Tetrapyrrole biosynthetic enzyme protoporphyrinogen IX oxidase 1 is required for plastid RNA editing

RNA editing is a posttranscriptional process that covalently alters the sequence of RNA molecules and plays important biological roles in both animals and land plants. In flowering plants, RNA editing converts specific cytidine residues to uridine in both plastid and mitochondrial transcripts. Previ...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 111; no. 5; pp. 2023 - 2028
Main Authors Zhang, Fan, Tang, Weijiang, Hedtke, Boris, Zhong, Linlin, Liu, Lin, Peng, Lianwei, Lu, Congming, Grimm, Bernhard, Lin, Rongcheng
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 04.02.2014
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract RNA editing is a posttranscriptional process that covalently alters the sequence of RNA molecules and plays important biological roles in both animals and land plants. In flowering plants, RNA editing converts specific cytidine residues to uridine in both plastid and mitochondrial transcripts. Previous studies identified pentatricopeptide repeat (PPR) motif-containing proteins as site-specific recognition factors for cytidine targets in RNA sequences. However, the regulatory mechanism underlying RNA editing was largely unknown. Here, we report that protoporphyrinogen IX oxidase 1 (PPO1), an enzyme that catalyzes protoporphyrinogen IX into protoporphyrin IX in the tetrapyrrole biosynthetic pathway, plays an unexpected role in editing multiple sites of plastid RNA transcripts, most of which encode subunits of the NADH dehydrogenase-like complex (NDH), in the reference plant Arabidopsis thaliana. We identified multiple organellar RNA editing factors (MORFs), including MORF2, MORF8, and MORF9, that interact with PPO1. We found that two conserved motifs within the 22-aa region at the N terminus of PPO1 are essential for its interaction with MORFs, its RNA editing function, and subsequently, its effect on NDH activity. However, transgenic plants lacking key domains for the tetrapyrrole biosynthetic activity of PPO1 exhibit normal RNA editing. Furthermore, MORF2 and MORF9 interact with three PPRs or related proteins required for editing of ndhB and ndhD sites. These results reveal that the tetrapyrrole biosynthetic enzyme PPO1 is required for plastid RNA editing, acting as a regulator that promotes the stability of MORF proteins through physical interaction.
AbstractList RNA editing is a posttranscriptional process that covalently alters the sequence of RNA molecules and plays important biological roles in both animals and land plants. In flowering plants, RNA editing converts specific cytidine residues to uridine in both plastid and mitochondrial transcripts. Previous studies identified pentatricopeptide repeat (PPR) motif-containing proteins as site-specific recognition factors for cytidine targets in RNA sequences. However, the regulatory mechanism underlying RNA editing was largely unknown. Here, we report that protoporphyrinogen IX oxidase 1 (PPO1), an enzyme that catalyzes protoporphyrinogen IX into protoporphyrin IX in the tetrapyrrole biosynthetic pathway, plays an unexpected role in editing multiple sites of plastid RNA transcripts, most of which encode subunits of the NADH dehydrogenase-like complex (NDH), in the reference plant Arabidopsis thaliana. We identified multiple organellar RNA editing factors (MORFs), including MORF2, MORF8, and MORF9, that interact with PPO1. We found that two conserved motifs within the 22-aa region at the N terminus of PPO1 are essential for its interaction with MORFs, its RNA editing function, and subsequently, its effect on NDH activity. However, transgenic plants lacking key domains for the tetrapyrrole biosynthetic activity of PPO1 exhibit normal RNA editing. Furthermore, MORF2 and MORF9 interact with three PPRs or related proteins required for editing of ndhB and ndhD sites. These results reveal that the tetrapyrrole biosynthetic enzyme PPO1 is required for plastid RNA editing, acting as a regulator that promotes the stability of MORF proteins through physical interaction.
RNA editing is a posttranscriptional process that covalently alters the sequence of RNA molecules and plays important biological roles in both animals and land plants. In flowering plants, RNA editing converts specific cytidine residues to uridine in both plastid and mitochondrial transcripts. Previous studies identified pentatricopeptide repeat (PPR) motif-containing proteins as site-specific recognition factors for cytidine targets in RNA sequences. However, the regulatory mechanism underlying RNA editing was largely unknown. Here, we report that protoporphyrinogen IX oxidase 1 (PPO1), an enzyme that catalyzes protoporphyrinogen IX into protoporphyrin IX in the tetrapyrrole biosynthetic pathway, plays an unexpected role in editing multiple sites of plastid RNA transcripts, most of which encode subunits of the NADH dehydrogenase-like complex (NDH), in the reference plant Arabidopsis thaliana. We identified multiple organellar RNA editing factors (MORFs), including MORF2, MORF8, and MORF9, that interact with PPO1. We found that two conserved motifs within the 22-aa region at the N terminus of PPO1 are essential for its interaction with MORFs, its RNA editing function, and subsequently, its effect on NDH activity. However, transgenic plants lacking key domains for the tetrapyrrole biosynthetic activity of PPO1 exhibit normal RNA editing. Furthermore, MORF2 and MORF9 interact with three PPRs or related proteins required for editing of ndhB and ndhD sites. These results reveal that the tetrapyrrole biosynthetic enzyme PPO1 is required for plastid RNA editing, acting as a regulator that promotes the stability of MORF proteins through physical interaction. [PUBLICATION ABSTRACT]
Both posttranscriptional RNA editing and tetrapyrrole metabolism are important processes in land plants and animals. A direct link between these two distinct programs had hitherto not been established. This study reveals an unexpected function for protoporphyrinogen IX oxidase 1 from model plant Arabidopsis thaliana in regulating plastid RNA editing through interacting with and modulating the stability of multiple organellar RNA editing factors. In addition to furthering our knowledge of the composition of the plant organellar editing apparatus, this research provides insight into both the conserved and divergent roles of enzymes in the tetrapyrrole metabolism during evolution. RNA editing is a posttranscriptional process that covalently alters the sequence of RNA molecules and plays important biological roles in both animals and land plants. In flowering plants, RNA editing converts specific cytidine residues to uridine in both plastid and mitochondrial transcripts. Previous studies identified pentatricopeptide repeat (PPR) motif-containing proteins as site-specific recognition factors for cytidine targets in RNA sequences. However, the regulatory mechanism underlying RNA editing was largely unknown. Here, we report that protoporphyrinogen IX oxidase 1 (PPO1), an enzyme that catalyzes protoporphyrinogen IX into protoporphyrin IX in the tetrapyrrole biosynthetic pathway, plays an unexpected role in editing multiple sites of plastid RNA transcripts, most of which encode subunits of the NADH dehydrogenase-like complex (NDH), in the reference plant Arabidopsis thaliana . We identified multiple organellar RNA editing factors (MORFs), including MORF2, MORF8, and MORF9, that interact with PPO1. We found that two conserved motifs within the 22-aa region at the N terminus of PPO1 are essential for its interaction with MORFs, its RNA editing function, and subsequently, its effect on NDH activity. However, transgenic plants lacking key domains for the tetrapyrrole biosynthetic activity of PPO1 exhibit normal RNA editing. Furthermore, MORF2 and MORF9 interact with three PPRs or related proteins required for editing of ndhB and ndhD sites. These results reveal that the tetrapyrrole biosynthetic enzyme PPO1 is required for plastid RNA editing, acting as a regulator that promotes the stability of MORF proteins through physical interaction.
RNA editing is a posttranscriptional process that covalently alters the sequence of RNA molecules and plays important biological roles in both animals and land plants. In flowering plants, RNA editing converts specific cytidine residues to uridine in both plastid and mitochondrial transcripts. Previous studies identified pentatricopeptide repeat (PPR) motif-containing proteins as site-specific recognition factors for cytidine targets in RNA sequences. However, the regulatory mechanism underlying RNA editing was largely unknown. Here, we report that protoporphyrinogen IX oxidase 1 (PPO1), an enzyme that catalyzes protoporphyrinogen IX into protoporphyrin IX in the tetrapyrrole biosynthetic pathway, plays an unexpected role in editing multiple sites of plastid RNA transcripts, most of which encode subunits of the NADH dehydrogenase-like complex (NDH), in the reference plant Arabidopsis thaliana. We identified multiple organellar RNA editing factors (MORFs), including MORF2, MORF8, and MORF9, that interact with PPO1. We found that two conserved motifs within the 22-aa region at the N terminus of PPO1 are essential for its interaction with MORFs, its RNA editing function, and subsequently, its effect on NDH activity. However, transgenic plants lacking key domains for the tetrapyrrole biosynthetic activity of PPO1 exhibit normal RNA editing. Furthermore, MORF2 and MORF9 interact with three PPRs or related proteins required for editing of ndhB and ndhD sites. These results reveal that the tetrapyrrole biosynthetic enzyme PPO1 is required for plastid RNA editing, acting as a regulator that promotes the stability of MORF proteins through physical interaction.RNA editing is a posttranscriptional process that covalently alters the sequence of RNA molecules and plays important biological roles in both animals and land plants. In flowering plants, RNA editing converts specific cytidine residues to uridine in both plastid and mitochondrial transcripts. Previous studies identified pentatricopeptide repeat (PPR) motif-containing proteins as site-specific recognition factors for cytidine targets in RNA sequences. However, the regulatory mechanism underlying RNA editing was largely unknown. Here, we report that protoporphyrinogen IX oxidase 1 (PPO1), an enzyme that catalyzes protoporphyrinogen IX into protoporphyrin IX in the tetrapyrrole biosynthetic pathway, plays an unexpected role in editing multiple sites of plastid RNA transcripts, most of which encode subunits of the NADH dehydrogenase-like complex (NDH), in the reference plant Arabidopsis thaliana. We identified multiple organellar RNA editing factors (MORFs), including MORF2, MORF8, and MORF9, that interact with PPO1. We found that two conserved motifs within the 22-aa region at the N terminus of PPO1 are essential for its interaction with MORFs, its RNA editing function, and subsequently, its effect on NDH activity. However, transgenic plants lacking key domains for the tetrapyrrole biosynthetic activity of PPO1 exhibit normal RNA editing. Furthermore, MORF2 and MORF9 interact with three PPRs or related proteins required for editing of ndhB and ndhD sites. These results reveal that the tetrapyrrole biosynthetic enzyme PPO1 is required for plastid RNA editing, acting as a regulator that promotes the stability of MORF proteins through physical interaction.
Author Lu, Congming
Hedtke, Boris
Lin, Rongcheng
Tang, Weijiang
Grimm, Bernhard
Zhong, Linlin
Peng, Lianwei
Zhang, Fan
Liu, Lin
Author_xml – sequence: 1
  givenname: Fan
  surname: Zhang
  fullname: Zhang, Fan
– sequence: 2
  givenname: Weijiang
  surname: Tang
  fullname: Tang, Weijiang
– sequence: 3
  givenname: Boris
  surname: Hedtke
  fullname: Hedtke, Boris
– sequence: 4
  givenname: Linlin
  surname: Zhong
  fullname: Zhong, Linlin
– sequence: 5
  givenname: Lin
  surname: Liu
  fullname: Liu, Lin
– sequence: 6
  givenname: Lianwei
  surname: Peng
  fullname: Peng, Lianwei
– sequence: 7
  givenname: Congming
  surname: Lu
  fullname: Lu, Congming
– sequence: 8
  givenname: Bernhard
  surname: Grimm
  fullname: Grimm, Bernhard
– sequence: 9
  givenname: Rongcheng
  surname: Lin
  fullname: Lin, Rongcheng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24497494$$D View this record in MEDLINE/PubMed
BookMark eNqFkktv1DAUhS1URKeFNSuQJTZs0vqdeINUVTwqVSChIrGznORmxqOMndoOIvx6Ek07hS5g5cX9zvG5jxN05IMHhF5SckZJyc8Hb9MZ5VTRilNKn6AVJZoWSmhyhFaEsLKoBBPH6CSlLSFEy4o8Q8dMCF0KLVaovYEc7TDFGHrAtQtp8nkD2TUY_K9pB3iIIYchxGEzRefDGjy--o7DT9faBJhil3CE29FFaHEXIh56m7Jr8dfPFxhal51fP0dPO9sneHH3nqJvH97fXH4qrr98vLq8uC4aqWQuOis7JQgjgivRKqhLqdqKKWYFVC21tbA1NFICcCLA2o7NXFlxXVnVCiH4KXq39x3GegdtA37urTdDdDsbJxOsM39XvNuYdfhhuKZVKfls8PbOIIbbEVI2O5ca6HvrIYzJUEkZZ0IJ9n9UaE3nvSgyo28eodswRj9PYqFKwnWp5Uy9_jP8IfX9rmbgfA80MaQUoTsglJjlGsxyDebhGmaFfKRoXLbZhaV71_9Ddx9lKRx-odRIwwhb5vRqD2xTDvEhKi-V0lzx3-Ezzdc
CitedBy_id crossref_primary_10_3389_fpls_2023_1146922
crossref_primary_10_3389_fpls_2014_00127
crossref_primary_10_3390_ncrna11010001
crossref_primary_10_1016_j_bbabio_2014_12_010
crossref_primary_10_1111_nph_18273
crossref_primary_10_3390_plants11020146
crossref_primary_10_1016_j_bbagrm_2017_05_004
crossref_primary_10_1016_j_tplants_2016_07_005
crossref_primary_10_3390_ijms242316988
crossref_primary_10_1007_s10725_020_00600_9
crossref_primary_10_1016_j_febslet_2014_09_031
crossref_primary_10_1111_tpj_12687
crossref_primary_10_3389_fpls_2023_1189926
crossref_primary_10_3390_f11111233
crossref_primary_10_1007_s11103_019_00925_8
crossref_primary_10_1002_prot_26501
crossref_primary_10_1021_acs_jafc_9b02996
crossref_primary_10_1093_plphys_kiae235
crossref_primary_10_1111_pbi_14132
crossref_primary_10_1016_j_plantsci_2018_12_009
crossref_primary_10_1186_s12870_022_03819_y
crossref_primary_10_1016_j_plaphy_2018_12_014
crossref_primary_10_3724_SP_J_1006_2022_14043
crossref_primary_10_3389_fgene_2021_757109
crossref_primary_10_1093_plphys_kiae062
crossref_primary_10_1111_jipb_13837
crossref_primary_10_1021_jf5018115
crossref_primary_10_1111_nph_17047
crossref_primary_10_48130_opr_0024_0002
crossref_primary_10_1093_jxb_erac357
crossref_primary_10_1016_j_bbrc_2021_03_124
crossref_primary_10_1016_j_pestbp_2023_105449
crossref_primary_10_1093_nar_gky1026
crossref_primary_10_1074_jbc_M114_622084
crossref_primary_10_3390_genes8010005
crossref_primary_10_1007_s40003_024_00805_8
crossref_primary_10_1016_j_tplants_2019_10_009
crossref_primary_10_3390_plants12020403
crossref_primary_10_3390_ijms23063064
crossref_primary_10_1093_plphys_kiad258
crossref_primary_10_1093_jxb_erx383
crossref_primary_10_1016_j_plantsci_2024_112263
crossref_primary_10_1016_j_celrep_2022_110664
crossref_primary_10_3390_ijms23052513
crossref_primary_10_3390_ijms23105781
crossref_primary_10_1080_07388551_2023_2299789
crossref_primary_10_1021_acs_jafc_1c05665
crossref_primary_10_1111_tpj_16075
crossref_primary_10_1021_acs_jafc_3c08596
crossref_primary_10_1111_jipb_12856
crossref_primary_10_1007_s40626_024_00328_1
crossref_primary_10_1074_jbc_M114_602086
crossref_primary_10_3390_plants11172279
crossref_primary_10_1016_j_bbrc_2020_06_084
crossref_primary_10_1111_jse_13016
crossref_primary_10_3389_fpls_2020_595792
crossref_primary_10_1021_acs_jafc_4c02889
crossref_primary_10_1021_acs_biochem_3c00508
crossref_primary_10_1111_tpj_14578
crossref_primary_10_1016_j_cj_2021_06_010
crossref_primary_10_1016_j_xplc_2022_100461
crossref_primary_10_1093_plcell_koac318
crossref_primary_10_3390_ijms241813700
crossref_primary_10_1186_s13062_023_00404_7
crossref_primary_10_1007_s11120_015_0171_4
crossref_primary_10_1093_pcp_pcz135
crossref_primary_10_3389_fpls_2021_777028
crossref_primary_10_1016_j_postharvbio_2023_112743
crossref_primary_10_1093_plphys_kiad008
crossref_primary_10_1021_acs_jafc_4c09169
crossref_primary_10_1186_s12870_024_05177_3
crossref_primary_10_1073_pnas_1820426116
crossref_primary_10_1016_j_tplants_2020_12_005
crossref_primary_10_1021_acs_jafc_9b04844
crossref_primary_10_3390_agronomy13020519
crossref_primary_10_1186_s12864_024_10768_3
crossref_primary_10_1002_advs_202405131
crossref_primary_10_3389_fpls_2022_892729
crossref_primary_10_1002_pld3_213
crossref_primary_10_1016_j_plantsci_2018_10_020
crossref_primary_10_1016_j_plantsci_2023_111751
crossref_primary_10_1080_15592324_2016_1167299
crossref_primary_10_1111_nph_13468
crossref_primary_10_1371_journal_pone_0140680
crossref_primary_10_3390_genes10090694
crossref_primary_10_1038_s41598_017_05961_2
crossref_primary_10_1093_pcp_pcx004
crossref_primary_10_1186_s12870_022_03982_2
crossref_primary_10_3390_ijms232113640
crossref_primary_10_1111_tpj_15523
crossref_primary_10_1007_s11099_017_0761_9
crossref_primary_10_1534_g3_116_030783
crossref_primary_10_1002_minf_201600008
crossref_primary_10_3390_ijms20061425
crossref_primary_10_9787_KJBS_2020_52_4_281
crossref_primary_10_1093_plphys_kiad107
crossref_primary_10_1038_s41467_020_14992_9
crossref_primary_10_1016_j_molp_2015_05_008
crossref_primary_10_3390_ijms21124275
crossref_primary_10_1038_nplants_2017_37
crossref_primary_10_1093_jxb_erab185
crossref_primary_10_1007_s11427_017_9170_3
crossref_primary_10_3390_ijms24119203
crossref_primary_10_1002_wrna_1420
crossref_primary_10_1007_s00299_024_03376_8
crossref_primary_10_1038_nplants_2015_125
crossref_primary_10_1371_journal_pgen_1008305
crossref_primary_10_1111_tpj_13672
crossref_primary_10_1002_1873_3468_14969
crossref_primary_10_1111_nph_19499
crossref_primary_10_1111_tpj_16158
crossref_primary_10_1093_pcp_pcad082
crossref_primary_10_1007_s11120_016_0251_0
crossref_primary_10_3390_ijms20184635
crossref_primary_10_1016_j_bbrc_2017_12_044
crossref_primary_10_1073_pnas_1719645115
crossref_primary_10_7554_eLife_14175
crossref_primary_10_1371_journal_pgen_1005028
crossref_primary_10_1016_j_phytochem_2021_112822
Cites_doi 10.4161/rna.8.1.14298
10.4161/rna.7.2.11343
10.1093/nar/gkm640
10.1105/tpc.104.028282
10.1128/MCB.22.24.8448-8456.2002
10.1038/nature01204
10.1105/tpc.112.105742
10.1105/tpc.109.071472
10.1046/j.1365-313X.1999.00420.x
10.1104/pp.55.3.485
10.1038/nature03229
10.1007/978-0-387-78518-9
10.1093/pcp/pcq142
10.1093/nar/20.21.5699
10.1073/pnas.95.16.9705
10.1146/annurev.arplant.57.032905.105448
10.1016/S0021-9258(19)41809-7
10.1073/pnas.1202452109
10.1007/s00018-005-5449-9
10.1016/j.febslet.2007.07.075
10.1074/jbc.M608184200
10.1007/s12033-012-9498-7
10.1104/pp.122.1.75
10.1111/j.1469-8137.2011.03746.x
10.1105/tpc.104.022236
10.1105/tpc.112.099507
10.1134/S0006297911080086
10.4161/rna.24908
10.1104/pp.111.188276
10.1016/j.tplants.2008.10.001
10.1007/978-1-61779-237-3_20
10.1016/j.tplants.2008.08.008
10.1016/j.tplants.2010.05.012
10.1073/pnas.1220162110
10.1073/pnas.1121465109
10.1534/genetics.107.073585
10.1105/tpc.108.064667
10.1038/sj.emboj.7600189
10.1105/tpc.113.111229
10.4161/rna.25207
ContentType Journal Article
Copyright copyright © 1993–2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Feb 4, 2014
Copyright_xml – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Feb 4, 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1316183111
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Nucleic Acids Abstracts
Virology and AIDS Abstracts
MEDLINE
CrossRef
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate PPO1 regulates plastid RNA editing
EISSN 1091-6490
EndPage 2028
ExternalDocumentID PMC3918753
3215324681
24497494
10_1073_pnas_1316183111
111_5_2023
23766936
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c565t-fa5f640204364d6eb756d8262a4e8d1ab4abec55ee304eaaf236478398a6d4443
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:11:50 EDT 2025
Fri Jul 11 11:21:48 EDT 2025
Fri Jul 11 02:43:55 EDT 2025
Mon Jun 30 08:39:51 EDT 2025
Mon Jul 21 06:03:26 EDT 2025
Thu Apr 24 23:11:04 EDT 2025
Tue Jul 01 01:52:58 EDT 2025
Wed Nov 11 00:30:31 EST 2020
Thu May 29 08:40:43 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords organelle
metabolism
editosome
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c565t-fa5f640204364d6eb756d8262a4e8d1ab4abec55ee304eaaf236478398a6d4443
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: F.Z. and R.L. designed research; F.Z., W.T., B.H., and L.Z. performed research; L.L. and C.L. contributed new reagents/analytic tools; F.Z., B.H., L.P., B.G., and R.L. analyzed data; and F.Z. and R.L. wrote the paper.
Edited by Joanne Chory, The Salk Institute for Biological Studies and Howard Hughes Medical Institute, La Jolla, CA, and approved December 19, 2013 (received for review September 3, 2013)
OpenAccessLink https://www.pnas.org/content/pnas/111/5/2023.full.pdf
PMID 24497494
PQID 1497039795
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3918753
crossref_citationtrail_10_1073_pnas_1316183111
pnas_primary_111_5_2023
pubmed_primary_24497494
proquest_miscellaneous_1499116160
proquest_journals_1497039795
crossref_primary_10_1073_pnas_1316183111
proquest_miscellaneous_1512324642
jstor_primary_23766936
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-02-04
PublicationDateYYYYMMDD 2014-02-04
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-04
  day: 04
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2014
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
21557747 - New Phytol. 2011 Jul;191(1):37-47
16465445 - Cell Mol Life Sci. 2006 Mar;63(6):698-708
1454533 - Nucleic Acids Res. 1992 Nov 11;20(21):5699-703
23922206 - Plant Cell. 2013 Aug;25(8):2925-43
17227226 - Annu Rev Plant Biol. 2007;58:321-46
22021420 - Plant Physiol. 2011 Dec;157(4):1746-64
20837503 - Plant Cell Physiol. 2010 Nov;51(11):1942-9
15662426 - Nature. 2005 Jan 20;433(7023):326-30
19934379 - Plant Cell. 2009 Nov;21(11):3686-99
20473038 - RNA Biol. 2010 Mar-Apr;7(2):213-9
10230064 - Plant J. 1999 Mar;17(6):667-78
15269332 - Plant Cell. 2004 Aug;16(8):2089-103
19004664 - Trends Plant Sci. 2008 Dec;13(12):663-70
15057273 - EMBO J. 2004 Apr 21;23(8):1720-8
17015439 - J Biol Chem. 2006 Dec 8;281(49):37661-7
22411807 - Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):5104-9
12446765 - Mol Cell Biol. 2002 Dec;22(24):8448-56
22271460 - Mol Biotechnol. 2012 Sep;52(1):91-100
23487777 - Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):E1169-78
234450 - J Biol Chem. 1975 Feb 25;250(4):1269-74
17707818 - FEBS Lett. 2007 Sep 4;581(22):4132-8
20598625 - Trends Plant Sci. 2010 Sep;15(9):488-98
22566615 - Proc Natl Acad Sci U S A. 2012 May 29;109(22):E1453-61
23669716 - RNA Biol. 2013;10(9):1419-25
17565941 - Genetics. 2008 Mar;178(3):1693-708
23771106 - RNA Biol. 2013;10(9):1446-56
21289490 - RNA Biol. 2011 Jan-Feb;8(1):67-70
23001034 - Plant Cell. 2012 Sep;24(9):3684-94
18838332 - Trends Plant Sci. 2008 Nov;13(11):602-9
19182104 - Plant Cell. 2009 Jan;21(1):146-56
16659107 - Plant Physiol. 1975 Mar;55(3):485-90
12511958 - Nature. 2003 Jan 2;421(6918):79-83
21863454 - Methods Mol Biol. 2011;775:357-85
23314848 - Plant Cell. 2013 Jan;25(1):242-56
15608332 - Plant Cell. 2005 Jan;17(1):219-32
22022966 - Biochemistry (Mosc). 2011 Aug;76(8):924-31
10631251 - Plant Physiol. 2000 Jan;122(1):75-84
9689145 - Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9705-9
17726051 - Nucleic Acids Res. 2007;35(17):e114
References_xml – ident: e_1_3_3_9_2
  doi: 10.4161/rna.8.1.14298
– ident: e_1_3_3_34_2
  doi: 10.4161/rna.7.2.11343
– ident: e_1_3_3_4_2
  doi: 10.1093/nar/gkm640
– ident: e_1_3_3_28_2
  doi: 10.1105/tpc.104.028282
– ident: e_1_3_3_33_2
  doi: 10.1128/MCB.22.24.8448-8456.2002
– ident: e_1_3_3_18_2
  doi: 10.1038/nature01204
– ident: e_1_3_3_38_2
  doi: 10.1105/tpc.112.105742
– ident: e_1_3_3_24_2
  doi: 10.1105/tpc.109.071472
– ident: e_1_3_3_29_2
  doi: 10.1046/j.1365-313X.1999.00420.x
– ident: e_1_3_3_37_2
  doi: 10.1104/pp.55.3.485
– ident: e_1_3_3_22_2
  doi: 10.1038/nature03229
– ident: e_1_3_3_20_2
  doi: 10.1007/978-0-387-78518-9
– ident: e_1_3_3_25_2
  doi: 10.1093/pcp/pcq142
– ident: e_1_3_3_32_2
  doi: 10.1093/nar/20.21.5699
– ident: e_1_3_3_39_2
  doi: 10.1073/pnas.95.16.9705
– ident: e_1_3_3_16_2
  doi: 10.1146/annurev.arplant.57.032905.105448
– ident: e_1_3_3_21_2
  doi: 10.1016/S0021-9258(19)41809-7
– ident: e_1_3_3_13_2
  doi: 10.1073/pnas.1202452109
– ident: e_1_3_3_1_2
  doi: 10.1007/s00018-005-5449-9
– ident: e_1_3_3_12_2
  doi: 10.1016/j.febslet.2007.07.075
– ident: e_1_3_3_35_2
  doi: 10.1074/jbc.M608184200
– ident: e_1_3_3_2_2
  doi: 10.1007/s12033-012-9498-7
– ident: e_1_3_3_30_2
  doi: 10.1104/pp.122.1.75
– ident: e_1_3_3_8_2
  doi: 10.1111/j.1469-8137.2011.03746.x
– ident: e_1_3_3_6_2
  doi: 10.1105/tpc.104.022236
– ident: e_1_3_3_26_2
  doi: 10.1105/tpc.112.099507
– ident: e_1_3_3_3_2
  doi: 10.1134/S0006297911080086
– ident: e_1_3_3_10_2
  doi: 10.4161/rna.24908
– ident: e_1_3_3_31_2
  doi: 10.1104/pp.111.188276
– ident: e_1_3_3_7_2
  doi: 10.1016/j.tplants.2008.10.001
– ident: e_1_3_3_36_2
  doi: 10.1007/978-1-61779-237-3_20
– ident: e_1_3_3_19_2
  doi: 10.1016/j.tplants.2008.08.008
– ident: e_1_3_3_17_2
  doi: 10.1016/j.tplants.2010.05.012
– ident: e_1_3_3_15_2
  doi: 10.1073/pnas.1220162110
– ident: e_1_3_3_14_2
  doi: 10.1073/pnas.1121465109
– ident: e_1_3_3_5_2
  doi: 10.1534/genetics.107.073585
– ident: e_1_3_3_23_2
  doi: 10.1105/tpc.108.064667
– ident: e_1_3_3_27_2
  doi: 10.1038/sj.emboj.7600189
– ident: e_1_3_3_40_2
  doi: 10.1105/tpc.113.111229
– ident: e_1_3_3_11_2
  doi: 10.4161/rna.25207
– reference: 20837503 - Plant Cell Physiol. 2010 Nov;51(11):1942-9
– reference: 10230064 - Plant J. 1999 Mar;17(6):667-78
– reference: 21557747 - New Phytol. 2011 Jul;191(1):37-47
– reference: 22411807 - Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):5104-9
– reference: 21289490 - RNA Biol. 2011 Jan-Feb;8(1):67-70
– reference: 15662426 - Nature. 2005 Jan 20;433(7023):326-30
– reference: 15608332 - Plant Cell. 2005 Jan;17(1):219-32
– reference: 20598625 - Trends Plant Sci. 2010 Sep;15(9):488-98
– reference: 17565941 - Genetics. 2008 Mar;178(3):1693-708
– reference: 22271460 - Mol Biotechnol. 2012 Sep;52(1):91-100
– reference: 15057273 - EMBO J. 2004 Apr 21;23(8):1720-8
– reference: 21863454 - Methods Mol Biol. 2011;775:357-85
– reference: 12511958 - Nature. 2003 Jan 2;421(6918):79-83
– reference: 16659107 - Plant Physiol. 1975 Mar;55(3):485-90
– reference: 22021420 - Plant Physiol. 2011 Dec;157(4):1746-64
– reference: 19004664 - Trends Plant Sci. 2008 Dec;13(12):663-70
– reference: 22022966 - Biochemistry (Mosc). 2011 Aug;76(8):924-31
– reference: 23314848 - Plant Cell. 2013 Jan;25(1):242-56
– reference: 1454533 - Nucleic Acids Res. 1992 Nov 11;20(21):5699-703
– reference: 9689145 - Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9705-9
– reference: 23487777 - Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):E1169-78
– reference: 22566615 - Proc Natl Acad Sci U S A. 2012 May 29;109(22):E1453-61
– reference: 17015439 - J Biol Chem. 2006 Dec 8;281(49):37661-7
– reference: 23669716 - RNA Biol. 2013;10(9):1419-25
– reference: 17227226 - Annu Rev Plant Biol. 2007;58:321-46
– reference: 12446765 - Mol Cell Biol. 2002 Dec;22(24):8448-56
– reference: 18838332 - Trends Plant Sci. 2008 Nov;13(11):602-9
– reference: 16465445 - Cell Mol Life Sci. 2006 Mar;63(6):698-708
– reference: 15269332 - Plant Cell. 2004 Aug;16(8):2089-103
– reference: 10631251 - Plant Physiol. 2000 Jan;122(1):75-84
– reference: 234450 - J Biol Chem. 1975 Feb 25;250(4):1269-74
– reference: 23001034 - Plant Cell. 2012 Sep;24(9):3684-94
– reference: 20473038 - RNA Biol. 2010 Mar-Apr;7(2):213-9
– reference: 19182104 - Plant Cell. 2009 Jan;21(1):146-56
– reference: 23771106 - RNA Biol. 2013;10(9):1446-56
– reference: 17707818 - FEBS Lett. 2007 Sep 4;581(22):4132-8
– reference: 19934379 - Plant Cell. 2009 Nov;21(11):3686-99
– reference: 17726051 - Nucleic Acids Res. 2007;35(17):e114
– reference: 23922206 - Plant Cell. 2013 Aug;25(8):2925-43
SSID ssj0009580
Score 2.4848971
Snippet RNA editing is a posttranscriptional process that covalently alters the sequence of RNA molecules and plays important biological roles in both animals and land...
Both posttranscriptional RNA editing and tetrapyrrole metabolism are important processes in land plants and animals. A direct link between these two distinct...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2023
SubjectTerms Amino acids
Arabidopsis - enzymology
Arabidopsis - genetics
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Base Sequence
Biological Sciences
Biosynthesis
Chlorophyll - biosynthesis
Chlorophylls
Enzymes
Flavin-Adenine Dinucleotide - metabolism
Flowering plants
Genetic engineering
Molecular Sequence Data
NADH Dehydrogenase - metabolism
Phenotype
Plants
Plastids
Plastids - enzymology
Plastids - genetics
Protein Binding
Proteins
Protoporphyrinogen Oxidase - genetics
Protoporphyrinogen Oxidase - metabolism
Ribonucleic acid
RNA
RNA editing
RNA Editing - genetics
Seedlings - growth & development
Substrate Specificity
Synthetic biology
Tetrapyrroles
Tetrapyrroles - biosynthesis
Transgenic plants
Title Tetrapyrrole biosynthetic enzyme protoporphyrinogen IX oxidase 1 is required for plastid RNA editing
URI https://www.jstor.org/stable/23766936
http://www.pnas.org/content/111/5/2023.abstract
https://www.ncbi.nlm.nih.gov/pubmed/24497494
https://www.proquest.com/docview/1497039795
https://www.proquest.com/docview/1499116160
https://www.proquest.com/docview/1512324642
https://pubmed.ncbi.nlm.nih.gov/PMC3918753
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMWAQGMhIPAxFKXHsuMljQUwbEtWEOtG3yIndEbQlVZNKbM_84Zwd56P7QMBL1MYXJ_L9cv6dc75D6G2kaCRCsH4youCgcCq9OKMM_pJ44scZYaY24JcZPzplnxfhYjT6NYha2tTpOLu6dV_J_2gVzoFe9S7Zf9Bs1ymcgN-gXziChuH4dzpWtU4JsDYhgmleVpcF8DmdglUVV5cXeg9UWZfAsGEs13lRQkfu8cItf-YSJi-X6Grma6VjgYF26njDFXDpOpfu19nUhVmtbuc1y15PutmuamMLZu1i4rTfmmLtReV67smsL3TcrU0f9oic21PfVP4DgHrWL83Kugkb-lCu86rvwkYQgwt9bnOG2yULwkyUc7NsoBozCyzF46wpFNrZYWt18-Gn7saq-s2e5BvmHuyTrlFciGpMqE79T20nA-WvLoz2gcaA6xSzft7rohHbpnvofgDORmDM-zB1c-S3SaEm9P21u-ls0vb6LWrTRLfqlLkgf5v7cj0Kd0Br5o_QQ-uP4GkDrl00UsVjtNtqEB_YtOTvniA5RBseog03aMM30YaPF9iiDROcV7hFGwa0YYs2DGjDFm1P0enhp_nHI8_W6PAycAVqbynCJWdmhzVnkqt0EnIJLmsgmIokESkTYCXCUCnqMyXE0hQsAFYeCS4ZY3QP7RRloZ4jLAUnWQDOHklDprJlHMilCMCfAMrOozhy0Lgd3iSzCex1HZXzxARSTGiihzrpVeOgg-6CVZO75W7RPaOvTk4Hi_GYcgc9M6Ld9eAvh4kGpIP2W50m1iZAj4AEX38qDx30pmsGi60_w4lClRsjAwyDE-7_QSY0rg5ngX4AA5P-0SzcHDTZAlAnoDPGb7cU-XeTOZ7GRK9PvLizz5foQf_C7qOder1Rr4B11-lr81L8BvYc2D4
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tetrapyrrole+biosynthetic+enzyme+protoporphyrinogen+IX+oxidase+1+is+required+for+plastid+RNA+editing&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Zhang%2C+Fan&rft.au=Tang%2C+Weijiang&rft.au=Hedtke%2C+Boris&rft.au=Zhong%2C+Linlin&rft.date=2014-02-04&rft.eissn=1091-6490&rft.volume=111&rft.issue=5&rft.spage=2023&rft_id=info:doi/10.1073%2Fpnas.1316183111&rft_id=info%3Apmid%2F24497494&rft.externalDocID=24497494
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F5.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F5.cover.gif