Tetrapyrrole biosynthetic enzyme protoporphyrinogen IX oxidase 1 is required for plastid RNA editing
RNA editing is a posttranscriptional process that covalently alters the sequence of RNA molecules and plays important biological roles in both animals and land plants. In flowering plants, RNA editing converts specific cytidine residues to uridine in both plastid and mitochondrial transcripts. Previ...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 111; no. 5; pp. 2023 - 2028 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
04.02.2014
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | RNA editing is a posttranscriptional process that covalently alters the sequence of RNA molecules and plays important biological roles in both animals and land plants. In flowering plants, RNA editing converts specific cytidine residues to uridine in both plastid and mitochondrial transcripts. Previous studies identified pentatricopeptide repeat (PPR) motif-containing proteins as site-specific recognition factors for cytidine targets in RNA sequences. However, the regulatory mechanism underlying RNA editing was largely unknown. Here, we report that protoporphyrinogen IX oxidase 1 (PPO1), an enzyme that catalyzes protoporphyrinogen IX into protoporphyrin IX in the tetrapyrrole biosynthetic pathway, plays an unexpected role in editing multiple sites of plastid RNA transcripts, most of which encode subunits of the NADH dehydrogenase-like complex (NDH), in the reference plant Arabidopsis thaliana. We identified multiple organellar RNA editing factors (MORFs), including MORF2, MORF8, and MORF9, that interact with PPO1. We found that two conserved motifs within the 22-aa region at the N terminus of PPO1 are essential for its interaction with MORFs, its RNA editing function, and subsequently, its effect on NDH activity. However, transgenic plants lacking key domains for the tetrapyrrole biosynthetic activity of PPO1 exhibit normal RNA editing. Furthermore, MORF2 and MORF9 interact with three PPRs or related proteins required for editing of ndhB and ndhD sites. These results reveal that the tetrapyrrole biosynthetic enzyme PPO1 is required for plastid RNA editing, acting as a regulator that promotes the stability of MORF proteins through physical interaction. |
---|---|
AbstractList | RNA editing is a posttranscriptional process that covalently alters the sequence of RNA molecules and plays important biological roles in both animals and land plants. In flowering plants, RNA editing converts specific cytidine residues to uridine in both plastid and mitochondrial transcripts. Previous studies identified pentatricopeptide repeat (PPR) motif-containing proteins as site-specific recognition factors for cytidine targets in RNA sequences. However, the regulatory mechanism underlying RNA editing was largely unknown. Here, we report that protoporphyrinogen IX oxidase 1 (PPO1), an enzyme that catalyzes protoporphyrinogen IX into protoporphyrin IX in the tetrapyrrole biosynthetic pathway, plays an unexpected role in editing multiple sites of plastid RNA transcripts, most of which encode subunits of the NADH dehydrogenase-like complex (NDH), in the reference plant Arabidopsis thaliana. We identified multiple organellar RNA editing factors (MORFs), including MORF2, MORF8, and MORF9, that interact with PPO1. We found that two conserved motifs within the 22-aa region at the N terminus of PPO1 are essential for its interaction with MORFs, its RNA editing function, and subsequently, its effect on NDH activity. However, transgenic plants lacking key domains for the tetrapyrrole biosynthetic activity of PPO1 exhibit normal RNA editing. Furthermore, MORF2 and MORF9 interact with three PPRs or related proteins required for editing of ndhB and ndhD sites. These results reveal that the tetrapyrrole biosynthetic enzyme PPO1 is required for plastid RNA editing, acting as a regulator that promotes the stability of MORF proteins through physical interaction. RNA editing is a posttranscriptional process that covalently alters the sequence of RNA molecules and plays important biological roles in both animals and land plants. In flowering plants, RNA editing converts specific cytidine residues to uridine in both plastid and mitochondrial transcripts. Previous studies identified pentatricopeptide repeat (PPR) motif-containing proteins as site-specific recognition factors for cytidine targets in RNA sequences. However, the regulatory mechanism underlying RNA editing was largely unknown. Here, we report that protoporphyrinogen IX oxidase 1 (PPO1), an enzyme that catalyzes protoporphyrinogen IX into protoporphyrin IX in the tetrapyrrole biosynthetic pathway, plays an unexpected role in editing multiple sites of plastid RNA transcripts, most of which encode subunits of the NADH dehydrogenase-like complex (NDH), in the reference plant Arabidopsis thaliana. We identified multiple organellar RNA editing factors (MORFs), including MORF2, MORF8, and MORF9, that interact with PPO1. We found that two conserved motifs within the 22-aa region at the N terminus of PPO1 are essential for its interaction with MORFs, its RNA editing function, and subsequently, its effect on NDH activity. However, transgenic plants lacking key domains for the tetrapyrrole biosynthetic activity of PPO1 exhibit normal RNA editing. Furthermore, MORF2 and MORF9 interact with three PPRs or related proteins required for editing of ndhB and ndhD sites. These results reveal that the tetrapyrrole biosynthetic enzyme PPO1 is required for plastid RNA editing, acting as a regulator that promotes the stability of MORF proteins through physical interaction. [PUBLICATION ABSTRACT] Both posttranscriptional RNA editing and tetrapyrrole metabolism are important processes in land plants and animals. A direct link between these two distinct programs had hitherto not been established. This study reveals an unexpected function for protoporphyrinogen IX oxidase 1 from model plant Arabidopsis thaliana in regulating plastid RNA editing through interacting with and modulating the stability of multiple organellar RNA editing factors. In addition to furthering our knowledge of the composition of the plant organellar editing apparatus, this research provides insight into both the conserved and divergent roles of enzymes in the tetrapyrrole metabolism during evolution. RNA editing is a posttranscriptional process that covalently alters the sequence of RNA molecules and plays important biological roles in both animals and land plants. In flowering plants, RNA editing converts specific cytidine residues to uridine in both plastid and mitochondrial transcripts. Previous studies identified pentatricopeptide repeat (PPR) motif-containing proteins as site-specific recognition factors for cytidine targets in RNA sequences. However, the regulatory mechanism underlying RNA editing was largely unknown. Here, we report that protoporphyrinogen IX oxidase 1 (PPO1), an enzyme that catalyzes protoporphyrinogen IX into protoporphyrin IX in the tetrapyrrole biosynthetic pathway, plays an unexpected role in editing multiple sites of plastid RNA transcripts, most of which encode subunits of the NADH dehydrogenase-like complex (NDH), in the reference plant Arabidopsis thaliana . We identified multiple organellar RNA editing factors (MORFs), including MORF2, MORF8, and MORF9, that interact with PPO1. We found that two conserved motifs within the 22-aa region at the N terminus of PPO1 are essential for its interaction with MORFs, its RNA editing function, and subsequently, its effect on NDH activity. However, transgenic plants lacking key domains for the tetrapyrrole biosynthetic activity of PPO1 exhibit normal RNA editing. Furthermore, MORF2 and MORF9 interact with three PPRs or related proteins required for editing of ndhB and ndhD sites. These results reveal that the tetrapyrrole biosynthetic enzyme PPO1 is required for plastid RNA editing, acting as a regulator that promotes the stability of MORF proteins through physical interaction. RNA editing is a posttranscriptional process that covalently alters the sequence of RNA molecules and plays important biological roles in both animals and land plants. In flowering plants, RNA editing converts specific cytidine residues to uridine in both plastid and mitochondrial transcripts. Previous studies identified pentatricopeptide repeat (PPR) motif-containing proteins as site-specific recognition factors for cytidine targets in RNA sequences. However, the regulatory mechanism underlying RNA editing was largely unknown. Here, we report that protoporphyrinogen IX oxidase 1 (PPO1), an enzyme that catalyzes protoporphyrinogen IX into protoporphyrin IX in the tetrapyrrole biosynthetic pathway, plays an unexpected role in editing multiple sites of plastid RNA transcripts, most of which encode subunits of the NADH dehydrogenase-like complex (NDH), in the reference plant Arabidopsis thaliana. We identified multiple organellar RNA editing factors (MORFs), including MORF2, MORF8, and MORF9, that interact with PPO1. We found that two conserved motifs within the 22-aa region at the N terminus of PPO1 are essential for its interaction with MORFs, its RNA editing function, and subsequently, its effect on NDH activity. However, transgenic plants lacking key domains for the tetrapyrrole biosynthetic activity of PPO1 exhibit normal RNA editing. Furthermore, MORF2 and MORF9 interact with three PPRs or related proteins required for editing of ndhB and ndhD sites. These results reveal that the tetrapyrrole biosynthetic enzyme PPO1 is required for plastid RNA editing, acting as a regulator that promotes the stability of MORF proteins through physical interaction.RNA editing is a posttranscriptional process that covalently alters the sequence of RNA molecules and plays important biological roles in both animals and land plants. In flowering plants, RNA editing converts specific cytidine residues to uridine in both plastid and mitochondrial transcripts. Previous studies identified pentatricopeptide repeat (PPR) motif-containing proteins as site-specific recognition factors for cytidine targets in RNA sequences. However, the regulatory mechanism underlying RNA editing was largely unknown. Here, we report that protoporphyrinogen IX oxidase 1 (PPO1), an enzyme that catalyzes protoporphyrinogen IX into protoporphyrin IX in the tetrapyrrole biosynthetic pathway, plays an unexpected role in editing multiple sites of plastid RNA transcripts, most of which encode subunits of the NADH dehydrogenase-like complex (NDH), in the reference plant Arabidopsis thaliana. We identified multiple organellar RNA editing factors (MORFs), including MORF2, MORF8, and MORF9, that interact with PPO1. We found that two conserved motifs within the 22-aa region at the N terminus of PPO1 are essential for its interaction with MORFs, its RNA editing function, and subsequently, its effect on NDH activity. However, transgenic plants lacking key domains for the tetrapyrrole biosynthetic activity of PPO1 exhibit normal RNA editing. Furthermore, MORF2 and MORF9 interact with three PPRs or related proteins required for editing of ndhB and ndhD sites. These results reveal that the tetrapyrrole biosynthetic enzyme PPO1 is required for plastid RNA editing, acting as a regulator that promotes the stability of MORF proteins through physical interaction. |
Author | Lu, Congming Hedtke, Boris Lin, Rongcheng Tang, Weijiang Grimm, Bernhard Zhong, Linlin Peng, Lianwei Zhang, Fan Liu, Lin |
Author_xml | – sequence: 1 givenname: Fan surname: Zhang fullname: Zhang, Fan – sequence: 2 givenname: Weijiang surname: Tang fullname: Tang, Weijiang – sequence: 3 givenname: Boris surname: Hedtke fullname: Hedtke, Boris – sequence: 4 givenname: Linlin surname: Zhong fullname: Zhong, Linlin – sequence: 5 givenname: Lin surname: Liu fullname: Liu, Lin – sequence: 6 givenname: Lianwei surname: Peng fullname: Peng, Lianwei – sequence: 7 givenname: Congming surname: Lu fullname: Lu, Congming – sequence: 8 givenname: Bernhard surname: Grimm fullname: Grimm, Bernhard – sequence: 9 givenname: Rongcheng surname: Lin fullname: Lin, Rongcheng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24497494$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktv1DAUhS1URKeFNSuQJTZs0vqdeINUVTwqVSChIrGznORmxqOMndoOIvx6Ek07hS5g5cX9zvG5jxN05IMHhF5SckZJyc8Hb9MZ5VTRilNKn6AVJZoWSmhyhFaEsLKoBBPH6CSlLSFEy4o8Q8dMCF0KLVaovYEc7TDFGHrAtQtp8nkD2TUY_K9pB3iIIYchxGEzRefDGjy--o7DT9faBJhil3CE29FFaHEXIh56m7Jr8dfPFxhal51fP0dPO9sneHH3nqJvH97fXH4qrr98vLq8uC4aqWQuOis7JQgjgivRKqhLqdqKKWYFVC21tbA1NFICcCLA2o7NXFlxXVnVCiH4KXq39x3GegdtA37urTdDdDsbJxOsM39XvNuYdfhhuKZVKfls8PbOIIbbEVI2O5ca6HvrIYzJUEkZZ0IJ9n9UaE3nvSgyo28eodswRj9PYqFKwnWp5Uy9_jP8IfX9rmbgfA80MaQUoTsglJjlGsxyDebhGmaFfKRoXLbZhaV71_9Ddx9lKRx-odRIwwhb5vRqD2xTDvEhKi-V0lzx3-Ezzdc |
CitedBy_id | crossref_primary_10_3389_fpls_2023_1146922 crossref_primary_10_3389_fpls_2014_00127 crossref_primary_10_3390_ncrna11010001 crossref_primary_10_1016_j_bbabio_2014_12_010 crossref_primary_10_1111_nph_18273 crossref_primary_10_3390_plants11020146 crossref_primary_10_1016_j_bbagrm_2017_05_004 crossref_primary_10_1016_j_tplants_2016_07_005 crossref_primary_10_3390_ijms242316988 crossref_primary_10_1007_s10725_020_00600_9 crossref_primary_10_1016_j_febslet_2014_09_031 crossref_primary_10_1111_tpj_12687 crossref_primary_10_3389_fpls_2023_1189926 crossref_primary_10_3390_f11111233 crossref_primary_10_1007_s11103_019_00925_8 crossref_primary_10_1002_prot_26501 crossref_primary_10_1021_acs_jafc_9b02996 crossref_primary_10_1093_plphys_kiae235 crossref_primary_10_1111_pbi_14132 crossref_primary_10_1016_j_plantsci_2018_12_009 crossref_primary_10_1186_s12870_022_03819_y crossref_primary_10_1016_j_plaphy_2018_12_014 crossref_primary_10_3724_SP_J_1006_2022_14043 crossref_primary_10_3389_fgene_2021_757109 crossref_primary_10_1093_plphys_kiae062 crossref_primary_10_1111_jipb_13837 crossref_primary_10_1021_jf5018115 crossref_primary_10_1111_nph_17047 crossref_primary_10_48130_opr_0024_0002 crossref_primary_10_1093_jxb_erac357 crossref_primary_10_1016_j_bbrc_2021_03_124 crossref_primary_10_1016_j_pestbp_2023_105449 crossref_primary_10_1093_nar_gky1026 crossref_primary_10_1074_jbc_M114_622084 crossref_primary_10_3390_genes8010005 crossref_primary_10_1007_s40003_024_00805_8 crossref_primary_10_1016_j_tplants_2019_10_009 crossref_primary_10_3390_plants12020403 crossref_primary_10_3390_ijms23063064 crossref_primary_10_1093_plphys_kiad258 crossref_primary_10_1093_jxb_erx383 crossref_primary_10_1016_j_plantsci_2024_112263 crossref_primary_10_1016_j_celrep_2022_110664 crossref_primary_10_3390_ijms23052513 crossref_primary_10_3390_ijms23105781 crossref_primary_10_1080_07388551_2023_2299789 crossref_primary_10_1021_acs_jafc_1c05665 crossref_primary_10_1111_tpj_16075 crossref_primary_10_1021_acs_jafc_3c08596 crossref_primary_10_1111_jipb_12856 crossref_primary_10_1007_s40626_024_00328_1 crossref_primary_10_1074_jbc_M114_602086 crossref_primary_10_3390_plants11172279 crossref_primary_10_1016_j_bbrc_2020_06_084 crossref_primary_10_1111_jse_13016 crossref_primary_10_3389_fpls_2020_595792 crossref_primary_10_1021_acs_jafc_4c02889 crossref_primary_10_1021_acs_biochem_3c00508 crossref_primary_10_1111_tpj_14578 crossref_primary_10_1016_j_cj_2021_06_010 crossref_primary_10_1016_j_xplc_2022_100461 crossref_primary_10_1093_plcell_koac318 crossref_primary_10_3390_ijms241813700 crossref_primary_10_1186_s13062_023_00404_7 crossref_primary_10_1007_s11120_015_0171_4 crossref_primary_10_1093_pcp_pcz135 crossref_primary_10_3389_fpls_2021_777028 crossref_primary_10_1016_j_postharvbio_2023_112743 crossref_primary_10_1093_plphys_kiad008 crossref_primary_10_1021_acs_jafc_4c09169 crossref_primary_10_1186_s12870_024_05177_3 crossref_primary_10_1073_pnas_1820426116 crossref_primary_10_1016_j_tplants_2020_12_005 crossref_primary_10_1021_acs_jafc_9b04844 crossref_primary_10_3390_agronomy13020519 crossref_primary_10_1186_s12864_024_10768_3 crossref_primary_10_1002_advs_202405131 crossref_primary_10_3389_fpls_2022_892729 crossref_primary_10_1002_pld3_213 crossref_primary_10_1016_j_plantsci_2018_10_020 crossref_primary_10_1016_j_plantsci_2023_111751 crossref_primary_10_1080_15592324_2016_1167299 crossref_primary_10_1111_nph_13468 crossref_primary_10_1371_journal_pone_0140680 crossref_primary_10_3390_genes10090694 crossref_primary_10_1038_s41598_017_05961_2 crossref_primary_10_1093_pcp_pcx004 crossref_primary_10_1186_s12870_022_03982_2 crossref_primary_10_3390_ijms232113640 crossref_primary_10_1111_tpj_15523 crossref_primary_10_1007_s11099_017_0761_9 crossref_primary_10_1534_g3_116_030783 crossref_primary_10_1002_minf_201600008 crossref_primary_10_3390_ijms20061425 crossref_primary_10_9787_KJBS_2020_52_4_281 crossref_primary_10_1093_plphys_kiad107 crossref_primary_10_1038_s41467_020_14992_9 crossref_primary_10_1016_j_molp_2015_05_008 crossref_primary_10_3390_ijms21124275 crossref_primary_10_1038_nplants_2017_37 crossref_primary_10_1093_jxb_erab185 crossref_primary_10_1007_s11427_017_9170_3 crossref_primary_10_3390_ijms24119203 crossref_primary_10_1002_wrna_1420 crossref_primary_10_1007_s00299_024_03376_8 crossref_primary_10_1038_nplants_2015_125 crossref_primary_10_1371_journal_pgen_1008305 crossref_primary_10_1111_tpj_13672 crossref_primary_10_1002_1873_3468_14969 crossref_primary_10_1111_nph_19499 crossref_primary_10_1111_tpj_16158 crossref_primary_10_1093_pcp_pcad082 crossref_primary_10_1007_s11120_016_0251_0 crossref_primary_10_3390_ijms20184635 crossref_primary_10_1016_j_bbrc_2017_12_044 crossref_primary_10_1073_pnas_1719645115 crossref_primary_10_7554_eLife_14175 crossref_primary_10_1371_journal_pgen_1005028 crossref_primary_10_1016_j_phytochem_2021_112822 |
Cites_doi | 10.4161/rna.8.1.14298 10.4161/rna.7.2.11343 10.1093/nar/gkm640 10.1105/tpc.104.028282 10.1128/MCB.22.24.8448-8456.2002 10.1038/nature01204 10.1105/tpc.112.105742 10.1105/tpc.109.071472 10.1046/j.1365-313X.1999.00420.x 10.1104/pp.55.3.485 10.1038/nature03229 10.1007/978-0-387-78518-9 10.1093/pcp/pcq142 10.1093/nar/20.21.5699 10.1073/pnas.95.16.9705 10.1146/annurev.arplant.57.032905.105448 10.1016/S0021-9258(19)41809-7 10.1073/pnas.1202452109 10.1007/s00018-005-5449-9 10.1016/j.febslet.2007.07.075 10.1074/jbc.M608184200 10.1007/s12033-012-9498-7 10.1104/pp.122.1.75 10.1111/j.1469-8137.2011.03746.x 10.1105/tpc.104.022236 10.1105/tpc.112.099507 10.1134/S0006297911080086 10.4161/rna.24908 10.1104/pp.111.188276 10.1016/j.tplants.2008.10.001 10.1007/978-1-61779-237-3_20 10.1016/j.tplants.2008.08.008 10.1016/j.tplants.2010.05.012 10.1073/pnas.1220162110 10.1073/pnas.1121465109 10.1534/genetics.107.073585 10.1105/tpc.108.064667 10.1038/sj.emboj.7600189 10.1105/tpc.113.111229 10.4161/rna.25207 |
ContentType | Journal Article |
Copyright | copyright © 1993–2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Feb 4, 2014 |
Copyright_xml | – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Feb 4, 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1316183111 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Nucleic Acids Abstracts Virology and AIDS Abstracts MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | PPO1 regulates plastid RNA editing |
EISSN | 1091-6490 |
EndPage | 2028 |
ExternalDocumentID | PMC3918753 3215324681 24497494 10_1073_pnas_1316183111 111_5_2023 23766936 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c565t-fa5f640204364d6eb756d8262a4e8d1ab4abec55ee304eaaf236478398a6d4443 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:11:50 EDT 2025 Fri Jul 11 11:21:48 EDT 2025 Fri Jul 11 02:43:55 EDT 2025 Mon Jun 30 08:39:51 EDT 2025 Mon Jul 21 06:03:26 EDT 2025 Thu Apr 24 23:11:04 EDT 2025 Tue Jul 01 01:52:58 EDT 2025 Wed Nov 11 00:30:31 EST 2020 Thu May 29 08:40:43 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | organelle metabolism editosome |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c565t-fa5f640204364d6eb756d8262a4e8d1ab4abec55ee304eaaf236478398a6d4443 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: F.Z. and R.L. designed research; F.Z., W.T., B.H., and L.Z. performed research; L.L. and C.L. contributed new reagents/analytic tools; F.Z., B.H., L.P., B.G., and R.L. analyzed data; and F.Z. and R.L. wrote the paper. Edited by Joanne Chory, The Salk Institute for Biological Studies and Howard Hughes Medical Institute, La Jolla, CA, and approved December 19, 2013 (received for review September 3, 2013) |
OpenAccessLink | https://www.pnas.org/content/pnas/111/5/2023.full.pdf |
PMID | 24497494 |
PQID | 1497039795 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3918753 crossref_citationtrail_10_1073_pnas_1316183111 pnas_primary_111_5_2023 pubmed_primary_24497494 proquest_miscellaneous_1499116160 proquest_journals_1497039795 crossref_primary_10_1073_pnas_1316183111 proquest_miscellaneous_1512324642 jstor_primary_23766936 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-02-04 |
PublicationDateYYYYMMDD | 2014-02-04 |
PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2014 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 21557747 - New Phytol. 2011 Jul;191(1):37-47 16465445 - Cell Mol Life Sci. 2006 Mar;63(6):698-708 1454533 - Nucleic Acids Res. 1992 Nov 11;20(21):5699-703 23922206 - Plant Cell. 2013 Aug;25(8):2925-43 17227226 - Annu Rev Plant Biol. 2007;58:321-46 22021420 - Plant Physiol. 2011 Dec;157(4):1746-64 20837503 - Plant Cell Physiol. 2010 Nov;51(11):1942-9 15662426 - Nature. 2005 Jan 20;433(7023):326-30 19934379 - Plant Cell. 2009 Nov;21(11):3686-99 20473038 - RNA Biol. 2010 Mar-Apr;7(2):213-9 10230064 - Plant J. 1999 Mar;17(6):667-78 15269332 - Plant Cell. 2004 Aug;16(8):2089-103 19004664 - Trends Plant Sci. 2008 Dec;13(12):663-70 15057273 - EMBO J. 2004 Apr 21;23(8):1720-8 17015439 - J Biol Chem. 2006 Dec 8;281(49):37661-7 22411807 - Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):5104-9 12446765 - Mol Cell Biol. 2002 Dec;22(24):8448-56 22271460 - Mol Biotechnol. 2012 Sep;52(1):91-100 23487777 - Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):E1169-78 234450 - J Biol Chem. 1975 Feb 25;250(4):1269-74 17707818 - FEBS Lett. 2007 Sep 4;581(22):4132-8 20598625 - Trends Plant Sci. 2010 Sep;15(9):488-98 22566615 - Proc Natl Acad Sci U S A. 2012 May 29;109(22):E1453-61 23669716 - RNA Biol. 2013;10(9):1419-25 17565941 - Genetics. 2008 Mar;178(3):1693-708 23771106 - RNA Biol. 2013;10(9):1446-56 21289490 - RNA Biol. 2011 Jan-Feb;8(1):67-70 23001034 - Plant Cell. 2012 Sep;24(9):3684-94 18838332 - Trends Plant Sci. 2008 Nov;13(11):602-9 19182104 - Plant Cell. 2009 Jan;21(1):146-56 16659107 - Plant Physiol. 1975 Mar;55(3):485-90 12511958 - Nature. 2003 Jan 2;421(6918):79-83 21863454 - Methods Mol Biol. 2011;775:357-85 23314848 - Plant Cell. 2013 Jan;25(1):242-56 15608332 - Plant Cell. 2005 Jan;17(1):219-32 22022966 - Biochemistry (Mosc). 2011 Aug;76(8):924-31 10631251 - Plant Physiol. 2000 Jan;122(1):75-84 9689145 - Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9705-9 17726051 - Nucleic Acids Res. 2007;35(17):e114 |
References_xml | – ident: e_1_3_3_9_2 doi: 10.4161/rna.8.1.14298 – ident: e_1_3_3_34_2 doi: 10.4161/rna.7.2.11343 – ident: e_1_3_3_4_2 doi: 10.1093/nar/gkm640 – ident: e_1_3_3_28_2 doi: 10.1105/tpc.104.028282 – ident: e_1_3_3_33_2 doi: 10.1128/MCB.22.24.8448-8456.2002 – ident: e_1_3_3_18_2 doi: 10.1038/nature01204 – ident: e_1_3_3_38_2 doi: 10.1105/tpc.112.105742 – ident: e_1_3_3_24_2 doi: 10.1105/tpc.109.071472 – ident: e_1_3_3_29_2 doi: 10.1046/j.1365-313X.1999.00420.x – ident: e_1_3_3_37_2 doi: 10.1104/pp.55.3.485 – ident: e_1_3_3_22_2 doi: 10.1038/nature03229 – ident: e_1_3_3_20_2 doi: 10.1007/978-0-387-78518-9 – ident: e_1_3_3_25_2 doi: 10.1093/pcp/pcq142 – ident: e_1_3_3_32_2 doi: 10.1093/nar/20.21.5699 – ident: e_1_3_3_39_2 doi: 10.1073/pnas.95.16.9705 – ident: e_1_3_3_16_2 doi: 10.1146/annurev.arplant.57.032905.105448 – ident: e_1_3_3_21_2 doi: 10.1016/S0021-9258(19)41809-7 – ident: e_1_3_3_13_2 doi: 10.1073/pnas.1202452109 – ident: e_1_3_3_1_2 doi: 10.1007/s00018-005-5449-9 – ident: e_1_3_3_12_2 doi: 10.1016/j.febslet.2007.07.075 – ident: e_1_3_3_35_2 doi: 10.1074/jbc.M608184200 – ident: e_1_3_3_2_2 doi: 10.1007/s12033-012-9498-7 – ident: e_1_3_3_30_2 doi: 10.1104/pp.122.1.75 – ident: e_1_3_3_8_2 doi: 10.1111/j.1469-8137.2011.03746.x – ident: e_1_3_3_6_2 doi: 10.1105/tpc.104.022236 – ident: e_1_3_3_26_2 doi: 10.1105/tpc.112.099507 – ident: e_1_3_3_3_2 doi: 10.1134/S0006297911080086 – ident: e_1_3_3_10_2 doi: 10.4161/rna.24908 – ident: e_1_3_3_31_2 doi: 10.1104/pp.111.188276 – ident: e_1_3_3_7_2 doi: 10.1016/j.tplants.2008.10.001 – ident: e_1_3_3_36_2 doi: 10.1007/978-1-61779-237-3_20 – ident: e_1_3_3_19_2 doi: 10.1016/j.tplants.2008.08.008 – ident: e_1_3_3_17_2 doi: 10.1016/j.tplants.2010.05.012 – ident: e_1_3_3_15_2 doi: 10.1073/pnas.1220162110 – ident: e_1_3_3_14_2 doi: 10.1073/pnas.1121465109 – ident: e_1_3_3_5_2 doi: 10.1534/genetics.107.073585 – ident: e_1_3_3_23_2 doi: 10.1105/tpc.108.064667 – ident: e_1_3_3_27_2 doi: 10.1038/sj.emboj.7600189 – ident: e_1_3_3_40_2 doi: 10.1105/tpc.113.111229 – ident: e_1_3_3_11_2 doi: 10.4161/rna.25207 – reference: 20837503 - Plant Cell Physiol. 2010 Nov;51(11):1942-9 – reference: 10230064 - Plant J. 1999 Mar;17(6):667-78 – reference: 21557747 - New Phytol. 2011 Jul;191(1):37-47 – reference: 22411807 - Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):5104-9 – reference: 21289490 - RNA Biol. 2011 Jan-Feb;8(1):67-70 – reference: 15662426 - Nature. 2005 Jan 20;433(7023):326-30 – reference: 15608332 - Plant Cell. 2005 Jan;17(1):219-32 – reference: 20598625 - Trends Plant Sci. 2010 Sep;15(9):488-98 – reference: 17565941 - Genetics. 2008 Mar;178(3):1693-708 – reference: 22271460 - Mol Biotechnol. 2012 Sep;52(1):91-100 – reference: 15057273 - EMBO J. 2004 Apr 21;23(8):1720-8 – reference: 21863454 - Methods Mol Biol. 2011;775:357-85 – reference: 12511958 - Nature. 2003 Jan 2;421(6918):79-83 – reference: 16659107 - Plant Physiol. 1975 Mar;55(3):485-90 – reference: 22021420 - Plant Physiol. 2011 Dec;157(4):1746-64 – reference: 19004664 - Trends Plant Sci. 2008 Dec;13(12):663-70 – reference: 22022966 - Biochemistry (Mosc). 2011 Aug;76(8):924-31 – reference: 23314848 - Plant Cell. 2013 Jan;25(1):242-56 – reference: 1454533 - Nucleic Acids Res. 1992 Nov 11;20(21):5699-703 – reference: 9689145 - Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9705-9 – reference: 23487777 - Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):E1169-78 – reference: 22566615 - Proc Natl Acad Sci U S A. 2012 May 29;109(22):E1453-61 – reference: 17015439 - J Biol Chem. 2006 Dec 8;281(49):37661-7 – reference: 23669716 - RNA Biol. 2013;10(9):1419-25 – reference: 17227226 - Annu Rev Plant Biol. 2007;58:321-46 – reference: 12446765 - Mol Cell Biol. 2002 Dec;22(24):8448-56 – reference: 18838332 - Trends Plant Sci. 2008 Nov;13(11):602-9 – reference: 16465445 - Cell Mol Life Sci. 2006 Mar;63(6):698-708 – reference: 15269332 - Plant Cell. 2004 Aug;16(8):2089-103 – reference: 10631251 - Plant Physiol. 2000 Jan;122(1):75-84 – reference: 234450 - J Biol Chem. 1975 Feb 25;250(4):1269-74 – reference: 23001034 - Plant Cell. 2012 Sep;24(9):3684-94 – reference: 20473038 - RNA Biol. 2010 Mar-Apr;7(2):213-9 – reference: 19182104 - Plant Cell. 2009 Jan;21(1):146-56 – reference: 23771106 - RNA Biol. 2013;10(9):1446-56 – reference: 17707818 - FEBS Lett. 2007 Sep 4;581(22):4132-8 – reference: 19934379 - Plant Cell. 2009 Nov;21(11):3686-99 – reference: 17726051 - Nucleic Acids Res. 2007;35(17):e114 – reference: 23922206 - Plant Cell. 2013 Aug;25(8):2925-43 |
SSID | ssj0009580 |
Score | 2.4848971 |
Snippet | RNA editing is a posttranscriptional process that covalently alters the sequence of RNA molecules and plays important biological roles in both animals and land... Both posttranscriptional RNA editing and tetrapyrrole metabolism are important processes in land plants and animals. A direct link between these two distinct... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2023 |
SubjectTerms | Amino acids Arabidopsis - enzymology Arabidopsis - genetics Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis thaliana Base Sequence Biological Sciences Biosynthesis Chlorophyll - biosynthesis Chlorophylls Enzymes Flavin-Adenine Dinucleotide - metabolism Flowering plants Genetic engineering Molecular Sequence Data NADH Dehydrogenase - metabolism Phenotype Plants Plastids Plastids - enzymology Plastids - genetics Protein Binding Proteins Protoporphyrinogen Oxidase - genetics Protoporphyrinogen Oxidase - metabolism Ribonucleic acid RNA RNA editing RNA Editing - genetics Seedlings - growth & development Substrate Specificity Synthetic biology Tetrapyrroles Tetrapyrroles - biosynthesis Transgenic plants |
Title | Tetrapyrrole biosynthetic enzyme protoporphyrinogen IX oxidase 1 is required for plastid RNA editing |
URI | https://www.jstor.org/stable/23766936 http://www.pnas.org/content/111/5/2023.abstract https://www.ncbi.nlm.nih.gov/pubmed/24497494 https://www.proquest.com/docview/1497039795 https://www.proquest.com/docview/1499116160 https://www.proquest.com/docview/1512324642 https://pubmed.ncbi.nlm.nih.gov/PMC3918753 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMWAQGMhIPAxFKXHsuMljQUwbEtWEOtG3yIndEbQlVZNKbM_84Zwd56P7QMBL1MYXJ_L9cv6dc75D6G2kaCRCsH4youCgcCq9OKMM_pJ44scZYaY24JcZPzplnxfhYjT6NYha2tTpOLu6dV_J_2gVzoFe9S7Zf9Bs1ymcgN-gXziChuH4dzpWtU4JsDYhgmleVpcF8DmdglUVV5cXeg9UWZfAsGEs13lRQkfu8cItf-YSJi-X6Grma6VjgYF26njDFXDpOpfu19nUhVmtbuc1y15PutmuamMLZu1i4rTfmmLtReV67smsL3TcrU0f9oic21PfVP4DgHrWL83Kugkb-lCu86rvwkYQgwt9bnOG2yULwkyUc7NsoBozCyzF46wpFNrZYWt18-Gn7saq-s2e5BvmHuyTrlFciGpMqE79T20nA-WvLoz2gcaA6xSzft7rohHbpnvofgDORmDM-zB1c-S3SaEm9P21u-ls0vb6LWrTRLfqlLkgf5v7cj0Kd0Br5o_QQ-uP4GkDrl00UsVjtNtqEB_YtOTvniA5RBseog03aMM30YaPF9iiDROcV7hFGwa0YYs2DGjDFm1P0enhp_nHI8_W6PAycAVqbynCJWdmhzVnkqt0EnIJLmsgmIokESkTYCXCUCnqMyXE0hQsAFYeCS4ZY3QP7RRloZ4jLAUnWQDOHklDprJlHMilCMCfAMrOozhy0Lgd3iSzCex1HZXzxARSTGiihzrpVeOgg-6CVZO75W7RPaOvTk4Hi_GYcgc9M6Ld9eAvh4kGpIP2W50m1iZAj4AEX38qDx30pmsGi60_w4lClRsjAwyDE-7_QSY0rg5ngX4AA5P-0SzcHDTZAlAnoDPGb7cU-XeTOZ7GRK9PvLizz5foQf_C7qOder1Rr4B11-lr81L8BvYc2D4 |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tetrapyrrole+biosynthetic+enzyme+protoporphyrinogen+IX+oxidase+1+is+required+for+plastid+RNA+editing&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Zhang%2C+Fan&rft.au=Tang%2C+Weijiang&rft.au=Hedtke%2C+Boris&rft.au=Zhong%2C+Linlin&rft.date=2014-02-04&rft.eissn=1091-6490&rft.volume=111&rft.issue=5&rft.spage=2023&rft_id=info:doi/10.1073%2Fpnas.1316183111&rft_id=info%3Apmid%2F24497494&rft.externalDocID=24497494 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F5.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F5.cover.gif |