around 70 nm, exhibited a high T 1 relaxivity coefficient of 10.61 L m m −1 s −1 , more than twice as high as that of the relating free Gd 3+ complex (4.2 L m m –1 s −1 ). After 24 h intravenous injection of Gd‐PEG‐PPy NPs, the tumor sites exhibited obvious enhancement in both T 1 ‐weighted MRI intensity and photoacoustic signal compared with that before injection, indicating the efficient accumulation of Gd‐PEG‐PPy NPs due to the introduction of the PEG layer onto the particle surface. In addition, tumor growth could be effectively inhibited after treatment with Gd‐PEG‐PPy NPs in combination with near‐infrared laser irradiation. The passive targeting and high MRI/photo­acoustic contrast capability of Gd‐PEG‐PPy NPs are quite favorable for precise cancer diagnosing and locating the tumor site to guide the external laser irradiation for photothermal ablation of tumors without damaging the surrounding healthy tissues. Therefore, Gd‐PEG‐PPy NPs may assist in better monitoring the therapeutic process, and contribute to developing more effective “personalized medicine,” showing great potential for cancer diagnosis and therapy.
Author Jing, Lijia
Dai, Zhifei
Deng, Zijian
Li, Yanyan
Li, Xiaoda
Yue, Xiuli
Li, Changhui
Liang, Xiaolong
Author_xml – sequence: 1
  givenname: Xiaolong
  surname: Liang
  fullname: Liang, Xiaolong
  email: xiaolong.liang@moon.ibp.ac.cn
  organization: Department of Biomedical Engneering, College of Engineering, Peking University, 100871, Beijing, P.R. China
– sequence: 2
  givenname: Yanyan
  surname: Li
  fullname: Li, Yanyan
  organization: Nanomedicine and Biosensor Laboratory, School of Life Science and Technology, Harbin Institute of Technology, 150080, Harbin, P.R. China
– sequence: 3
  givenname: Xiaoda
  surname: Li
  fullname: Li, Xiaoda
  organization: Nanomedicine and Biosensor Laboratory, School of Life Science and Technology, Harbin Institute of Technology, 150080, Harbin, P.R. China
– sequence: 4
  givenname: Lijia
  surname: Jing
  fullname: Jing, Lijia
  organization: Nanomedicine and Biosensor Laboratory, School of Life Science and Technology, Harbin Institute of Technology, 150080, Harbin, P.R. China
– sequence: 5
  givenname: Zijian
  surname: Deng
  fullname: Deng, Zijian
  organization: Department of Biomedical Engneering, College of Engineering, Peking University, 100871, Beijing, P.R. China
– sequence: 6
  givenname: Xiuli
  surname: Yue
  fullname: Yue, Xiuli
  organization: Nanomedicine and Biosensor Laboratory, School of Life Science and Technology, Harbin Institute of Technology, 150080, Harbin, P.R. China
– sequence: 7
  givenname: Changhui
  surname: Li
  fullname: Li, Changhui
  organization: Department of Biomedical Engneering, College of Engineering, Peking University, 100871, Beijing, P.R. China
– sequence: 8
  givenname: Zhifei
  surname: Dai
  fullname: Dai, Zhifei
  email: xiaolong.liang@moon.ibp.ac.cn
  organization: Department of Biomedical Engneering, College of Engineering, Peking University, 100871, Beijing, P.R. China
BookMark eNqFkEtP20AUha2KSgXabdez7MZhHn5lSQ2ECEJTBGrVzeh6HsnQscfM2Gr9N_jF2ARFVaWqq3ule75zrs5RdNC4RkXRR4JnBGN6AlLXM4pJgiljxZvokGQkixmmxcF-J9_fRUchPGBM8pwlh9HT-nwxWOiURGtnh3bw3lmFbqBxLfjOCKsCKl3z0G-gM80GLUA6axrT16jcqokMSDuPznqw8cpJsGh1uzxZb13nQLg-jB5oWcPmBe6NnJKmY7dVvh7Vd-OEdkBOoxIaofz76K0GG9SH13kc3V-c35WX8fWXxbI8vY5FmmVFnM1JpWWhqE7ziqgKiEpkniZMCmBYqEIIBjLVVIOgRQWVrogogFaSzVOgCTuOPu18W-8eexU6XpsglLXQqPFvTrJsXqSE4kk620mFdyF4pXnrTQ1-4ATzqXw-lc_35Y9A8hcgTDcW6JrOg7H_xuY77JexavhPCD89u1j9ycY71oRO_d6z4H_yLGd5yr_dLHjy-fLH6vbrFc_YM9Jsr1M
CitedBy_id crossref_primary_10_1021_acsami_5b09274
crossref_primary_10_1039_D2BM00692H
crossref_primary_10_1002_adfm_201603758
crossref_primary_10_1016_j_jconrel_2019_08_035
crossref_primary_10_2174_0929867324666170921103152
crossref_primary_10_1021_acsami_8b09670
crossref_primary_10_1039_C6BM00600K
crossref_primary_10_1021_acsabm_8b00635
crossref_primary_10_1021_acsanm_0c03346
crossref_primary_10_1016_j_biomaterials_2017_08_004
crossref_primary_10_1002_adhm_201701201
crossref_primary_10_1039_C7SC05115H
crossref_primary_10_1021_acsami_8b12394
crossref_primary_10_1039_C5TB01314C
crossref_primary_10_1039_C9BM01017C
crossref_primary_10_1016_j_biomaterials_2019_05_024
crossref_primary_10_1088_2040_8986_ab3b1a
crossref_primary_10_1002_adhm_201600865
crossref_primary_10_1002_cnma_201700278
crossref_primary_10_1016_j_biomaterials_2018_07_042
crossref_primary_10_1002_adhm_202001300
crossref_primary_10_1039_C5TB01827G
crossref_primary_10_1002_cbic_201800818
crossref_primary_10_1016_j_colsurfb_2021_111630
crossref_primary_10_1016_j_cej_2025_161885
crossref_primary_10_1080_17435390_2017_1353155
crossref_primary_10_1002_ange_202004181
crossref_primary_10_1016_j_jconrel_2020_08_064
crossref_primary_10_1021_acsbiomaterials_8b00176
crossref_primary_10_1002_adfm_201601478
crossref_primary_10_1002_adfm_201603776
crossref_primary_10_1039_D1TB00358E
crossref_primary_10_1039_C6NR09046J
crossref_primary_10_1039_C6TB02740G
crossref_primary_10_1002_smll_201601029
crossref_primary_10_1002_ange_201707137
crossref_primary_10_1021_acsabm_1c00018
crossref_primary_10_1016_j_biomaterials_2019_119443
crossref_primary_10_3389_fbioe_2021_746815
crossref_primary_10_1002_advs_201700085
crossref_primary_10_1016_j_msec_2021_112143
crossref_primary_10_1002_smll_201803101
crossref_primary_10_1016_j_biomaterials_2017_10_043
crossref_primary_10_1021_acsapm_0c00680
crossref_primary_10_1021_acsami_7b14125
crossref_primary_10_1002_anie_201707137
crossref_primary_10_1016_j_carbpol_2020_116224
crossref_primary_10_1002_adfm_201706710
crossref_primary_10_1039_C7BM01210A
crossref_primary_10_1021_acsami_7b04488
crossref_primary_10_1021_acsami_9b22654
crossref_primary_10_1002_adfm_201706398
crossref_primary_10_1039_C8BM01672K
crossref_primary_10_1002_cplu_201800430
crossref_primary_10_1016_j_jcis_2019_04_022
crossref_primary_10_1039_C8NR01215F
crossref_primary_10_1002_adfm_201801787
crossref_primary_10_1002_marc_201900263
crossref_primary_10_1002_smll_201602896
crossref_primary_10_1021_acsami_7b17323
crossref_primary_10_1039_C5CS00499C
crossref_primary_10_1002_adtp_201800051
crossref_primary_10_3389_fbioe_2021_721617
crossref_primary_10_1021_acsabm_0c00702
crossref_primary_10_3390_nano11092457
crossref_primary_10_1021_acsami_8b21483
crossref_primary_10_1002_wnan_1510
crossref_primary_10_1002_VIW_20200176
crossref_primary_10_1016_j_cis_2017_02_009
crossref_primary_10_1021_acsami_6b05495
crossref_primary_10_1039_D4TB01825G
crossref_primary_10_1007_s11051_018_4157_y
crossref_primary_10_1002_adhm_201900672
crossref_primary_10_1016_j_ejpb_2017_11_007
crossref_primary_10_1016_j_nano_2020_102219
crossref_primary_10_1016_j_scib_2018_12_025
crossref_primary_10_1016_j_micromeso_2021_111431
crossref_primary_10_1039_D1NR05508A
crossref_primary_10_1039_C9NR02955A
crossref_primary_10_1039_C8BM01444B
crossref_primary_10_1002_ppsc_202000044
crossref_primary_10_1002_smll_201900309
crossref_primary_10_1016_j_synthmet_2021_116869
crossref_primary_10_1016_j_cclet_2018_10_017
crossref_primary_10_1021_acsami_6b16486
crossref_primary_10_1039_C5RA24775F
crossref_primary_10_1039_D0NR09058A
crossref_primary_10_1039_C6NR09042G
crossref_primary_10_1002_adfm_201601703
crossref_primary_10_1016_j_biomaterials_2019_119252
crossref_primary_10_1021_acsbiomaterials_8b01618
crossref_primary_10_1016_j_colsurfb_2018_06_014
crossref_primary_10_1021_acsnano_5b04606
crossref_primary_10_1039_C8CS00618K
crossref_primary_10_1021_acsami_7b05463
crossref_primary_10_1039_D0TA03347B
crossref_primary_10_1002_advs_201903341
crossref_primary_10_1039_D0BM01863E
crossref_primary_10_1021_acsnano_7b03062
crossref_primary_10_2174_2210681210666200108125840
crossref_primary_10_1039_C9SC02674F
crossref_primary_10_1039_D4OB00600C
crossref_primary_10_1002_adma_201602197
crossref_primary_10_1039_D2GC04877A
crossref_primary_10_1039_C8NR08095J
crossref_primary_10_1073_pnas_1701976114
crossref_primary_10_1016_j_biomaterials_2018_05_033
crossref_primary_10_1039_C7NJ03078A
crossref_primary_10_1021_acs_chemrev_3c00705
crossref_primary_10_1002_adfm_201802159
crossref_primary_10_1002_adfm_202005029
crossref_primary_10_1002_anie_202004181
crossref_primary_10_2217_nnm_2016_0438
crossref_primary_10_1039_C6NR03336A
crossref_primary_10_1021_acsabm_9b00435
crossref_primary_10_1016_j_biomaterials_2018_01_026
crossref_primary_10_1021_jacs_8b13659
crossref_primary_10_1039_C6BM00076B
crossref_primary_10_1002_adfm_201800310
crossref_primary_10_1039_C7BM00409E
crossref_primary_10_1002_adfm_201807859
crossref_primary_10_1021_acsami_8b14968
crossref_primary_10_1021_acsami_6b04639
crossref_primary_10_1016_j_jconrel_2022_09_016
crossref_primary_10_1002_adfm_201605094
crossref_primary_10_1039_C7SC05130A
crossref_primary_10_1039_C9CC02148E
crossref_primary_10_1016_j_ccr_2017_09_002
crossref_primary_10_1002_ppsc_201800208
crossref_primary_10_1002_smll_202307078
crossref_primary_10_1016_j_addr_2017_04_007
crossref_primary_10_1039_C9TB02766A
crossref_primary_10_1021_acsami_6b00251
crossref_primary_10_1007_s11051_018_4418_9
crossref_primary_10_1002_adhm_201900661
crossref_primary_10_3390_polym8100373
crossref_primary_10_1002_app_49239
crossref_primary_10_1111_php_12956
crossref_primary_10_1021_acsapm_0c00704
crossref_primary_10_2217_nnm_2018_0106
crossref_primary_10_1016_j_biomaterials_2016_08_022
crossref_primary_10_1002_ange_201916147
crossref_primary_10_1016_j_cej_2021_129769
crossref_primary_10_3390_nano12213889
crossref_primary_10_1002_adhm_201700073
crossref_primary_10_1039_C9TB02254F
crossref_primary_10_1039_D0BM00128G
crossref_primary_10_1002_ange_201510597
crossref_primary_10_1021_acsomega_6b00514
crossref_primary_10_1002_adhm_202001042
crossref_primary_10_1002_adfm_202008406
crossref_primary_10_1038_s41467_018_06499_1
crossref_primary_10_1155_2016_5810952
crossref_primary_10_1002_anie_201916147
crossref_primary_10_1016_j_biomaterials_2016_10_028
crossref_primary_10_1021_acsami_1c25179
crossref_primary_10_1039_C9NJ00263D
crossref_primary_10_1016_j_xphs_2018_10_042
crossref_primary_10_1021_acsami_5b07856
crossref_primary_10_1021_acsnano_7b03226
crossref_primary_10_1002_anie_201510597
crossref_primary_10_3390_nano11010116
crossref_primary_10_1039_C8CS00001H
crossref_primary_10_1039_C8NR08771G
crossref_primary_10_1039_C5NR06840A
crossref_primary_10_1007_s12274_017_1871_1
crossref_primary_10_1002_advs_201800581
crossref_primary_10_1016_j_jconrel_2016_01_004
crossref_primary_10_1039_C6TB02249A
crossref_primary_10_1039_C7NR03086J
crossref_primary_10_2217_nnm_2021_0241
crossref_primary_10_1002_adma_202000013
crossref_primary_10_1039_C6NR00267F
crossref_primary_10_1021_acs_langmuir_9b03001
crossref_primary_10_1039_C7TB02648J
crossref_primary_10_1002_adma_201907855
crossref_primary_10_1021_acsami_5b09585
crossref_primary_10_1016_j_carbpol_2019_03_043
crossref_primary_10_1039_C6TB03218D
crossref_primary_10_1016_j_biomaterials_2015_09_018
crossref_primary_10_1002_adfm_202401208
crossref_primary_10_1016_j_ijbiomac_2022_02_095
crossref_primary_10_1016_j_polymer_2018_12_020
crossref_primary_10_1021_acs_langmuir_9b02824
crossref_primary_10_1016_j_biomaterials_2021_120915
crossref_primary_10_1016_j_talanta_2024_126528
crossref_primary_10_1002_adhm_202200183
crossref_primary_10_1002_adma_201604157
crossref_primary_10_1186_s11671_018_2787_8
crossref_primary_10_1007_s10118_019_2193_4
crossref_primary_10_1002_adfm_201504185
crossref_primary_10_1039_C9BM01248F
crossref_primary_10_1016_j_carbon_2018_04_058
crossref_primary_10_1021_acsbiomaterials_7b00480
crossref_primary_10_1021_acs_langmuir_9b01387
crossref_primary_10_1039_C9TB01509D
crossref_primary_10_1002_adhm_201601419
crossref_primary_10_1186_s12951_021_01080_3
crossref_primary_10_1002_slct_202001234
crossref_primary_10_1002_smll_201601050
crossref_primary_10_1021_acsbiomaterials_1c01389
crossref_primary_10_1002_adfm_202102832
crossref_primary_10_1002_adfm_201807960
crossref_primary_10_1039_D0RA03069D
crossref_primary_10_1039_C9NR05236D
crossref_primary_10_1002_sstr_202200220
crossref_primary_10_1002_adtp_201900076
Cites_doi 10.1016/j.biomaterials.2010.08.096
10.1039/c3nr00541k
10.1021/cr010379n
10.1097/01.rli.0000251565.61487.1a
10.1038/srep02360
10.1016/j.ejrad.2009.01.042
10.1002/adfm.201001329
10.1002/smll.201100472
10.1098/rsfs.2011.0028
10.3322/CA.2007.0003
10.1016/0014-5793(84)80208-2
10.1002/adma.201202625
10.2214/ajr.174.2.1740323
10.1002/adfm.201201663
10.1021/nl100996u
10.1002/adma.201104964
10.1002/adma.201202211
10.1021/ar200061q
10.1002/anie.201005075
10.1021/bc400477q
10.1117/1.JBO.17.6.061202
10.1002/adma.201101295
10.1021/nl900031y
10.1021/la203832h
10.1161/01.ATV.0000053183.08854.A4
10.1039/C3TB21281E
10.1021/nn201100m
10.1021/bc500092h
10.1073/pnas.0813019106
10.1002/smll.200902231
10.1002/jmri.1101
10.1016/j.biomaterials.2011.11.064
10.1002/jbm.a.20065
10.1039/C2TB00294A
10.1073/pnas.0702393104
10.1039/b510982p
10.1002/anie.201004867
10.1038/nbt1220
10.1002/jmri.20976
10.1016/j.biomaterials.2014.04.005
10.2217/17435889.1.2.209
10.2165/11539140-000000000-00000
10.1021/ar200022e
10.1021/nl902715v
10.1039/c3nr00627a
10.1021/cr9003538
10.1002/smll.200902216
10.1007/s10103-007-0470-x
10.1021/bc200151q
10.1016/j.chembiol.2010.05.009
10.1039/c2cc34463g
10.1006/mvre.1996.0041
10.1021/ja801482d
10.1002/mrm.1910040306
10.1021/ar800245h
10.2463/mrms.4.145
10.1016/j.biomaterials.2011.09.026
10.1016/j.addr.2012.06.012
10.1016/j.biomaterials.2004.09.037
10.1016/j.biomaterials.2011.05.089
10.1021/ja106855m
10.1002/anie.200602471
10.1016/j.bmcl.2009.10.003
10.1002/wnan.116
10.1039/c3cs60036j
10.1211/jpp.59.2.0017
10.1016/j.ejrad.2013.09.010
10.1021/ja710193c
10.1021/nn301539m
10.1016/j.msec.2007.10.058
10.1593/tlo.10139
10.1038/nphoton.2009.157
10.1002/adma.201104714
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
7SC
7SP
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOI 10.1002/adfm.201402338
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage 1462
ExternalDocumentID 10_1002_adfm_201402338
ADFM201402338
ark_67375_WNG_4BHZMRQK_6
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation for Distinguished Young Scholars
  funderid: 81225011
– fundername: China Postdoctoral Science Foundation
  funderid: 2013M530014
– fundername: State Key Program of National Natural Science of China
  funderid: 81230036
– fundername: National Natural Science Foundation of China
  funderid: 81371580; 81201186
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SC
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c5668-691bfd8e2f57b1eba1e4d7543dca30ce8cc3ad5f2fac28babfb1c8a2bd395a243
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 11 00:31:10 EDT 2025
Tue Jul 01 01:30:17 EDT 2025
Thu Apr 24 22:54:55 EDT 2025
Wed Jan 22 16:35:19 EST 2025
Wed Oct 30 09:52:58 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5668-691bfd8e2f57b1eba1e4d7543dca30ce8cc3ad5f2fac28babfb1c8a2bd395a243
Notes State Key Program of National Natural Science of China - No. 81230036
istex:20975D9BD310DC80D16A5D02956BB029519BFBCA
ark:/67375/WNG-4BHZMRQK-6
China Postdoctoral Science Foundation - No. 2013M530014
National Natural Science Foundation of China - No. 81371580; No. 81201186
ArticleID:ADFM201402338
National Natural Science Foundation for Distinguished Young Scholars - No. 81225011
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1669851204
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_1669851204
crossref_primary_10_1002_adfm_201402338
crossref_citationtrail_10_1002_adfm_201402338
wiley_primary_10_1002_adfm_201402338_ADFM201402338
istex_primary_ark_67375_WNG_4BHZMRQK_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 4, 2015
PublicationDateYYYYMMDD 2015-03-04
PublicationDate_xml – month: 03
  year: 2015
  text: March 4, 2015
  day: 04
PublicationDecade 2010
PublicationTitle Advanced functional materials
PublicationTitleAlternate Adv. Funct. Mater
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References M. Chen, X. Fang, S. Tang, N. Zheng, Chem. Commun. 2012, 48. 8934.
S. Jalota, S. B. Bhaduri, A. C. Tas, Mater. Sci. Eng. C 2008, 28, 129.
S. Wang, Z. Dai, H. Ke, E. Qu, X. Qi, K. Zhang, J. Wang, Eur. J. Radiol. 2014, 83, 117.
J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, Y. Xia, Small 2010, 6, 811.
A. Vogel, V. Venugopalan, Chem. Rev. 2003, 103, 577.
J. Chen, M. Yang, Q. Zhang, E. C. Cho, C. M. Cobley, C. Kim, C. Glaus, L. V. Wang, M. J. Welch, Y. Xia, Adv. Funct. Mater. 2010, 20, 3684.
H. Chong, C. Nie, C. Zhu, Q. Yang, L. Liu, F. Lv, S. Wang, Langmuir 2012, 28, 2091.
Y. Ling, K. Wei, Y. Luo, X. Gao, S. Zhong, Biomaterials 2011, 32, 7139.
X. Li, X. Liang, X. Yue, J. Wang, C. Li, Z. Deng, L. Jing, L. Lin, E. Qu, S. Wang, C. Wu, H. Wu, Z. Dai, J. Mater. Chem. B 2014, 2, 217.
H. F. Zhang, K. Maslov, G. Stoica, L. V. Wang, Nat. Biotechnol. 2006, 24, 848.
Z. Zhang, L. Wang, J. Wang, X. Jiang, X. Li, Z. Hu, Y. Ji, X. Wu, C. Chen, Adv. Mater. 2012, 24, 1418.
Y. Xia, W. Li, C. M. Cobley, J. Chen, X. Xia, Q. Zhang, M. E. Yang, C. Cho, P. K. Brown, Acc. Chem. Res. 2011, 44, 914.
J. L. Major, T. J. Meade, Acc. Chem. Res. 2009, 42, 893.
A. Ramanaviciene, A. Kausaite, S. Tautkus, A. Ramanavicius, J. Pharm. Pharmacol. 2007, 59, 311.
E. Kim, K. Lee, Y.-M. Huh, S. Haam, J. Mater. Chem. B 2013, 1, 729.
J. A. Feshitan, F. Vlachos, S. R. Sirsi, E. E. Konofagou, M. A. Borden, Biomaterials 2012, 3, 247.
C. W. Chen, J. S. Cohen, C. E. Myers, M. Sohn, FEBS Lett. 1984, 168, 70.
K. Yang, L. Hu, X. Ma, S. Ye, L. Cheng, X. Shi, C. Li, Y. Li, Z. Liu, Adv. Mater. 2012, 24, 1868.
P. Beard, Interface Focus 2011, 1, 602.
U. I. Tromsdorf, O. T. Bruns, S. C. Salmen, U. Beisiegel, H. Weller, Nano Lett. 2009, 9, 4434.
Y. Ma, X. Liang, S. Tong, G. Bao, Q. Ren, Z. Dai, Adv. Funct. Mater. 2013, 23, 815.
J. Kim, S. Park, J. E. Lee, S. M. Jin, J. H. Lee, I. S. Lee, I. Yang, J. S. Kim, S. K. Kim, M. H. Cho, T. Hyeon, Angew. Chem. Int. Ed. 2006, 45, 7754.
L. H. Wang, Nat. Photonics 2009, 3, 503.
K. Yang, J. Wan, S. Zhang, B. Tian, Y. Zhang, Z. Liu, Biomaterials 2012, 33, 2206.
M. Zhou, R. Zhang, M. Huang, W. Lu, S. Song, M. P. Melancon, M. Tian, D. Liang, C. Li, J. Am. Chem. Soc. 2010, 132, 15351.
Z. Zha, S. Wang, S. Zhang, E. Qu, H. Ke, J. Wang, Z. Dai, Nanoscale 2013, 5, 3216.
D. Pan, G. M. Lanza, S. A. Wickline, S. D. Caruthers, Eur. J. Radiol. 2009, 70, 274.
S. M. Lee, Y. Song, B. J. Hong, K. W MacRenaris, D. J. Mastarone, T. V. O'Halloran, T. J. Meade, S. T. Nguyen, Angew. Chem. Int. Ed. 2010, 17, 9960.
G. Stephen, G. H. Worthley, V. Fuster, Z. A. Fayad, M. Shinnar, L. A. Minkoff, Arterioscler. Thromb. Vasc. Biol. 2003, 23, 346.
X. Huang, P. K. Jain, I. H. El-Sayed, M. A. El-Sayed, Lasers Med. Sci. 2008, 23, 217.
Z. Zha, X. Yue, Q. Ren, Z. Dai, Adv. Mater. 2013, 25, 777.
J.-Y. Hong, H. Yoon, J. Jang, Small 2010, 6, 679.
P. Bourrinet, E. Martel, A. I. El Amrani, P. Champeroux, S. Richard, N. Fauchou, F. Le Coz, M. Drici, B. Bonnemain, S. Gaillard, Invest. Radiol. 2007, 42, 63.
K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, Z. Liu, Nano Lett. 2010, 10, 3318.
X. A. Zhang, K. S. Lovejoy, A. Jasanoff, S. J. Lippard, Proc. Natl Acad. Sci. U.S.A. 2007, 104, 10780.
V. U. Fiedler, H.-J. Schwarzmaier, F. Eickmeyer, F. P. Müller, C. Schoepp, P. Verreet, J . Magn. Reson. Imaging 2001, 13, 729.
J. Yang, J. Choi, D. Bang, E. Kim, E. K. Lim, H. Park, J. S. Suh, K. Lee, K. H. Yoo, E. K. Kim, Y. M. Huh, S. Haam, Angew. Chem. Int. Ed. 2011, 50, 441.
Z. Zhang, R. He, K. Yan, Q. N. Guo, Y. G. Lu, X. X. Wang, H. Lei, Z. Y. Li, Bioorg. Med. Chem. Lett. 2009, 19, 6675.
B. Cox, J. G. Laufer, S. R. Arridge, P. C. Beard, J. Biomed. Opt. 2012, 17, 061202.
M. K. Yu, D. Kim, I. H. Lee, J. S. So, Y. Y. Jeong, S. Jon, Small 2011, 7, 2241.
L. Jing, X. Liang, Z. Deng, S. Feng, X. Li, M. Huang, C. Li, Z. Dai, Biomaterials 2014, 35, 5814.
X. Liu, H. Tao, K. Yang, S. Zhang, S. T. Lee, Z. Liu, Biomaterials 2011, 32, 144.
C. L. Peng, Y. H. Shih, P. C. Lee, T. M. Hsieh, T. Y. Luo, M. J. Shieh, ACS Nano 2011, 5, 5594.
J. H. Ryu, H. Koo, I. C. Sun, S. H. Yuk, K. Choi, K. Kim, I. C. Kwon, Adv. Drug Delivery Rev. 2012, 64, 1447.
C. Guo, Y. Jin, Z. Dai, Bioconjugate Chem. 2014, 25, 840.
Z. Zha, Z. Deng, Y. Li, C. Li, J. Wang, S. Wang, E. Qu, Z. Dai, Nanoscale 2013, 5, 4462.
M. N. Rhyner, A. M. Smith, X. H. Gao, H. Mao, L. L. Yang, S. M. Nie, Nanomedicine 2006, 1, 209.
P. Caravan. Chem. Soc. Rev. 2006, 35, 512.
L. S. Boucharda, M. S. Anwar, G. L. Liu, B. Hann, Z. H. Xie, J. W. Gray, Proc. Natl Acad. Sci. U.S.A. 2008, 106, 4085.
Z. Zha, X. Yue, Q. Ren, Z. Dai, Adv. Mater. 2012, 25, 777.
D. Pan, S. D. Caruthers, G. Hu, A. Senpan, M. J. Scott, P. J. Gaffney, S. A. Wickline, G. M. Lanza, J. Am. Chem. Soc. 2008, 130, 9186.
Q. Tian, M. Tang, Y. Sun, R. Zou, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, J. Hu, Adv. Mater. 2011, 23, 3542.
T. Lee, X. Zhang, S. Dhar, H. Faas, S. J. Lippard, A. Jasanoff, Chem. Biol. 2010, 17, 665.
L. Cheng, K. Yang, Q. Chen, Z. Liu, ACS Nano. 2012, 6, 5605.
L. Feng, C. Zhu, H. Yuan, L. Liu, F. Lv, S. Wang, Chem. Soc. Rev. 2013, 42, 6620.
M. Das, R. Jain, A. K. Agrawal, K. Thanki, S. Jain, Bioconjugate Chem. 2014, 25, 501.
S. D. Perrault, C. Walkey, T. Jennings, H. C. Fischer, W. C. Chan, Nano Lett. 2009, 9, 1909.
M. P. Melancon, M. Zhou, C. Li, Acc. Chem. Res. 2011, 44, 947.
Z. Zha, J. Wang, E. Qu, S. Zhang, Y. Jin, S. Wang, Z. Dai, Sci. Rep. 2013, 3, 2360.
M. Sasaki, E. Shibata, Y. Kanbara, S. Ehara. Magn. Reson. Med. Sci. 2005, 4, 145.
X. Wang, L. Yang, Z. G. Chen, D. M. Shin, Ca-Cancer J. Clin. 2008, 58, 97.
K. Yang, H. Xu, L. Cheng, C. Sun, J. Wang, Z. Liu, Adv. Mater. 2012, 24, 5586.
S. N. Goldberg, G. S. Gazelle, P. R. Mueller, AJR Am. J. Roentgenol 2000, 174, 323.
H. Sakuma, J. Magn. Reson. Imaging 2007, 26, 3.
D. Pan, S. D. Caruthers, A. Senpan, A. H. Schmieder, S. A. Wickline, G. M. Lanza, WIRES Nanomed. Nanobi. 2011, 3, 162.
P. A. Netti, S. Roberge, Y. Boucher, L. T. Baxter, R. K. Jain, Microvasc. Res. 1996, 52, 27.
K. M. L. Taylor, J. S. Kim, W. J. Rieter, H. An, W. L. Lin, W. B. Lin, J. Am. Chem. Soc. 2008, 130, 2154.
A. Louie, Chem. Rev. 2010, 110, 3146.
S. S. Kelkar, T. M. Reineke, Bioconjugate Chem. 2011, 22, 1879.
L. Sampath, S. Kwon, M. A. Hall, R. E. Price, E. M. Sevick-Muraca, Transl. Oncol. 2010, 3, 307.
X. Wang, X. Gu, C. Yuan, S. Chen, P. Zhang, T. Zhang, J. Yao, F. Chen, G. Chen, J. Biomed. Mater. Res. A 2004, 68, 411.
T. Ishiguchi, S. Takahashi, Drugs R&D. 2010, 10, 133.
P. M. George, A. W. Lyckman, D. A. Lavan, A. Hegde, Y. Leung, R. Avasare, C. Testa, P. M. Alexander, R. Langer, M. Sur, Biomaterials 2005, 26, 3511.
S. H. Koenig, R. D. Brown 3rd, M. Spiller, Magn. Reson. Med. 1987, 4, 252.
2007; 104
2010; 10
2013; 3
2013; 25
2013; 1
2009; 42
1984; 168
2006; 35
2010; 17
2013; 23
1987; 4
2004; 68
2014; 25
2008; 106
2000; 174
2012; 17
2005; 26
2013; 5
2010; 20
2014; 2
2006; 24
2008; 28
2010; 110
2011; 22
2008; 23
2011; 23
2012; 28
2012; 25
2010; 3
2012; 24
2009; 19
2001; 13
2010; 6
2012; 64
2007; 26
2011; 1
2013; 42
2008; 58
1996; 52
2011; 32
2006; 1
2011; 3
2014; 83
2011; 5
2012; 33
2011; 7
2007; 59
2012; 3
2006; 45
2009; 70
2011; 50
2010; 132
2005; 4
2011; 44
2009; 9
2014; 35
2012; 48
2009; 3
2012; 6
2007; 42
2003; 103
2008; 130
2003; 23
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – reference: A. Vogel, V. Venugopalan, Chem. Rev. 2003, 103, 577.
– reference: S. M. Lee, Y. Song, B. J. Hong, K. W MacRenaris, D. J. Mastarone, T. V. O'Halloran, T. J. Meade, S. T. Nguyen, Angew. Chem. Int. Ed. 2010, 17, 9960.
– reference: H. Sakuma, J. Magn. Reson. Imaging 2007, 26, 3.
– reference: S. H. Koenig, R. D. Brown 3rd, M. Spiller, Magn. Reson. Med. 1987, 4, 252.
– reference: X. Liu, H. Tao, K. Yang, S. Zhang, S. T. Lee, Z. Liu, Biomaterials 2011, 32, 144.
– reference: U. I. Tromsdorf, O. T. Bruns, S. C. Salmen, U. Beisiegel, H. Weller, Nano Lett. 2009, 9, 4434.
– reference: L. Feng, C. Zhu, H. Yuan, L. Liu, F. Lv, S. Wang, Chem. Soc. Rev. 2013, 42, 6620.
– reference: M. P. Melancon, M. Zhou, C. Li, Acc. Chem. Res. 2011, 44, 947.
– reference: D. Pan, S. D. Caruthers, A. Senpan, A. H. Schmieder, S. A. Wickline, G. M. Lanza, WIRES Nanomed. Nanobi. 2011, 3, 162.
– reference: B. Cox, J. G. Laufer, S. R. Arridge, P. C. Beard, J. Biomed. Opt. 2012, 17, 061202.
– reference: Y. Xia, W. Li, C. M. Cobley, J. Chen, X. Xia, Q. Zhang, M. E. Yang, C. Cho, P. K. Brown, Acc. Chem. Res. 2011, 44, 914.
– reference: S. S. Kelkar, T. M. Reineke, Bioconjugate Chem. 2011, 22, 1879.
– reference: X. Wang, X. Gu, C. Yuan, S. Chen, P. Zhang, T. Zhang, J. Yao, F. Chen, G. Chen, J. Biomed. Mater. Res. A 2004, 68, 411.
– reference: Z. Zha, X. Yue, Q. Ren, Z. Dai, Adv. Mater. 2013, 25, 777.
– reference: K. Yang, H. Xu, L. Cheng, C. Sun, J. Wang, Z. Liu, Adv. Mater. 2012, 24, 5586.
– reference: Z. Zhang, L. Wang, J. Wang, X. Jiang, X. Li, Z. Hu, Y. Ji, X. Wu, C. Chen, Adv. Mater. 2012, 24, 1418.
– reference: G. Stephen, G. H. Worthley, V. Fuster, Z. A. Fayad, M. Shinnar, L. A. Minkoff, Arterioscler. Thromb. Vasc. Biol. 2003, 23, 346.
– reference: M. Das, R. Jain, A. K. Agrawal, K. Thanki, S. Jain, Bioconjugate Chem. 2014, 25, 501.
– reference: Z. Zha, S. Wang, S. Zhang, E. Qu, H. Ke, J. Wang, Z. Dai, Nanoscale 2013, 5, 3216.
– reference: L. S. Boucharda, M. S. Anwar, G. L. Liu, B. Hann, Z. H. Xie, J. W. Gray, Proc. Natl Acad. Sci. U.S.A. 2008, 106, 4085.
– reference: Q. Tian, M. Tang, Y. Sun, R. Zou, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, J. Hu, Adv. Mater. 2011, 23, 3542.
– reference: M. K. Yu, D. Kim, I. H. Lee, J. S. So, Y. Y. Jeong, S. Jon, Small 2011, 7, 2241.
– reference: E. Kim, K. Lee, Y.-M. Huh, S. Haam, J. Mater. Chem. B 2013, 1, 729.
– reference: S. N. Goldberg, G. S. Gazelle, P. R. Mueller, AJR Am. J. Roentgenol 2000, 174, 323.
– reference: K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, Z. Liu, Nano Lett. 2010, 10, 3318.
– reference: H. Chong, C. Nie, C. Zhu, Q. Yang, L. Liu, F. Lv, S. Wang, Langmuir 2012, 28, 2091.
– reference: P. Bourrinet, E. Martel, A. I. El Amrani, P. Champeroux, S. Richard, N. Fauchou, F. Le Coz, M. Drici, B. Bonnemain, S. Gaillard, Invest. Radiol. 2007, 42, 63.
– reference: X. Huang, P. K. Jain, I. H. El-Sayed, M. A. El-Sayed, Lasers Med. Sci. 2008, 23, 217.
– reference: T. Lee, X. Zhang, S. Dhar, H. Faas, S. J. Lippard, A. Jasanoff, Chem. Biol. 2010, 17, 665.
– reference: C. L. Peng, Y. H. Shih, P. C. Lee, T. M. Hsieh, T. Y. Luo, M. J. Shieh, ACS Nano 2011, 5, 5594.
– reference: J. Kim, S. Park, J. E. Lee, S. M. Jin, J. H. Lee, I. S. Lee, I. Yang, J. S. Kim, S. K. Kim, M. H. Cho, T. Hyeon, Angew. Chem. Int. Ed. 2006, 45, 7754.
– reference: H. F. Zhang, K. Maslov, G. Stoica, L. V. Wang, Nat. Biotechnol. 2006, 24, 848.
– reference: J. Yang, J. Choi, D. Bang, E. Kim, E. K. Lim, H. Park, J. S. Suh, K. Lee, K. H. Yoo, E. K. Kim, Y. M. Huh, S. Haam, Angew. Chem. Int. Ed. 2011, 50, 441.
– reference: K. Yang, J. Wan, S. Zhang, B. Tian, Y. Zhang, Z. Liu, Biomaterials 2012, 33, 2206.
– reference: M. Zhou, R. Zhang, M. Huang, W. Lu, S. Song, M. P. Melancon, M. Tian, D. Liang, C. Li, J. Am. Chem. Soc. 2010, 132, 15351.
– reference: C. Guo, Y. Jin, Z. Dai, Bioconjugate Chem. 2014, 25, 840.
– reference: Y. Ma, X. Liang, S. Tong, G. Bao, Q. Ren, Z. Dai, Adv. Funct. Mater. 2013, 23, 815.
– reference: P. Caravan. Chem. Soc. Rev. 2006, 35, 512.
– reference: C. W. Chen, J. S. Cohen, C. E. Myers, M. Sohn, FEBS Lett. 1984, 168, 70.
– reference: J. A. Feshitan, F. Vlachos, S. R. Sirsi, E. E. Konofagou, M. A. Borden, Biomaterials 2012, 3, 247.
– reference: K. M. L. Taylor, J. S. Kim, W. J. Rieter, H. An, W. L. Lin, W. B. Lin, J. Am. Chem. Soc. 2008, 130, 2154.
– reference: P. M. George, A. W. Lyckman, D. A. Lavan, A. Hegde, Y. Leung, R. Avasare, C. Testa, P. M. Alexander, R. Langer, M. Sur, Biomaterials 2005, 26, 3511.
– reference: J. H. Ryu, H. Koo, I. C. Sun, S. H. Yuk, K. Choi, K. Kim, I. C. Kwon, Adv. Drug Delivery Rev. 2012, 64, 1447.
– reference: Z. Zha, Z. Deng, Y. Li, C. Li, J. Wang, S. Wang, E. Qu, Z. Dai, Nanoscale 2013, 5, 4462.
– reference: D. Pan, S. D. Caruthers, G. Hu, A. Senpan, M. J. Scott, P. J. Gaffney, S. A. Wickline, G. M. Lanza, J. Am. Chem. Soc. 2008, 130, 9186.
– reference: P. Beard, Interface Focus 2011, 1, 602.
– reference: S. Wang, Z. Dai, H. Ke, E. Qu, X. Qi, K. Zhang, J. Wang, Eur. J. Radiol. 2014, 83, 117.
– reference: X. A. Zhang, K. S. Lovejoy, A. Jasanoff, S. J. Lippard, Proc. Natl Acad. Sci. U.S.A. 2007, 104, 10780.
– reference: X. Wang, L. Yang, Z. G. Chen, D. M. Shin, Ca-Cancer J. Clin. 2008, 58, 97.
– reference: T. Ishiguchi, S. Takahashi, Drugs R&D. 2010, 10, 133.
– reference: A. Louie, Chem. Rev. 2010, 110, 3146.
– reference: L. Cheng, K. Yang, Q. Chen, Z. Liu, ACS Nano. 2012, 6, 5605.
– reference: Z. Zhang, R. He, K. Yan, Q. N. Guo, Y. G. Lu, X. X. Wang, H. Lei, Z. Y. Li, Bioorg. Med. Chem. Lett. 2009, 19, 6675.
– reference: L. Sampath, S. Kwon, M. A. Hall, R. E. Price, E. M. Sevick-Muraca, Transl. Oncol. 2010, 3, 307.
– reference: Z. Zha, X. Yue, Q. Ren, Z. Dai, Adv. Mater. 2012, 25, 777.
– reference: Z. Zha, J. Wang, E. Qu, S. Zhang, Y. Jin, S. Wang, Z. Dai, Sci. Rep. 2013, 3, 2360.
– reference: J.-Y. Hong, H. Yoon, J. Jang, Small 2010, 6, 679.
– reference: A. Ramanaviciene, A. Kausaite, S. Tautkus, A. Ramanavicius, J. Pharm. Pharmacol. 2007, 59, 311.
– reference: D. Pan, G. M. Lanza, S. A. Wickline, S. D. Caruthers, Eur. J. Radiol. 2009, 70, 274.
– reference: J. L. Major, T. J. Meade, Acc. Chem. Res. 2009, 42, 893.
– reference: X. Li, X. Liang, X. Yue, J. Wang, C. Li, Z. Deng, L. Jing, L. Lin, E. Qu, S. Wang, C. Wu, H. Wu, Z. Dai, J. Mater. Chem. B 2014, 2, 217.
– reference: V. U. Fiedler, H.-J. Schwarzmaier, F. Eickmeyer, F. P. Müller, C. Schoepp, P. Verreet, J . Magn. Reson. Imaging 2001, 13, 729.
– reference: K. Yang, L. Hu, X. Ma, S. Ye, L. Cheng, X. Shi, C. Li, Y. Li, Z. Liu, Adv. Mater. 2012, 24, 1868.
– reference: L. H. Wang, Nat. Photonics 2009, 3, 503.
– reference: P. A. Netti, S. Roberge, Y. Boucher, L. T. Baxter, R. K. Jain, Microvasc. Res. 1996, 52, 27.
– reference: S. Jalota, S. B. Bhaduri, A. C. Tas, Mater. Sci. Eng. C 2008, 28, 129.
– reference: J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, Y. Xia, Small 2010, 6, 811.
– reference: J. Chen, M. Yang, Q. Zhang, E. C. Cho, C. M. Cobley, C. Kim, C. Glaus, L. V. Wang, M. J. Welch, Y. Xia, Adv. Funct. Mater. 2010, 20, 3684.
– reference: L. Jing, X. Liang, Z. Deng, S. Feng, X. Li, M. Huang, C. Li, Z. Dai, Biomaterials 2014, 35, 5814.
– reference: S. D. Perrault, C. Walkey, T. Jennings, H. C. Fischer, W. C. Chan, Nano Lett. 2009, 9, 1909.
– reference: Y. Ling, K. Wei, Y. Luo, X. Gao, S. Zhong, Biomaterials 2011, 32, 7139.
– reference: M. Sasaki, E. Shibata, Y. Kanbara, S. Ehara. Magn. Reson. Med. Sci. 2005, 4, 145.
– reference: M. Chen, X. Fang, S. Tang, N. Zheng, Chem. Commun. 2012, 48. 8934.
– reference: M. N. Rhyner, A. M. Smith, X. H. Gao, H. Mao, L. L. Yang, S. M. Nie, Nanomedicine 2006, 1, 209.
– volume: 26
  start-page: 3
  year: 2007
  publication-title: J. Magn. Reson. Imaging
– volume: 130
  start-page: 2154
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 103
  start-page: 577
  year: 2003
  publication-title: Chem. Rev.
– volume: 110
  start-page: 3146
  year: 2010
  publication-title: Chem. Rev.
– volume: 50
  start-page: 441
  year: 2011
  publication-title: Angew. Chem. Int. Ed.
– volume: 25
  start-page: 777
  year: 2012
  publication-title: Adv. Mater.
– volume: 22
  start-page: 1879
  year: 2011
  publication-title: Bioconjugate Chem.
– volume: 19
  start-page: 6675
  year: 2009
  publication-title: Bioorg. Med. Chem. Lett.
– volume: 58
  start-page: 97
  year: 2008
  publication-title: Ca‐Cancer J. Clin.
– volume: 45
  start-page: 7754
  year: 2006
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 145
  year: 2005
  publication-title: Magn. Reson. Med. Sci.
– volume: 5
  start-page: 4462
  year: 2013
  publication-title: Nanoscale
– volume: 70
  start-page: 274
  year: 2009
  publication-title: Eur. J. Radiol.
– volume: 42
  start-page: 893
  year: 2009
  publication-title: Acc. Chem. Res.
– volume: 10
  start-page: 133
  year: 2010
  publication-title: Drugs R&D.
– volume: 1
  start-page: 209
  year: 2006
  publication-title: Nanomedicine
– volume: 5
  start-page: 5594
  year: 2011
  publication-title: ACS Nano
– volume: 24
  start-page: 5586
  year: 2012
  publication-title: Adv. Mater.
– volume: 35
  start-page: 5814
  year: 2014
  publication-title: Biomaterials
– volume: 9
  start-page: 4434
  year: 2009
  publication-title: Nano Lett.
– volume: 83
  start-page: 117
  year: 2014
  publication-title: Eur. J. Radiol.
– volume: 24
  start-page: 1868
  year: 2012
  publication-title: Adv. Mater.
– volume: 174
  start-page: 323
  year: 2000
  publication-title: AJR Am. J. Roentgenol
– volume: 4
  start-page: 252
  year: 1987
  publication-title: Magn. Reson. Med.
– volume: 23
  start-page: 217
  year: 2008
  publication-title: Lasers Med. Sci.
– volume: 24
  start-page: 1418
  year: 2012
  publication-title: Adv. Mater.
– volume: 5
  start-page: 3216
  year: 2013
  publication-title: Nanoscale
– volume: 104
  start-page: 10780
  year: 2007
  publication-title: Proc. Natl Acad. Sci. U.S.A.
– volume: 20
  start-page: 3684
  year: 2010
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 2360
  year: 2013
  publication-title: Sci. Rep.
– volume: 28
  start-page: 2091
  year: 2012
  publication-title: Langmuir
– volume: 23
  start-page: 815
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 28
  start-page: 129
  year: 2008
  publication-title: Mater. Sci. Eng. C
– volume: 23
  start-page: 3542
  year: 2011
  publication-title: Adv. Mater.
– volume: 32
  start-page: 144
  year: 2011
  publication-title: Biomaterials
– volume: 24
  start-page: 848
  year: 2006
  publication-title: Nat. Biotechnol.
– volume: 42
  start-page: 6620
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 5605
  year: 2012
  publication-title: ACS Nano.
– volume: 17
  start-page: 061202
  year: 2012
  publication-title: J. Biomed. Opt.
– volume: 25
  start-page: 777
  year: 2013
  publication-title: Adv. Mater.
– volume: 23
  start-page: 346
  year: 2003
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 17
  start-page: 9960
  year: 2010
  publication-title: Angew. Chem. Int. Ed.
– volume: 68
  start-page: 411
  year: 2004
  publication-title: J. Biomed. Mater. Res. A
– volume: 3
  start-page: 503
  year: 2009
  publication-title: Nat. Photonics
– volume: 6
  start-page: 679
  year: 2010
  publication-title: Small
– volume: 44
  start-page: 914
  year: 2011
  publication-title: Acc. Chem. Res.
– volume: 33
  start-page: 2206
  year: 2012
  publication-title: Biomaterials
– volume: 48
  start-page: 8934
  year: 2012
  publication-title: Chem. Commun.
– volume: 13
  start-page: 729
  year: 2001
  publication-title: J . Magn. Reson. Imaging
– volume: 25
  start-page: 501
  year: 2014
  publication-title: Bioconjugate Chem.
– volume: 26
  start-page: 3511
  year: 2005
  publication-title: Biomaterials
– volume: 59
  start-page: 311
  year: 2007
  publication-title: J. Pharm. Pharmacol.
– volume: 44
  start-page: 947
  year: 2011
  publication-title: Acc. Chem. Res.
– volume: 17
  start-page: 665
  year: 2010
  publication-title: Chem. Biol.
– volume: 1
  start-page: 602
  year: 2011
  publication-title: Interface Focus
– volume: 6
  start-page: 811
  year: 2010
  publication-title: Small
– volume: 3
  start-page: 307
  year: 2010
  publication-title: Transl. Oncol.
– volume: 1
  start-page: 729
  year: 2013
  publication-title: J. Mater. Chem. B
– volume: 42
  start-page: 63
  year: 2007
  publication-title: Invest. Radiol.
– volume: 106
  start-page: 4085
  year: 2008
  publication-title: Proc. Natl Acad. Sci. U.S.A.
– volume: 168
  start-page: 70
  year: 1984
  publication-title: FEBS Lett.
– volume: 2
  start-page: 217
  year: 2014
  publication-title: J. Mater. Chem. B
– volume: 130
  start-page: 9186
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 162
  year: 2011
  publication-title: WIRES Nanomed. Nanobi.
– volume: 9
  start-page: 1909
  year: 2009
  publication-title: Nano Lett.
– volume: 32
  start-page: 7139
  year: 2011
  publication-title: Biomaterials
– volume: 7
  start-page: 2241
  year: 2011
  publication-title: Small
– volume: 52
  start-page: 27
  year: 1996
  publication-title: Microvasc. Res.
– volume: 25
  start-page: 840
  year: 2014
  publication-title: Bioconjugate Chem.
– volume: 3
  start-page: 247
  year: 2012
  publication-title: Biomaterials
– volume: 35
  start-page: 512
  year: 2006
  publication-title: Chem. Soc. Rev.
– volume: 64
  start-page: 1447
  year: 2012
  publication-title: Adv. Drug Delivery Rev.
– volume: 132
  start-page: 15351
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 3318
  year: 2010
  publication-title: Nano Lett.
– ident: e_1_2_6_40_1
  doi: 10.1016/j.biomaterials.2010.08.096
– ident: e_1_2_6_44_1
  doi: 10.1039/c3nr00541k
– ident: e_1_2_6_4_1
  doi: 10.1021/cr010379n
– ident: e_1_2_6_57_1
  doi: 10.1097/01.rli.0000251565.61487.1a
– ident: e_1_2_6_53_1
  doi: 10.1038/srep02360
– ident: e_1_2_6_65_1
  doi: 10.1016/j.ejrad.2009.01.042
– ident: e_1_2_6_37_1
  doi: 10.1002/adfm.201001329
– ident: e_1_2_6_6_1
  doi: 10.1002/smll.201100472
– ident: e_1_2_6_30_1
  doi: 10.1098/rsfs.2011.0028
– ident: e_1_2_6_62_1
  doi: 10.3322/CA.2007.0003
– ident: e_1_2_6_26_1
  doi: 10.1016/0014-5793(84)80208-2
– ident: e_1_2_6_47_1
  doi: 10.1002/adma.201202625
– ident: e_1_2_6_56_1
  doi: 10.2214/ajr.174.2.1740323
– ident: e_1_2_6_34_1
  doi: 10.1002/adfm.201201663
– ident: e_1_2_6_41_1
  doi: 10.1021/nl100996u
– ident: e_1_2_6_8_1
  doi: 10.1002/adma.201104964
– ident: e_1_2_6_52_1
  doi: 10.1002/adma.201202211
– ident: e_1_2_6_38_1
  doi: 10.1021/ar200061q
– ident: e_1_2_6_45_1
  doi: 10.1002/anie.201005075
– ident: e_1_2_6_14_1
  doi: 10.1021/bc400477q
– ident: e_1_2_6_31_1
  doi: 10.1117/1.JBO.17.6.061202
– ident: e_1_2_6_43_1
  doi: 10.1002/adma.201101295
– ident: e_1_2_6_63_1
  doi: 10.1021/nl900031y
– ident: e_1_2_6_46_1
  doi: 10.1021/la203832h
– ident: e_1_2_6_20_1
  doi: 10.1161/01.ATV.0000053183.08854.A4
– ident: e_1_2_6_32_1
  doi: 10.1039/C3TB21281E
– ident: e_1_2_6_7_1
  doi: 10.1021/nn201100m
– ident: e_1_2_6_13_1
  doi: 10.1021/bc500092h
– ident: e_1_2_6_19_1
  doi: 10.1073/pnas.0813019106
– ident: e_1_2_6_55_1
  doi: 10.1002/smll.200902231
– ident: e_1_2_6_5_1
  doi: 10.1002/jmri.1101
– ident: e_1_2_6_39_1
  doi: 10.1016/j.biomaterials.2011.11.064
– ident: e_1_2_6_3_1
  doi: 10.1016/j.biomaterials.2010.08.096
– ident: e_1_2_6_69_1
  doi: 10.1002/jbm.a.20065
– ident: e_1_2_6_9_1
  doi: 10.1039/C2TB00294A
– ident: e_1_2_6_23_1
  doi: 10.1073/pnas.0702393104
– ident: e_1_2_6_60_1
  doi: 10.1039/b510982p
– ident: e_1_2_6_11_1
  doi: 10.1002/anie.201004867
– ident: e_1_2_6_29_1
  doi: 10.1038/nbt1220
– ident: e_1_2_6_15_1
  doi: 10.1002/jmri.20976
– ident: e_1_2_6_75_1
  doi: 10.1016/j.biomaterials.2014.04.005
– ident: e_1_2_6_61_1
  doi: 10.2217/17435889.1.2.209
– ident: e_1_2_6_2_1
  doi: 10.1021/nl100996u
– ident: e_1_2_6_58_1
  doi: 10.2165/11539140-000000000-00000
– ident: e_1_2_6_1_1
  doi: 10.1021/ar200022e
– ident: e_1_2_6_17_1
  doi: 10.1021/nl902715v
– ident: e_1_2_6_54_1
  doi: 10.1039/c3nr00627a
– ident: e_1_2_6_33_1
  doi: 10.1021/cr9003538
– ident: e_1_2_6_36_1
  doi: 10.1002/smll.200902216
– ident: e_1_2_6_67_1
  doi: 10.1007/s10103-007-0470-x
– ident: e_1_2_6_12_1
  doi: 10.1021/bc200151q
– ident: e_1_2_6_18_1
  doi: 10.1016/j.chembiol.2010.05.009
– ident: e_1_2_6_49_1
  doi: 10.1039/c2cc34463g
– ident: e_1_2_6_64_1
  doi: 10.1006/mvre.1996.0041
– ident: e_1_2_6_22_1
  doi: 10.1021/ja801482d
– ident: e_1_2_6_27_1
  doi: 10.1002/mrm.1910040306
– ident: e_1_2_6_48_1
  doi: 10.1002/adma.201202211
– ident: e_1_2_6_16_1
  doi: 10.1021/ar800245h
– ident: e_1_2_6_59_1
  doi: 10.2463/mrms.4.145
– ident: e_1_2_6_74_1
  doi: 10.1016/j.biomaterials.2011.09.026
– ident: e_1_2_6_66_1
  doi: 10.1016/j.addr.2012.06.012
– ident: e_1_2_6_68_1
  doi: 10.1016/j.biomaterials.2004.09.037
– ident: e_1_2_6_72_1
  doi: 10.1016/j.biomaterials.2011.05.089
– ident: e_1_2_6_42_1
  doi: 10.1021/ja106855m
– ident: e_1_2_6_10_1
  doi: 10.1002/anie.200602471
– ident: e_1_2_6_25_1
  doi: 10.1016/j.bmcl.2009.10.003
– ident: e_1_2_6_24_1
  doi: 10.1002/wnan.116
– ident: e_1_2_6_51_1
  doi: 10.1039/c3cs60036j
– ident: e_1_2_6_70_1
  doi: 10.1211/jpp.59.2.0017
– ident: e_1_2_6_76_1
  doi: 10.1016/j.ejrad.2013.09.010
– ident: e_1_2_6_21_1
  doi: 10.1021/ja710193c
– ident: e_1_2_6_50_1
  doi: 10.1021/nn301539m
– ident: e_1_2_6_71_1
  doi: 10.1016/j.msec.2007.10.058
– ident: e_1_2_6_73_1
  doi: 10.1593/tlo.10139
– ident: e_1_2_6_28_1
  doi: 10.1038/nphoton.2009.157
– ident: e_1_2_6_35_1
  doi: 10.1002/adma.201104714
SSID ssj0017734
Score 2.568526
Snippet Polypyrrole nanoparticles conjugating gadolinium chelates were successfully fabricated for dual‐modal magnetic resonance imaging (MRI) and photoacoustic...
Polypyrrole nanoparticles conjugating gadolinium chelates were successfully fabricated for dual-modal magnetic resonance imaging (MRI) and photoacoustic...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1451
SubjectTerms Cancer
Chelates
Gadolinium
gadolinium complex
Magnetic resonance imaging
Nanoparticles
photoacoustic imaging
photothermal therapy
polypyrrole nanoparticles
Polypyrroles
Therapy
Tumors
Title PEGylated Polypyrrole Nanoparticles Conjugating Gadolinium Chelates for Dual-Modal MRI/Photoacoustic Imaging Guided Photothermal Therapy of Cancer
URI https://api.istex.fr/ark:/67375/WNG-4BHZMRQK-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201402338
https://www.proquest.com/docview/1669851204
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LjtMwFLXQzAYWvBHlMTISglWmtePEybK003aAjkqZERUby4-EKdMmo9JIlBWfwIIv5Eu4N2lDi4SQYJfE17Lj3Gsfx8fHhDyVkYhio5HdHzpPMMs9rVuJZ3XsR9JG4FQly_ckHJyJl5NgsrWLv9KHqH-4YWSU_TUGuDafmr9EQ7VLcSc5TBA4TLOgE0bCFqKica0fxaSslpVDhgQvNtmoNrZ4czf7zqi0jw38eQdybgPXcuTp3SB6U-eKcHJxWCzNof3ym5zj_7zUTXJ9DUtpu_KjW-RKkt0m17bECu-Q76Oj_moG0NTRUT5bXa4WyEyk0D3DvHtNr6OdPPtYoGhH9oH2US1qmk2LOe2cI-cO0gEi026hZz--fhvmDkocjo-bo_N8mUPPXB4sRo_n5cFJtF9MHZaFiYhS52B9Wmkg0DylHXTXxV1y1js67Qy89ZkOngXgGHlhzEzqooSngTQsMZolwslA-M5qv2WTyFpfuyDlqbY8MtqkhtlIc-P8ONBc-PfIXpZnyX1CORPw1MJM2kkRJ9K4VAsZWz-QTgNOaRBv802VXQue47kbM1VJNXOFra3q1m6Q57X9ZSX18UfLZ6WL1GZ6cYEEORmodyd9JV4M3g_Hb14pqMKTjQ8pCFtci9FZAs2pWBjGAHZ5SzQILz3iL2Wqdrc3rO8e_Eumh-QqXAclg048InvLRZE8Bki1NAdkv90dvn57UIbPT0FjHcs
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgewAeuCPK1UgInrI2jhMnj6NdL2ytStWJiRfLl2Tr1iZT1UiUJ34CD_xCfgnnJE1YkRASPMaxZcc5tr9jf_4OIa9FyMNIK2T3B9bhrmGOUq3YMSryQmFCMKqC5TsK-sf8_YlfsQnxLkypD1FvuOHIKOZrHOC4Id38pRqqbIJXycFDYOBnXSe7GNYb5fM7k1pByhWiPFgOXKR4uSeVbmOLNbfLb61Lu9jFn7dA51XoWqw93TtEV60uKScXe_lK75kvvwk6_tdn3SW3N8iU7pemdI9ci9P75NYVvcIH5Pv4oLeeAzq1dJzN15frJZITKczQ4HpvGHa0naXnOep2pKe0h4JRs3SWL2j7DGl38B5QMu3kav7j67dhZqHG4WTQHJ9lqwwm5yK2GB0sithJtJfPLNaFLxGoLiD3tJRBoFlC22ixy4fkuHswbfedTVgHxwB2DJ0gcnViw5glvtBurJUbcyt87lmjvJaJQ2M8Zf2EJcqwUCudaNeEimnrRb5i3HtEdtIsjR8TylwOqQacaSt4FAttE8VFZDxfWAVQpUGc6qdKs9E8x9Abc1mqNTOJvS3r3m6Qt3X-y1Lt44853xQ2UmdTywvkyAlffhz1JH_X_zScfDiU0IRXlRFJGLl4HKPSGLpTukEQAd5lLd4grDCJv9Qp9zvdYf305F8KvSQ3-tPhkTwajA6fkpuQ7heEOv6M7KyWefwcENZKvyjG0E8FfyBT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LjtMwFLVgRkKw4I3o8DISglWmtePEyXJopw-GVqWaEdVsLL_CdKZNqqqRKCs-gQVfyJdwnbShRUJIsIwfsuNc2-fGx-ci9IpHLIqVdOz-0HiMaOpJ2bCelrEfcR2BURUs30HYPWPvxsF46xZ_qQ9R_XBzM6NYr90En5uk_ks0VJrE3SQHB4GCm3Ud7bOwEbvgDa1RJSBFOC_PlUPiGF5kvJFtbND6bv2dbWnfjfDnHcy5jVyLrad9B8lNp0vGydVhvlSH-stveo7_81Z30e01LsVHpSHdQ9dseh_d2lIrfIC-D487qylgU4OH2XQ1Xy0cNRHD-gyO95pfh5tZepk71Y70E-44uahJOslnuHnhSHeQDxgZt3I5_fH1Wz8z0GJ_1KsPL7JlBktzEVkM92ZF5CTcySfGteUyHUydQenTUgQBZwluOntdPERn7ePTZtdbB3XwNCDHyAtjohITWZoEXBGrJLHM8ID5Rku_oW2ktS9NkNBEahopqRJFdCSpMn4cSMr8R2gvzVL7GGFKGKRqcKUNZ7HlyiSS8Vj7ATcSgEoNeZtvKvRa8dwF3piKUquZCjfaohrtGnpTlZ-XWh9_LPm6MJGqmFxcOYYcD8THQUewt93z_ujDiYAuvNzYkIB56w5jZGphOAUJwxjQLm2wGqKFRfylTXHUaverp4N_qfQC3Ri22uJ9b3DyBN2E5KBg07GnaG-5yO0zgFdL9byYQT8BkC0fAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PEGylated+Polypyrrole+Nanoparticles+Conjugating+Gadolinium+Chelates+for+Dual-Modal+MRI%2FPhotoacoustic+Imaging+Guided+Photothermal+Therapy+of+Cancer&rft.jtitle=Advanced+functional+materials&rft.au=Liang%2C+Xiaolong&rft.au=Li%2C+Yanyan&rft.au=Li%2C+Xiaoda&rft.au=Jing%2C+Lijia&rft.date=2015-03-04&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=25&rft.issue=9&rft.spage=1451&rft.epage=1462&rft_id=info:doi/10.1002%2Fadfm.201402338&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon