Electrohydrodynamic NanoDrip Printing of High Aspect Ratio Metal Grid Transparent Electrodes
The transparent conducting electrode is an essential component in many contemporary and future devices, ranging from displays to solar cells. Fabricating transparent electrodes requires a balancing act between sufficient electrical conductivity and high light transmittance, both affected by the invo...
Saved in:
Published in | Advanced functional materials Vol. 26; no. 6; pp. 833 - 840 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Blackwell Publishing Ltd
09.02.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The transparent conducting electrode is an essential component in many contemporary and future devices, ranging from displays to solar cells. Fabricating transparent electrodes requires a balancing act between sufficient electrical conductivity and high light transmittance, both affected by the involved materials, fabrication methodology, and design. While metal films possess the highest conductivity at room temperature, a decent optical transmittance can only be achieved with ultrathin films. Structuring the metal into optically invisible nanowires has been shown to be promising to complement or even substitute transparent conductive oxides as dominant transparent electrode material. Here the out‐of‐plane fabrication capability of the recently developed method of electrohydrodynamic NanoDrip printing to pattern gold and silver nanogrids with line widths from 80 to 500 nm is demonstrated. This fully additive process enables the printing of high aspect ratio nanowalls and by that significantly improves the electrical performance, while maintaining the optical transmittance at a high level. Metal grid transparent electrodes optimized for low sheet resistances (8 Ω sq−1 at a relative transmittance of 94%) as well as optimized for high transmittance (97% at a sheet resistance of 20 Ω sq−1) are reported, which can be tailored on demand for the use in various applications.
Electrohydrodynamic NanoDrip printing is used to pattern gold and silver nanowalls into high performance metal grid transparent electrodes. The out‐of‐plane capability of this additive process enables the printing of nanowall aspect ratios up to 7, greatly improving the electrical performance, while maintaining the exceptional optical transmittance. |
---|---|
AbstractList | The transparent conducting electrode is an essential component in many contemporary and future devices, ranging from displays to solar cells. Fabricating transparent electrodes requires a balancing act between sufficient electrical conductivity and high light transmittance, both affected by the involved materials, fabrication methodology, and design. While metal films possess the highest conductivity at room temperature, a decent optical transmittance can only be achieved with ultrathin films. Structuring the metal into optically invisible nanowires has been shown to be promising to complement or even substitute transparent conductive oxides as dominant transparent electrode material. Here the out-of-plane fabrication capability of the recently developed method of electrohydrodynamic NanoDrip printing to pattern gold and silver nanogrids with line widths from 80 to 500 nm is demonstrated. This fully additive process enables the printing of high aspect ratio nanowalls and by that significantly improves the electrical performance, while maintaining the optical transmittance at a high level. Metal grid transparent electrodes optimized for low sheet resistances (8 Omega sq super(-1) at a relative transmittance of 94%) as well as optimized for high transmittance (97% at a sheet resistance of 20 Omega sq super(-1)) are reported, which can be tailored on demand for the use in various applications. Electrohydrodynamic NanoDrip printing is used to pattern gold and silver nanowalls into high performance metal grid transparent electrodes. The out-of-plane capability of this additive process enables the printing of nanowall aspect ratios up to 7, greatly improving the electrical performance, while maintaining the exceptional optical transmittance. The transparent conducting electrode is an essential component in many contemporary and future devices, ranging from displays to solar cells. Fabricating transparent electrodes requires a balancing act between sufficient electrical conductivity and high light transmittance, both affected by the involved materials, fabrication methodology, and design. While metal films possess the highest conductivity at room temperature, a decent optical transmittance can only be achieved with ultrathin films. Structuring the metal into optically invisible nanowires has been shown to be promising to complement or even substitute transparent conductive oxides as dominant transparent electrode material. Here the out‐of‐plane fabrication capability of the recently developed method of electrohydrodynamic NanoDrip printing to pattern gold and silver nanogrids with line widths from 80 to 500 nm is demonstrated. This fully additive process enables the printing of high aspect ratio nanowalls and by that significantly improves the electrical performance, while maintaining the optical transmittance at a high level. Metal grid transparent electrodes optimized for low sheet resistances (8 Ω sq−1 at a relative transmittance of 94%) as well as optimized for high transmittance (97% at a sheet resistance of 20 Ω sq−1) are reported, which can be tailored on demand for the use in various applications. Electrohydrodynamic NanoDrip printing is used to pattern gold and silver nanowalls into high performance metal grid transparent electrodes. The out‐of‐plane capability of this additive process enables the printing of nanowall aspect ratios up to 7, greatly improving the electrical performance, while maintaining the exceptional optical transmittance. The transparent conducting electrode is an essential component in many contemporary and future devices, ranging from displays to solar cells. Fabricating transparent electrodes requires a balancing act between sufficient electrical conductivity and high light transmittance, both affected by the involved materials, fabrication methodology, and design. While metal films possess the highest conductivity at room temperature, a decent optical transmittance can only be achieved with ultrathin films. Structuring the metal into optically invisible nanowires has been shown to be promising to complement or even substitute transparent conductive oxides as dominant transparent electrode material. Here the out‐of‐plane fabrication capability of the recently developed method of electrohydrodynamic NanoDrip printing to pattern gold and silver nanogrids with line widths from 80 to 500 nm is demonstrated. This fully additive process enables the printing of high aspect ratio nanowalls and by that significantly improves the electrical performance, while maintaining the optical transmittance at a high level. Metal grid transparent electrodes optimized for low sheet resistances (8 Ω sq −1 at a relative transmittance of 94%) as well as optimized for high transmittance (97% at a sheet resistance of 20 Ω sq −1 ) are reported, which can be tailored on demand for the use in various applications. |
Author | Thureja, Deepankur Schneider, Julian Schmid, Martin Rohner, Patrik Galliker, Patrick Poulikakos, Dimos |
Author_xml | – sequence: 1 givenname: Julian surname: Schneider fullname: Schneider, Julian organization: Laboratory of Thermodynamics in Emerging Technologies, Institute of Energy Technology, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092, Zurich, Switzerland – sequence: 2 givenname: Patrik surname: Rohner fullname: Rohner, Patrik organization: Laboratory of Thermodynamics in Emerging Technologies, Institute of Energy Technology, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092, Zurich, Switzerland – sequence: 3 givenname: Deepankur surname: Thureja fullname: Thureja, Deepankur organization: Laboratory of Thermodynamics in Emerging Technologies, Institute of Energy Technology, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092, Zurich, Switzerland – sequence: 4 givenname: Martin surname: Schmid fullname: Schmid, Martin organization: Laboratory of Thermodynamics in Emerging Technologies, Institute of Energy Technology, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092, Zurich, Switzerland – sequence: 5 givenname: Patrick surname: Galliker fullname: Galliker, Patrick organization: Laboratory of Thermodynamics in Emerging Technologies, Institute of Energy Technology, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092, Zurich, Switzerland – sequence: 6 givenname: Dimos surname: Poulikakos fullname: Poulikakos, Dimos email: dpoulikakos@ethz.ch organization: Laboratory of Thermodynamics in Emerging Technologies, Institute of Energy Technology, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092, Zurich, Switzerland |
BookMark | eNqFkEtLAzEUhYMo2Kpb11m6mZrHZDJdllZbwRc-UEQIaebGRqfJmIxo_70jleLO1T2L7ztwTx9t--ABoUNKBpQQdqwruxwwQgXhkogt1KMFLTJOWLm9yfRxF_VTeiWESsnzHno-qcG0MSxWVQzVyuulM_hS-zCJrsHX0fnW-RccLJ65lwUepabD8Y1uXcAX0OoaT6Or8F3UPjU6gm_xb2MFaR_tWF0nOPi9e-j-9ORuPMvOr6Zn49F5ZkRRiMwKKy1npcyNhLmuJLdVPud0rgtbShClMZRBqRm3RjDWPUhyLoQtQQ_nkFu-h47WvU0M7x-QWrV0yUBdaw_hIyladoYsOM87dLBGTQwpRbCqiW6p40pRon5mVD8zqs2MnTBcC5-uhtU_tBpNTi_-utnadamFr42r45sqJJdCPVxOFb2Vwxl7eFIT_g0IAYiN |
CitedBy_id | crossref_primary_10_1002_advs_202104623 crossref_primary_10_1103_PhysRevE_108_044143 crossref_primary_10_1007_s00542_020_05040_z crossref_primary_10_1021_acs_chemrev_3c00548 crossref_primary_10_1021_acsami_8b13377 crossref_primary_10_1016_j_pmatsci_2022_101020 crossref_primary_10_1021_acs_chemrev_9b00483 crossref_primary_10_1039_D2QM01241C crossref_primary_10_1021_acsami_2c11133 crossref_primary_10_1002_aelm_201700412 crossref_primary_10_1002_adma_202007772 crossref_primary_10_1002_er_7516 crossref_primary_10_3390_nano10010107 crossref_primary_10_3367_UFNr_2017_11_038239 crossref_primary_10_1002_smll_201703140 crossref_primary_10_1002_adom_202202673 crossref_primary_10_1016_j_solmat_2018_03_034 crossref_primary_10_1016_j_ceramint_2021_01_279 crossref_primary_10_1021_acsphotonics_8b01236 crossref_primary_10_1039_D2NR03049G crossref_primary_10_1515_ntrev_2021_0073 crossref_primary_10_1002_admt_201800546 crossref_primary_10_1016_j_jmrt_2020_02_082 crossref_primary_10_1039_D2RA00605G crossref_primary_10_1002_admi_202102548 crossref_primary_10_1002_advs_202304990 crossref_primary_10_1016_j_heliyon_2024_e24066 crossref_primary_10_1016_j_fuel_2021_122291 crossref_primary_10_1039_D3RA00611E crossref_primary_10_1002_smll_202107811 crossref_primary_10_1021_acsanm_3c04803 crossref_primary_10_1007_s40684_022_00496_y crossref_primary_10_1021_acsami_0c20477 crossref_primary_10_1021_acsabm_1c00944 crossref_primary_10_1038_s41598_022_14756_z crossref_primary_10_1016_j_surfin_2024_104355 crossref_primary_10_1186_s11671_019_2973_3 crossref_primary_10_1038_s41598_022_13352_5 crossref_primary_10_1021_acsanm_2c05484 crossref_primary_10_1038_s41598_017_11475_8 crossref_primary_10_1002_advs_202203720 crossref_primary_10_1080_17452759_2020_1823116 crossref_primary_10_1039_C7NR04111J crossref_primary_10_1039_D0NR04593D crossref_primary_10_1021_acsaom_4c00037 crossref_primary_10_1002_adfm_201903123 crossref_primary_10_1063_5_0107012 crossref_primary_10_1016_j_jiec_2020_12_010 crossref_primary_10_1080_17452759_2019_1662991 crossref_primary_10_3390_mi12091131 crossref_primary_10_1002_admt_202301695 crossref_primary_10_1016_j_mtphys_2023_101044 crossref_primary_10_1002_smll_201901547 crossref_primary_10_1016_j_orgel_2019_105561 crossref_primary_10_1002_adfm_201705409 crossref_primary_10_1088_2631_7990_acdf2d crossref_primary_10_1002_admt_202101172 crossref_primary_10_3390_nano13010025 crossref_primary_10_1021_acsami_3c08769 crossref_primary_10_1002_adma_201604211 crossref_primary_10_1002_cssc_201702026 crossref_primary_10_1016_j_jallcom_2021_161093 crossref_primary_10_1002_aelm_201600440 crossref_primary_10_1002_adom_201700164 crossref_primary_10_1007_s00542_020_05071_6 crossref_primary_10_1016_j_elstat_2018_10_006 crossref_primary_10_1063_5_0044447 crossref_primary_10_1088_1361_665X_aac629 crossref_primary_10_1088_1757_899X_1060_1_012007 crossref_primary_10_1002_adfm_202004659 crossref_primary_10_1016_j_jhazmat_2019_03_039 crossref_primary_10_1039_C6TA05319J crossref_primary_10_1002_admi_201800440 crossref_primary_10_1002_smll_201906402 crossref_primary_10_1109_JPHOTOV_2018_2876998 crossref_primary_10_1016_j_actbio_2019_10_028 crossref_primary_10_1016_j_pmatsci_2023_101112 crossref_primary_10_5104_jiep_23_452 crossref_primary_10_1021_acsami_8b00093 crossref_primary_10_1088_1361_6528_ab5f29 crossref_primary_10_1016_j_solmat_2017_04_048 crossref_primary_10_1002_smtd_202300908 crossref_primary_10_1038_s41598_019_47779_0 crossref_primary_10_1134_S0020168517110073 crossref_primary_10_1021_acsami_3c10829 crossref_primary_10_1021_acsphotonics_6b00131 crossref_primary_10_1089_3dp_2018_0154 crossref_primary_10_1016_j_matdes_2021_109791 crossref_primary_10_1063_1_4978429 crossref_primary_10_1088_1361_6641_ac4d15 crossref_primary_10_1364_OME_473277 crossref_primary_10_1002_adem_201901275 crossref_primary_10_1021_acs_nanolett_9b04162 crossref_primary_10_1002_aelm_202200728 crossref_primary_10_1016_j_mtadv_2023_100461 crossref_primary_10_1051_itmconf_20193007005 crossref_primary_10_1002_adfm_201910491 crossref_primary_10_1088_1758_5090_aba1fa crossref_primary_10_1039_D2RA05551A crossref_primary_10_1016_j_mtcomm_2022_104433 crossref_primary_10_1002_adem_202101740 crossref_primary_10_1016_j_matt_2021_09_002 crossref_primary_10_1016_j_nanoen_2023_109224 crossref_primary_10_1021_acsnano_1c02209 crossref_primary_10_1016_j_nanoen_2024_109892 crossref_primary_10_3390_mi9100522 crossref_primary_10_1002_adom_201700751 crossref_primary_10_1021_acsabm_3c00131 crossref_primary_10_1021_acsnano_7b00229 crossref_primary_10_1002_admt_202000441 crossref_primary_10_1109_OJNANO_2022_3224229 crossref_primary_10_1007_s10854_023_09834_5 crossref_primary_10_3389_fchem_2022_1005266 crossref_primary_10_1039_C6NR04106J crossref_primary_10_1364_PRJ_404334 crossref_primary_10_3390_s20123349 crossref_primary_10_35848_1347_4065_ad0678 crossref_primary_10_1002_admt_202201842 crossref_primary_10_1002_adom_201900019 crossref_primary_10_1016_j_addma_2023_103815 crossref_primary_10_1002_solr_202100830 crossref_primary_10_1016_j_powtec_2020_01_066 crossref_primary_10_1002_adfm_202210997 crossref_primary_10_1002_adma_202304840 crossref_primary_10_1002_advs_202302858 crossref_primary_10_1038_s41528_019_0063_3 crossref_primary_10_1016_j_mtphys_2021_100442 crossref_primary_10_1515_aot_2019_0021 crossref_primary_10_1021_acsami_7b18579 crossref_primary_10_1002_adem_202001310 crossref_primary_10_1016_j_mfglet_2023_08_038 crossref_primary_10_1021_acsaem_8b01649 crossref_primary_10_1016_j_cap_2021_08_005 crossref_primary_10_1021_acsami_1c14953 crossref_primary_10_1103_PhysRevFluids_5_123602 crossref_primary_10_1007_s41061_017_0181_0 crossref_primary_10_1002_inf2_12505 crossref_primary_10_3390_ma14237178 crossref_primary_10_3390_app8030351 crossref_primary_10_1007_s40820_023_01295_z crossref_primary_10_1021_acsami_9b01893 crossref_primary_10_1039_D1NR08409G crossref_primary_10_1039_D1TC00091H crossref_primary_10_1021_acsami_2c09672 crossref_primary_10_1002_adfm_202213916 crossref_primary_10_1038_s41528_022_00178_4 crossref_primary_10_1115_1_4041934 crossref_primary_10_1007_s12034_020_02159_7 crossref_primary_10_1002_adma_201902479 crossref_primary_10_1088_1361_6439_ab0c65 crossref_primary_10_1021_acsami_6b01585 crossref_primary_10_3390_mi11030236 crossref_primary_10_1557_s43578_021_00188_4 crossref_primary_10_1140_epjd_e2019_90482_8 crossref_primary_10_3390_mi8040113 crossref_primary_10_3390_nano7080214 crossref_primary_10_1039_C9TC02655J crossref_primary_10_1002_admt_202300408 crossref_primary_10_1002_smll_201702324 crossref_primary_10_1038_micronano_2017_54 crossref_primary_10_1063_1_4973622 crossref_primary_10_1016_j_jallcom_2019_03_392 crossref_primary_10_1016_j_synthmet_2020_116664 crossref_primary_10_1002_adma_201804953 crossref_primary_10_1063_1_4997927 crossref_primary_10_1002_adbi_201700067 crossref_primary_10_1007_s41614_019_0039_8 crossref_primary_10_1021_acsapm_0c00339 crossref_primary_10_1088_1361_6439_aafd9e crossref_primary_10_1039_C8NR09872G crossref_primary_10_1103_PhysRevLett_121_113601 crossref_primary_10_1007_s10854_020_04652_5 crossref_primary_10_1039_D1TC04101K crossref_primary_10_1016_j_surfin_2022_102072 crossref_primary_10_1038_s41467_019_09827_1 crossref_primary_10_1039_C6TC05000J crossref_primary_10_1515_nanoph_2020_0161 crossref_primary_10_1002_eem2_12095 crossref_primary_10_1007_s42835_021_00740_6 crossref_primary_10_1039_C5NR08783J crossref_primary_10_1002_solr_202100865 crossref_primary_10_1039_C6NR08220C crossref_primary_10_1002_advs_202201673 crossref_primary_10_1246_cl_160964 crossref_primary_10_1021_acsnano_9b05715 crossref_primary_10_1002_smll_202106006 crossref_primary_10_1002_adfm_202009399 crossref_primary_10_1007_s42242_018_0014_1 crossref_primary_10_1016_j_jallcom_2021_158877 crossref_primary_10_1002_aelm_202001121 crossref_primary_10_1021_acsaelm_1c00107 crossref_primary_10_1021_acsami_0c18518 crossref_primary_10_1039_C8TC04423F crossref_primary_10_3390_membranes12020141 crossref_primary_10_1039_C7TC04114D crossref_primary_10_1002_admt_202000171 crossref_primary_10_1016_j_carbon_2016_12_092 crossref_primary_10_1002_admt_202200584 crossref_primary_10_1016_j_optlastec_2020_106867 crossref_primary_10_1039_D2NR04549D crossref_primary_10_1002_adma_201801772 crossref_primary_10_1016_j_matdes_2023_112364 crossref_primary_10_1039_D2TA08644A crossref_primary_10_1002_aenm_202002536 crossref_primary_10_1080_17452759_2023_2268602 crossref_primary_10_3390_mi10020094 crossref_primary_10_1515_ntrev_2022_0498 crossref_primary_10_1016_j_mtnano_2022_100254 crossref_primary_10_1016_j_mtener_2020_100441 crossref_primary_10_1016_j_nanoen_2024_109933 crossref_primary_10_1002_adma_202308112 crossref_primary_10_1016_j_cej_2023_144065 crossref_primary_10_1016_j_orgel_2020_105960 crossref_primary_10_1038_s41598_022_05312_w |
Cites_doi | 10.1088/0022-3727/46/15/155103 10.1002/adma.201100419 10.1088/0960-1317/24/9/097002 10.1063/1.3299259 10.1063/1.4866002 10.1038/ncomms1891 10.1038/nmat2629 10.1016/j.tsf.2014.02.002 10.1021/nn503383z 10.1039/c1nr10048c 10.1002/aenm.201100608 10.1103/PhysRevB.72.085437 10.1103/PhysRevB.83.212201 10.1021/am502233y 10.1038/ncomms3095 10.1063/1.2907960 10.1038/nmat1974 10.1063/1.323240 10.1002/adma.201302950 10.1002/adma.200700134 10.1016/j.solmat.2010.02.039 10.1002/adfm.201002021 10.1021/nn1025803 10.1364/OE.21.002393 10.1557/mrs.2011.234 10.1038/nphoton.2012.282 10.1021/nn400432z 10.1038/nnano.2010.132 10.1088/0022-3727/47/40/405102 10.1021/nl073296g 10.1021/nn900348c 10.1016/S0040-6090(01)01138-5 10.1021/nl904057p 10.1038/nnano.2013.84 10.1038/ncomms3522 |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201503705 |
DatabaseName | Istex CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | 840 |
ExternalDocumentID | 10_1002_adfm_201503705 ADFM201503705 ark_67375_WNG_1S79H2WZ_D |
Genre | article |
GrantInformation_xml | – fundername: Swiss National Science Foundation funderid: 200021_146180 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c5665-f5f7f32874c7ebad73fd4b31ba6f87e58cc12e8a23fc52215004355f8ea9be4f3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Sat Aug 17 01:21:11 EDT 2024 Fri Aug 23 00:33:32 EDT 2024 Sat Aug 24 01:04:29 EDT 2024 Wed Oct 30 09:51:13 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5665-f5f7f32874c7ebad73fd4b31ba6f87e58cc12e8a23fc52215004355f8ea9be4f3 |
Notes | istex:7A9E9265A19018476B3C64CCC90DAE1ECC2E3F31 Swiss National Science Foundation - No. 200021_146180 ark:/67375/WNG-1S79H2WZ-D ArticleID:ADFM201503705 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1800476334 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1800476334 crossref_primary_10_1002_adfm_201503705 wiley_primary_10_1002_adfm_201503705_ADFM201503705 istex_primary_ark_67375_WNG_1S79H2WZ_D |
PublicationCentury | 2000 |
PublicationDate | February 9, 2016 |
PublicationDateYYYYMMDD | 2016-02-09 |
PublicationDate_xml | – month: 02 year: 2016 text: February 9, 2016 day: 09 |
PublicationDecade | 2010 |
PublicationTitle | Advanced functional materials |
PublicationTitleAlternate | Adv. Funct. Mater |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | F. Matino, L. Persano, V. Arima, D. Pisignano, R. I. R. Blyth, R. Cingolani, R. Rinaldi, Phys. Rev. B 2005, 72, 085437. S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, J. N. Coleman, ACS Nano 2009, 3, 1767. P. Kuang, J. M. Park, G. Y. Liu, Z. Ye, W. Leung, S. Chaudhary, D. Lynch, K. M. Ho, K. Constant, Opt. Express 2013, 21, 2393. S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, S. Iijima, Nat. Nanotechnol. 2010, 5, 574. P. Galliker, J. Schneider, H. Eghlidi, S. Kress, V. Sandoghdar, D. Poulikakos, Nat. Commun. 2012, 3, 890. C. G. Granqvist, Thin Solid Films 2014, 564, 1. G. Haacke, J. Appl. Phys. 1976, 47, 4086. J. Park, J. Hwang, J. Phys. D: Appl. Phys. 2014, 47, 405102. Y. Jang, J. Kim, D. Byun, J. Phys. D: Appl. Phys. 2013, 46, 155103. Z. Chen, B. Cotterell, W. Wang, E. Guenther, S. J. Chua, Thin Solid Films 2001, 394, 202. H. Wu, D. S. Kong, Z. C. Ruan, P. C. Hsu, S. Wang, Z. F. Yu, T. J. Carney, L. B. Hu, S. H. Fan, Y. Cui, Nat. Nanotechnol. 2013, 8, 421. M. G. Kang, H. J. Park, S. H. Ahn, L. J. Guo, Sol. Energy Mater. Sol. Cells 2010, 94, 1179. J. Y. Lee, S. T. Connor, Y. Cui, P. Peumans, Nano Lett. 2008, 8, 689. H. A. Atwater, A. Polman, Nat. Mater. 2010, 9, 205. T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, J. van de Lagemaat, Adv. Energy Mater. 2012, 2, 353. K. Ellmer, Nat. Photonics 2012, 6, 808. B. Y. Ahn, D. J. Lorang, J. A. Lewis, Nanoscale 2011, 3, 2700. L. B. Hu, H. Wu, Y. Cui, MRS Bull. 2011, 36, 760. P. Galliker, J. Schneider, D. Poulikakos, Appl. Phys. Lett. 2014, 104, 073105. J. H. Park, D. Y. Lee, Y. H. Kim, J. K. Kim, J. H. Lee, J. H. Park, T. W. Lee, J. H. Cho, ACS Appl. Mater. Inter. 2014, 6, 12380. W. Wang, S. M. Wu, K. Reinhardt, Y. L. Lu, S. C. Chen, Nano Lett. 2010, 10, 2012. B. Han, K. Pei, Y. L. Huang, X. J. Zhang, Q. K. Rong, Q. G. Lin, Y. F. Guo, T. Y. Sun, C. F. Guo, D. Carnahan, M. Giersig, Y. Wang, J. W. Gao, Z. F. Ren, K. Kempa, Adv. Mater. 2014, 26, 873. B. Seong, H. Yoo, V. D. Nguyen, Y. Jang, C. Ryu, D. Byun, J. Micromech. Microeng. 2014, 24, 097002. J. U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, J. A. Rogers, Nat. Mater. 2007, 6, 782. A. Gondorf, M. Geller, J. Weissbon, A. Lorke, M. Inhester, A. Prodi-Schwab, D. Adam, Phys. Rev. B 2011, 83, 212201. P. C. Hsu, S. Wang, H. Wu, V. K. Narasimhan, D. S. Kong, H. R. Lee, Y. Cui, Nat. Commun. 2013, 4, 2522. R. A. Pala, J. S. Q. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. H. Fan, M. L. Brongersma, Nat. Commun. 2013, 4, 2095. S. De, P. J. King, P. E. Lyons, U. Khan, J. N. Coleman, ACS Nano 2010, 4, 7064. K. Neyts, A. Real, M. Marescaux, S. Mladenovski, J. Beeckman, J. Appl. Phys. 2008, 103, 093113. H. M. Stec, R. J. Williams, T. S. Jones, R. A. Hatton, Adv. Funct. Mater. 2011, 21, 1709. S. Hong, J. Yeo, G. Kim, D. Kim, H. Lee, J. Kwon, H. Lee, P. Lee, S. H. Ko, ACS Nano 2013, 7, 5024. P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, K. Constant, Adv. Mater. 2011, 23, 2469. D. Lee, D. Paeng, H. K. Park, C. P. Grigoropoulos, ACS Nano 2014, 8, 9807. M. G. Kang, L. J. Guo, Adv. Mater. 2007, 19, 1391. D. S. Ghosh, T. L. Chen, V. Pruneri, Appl. Phys. Lett. 2010, 96, 041109. 2007; 19 2010; 10 1976; 47 2013; 4 2013; 21 2013; 46 2011; 83 2014; 26 2014; 47 2008; 8 2014; 24 2008; 103 2011; 36 2013; 7 2013; 8 2011; 3 2012; 2 2012; 3 2001; 394 2007; 6 2011; 21 2011; 23 2005; 72 2012; 6 2009; 3 2014; 8 2010; 5 2014; 6 2010; 4 2010; 96 2014; 104 2010; 94 2010; 9 2014; 564 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 |
References_xml | – volume: 47 start-page: 405102 year: 2014 publication-title: J. Phys. D: Appl. Phys. – volume: 72 start-page: 085437 year: 2005 publication-title: Phys. Rev. B – volume: 3 start-page: 1767 year: 2009 publication-title: ACS Nano – volume: 5 start-page: 574 year: 2010 publication-title: Nat. Nanotechnol. – volume: 47 start-page: 4086 year: 1976 publication-title: J. Appl. Phys. – volume: 4 start-page: 2095 year: 2013 publication-title: Nat. Commun. – volume: 46 start-page: 155103 year: 2013 publication-title: J. Phys. D: Appl. Phys. – volume: 21 start-page: 2393 year: 2013 publication-title: Opt. Express – volume: 21 start-page: 1709 year: 2011 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 12380 year: 2014 publication-title: ACS Appl. Mater. Inter. – volume: 9 start-page: 205 year: 2010 publication-title: Nat. Mater. – volume: 94 start-page: 1179 year: 2010 publication-title: Sol. Energy Mater. Sol. Cells – volume: 3 start-page: 2700 year: 2011 publication-title: Nanoscale – volume: 6 start-page: 808 year: 2012 publication-title: Nat. Photonics – volume: 564 start-page: 1 year: 2014 publication-title: Thin Solid Films – volume: 7 start-page: 5024 year: 2013 publication-title: ACS Nano – volume: 10 start-page: 2012 year: 2010 publication-title: Nano Lett. – volume: 24 start-page: 097002 year: 2014 publication-title: J. Micromech. Microeng. – volume: 4 start-page: 2522 year: 2013 publication-title: Nat. Commun. – volume: 96 start-page: 041109 year: 2010 publication-title: Appl. Phys. Lett. – volume: 19 start-page: 1391 year: 2007 publication-title: Adv. Mater. – volume: 103 start-page: 093113 year: 2008 publication-title: J. Appl. Phys. – volume: 4 start-page: 7064 year: 2010 publication-title: ACS Nano – volume: 3 start-page: 890 year: 2012 publication-title: Nat. Commun. – volume: 36 start-page: 760 year: 2011 publication-title: MRS Bull. – volume: 83 start-page: 212201 year: 2011 publication-title: Phys. Rev. B – volume: 6 start-page: 782 year: 2007 publication-title: Nat. Mater. – volume: 104 start-page: 073105 year: 2014 publication-title: Appl. Phys. Lett. – volume: 8 start-page: 421 year: 2013 publication-title: Nat. Nanotechnol. – volume: 8 start-page: 9807 year: 2014 publication-title: ACS Nano – volume: 26 start-page: 873 year: 2014 publication-title: Adv. Mater. – volume: 394 start-page: 202 year: 2001 publication-title: Thin Solid Films – volume: 2 start-page: 353 year: 2012 publication-title: Adv. Energy Mater. – volume: 8 start-page: 689 year: 2008 publication-title: Nano Lett. – volume: 23 start-page: 2469 year: 2011 publication-title: Adv. Mater. – ident: e_1_2_7_23_1 doi: 10.1088/0022-3727/46/15/155103 – ident: e_1_2_7_15_1 doi: 10.1002/adma.201100419 – ident: e_1_2_7_25_1 doi: 10.1088/0960-1317/24/9/097002 – ident: e_1_2_7_26_1 doi: 10.1063/1.3299259 – ident: e_1_2_7_27_1 doi: 10.1063/1.4866002 – ident: e_1_2_7_22_1 doi: 10.1038/ncomms1891 – ident: e_1_2_7_33_1 doi: 10.1038/nmat2629 – ident: e_1_2_7_4_1 doi: 10.1016/j.tsf.2014.02.002 – ident: e_1_2_7_18_1 doi: 10.1021/nn503383z – ident: e_1_2_7_19_1 doi: 10.1039/c1nr10048c – ident: e_1_2_7_6_1 doi: 10.1002/aenm.201100608 – ident: e_1_2_7_2_1 doi: 10.1103/PhysRevB.72.085437 – ident: e_1_2_7_3_1 doi: 10.1103/PhysRevB.83.212201 – ident: e_1_2_7_16_1 doi: 10.1021/am502233y – ident: e_1_2_7_35_1 doi: 10.1038/ncomms3095 – ident: e_1_2_7_29_1 doi: 10.1063/1.2907960 – ident: e_1_2_7_21_1 doi: 10.1038/nmat1974 – ident: e_1_2_7_28_1 doi: 10.1063/1.323240 – ident: e_1_2_7_13_1 doi: 10.1002/adma.201302950 – ident: e_1_2_7_14_1 doi: 10.1002/adma.200700134 – ident: e_1_2_7_36_1 – ident: e_1_2_7_20_1 doi: 10.1016/j.solmat.2010.02.039 – ident: e_1_2_7_12_1 doi: 10.1002/adfm.201002021 – ident: e_1_2_7_31_1 doi: 10.1021/nn1025803 – ident: e_1_2_7_30_1 doi: 10.1364/OE.21.002393 – ident: e_1_2_7_32_1 doi: 10.1557/mrs.2011.234 – ident: e_1_2_7_1_1 doi: 10.1038/nphoton.2012.282 – ident: e_1_2_7_17_1 doi: 10.1021/nn400432z – ident: e_1_2_7_11_1 doi: 10.1038/nnano.2010.132 – ident: e_1_2_7_24_1 doi: 10.1088/0022-3727/47/40/405102 – ident: e_1_2_7_7_1 doi: 10.1021/nl073296g – ident: e_1_2_7_8_1 doi: 10.1021/nn900348c – ident: e_1_2_7_5_1 doi: 10.1016/S0040-6090(01)01138-5 – ident: e_1_2_7_34_1 doi: 10.1021/nl904057p – ident: e_1_2_7_9_1 doi: 10.1038/nnano.2013.84 – ident: e_1_2_7_10_1 doi: 10.1038/ncomms3522 |
SSID | ssj0017734 |
Score | 2.6247487 |
Snippet | The transparent conducting electrode is an essential component in many contemporary and future devices, ranging from displays to solar cells. Fabricating... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 833 |
SubjectTerms | Additives Electrodes electrohydrodynamic nanodrip printing Electrohydrodynamics gold metal grids Nanostructure Opacity Printing Resistivity Silver transparent electrodes |
Title | Electrohydrodynamic NanoDrip Printing of High Aspect Ratio Metal Grid Transparent Electrodes |
URI | https://api.istex.fr/ark:/67375/WNG-1S79H2WZ-D/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201503705 https://search.proquest.com/docview/1800476334 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6iL_rgXZw3Iog-VZekbdrH4ZxDmIgXHCKEND1BGWyyC6i_3pxmq5svgr61kLTNOcnJR_Od7xByZCMjgMUm4C7yBaGpGizzYgO328RgYohEjPnOreu4-RBetaP2VBa_14cof7jhyijiNS5wnQ3OvkVDdW4xk9wBGiELEVMmJHK66relfhST0h8rxwwJXqw9UW2s8rPZ7jO70gIa-H0Gck4D12LnaawQPflmTzjpnI6G2an5_CHn-J9BrZLlMSylNT-P1sgcdNfJ0pRY4QZ5vvAVc14-chd0fSF76oJzr-7iDr1xjZBBTXuWIneE1oocTnqLnqctcBifXvZfc-rV1DEFbUjHT8xhsEkeGhf3581gXJshMA4ARoGNrLQCxfKNhEznUtg8zATLdGwTCVFiDOOQaC6scRDPDajqgFlkE9BpBqEVW2S-2-vCNqG8qt2EkYwZK0OALM1NqEUSCpApl9xUyMnEN-rNS3AoL7bMFdpLlfaqkOPCdWUz3e8gcU1G6vH6UrE7mTb545OqV8jhxLfKLSc8I9Fd6I0GiiWonxkLEVYILzz1yztVrd5olXc7f-m0SxbdteeCp3tkftgfwb6DOsPsoJjOX3gP9aw |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6h7QF44DdaGT-MhOApW20ncfJY0XUF1gqNTZsQkuU4Z4EmtVPXSsBfz13chJUXJHhMFCexz3f-ZH_3HcCrkHmNMveJosiXpL7vucxLSGi1ydHnmOmc850n03x8mr4_z1o2IefCRH2IbsONPaOJ1-zgvCG9_1s11NWBU8kJ0WjDKqbb5POaqzcMjzsFKWlMPFjOJVO85Hmr29hX-5vtN9albR7i7xug8zp0bdae0V2o2r-OlJOLvdWy2vM__xB0_K9u3YM7a2QqBnEq3YcbOHsAt6_pFT6ELwexaM7XHzXF3VjLXlB8ng8p9IiP9BCTqMU8CKaPiEGTximO2fhiggTzxeHiWy2ioDpnoS3F-o01Xj2C09HBydtxsi7PkHjCgFkSsmCCZr18b7BytdGhTistK5eHwmBWeC8VFk7p4AnlUYf6hM2yUKArK0yDfgxbs_kMd0CovqM5Y6T0waSIVVn71Oki1WhKZZTvwZvWOPYyqnDYqLesLI-X7carB68b23WPucUFc9dMZs-mh1Z-MuVYnX22wx68bI1ryaP4mMTNcL66srJgCc1c67QHqjHVX75pB8PRpLt68i-NXsDN8cnkyB69m37YhVt0P1LDy6ewtVys8Bkhn2X1vJnbvwDQIPnE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFD6MFsb2sO5Ks-6iwdie3EYXS_ZjWJpml4TSrTSMgZDlIzYKSUkT2Pbrp2MlXrKXwfZoI9nWuenDOuc7AC9D7iVy7TMRI1-mfNdTm5eQxd1Go9eYS031zqOxHp6rd5N8slHFn_gh2h9u5BlNvCYHv6rD0W_SUFcHqiSPgEYaIjHdVTrCX4JFZy2BFDcmnStrThlefLKmbeyKo-35W9vSLkn4-xbm3ESuzdYz2AO3_uiUcXJ5uFxUh_7nH3yO_7Oqu3BnhUtZLxnSPbiB0_twe4Ot8AF8OU4tc77-qGPUTZ3sWYzOs34MPOw0DqIUajYLjJJHWK8p4mRnpHo2wgjy2cn8W80SnTrVoC3Y6ok1Xj-E88HxpzfDbNWcIfMRAeZZyIMJktjyvcHK1UaGWlWSV06HwmBeeM8FFk7I4CPGiwvqRmSWhwJdWaEK8hHsTGdT3Acmui5ajOHcB6MQq7L2yslCSTSlMMJ34PVaN_YqcXDYxLYsLMnLtvLqwKtGde0wN7-kzDWT24vxieUfTTkUF59tvwMv1rq10Z_okMRNcba8trwgAk0tpeqAaDT1l3faXn8waq8e_8uk53DztD-wH96O3x_ArXg75YWXT2BnMV_i0wh7FtWzxrJ_AeRT-HM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrohydrodynamic+NanoDrip+Printing+of+High+Aspect+Ratio+Metal+Grid+Transparent+Electrodes&rft.jtitle=Advanced+functional+materials&rft.au=Schneider%2C+Julian&rft.au=Rohner%2C+Patrik&rft.au=Thureja%2C+Deepankur&rft.au=Schmid%2C+Martin&rft.date=2016-02-09&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=26&rft.issue=6&rft.spage=833&rft.epage=840&rft_id=info:doi/10.1002%2Fadfm.201503705&rft.externalDBID=10.1002%252Fadfm.201503705&rft.externalDocID=ADFM201503705 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |