Electrohydrodynamic NanoDrip Printing of High Aspect Ratio Metal Grid Transparent Electrodes

The transparent conducting electrode is an essential component in many contemporary and future devices, ranging from displays to solar cells. Fabricating transparent electrodes requires a balancing act between sufficient electrical conductivity and high light transmittance, both affected by the invo...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 26; no. 6; pp. 833 - 840
Main Authors Schneider, Julian, Rohner, Patrik, Thureja, Deepankur, Schmid, Martin, Galliker, Patrick, Poulikakos, Dimos
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 09.02.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The transparent conducting electrode is an essential component in many contemporary and future devices, ranging from displays to solar cells. Fabricating transparent electrodes requires a balancing act between sufficient electrical conductivity and high light transmittance, both affected by the involved materials, fabrication methodology, and design. While metal films possess the highest conductivity at room temperature, a decent optical transmittance can only be achieved with ultrathin films. Structuring the metal into optically invisible nanowires has been shown to be promising to complement or even substitute transparent conductive oxides as dominant transparent electrode material. Here the out‐of‐plane fabrication capability of the recently developed method of electrohydrodynamic NanoDrip printing to pattern gold and silver nanogrids with line widths from 80 to 500 nm is demonstrated. This fully additive process enables the printing of high aspect ratio nanowalls and by that significantly improves the electrical performance, while maintaining the optical transmittance at a high level. Metal grid transparent electrodes optimized for low sheet resistances (8 Ω sq−1 at a relative transmittance of 94%) as well as optimized for high transmittance (97% at a sheet resistance of 20 Ω sq−1) are reported, which can be tailored on demand for the use in various applications. Electrohydrodynamic NanoDrip printing is used to pattern gold and silver nanowalls into high performance metal grid transparent electrodes. The out‐of‐plane capability of this additive process enables the printing of nanowall aspect ratios up to 7, greatly improving the electrical performance, while maintaining the exceptional optical transmittance.
AbstractList The transparent conducting electrode is an essential component in many contemporary and future devices, ranging from displays to solar cells. Fabricating transparent electrodes requires a balancing act between sufficient electrical conductivity and high light transmittance, both affected by the involved materials, fabrication methodology, and design. While metal films possess the highest conductivity at room temperature, a decent optical transmittance can only be achieved with ultrathin films. Structuring the metal into optically invisible nanowires has been shown to be promising to complement or even substitute transparent conductive oxides as dominant transparent electrode material. Here the out-of-plane fabrication capability of the recently developed method of electrohydrodynamic NanoDrip printing to pattern gold and silver nanogrids with line widths from 80 to 500 nm is demonstrated. This fully additive process enables the printing of high aspect ratio nanowalls and by that significantly improves the electrical performance, while maintaining the optical transmittance at a high level. Metal grid transparent electrodes optimized for low sheet resistances (8 Omega sq super(-1) at a relative transmittance of 94%) as well as optimized for high transmittance (97% at a sheet resistance of 20 Omega sq super(-1)) are reported, which can be tailored on demand for the use in various applications. Electrohydrodynamic NanoDrip printing is used to pattern gold and silver nanowalls into high performance metal grid transparent electrodes. The out-of-plane capability of this additive process enables the printing of nanowall aspect ratios up to 7, greatly improving the electrical performance, while maintaining the exceptional optical transmittance.
The transparent conducting electrode is an essential component in many contemporary and future devices, ranging from displays to solar cells. Fabricating transparent electrodes requires a balancing act between sufficient electrical conductivity and high light transmittance, both affected by the involved materials, fabrication methodology, and design. While metal films possess the highest conductivity at room temperature, a decent optical transmittance can only be achieved with ultrathin films. Structuring the metal into optically invisible nanowires has been shown to be promising to complement or even substitute transparent conductive oxides as dominant transparent electrode material. Here the out‐of‐plane fabrication capability of the recently developed method of electrohydrodynamic NanoDrip printing to pattern gold and silver nanogrids with line widths from 80 to 500 nm is demonstrated. This fully additive process enables the printing of high aspect ratio nanowalls and by that significantly improves the electrical performance, while maintaining the optical transmittance at a high level. Metal grid transparent electrodes optimized for low sheet resistances (8 Ω sq−1 at a relative transmittance of 94%) as well as optimized for high transmittance (97% at a sheet resistance of 20 Ω sq−1) are reported, which can be tailored on demand for the use in various applications. Electrohydrodynamic NanoDrip printing is used to pattern gold and silver nanowalls into high performance metal grid transparent electrodes. The out‐of‐plane capability of this additive process enables the printing of nanowall aspect ratios up to 7, greatly improving the electrical performance, while maintaining the exceptional optical transmittance.
The transparent conducting electrode is an essential component in many contemporary and future devices, ranging from displays to solar cells. Fabricating transparent electrodes requires a balancing act between sufficient electrical conductivity and high light transmittance, both affected by the involved materials, fabrication methodology, and design. While metal films possess the highest conductivity at room temperature, a decent optical transmittance can only be achieved with ultrathin films. Structuring the metal into optically invisible nanowires has been shown to be promising to complement or even substitute transparent conductive oxides as dominant transparent electrode material. Here the out‐of‐plane fabrication capability of the recently developed method of electrohydrodynamic NanoDrip printing to pattern gold and silver nanogrids with line widths from 80 to 500 nm is demonstrated. This fully additive process enables the printing of high aspect ratio nanowalls and by that significantly improves the electrical performance, while maintaining the optical transmittance at a high level. Metal grid transparent electrodes optimized for low sheet resistances (8 Ω sq −1 at a relative transmittance of 94%) as well as optimized for high transmittance (97% at a sheet resistance of 20 Ω sq −1 ) are reported, which can be tailored on demand for the use in various applications.
Author Thureja, Deepankur
Schneider, Julian
Schmid, Martin
Rohner, Patrik
Galliker, Patrick
Poulikakos, Dimos
Author_xml – sequence: 1
  givenname: Julian
  surname: Schneider
  fullname: Schneider, Julian
  organization: Laboratory of Thermodynamics in Emerging Technologies, Institute of Energy Technology, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092, Zurich, Switzerland
– sequence: 2
  givenname: Patrik
  surname: Rohner
  fullname: Rohner, Patrik
  organization: Laboratory of Thermodynamics in Emerging Technologies, Institute of Energy Technology, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092, Zurich, Switzerland
– sequence: 3
  givenname: Deepankur
  surname: Thureja
  fullname: Thureja, Deepankur
  organization: Laboratory of Thermodynamics in Emerging Technologies, Institute of Energy Technology, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092, Zurich, Switzerland
– sequence: 4
  givenname: Martin
  surname: Schmid
  fullname: Schmid, Martin
  organization: Laboratory of Thermodynamics in Emerging Technologies, Institute of Energy Technology, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092, Zurich, Switzerland
– sequence: 5
  givenname: Patrick
  surname: Galliker
  fullname: Galliker, Patrick
  organization: Laboratory of Thermodynamics in Emerging Technologies, Institute of Energy Technology, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092, Zurich, Switzerland
– sequence: 6
  givenname: Dimos
  surname: Poulikakos
  fullname: Poulikakos, Dimos
  email: dpoulikakos@ethz.ch
  organization: Laboratory of Thermodynamics in Emerging Technologies, Institute of Energy Technology, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092, Zurich, Switzerland
BookMark eNqFkEtLAzEUhYMo2Kpb11m6mZrHZDJdllZbwRc-UEQIaebGRqfJmIxo_70jleLO1T2L7ztwTx9t--ABoUNKBpQQdqwruxwwQgXhkogt1KMFLTJOWLm9yfRxF_VTeiWESsnzHno-qcG0MSxWVQzVyuulM_hS-zCJrsHX0fnW-RccLJ65lwUepabD8Y1uXcAX0OoaT6Or8F3UPjU6gm_xb2MFaR_tWF0nOPi9e-j-9ORuPMvOr6Zn49F5ZkRRiMwKKy1npcyNhLmuJLdVPud0rgtbShClMZRBqRm3RjDWPUhyLoQtQQ_nkFu-h47WvU0M7x-QWrV0yUBdaw_hIyladoYsOM87dLBGTQwpRbCqiW6p40pRon5mVD8zqs2MnTBcC5-uhtU_tBpNTi_-utnadamFr42r45sqJJdCPVxOFb2Vwxl7eFIT_g0IAYiN
CitedBy_id crossref_primary_10_1002_advs_202104623
crossref_primary_10_1103_PhysRevE_108_044143
crossref_primary_10_1007_s00542_020_05040_z
crossref_primary_10_1021_acs_chemrev_3c00548
crossref_primary_10_1021_acsami_8b13377
crossref_primary_10_1016_j_pmatsci_2022_101020
crossref_primary_10_1021_acs_chemrev_9b00483
crossref_primary_10_1039_D2QM01241C
crossref_primary_10_1021_acsami_2c11133
crossref_primary_10_1002_aelm_201700412
crossref_primary_10_1002_adma_202007772
crossref_primary_10_1002_er_7516
crossref_primary_10_3390_nano10010107
crossref_primary_10_3367_UFNr_2017_11_038239
crossref_primary_10_1002_smll_201703140
crossref_primary_10_1002_adom_202202673
crossref_primary_10_1016_j_solmat_2018_03_034
crossref_primary_10_1016_j_ceramint_2021_01_279
crossref_primary_10_1021_acsphotonics_8b01236
crossref_primary_10_1039_D2NR03049G
crossref_primary_10_1515_ntrev_2021_0073
crossref_primary_10_1002_admt_201800546
crossref_primary_10_1016_j_jmrt_2020_02_082
crossref_primary_10_1039_D2RA00605G
crossref_primary_10_1002_admi_202102548
crossref_primary_10_1002_advs_202304990
crossref_primary_10_1016_j_heliyon_2024_e24066
crossref_primary_10_1016_j_fuel_2021_122291
crossref_primary_10_1039_D3RA00611E
crossref_primary_10_1002_smll_202107811
crossref_primary_10_1021_acsanm_3c04803
crossref_primary_10_1007_s40684_022_00496_y
crossref_primary_10_1021_acsami_0c20477
crossref_primary_10_1021_acsabm_1c00944
crossref_primary_10_1038_s41598_022_14756_z
crossref_primary_10_1016_j_surfin_2024_104355
crossref_primary_10_1186_s11671_019_2973_3
crossref_primary_10_1038_s41598_022_13352_5
crossref_primary_10_1021_acsanm_2c05484
crossref_primary_10_1038_s41598_017_11475_8
crossref_primary_10_1002_advs_202203720
crossref_primary_10_1080_17452759_2020_1823116
crossref_primary_10_1039_C7NR04111J
crossref_primary_10_1039_D0NR04593D
crossref_primary_10_1021_acsaom_4c00037
crossref_primary_10_1002_adfm_201903123
crossref_primary_10_1063_5_0107012
crossref_primary_10_1016_j_jiec_2020_12_010
crossref_primary_10_1080_17452759_2019_1662991
crossref_primary_10_3390_mi12091131
crossref_primary_10_1002_admt_202301695
crossref_primary_10_1016_j_mtphys_2023_101044
crossref_primary_10_1002_smll_201901547
crossref_primary_10_1016_j_orgel_2019_105561
crossref_primary_10_1002_adfm_201705409
crossref_primary_10_1088_2631_7990_acdf2d
crossref_primary_10_1002_admt_202101172
crossref_primary_10_3390_nano13010025
crossref_primary_10_1021_acsami_3c08769
crossref_primary_10_1002_adma_201604211
crossref_primary_10_1002_cssc_201702026
crossref_primary_10_1016_j_jallcom_2021_161093
crossref_primary_10_1002_aelm_201600440
crossref_primary_10_1002_adom_201700164
crossref_primary_10_1007_s00542_020_05071_6
crossref_primary_10_1016_j_elstat_2018_10_006
crossref_primary_10_1063_5_0044447
crossref_primary_10_1088_1361_665X_aac629
crossref_primary_10_1088_1757_899X_1060_1_012007
crossref_primary_10_1002_adfm_202004659
crossref_primary_10_1016_j_jhazmat_2019_03_039
crossref_primary_10_1039_C6TA05319J
crossref_primary_10_1002_admi_201800440
crossref_primary_10_1002_smll_201906402
crossref_primary_10_1109_JPHOTOV_2018_2876998
crossref_primary_10_1016_j_actbio_2019_10_028
crossref_primary_10_1016_j_pmatsci_2023_101112
crossref_primary_10_5104_jiep_23_452
crossref_primary_10_1021_acsami_8b00093
crossref_primary_10_1088_1361_6528_ab5f29
crossref_primary_10_1016_j_solmat_2017_04_048
crossref_primary_10_1002_smtd_202300908
crossref_primary_10_1038_s41598_019_47779_0
crossref_primary_10_1134_S0020168517110073
crossref_primary_10_1021_acsami_3c10829
crossref_primary_10_1021_acsphotonics_6b00131
crossref_primary_10_1089_3dp_2018_0154
crossref_primary_10_1016_j_matdes_2021_109791
crossref_primary_10_1063_1_4978429
crossref_primary_10_1088_1361_6641_ac4d15
crossref_primary_10_1364_OME_473277
crossref_primary_10_1002_adem_201901275
crossref_primary_10_1021_acs_nanolett_9b04162
crossref_primary_10_1002_aelm_202200728
crossref_primary_10_1016_j_mtadv_2023_100461
crossref_primary_10_1051_itmconf_20193007005
crossref_primary_10_1002_adfm_201910491
crossref_primary_10_1088_1758_5090_aba1fa
crossref_primary_10_1039_D2RA05551A
crossref_primary_10_1016_j_mtcomm_2022_104433
crossref_primary_10_1002_adem_202101740
crossref_primary_10_1016_j_matt_2021_09_002
crossref_primary_10_1016_j_nanoen_2023_109224
crossref_primary_10_1021_acsnano_1c02209
crossref_primary_10_1016_j_nanoen_2024_109892
crossref_primary_10_3390_mi9100522
crossref_primary_10_1002_adom_201700751
crossref_primary_10_1021_acsabm_3c00131
crossref_primary_10_1021_acsnano_7b00229
crossref_primary_10_1002_admt_202000441
crossref_primary_10_1109_OJNANO_2022_3224229
crossref_primary_10_1007_s10854_023_09834_5
crossref_primary_10_3389_fchem_2022_1005266
crossref_primary_10_1039_C6NR04106J
crossref_primary_10_1364_PRJ_404334
crossref_primary_10_3390_s20123349
crossref_primary_10_35848_1347_4065_ad0678
crossref_primary_10_1002_admt_202201842
crossref_primary_10_1002_adom_201900019
crossref_primary_10_1016_j_addma_2023_103815
crossref_primary_10_1002_solr_202100830
crossref_primary_10_1016_j_powtec_2020_01_066
crossref_primary_10_1002_adfm_202210997
crossref_primary_10_1002_adma_202304840
crossref_primary_10_1002_advs_202302858
crossref_primary_10_1038_s41528_019_0063_3
crossref_primary_10_1016_j_mtphys_2021_100442
crossref_primary_10_1515_aot_2019_0021
crossref_primary_10_1021_acsami_7b18579
crossref_primary_10_1002_adem_202001310
crossref_primary_10_1016_j_mfglet_2023_08_038
crossref_primary_10_1021_acsaem_8b01649
crossref_primary_10_1016_j_cap_2021_08_005
crossref_primary_10_1021_acsami_1c14953
crossref_primary_10_1103_PhysRevFluids_5_123602
crossref_primary_10_1007_s41061_017_0181_0
crossref_primary_10_1002_inf2_12505
crossref_primary_10_3390_ma14237178
crossref_primary_10_3390_app8030351
crossref_primary_10_1007_s40820_023_01295_z
crossref_primary_10_1021_acsami_9b01893
crossref_primary_10_1039_D1NR08409G
crossref_primary_10_1039_D1TC00091H
crossref_primary_10_1021_acsami_2c09672
crossref_primary_10_1002_adfm_202213916
crossref_primary_10_1038_s41528_022_00178_4
crossref_primary_10_1115_1_4041934
crossref_primary_10_1007_s12034_020_02159_7
crossref_primary_10_1002_adma_201902479
crossref_primary_10_1088_1361_6439_ab0c65
crossref_primary_10_1021_acsami_6b01585
crossref_primary_10_3390_mi11030236
crossref_primary_10_1557_s43578_021_00188_4
crossref_primary_10_1140_epjd_e2019_90482_8
crossref_primary_10_3390_mi8040113
crossref_primary_10_3390_nano7080214
crossref_primary_10_1039_C9TC02655J
crossref_primary_10_1002_admt_202300408
crossref_primary_10_1002_smll_201702324
crossref_primary_10_1038_micronano_2017_54
crossref_primary_10_1063_1_4973622
crossref_primary_10_1016_j_jallcom_2019_03_392
crossref_primary_10_1016_j_synthmet_2020_116664
crossref_primary_10_1002_adma_201804953
crossref_primary_10_1063_1_4997927
crossref_primary_10_1002_adbi_201700067
crossref_primary_10_1007_s41614_019_0039_8
crossref_primary_10_1021_acsapm_0c00339
crossref_primary_10_1088_1361_6439_aafd9e
crossref_primary_10_1039_C8NR09872G
crossref_primary_10_1103_PhysRevLett_121_113601
crossref_primary_10_1007_s10854_020_04652_5
crossref_primary_10_1039_D1TC04101K
crossref_primary_10_1016_j_surfin_2022_102072
crossref_primary_10_1038_s41467_019_09827_1
crossref_primary_10_1039_C6TC05000J
crossref_primary_10_1515_nanoph_2020_0161
crossref_primary_10_1002_eem2_12095
crossref_primary_10_1007_s42835_021_00740_6
crossref_primary_10_1039_C5NR08783J
crossref_primary_10_1002_solr_202100865
crossref_primary_10_1039_C6NR08220C
crossref_primary_10_1002_advs_202201673
crossref_primary_10_1246_cl_160964
crossref_primary_10_1021_acsnano_9b05715
crossref_primary_10_1002_smll_202106006
crossref_primary_10_1002_adfm_202009399
crossref_primary_10_1007_s42242_018_0014_1
crossref_primary_10_1016_j_jallcom_2021_158877
crossref_primary_10_1002_aelm_202001121
crossref_primary_10_1021_acsaelm_1c00107
crossref_primary_10_1021_acsami_0c18518
crossref_primary_10_1039_C8TC04423F
crossref_primary_10_3390_membranes12020141
crossref_primary_10_1039_C7TC04114D
crossref_primary_10_1002_admt_202000171
crossref_primary_10_1016_j_carbon_2016_12_092
crossref_primary_10_1002_admt_202200584
crossref_primary_10_1016_j_optlastec_2020_106867
crossref_primary_10_1039_D2NR04549D
crossref_primary_10_1002_adma_201801772
crossref_primary_10_1016_j_matdes_2023_112364
crossref_primary_10_1039_D2TA08644A
crossref_primary_10_1002_aenm_202002536
crossref_primary_10_1080_17452759_2023_2268602
crossref_primary_10_3390_mi10020094
crossref_primary_10_1515_ntrev_2022_0498
crossref_primary_10_1016_j_mtnano_2022_100254
crossref_primary_10_1016_j_mtener_2020_100441
crossref_primary_10_1016_j_nanoen_2024_109933
crossref_primary_10_1002_adma_202308112
crossref_primary_10_1016_j_cej_2023_144065
crossref_primary_10_1016_j_orgel_2020_105960
crossref_primary_10_1038_s41598_022_05312_w
Cites_doi 10.1088/0022-3727/46/15/155103
10.1002/adma.201100419
10.1088/0960-1317/24/9/097002
10.1063/1.3299259
10.1063/1.4866002
10.1038/ncomms1891
10.1038/nmat2629
10.1016/j.tsf.2014.02.002
10.1021/nn503383z
10.1039/c1nr10048c
10.1002/aenm.201100608
10.1103/PhysRevB.72.085437
10.1103/PhysRevB.83.212201
10.1021/am502233y
10.1038/ncomms3095
10.1063/1.2907960
10.1038/nmat1974
10.1063/1.323240
10.1002/adma.201302950
10.1002/adma.200700134
10.1016/j.solmat.2010.02.039
10.1002/adfm.201002021
10.1021/nn1025803
10.1364/OE.21.002393
10.1557/mrs.2011.234
10.1038/nphoton.2012.282
10.1021/nn400432z
10.1038/nnano.2010.132
10.1088/0022-3727/47/40/405102
10.1021/nl073296g
10.1021/nn900348c
10.1016/S0040-6090(01)01138-5
10.1021/nl904057p
10.1038/nnano.2013.84
10.1038/ncomms3522
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201503705
DatabaseName Istex
CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage 840
ExternalDocumentID 10_1002_adfm_201503705
ADFM201503705
ark_67375_WNG_1S79H2WZ_D
Genre article
GrantInformation_xml – fundername: Swiss National Science Foundation
  funderid: 200021_146180
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c5665-f5f7f32874c7ebad73fd4b31ba6f87e58cc12e8a23fc52215004355f8ea9be4f3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Sat Aug 17 01:21:11 EDT 2024
Fri Aug 23 00:33:32 EDT 2024
Sat Aug 24 01:04:29 EDT 2024
Wed Oct 30 09:51:13 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5665-f5f7f32874c7ebad73fd4b31ba6f87e58cc12e8a23fc52215004355f8ea9be4f3
Notes istex:7A9E9265A19018476B3C64CCC90DAE1ECC2E3F31
Swiss National Science Foundation - No. 200021_146180
ark:/67375/WNG-1S79H2WZ-D
ArticleID:ADFM201503705
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1800476334
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1800476334
crossref_primary_10_1002_adfm_201503705
wiley_primary_10_1002_adfm_201503705_ADFM201503705
istex_primary_ark_67375_WNG_1S79H2WZ_D
PublicationCentury 2000
PublicationDate February 9, 2016
PublicationDateYYYYMMDD 2016-02-09
PublicationDate_xml – month: 02
  year: 2016
  text: February 9, 2016
  day: 09
PublicationDecade 2010
PublicationTitle Advanced functional materials
PublicationTitleAlternate Adv. Funct. Mater
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References F. Matino, L. Persano, V. Arima, D. Pisignano, R. I. R. Blyth, R. Cingolani, R. Rinaldi, Phys. Rev. B 2005, 72, 085437.
S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, J. N. Coleman, ACS Nano 2009, 3, 1767.
P. Kuang, J. M. Park, G. Y. Liu, Z. Ye, W. Leung, S. Chaudhary, D. Lynch, K. M. Ho, K. Constant, Opt. Express 2013, 21, 2393.
S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, S. Iijima, Nat. Nanotechnol. 2010, 5, 574.
P. Galliker, J. Schneider, H. Eghlidi, S. Kress, V. Sandoghdar, D. Poulikakos, Nat. Commun. 2012, 3, 890.
C. G. Granqvist, Thin Solid Films 2014, 564, 1.
G. Haacke, J. Appl. Phys. 1976, 47, 4086.
J. Park, J. Hwang, J. Phys. D: Appl. Phys. 2014, 47, 405102.
Y. Jang, J. Kim, D. Byun, J. Phys. D: Appl. Phys. 2013, 46, 155103.
Z. Chen, B. Cotterell, W. Wang, E. Guenther, S. J. Chua, Thin Solid Films 2001, 394, 202.
H. Wu, D. S. Kong, Z. C. Ruan, P. C. Hsu, S. Wang, Z. F. Yu, T. J. Carney, L. B. Hu, S. H. Fan, Y. Cui, Nat. Nanotechnol. 2013, 8, 421.
M. G. Kang, H. J. Park, S. H. Ahn, L. J. Guo, Sol. Energy Mater. Sol. Cells 2010, 94, 1179.
J. Y. Lee, S. T. Connor, Y. Cui, P. Peumans, Nano Lett. 2008, 8, 689.
H. A. Atwater, A. Polman, Nat. Mater. 2010, 9, 205.
T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, J. van de Lagemaat, Adv. Energy Mater. 2012, 2, 353.
K. Ellmer, Nat. Photonics 2012, 6, 808.
B. Y. Ahn, D. J. Lorang, J. A. Lewis, Nanoscale 2011, 3, 2700.
L. B. Hu, H. Wu, Y. Cui, MRS Bull. 2011, 36, 760.
P. Galliker, J. Schneider, D. Poulikakos, Appl. Phys. Lett. 2014, 104, 073105.
J. H. Park, D. Y. Lee, Y. H. Kim, J. K. Kim, J. H. Lee, J. H. Park, T. W. Lee, J. H. Cho, ACS Appl. Mater. Inter. 2014, 6, 12380.
W. Wang, S. M. Wu, K. Reinhardt, Y. L. Lu, S. C. Chen, Nano Lett. 2010, 10, 2012.
B. Han, K. Pei, Y. L. Huang, X. J. Zhang, Q. K. Rong, Q. G. Lin, Y. F. Guo, T. Y. Sun, C. F. Guo, D. Carnahan, M. Giersig, Y. Wang, J. W. Gao, Z. F. Ren, K. Kempa, Adv. Mater. 2014, 26, 873.
B. Seong, H. Yoo, V. D. Nguyen, Y. Jang, C. Ryu, D. Byun, J. Micromech. Microeng. 2014, 24, 097002.
J. U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, J. A. Rogers, Nat. Mater. 2007, 6, 782.
A. Gondorf, M. Geller, J. Weissbon, A. Lorke, M. Inhester, A. Prodi-Schwab, D. Adam, Phys. Rev. B 2011, 83, 212201.
P. C. Hsu, S. Wang, H. Wu, V. K. Narasimhan, D. S. Kong, H. R. Lee, Y. Cui, Nat. Commun. 2013, 4, 2522.
R. A. Pala, J. S. Q. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. H. Fan, M. L. Brongersma, Nat. Commun. 2013, 4, 2095.
S. De, P. J. King, P. E. Lyons, U. Khan, J. N. Coleman, ACS Nano 2010, 4, 7064.
K. Neyts, A. Real, M. Marescaux, S. Mladenovski, J. Beeckman, J. Appl. Phys. 2008, 103, 093113.
H. M. Stec, R. J. Williams, T. S. Jones, R. A. Hatton, Adv. Funct. Mater. 2011, 21, 1709.
S. Hong, J. Yeo, G. Kim, D. Kim, H. Lee, J. Kwon, H. Lee, P. Lee, S. H. Ko, ACS Nano 2013, 7, 5024.
P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, K. Constant, Adv. Mater. 2011, 23, 2469.
D. Lee, D. Paeng, H. K. Park, C. P. Grigoropoulos, ACS Nano 2014, 8, 9807.
M. G. Kang, L. J. Guo, Adv. Mater. 2007, 19, 1391.
D. S. Ghosh, T. L. Chen, V. Pruneri, Appl. Phys. Lett. 2010, 96, 041109.
2007; 19
2010; 10
1976; 47
2013; 4
2013; 21
2013; 46
2011; 83
2014; 26
2014; 47
2008; 8
2014; 24
2008; 103
2011; 36
2013; 7
2013; 8
2011; 3
2012; 2
2012; 3
2001; 394
2007; 6
2011; 21
2011; 23
2005; 72
2012; 6
2009; 3
2014; 8
2010; 5
2014; 6
2010; 4
2010; 96
2014; 104
2010; 94
2010; 9
2014; 564
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
References_xml – volume: 47
  start-page: 405102
  year: 2014
  publication-title: J. Phys. D: Appl. Phys.
– volume: 72
  start-page: 085437
  year: 2005
  publication-title: Phys. Rev. B
– volume: 3
  start-page: 1767
  year: 2009
  publication-title: ACS Nano
– volume: 5
  start-page: 574
  year: 2010
  publication-title: Nat. Nanotechnol.
– volume: 47
  start-page: 4086
  year: 1976
  publication-title: J. Appl. Phys.
– volume: 4
  start-page: 2095
  year: 2013
  publication-title: Nat. Commun.
– volume: 46
  start-page: 155103
  year: 2013
  publication-title: J. Phys. D: Appl. Phys.
– volume: 21
  start-page: 2393
  year: 2013
  publication-title: Opt. Express
– volume: 21
  start-page: 1709
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 12380
  year: 2014
  publication-title: ACS Appl. Mater. Inter.
– volume: 9
  start-page: 205
  year: 2010
  publication-title: Nat. Mater.
– volume: 94
  start-page: 1179
  year: 2010
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 3
  start-page: 2700
  year: 2011
  publication-title: Nanoscale
– volume: 6
  start-page: 808
  year: 2012
  publication-title: Nat. Photonics
– volume: 564
  start-page: 1
  year: 2014
  publication-title: Thin Solid Films
– volume: 7
  start-page: 5024
  year: 2013
  publication-title: ACS Nano
– volume: 10
  start-page: 2012
  year: 2010
  publication-title: Nano Lett.
– volume: 24
  start-page: 097002
  year: 2014
  publication-title: J. Micromech. Microeng.
– volume: 4
  start-page: 2522
  year: 2013
  publication-title: Nat. Commun.
– volume: 96
  start-page: 041109
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 19
  start-page: 1391
  year: 2007
  publication-title: Adv. Mater.
– volume: 103
  start-page: 093113
  year: 2008
  publication-title: J. Appl. Phys.
– volume: 4
  start-page: 7064
  year: 2010
  publication-title: ACS Nano
– volume: 3
  start-page: 890
  year: 2012
  publication-title: Nat. Commun.
– volume: 36
  start-page: 760
  year: 2011
  publication-title: MRS Bull.
– volume: 83
  start-page: 212201
  year: 2011
  publication-title: Phys. Rev. B
– volume: 6
  start-page: 782
  year: 2007
  publication-title: Nat. Mater.
– volume: 104
  start-page: 073105
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 8
  start-page: 421
  year: 2013
  publication-title: Nat. Nanotechnol.
– volume: 8
  start-page: 9807
  year: 2014
  publication-title: ACS Nano
– volume: 26
  start-page: 873
  year: 2014
  publication-title: Adv. Mater.
– volume: 394
  start-page: 202
  year: 2001
  publication-title: Thin Solid Films
– volume: 2
  start-page: 353
  year: 2012
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 689
  year: 2008
  publication-title: Nano Lett.
– volume: 23
  start-page: 2469
  year: 2011
  publication-title: Adv. Mater.
– ident: e_1_2_7_23_1
  doi: 10.1088/0022-3727/46/15/155103
– ident: e_1_2_7_15_1
  doi: 10.1002/adma.201100419
– ident: e_1_2_7_25_1
  doi: 10.1088/0960-1317/24/9/097002
– ident: e_1_2_7_26_1
  doi: 10.1063/1.3299259
– ident: e_1_2_7_27_1
  doi: 10.1063/1.4866002
– ident: e_1_2_7_22_1
  doi: 10.1038/ncomms1891
– ident: e_1_2_7_33_1
  doi: 10.1038/nmat2629
– ident: e_1_2_7_4_1
  doi: 10.1016/j.tsf.2014.02.002
– ident: e_1_2_7_18_1
  doi: 10.1021/nn503383z
– ident: e_1_2_7_19_1
  doi: 10.1039/c1nr10048c
– ident: e_1_2_7_6_1
  doi: 10.1002/aenm.201100608
– ident: e_1_2_7_2_1
  doi: 10.1103/PhysRevB.72.085437
– ident: e_1_2_7_3_1
  doi: 10.1103/PhysRevB.83.212201
– ident: e_1_2_7_16_1
  doi: 10.1021/am502233y
– ident: e_1_2_7_35_1
  doi: 10.1038/ncomms3095
– ident: e_1_2_7_29_1
  doi: 10.1063/1.2907960
– ident: e_1_2_7_21_1
  doi: 10.1038/nmat1974
– ident: e_1_2_7_28_1
  doi: 10.1063/1.323240
– ident: e_1_2_7_13_1
  doi: 10.1002/adma.201302950
– ident: e_1_2_7_14_1
  doi: 10.1002/adma.200700134
– ident: e_1_2_7_36_1
– ident: e_1_2_7_20_1
  doi: 10.1016/j.solmat.2010.02.039
– ident: e_1_2_7_12_1
  doi: 10.1002/adfm.201002021
– ident: e_1_2_7_31_1
  doi: 10.1021/nn1025803
– ident: e_1_2_7_30_1
  doi: 10.1364/OE.21.002393
– ident: e_1_2_7_32_1
  doi: 10.1557/mrs.2011.234
– ident: e_1_2_7_1_1
  doi: 10.1038/nphoton.2012.282
– ident: e_1_2_7_17_1
  doi: 10.1021/nn400432z
– ident: e_1_2_7_11_1
  doi: 10.1038/nnano.2010.132
– ident: e_1_2_7_24_1
  doi: 10.1088/0022-3727/47/40/405102
– ident: e_1_2_7_7_1
  doi: 10.1021/nl073296g
– ident: e_1_2_7_8_1
  doi: 10.1021/nn900348c
– ident: e_1_2_7_5_1
  doi: 10.1016/S0040-6090(01)01138-5
– ident: e_1_2_7_34_1
  doi: 10.1021/nl904057p
– ident: e_1_2_7_9_1
  doi: 10.1038/nnano.2013.84
– ident: e_1_2_7_10_1
  doi: 10.1038/ncomms3522
SSID ssj0017734
Score 2.6247487
Snippet The transparent conducting electrode is an essential component in many contemporary and future devices, ranging from displays to solar cells. Fabricating...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 833
SubjectTerms Additives
Electrodes
electrohydrodynamic nanodrip printing
Electrohydrodynamics
gold
metal grids
Nanostructure
Opacity
Printing
Resistivity
Silver
transparent electrodes
Title Electrohydrodynamic NanoDrip Printing of High Aspect Ratio Metal Grid Transparent Electrodes
URI https://api.istex.fr/ark:/67375/WNG-1S79H2WZ-D/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201503705
https://search.proquest.com/docview/1800476334
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6iL_rgXZw3Iog-VZekbdrH4ZxDmIgXHCKEND1BGWyyC6i_3pxmq5svgr61kLTNOcnJR_Od7xByZCMjgMUm4C7yBaGpGizzYgO328RgYohEjPnOreu4-RBetaP2VBa_14cof7jhyijiNS5wnQ3OvkVDdW4xk9wBGiELEVMmJHK66relfhST0h8rxwwJXqw9UW2s8rPZ7jO70gIa-H0Gck4D12LnaawQPflmTzjpnI6G2an5_CHn-J9BrZLlMSylNT-P1sgcdNfJ0pRY4QZ5vvAVc14-chd0fSF76oJzr-7iDr1xjZBBTXuWIneE1oocTnqLnqctcBifXvZfc-rV1DEFbUjHT8xhsEkeGhf3581gXJshMA4ARoGNrLQCxfKNhEznUtg8zATLdGwTCVFiDOOQaC6scRDPDajqgFlkE9BpBqEVW2S-2-vCNqG8qt2EkYwZK0OALM1NqEUSCpApl9xUyMnEN-rNS3AoL7bMFdpLlfaqkOPCdWUz3e8gcU1G6vH6UrE7mTb545OqV8jhxLfKLSc8I9Fd6I0GiiWonxkLEVYILzz1yztVrd5olXc7f-m0SxbdteeCp3tkftgfwb6DOsPsoJjOX3gP9aw
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6h7QF44DdaGT-MhOApW20ncfJY0XUF1gqNTZsQkuU4Z4EmtVPXSsBfz13chJUXJHhMFCexz3f-ZH_3HcCrkHmNMveJosiXpL7vucxLSGi1ydHnmOmc850n03x8mr4_z1o2IefCRH2IbsONPaOJ1-zgvCG9_1s11NWBU8kJ0WjDKqbb5POaqzcMjzsFKWlMPFjOJVO85Hmr29hX-5vtN9albR7i7xug8zp0bdae0V2o2r-OlJOLvdWy2vM__xB0_K9u3YM7a2QqBnEq3YcbOHsAt6_pFT6ELwexaM7XHzXF3VjLXlB8ng8p9IiP9BCTqMU8CKaPiEGTximO2fhiggTzxeHiWy2ioDpnoS3F-o01Xj2C09HBydtxsi7PkHjCgFkSsmCCZr18b7BytdGhTistK5eHwmBWeC8VFk7p4AnlUYf6hM2yUKArK0yDfgxbs_kMd0CovqM5Y6T0waSIVVn71Oki1WhKZZTvwZvWOPYyqnDYqLesLI-X7carB68b23WPucUFc9dMZs-mh1Z-MuVYnX22wx68bI1ryaP4mMTNcL66srJgCc1c67QHqjHVX75pB8PRpLt68i-NXsDN8cnkyB69m37YhVt0P1LDy6ewtVys8Bkhn2X1vJnbvwDQIPnE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFD6MFsb2sO5Ks-6iwdie3EYXS_ZjWJpml4TSrTSMgZDlIzYKSUkT2Pbrp2MlXrKXwfZoI9nWuenDOuc7AC9D7iVy7TMRI1-mfNdTm5eQxd1Go9eYS031zqOxHp6rd5N8slHFn_gh2h9u5BlNvCYHv6rD0W_SUFcHqiSPgEYaIjHdVTrCX4JFZy2BFDcmnStrThlefLKmbeyKo-35W9vSLkn4-xbm3ESuzdYz2AO3_uiUcXJ5uFxUh_7nH3yO_7Oqu3BnhUtZLxnSPbiB0_twe4Ot8AF8OU4tc77-qGPUTZ3sWYzOs34MPOw0DqIUajYLjJJHWK8p4mRnpHo2wgjy2cn8W80SnTrVoC3Y6ok1Xj-E88HxpzfDbNWcIfMRAeZZyIMJktjyvcHK1UaGWlWSV06HwmBeeM8FFk7I4CPGiwvqRmSWhwJdWaEK8hHsTGdT3Acmui5ajOHcB6MQq7L2yslCSTSlMMJ34PVaN_YqcXDYxLYsLMnLtvLqwKtGde0wN7-kzDWT24vxieUfTTkUF59tvwMv1rq10Z_okMRNcba8trwgAk0tpeqAaDT1l3faXn8waq8e_8uk53DztD-wH96O3x_ArXg75YWXT2BnMV_i0wh7FtWzxrJ_AeRT-HM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrohydrodynamic+NanoDrip+Printing+of+High+Aspect+Ratio+Metal+Grid+Transparent+Electrodes&rft.jtitle=Advanced+functional+materials&rft.au=Schneider%2C+Julian&rft.au=Rohner%2C+Patrik&rft.au=Thureja%2C+Deepankur&rft.au=Schmid%2C+Martin&rft.date=2016-02-09&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=26&rft.issue=6&rft.spage=833&rft.epage=840&rft_id=info:doi/10.1002%2Fadfm.201503705&rft.externalDBID=10.1002%252Fadfm.201503705&rft.externalDocID=ADFM201503705
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon