Genomic characterization of sarcomatoid transformation in clear cell renal cell carcinoma

The presence of sarcomatoid features in clear cell renal cell carcinoma (ccRCC) confers a poor prognosis and is of unknown pathogenesis. We performed exome sequencing of matched normal-carcinomatous-sarcomatoid specimens from 21 subjects. Two tumors had hypermutation consistent with mismatch repair...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 113; no. 8; pp. 2170 - 2175
Main Authors Bi, Mark, Zhao, Siming, Said, Jonathan W., Merino, Maria J., Adeniran, Adebowale J., Xie, Zuoquan, Nawaf, Cayce B., Choi, Jaehyuk, Belldegrun, Arie S., Pantuck, Allan J., Kluger, Harriet M., Bilgüvar, Kaya, Lifton, Richard P., Shuch, Brian
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 23.02.2016
National Acad Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1525735113

Cover

Loading…
Abstract The presence of sarcomatoid features in clear cell renal cell carcinoma (ccRCC) confers a poor prognosis and is of unknown pathogenesis. We performed exome sequencing of matched normal-carcinomatous-sarcomatoid specimens from 21 subjects. Two tumors had hypermutation consistent with mismatch repair deficiency. In the remainder, sarcomatoid and carcinomatous elements shared 42% of somatic single-nucleotide variants (SSNVs). Sarcomatoid elements had a higher overall SSNV burden (mean 90 vs. 63 SSNVs, P = 4.0 × 10−4), increased frequency of nonsynonymous SSNVs in Pan-Cancer genes (mean 1.4 vs. 0.26, P = 0.002), and increased frequency of loss of heterozygosity (LOH) across the genome (median 913 vs. 460 Mb in LOH, P < 0.05), with significant recurrent LOH on chromosomes 1p, 9, 10, 14, 17p, 18, and 22. The most frequent SSNVs shared by carcinomatous and sarcomatoid elements were in known ccRCC genes including von Hippel–Lindau tumor suppressor (VHL), polybromo 1 (PBRM1), SET domain containing 2 (SETD2), phosphatase and tensin homolog (PTEN). Most interestingly, sarcomatoid elements acquired biallelic tumor protein p53 (TP53) mutations in 32% of tumors (P = 5.47 × 10−17); TP53 mutations were absent in carcinomatous elements in nonhypermutated tumors and rare in previously studied ccRCCs. Mutations in known cancer drivers AT-rich interaction domain 1A (ARID1A) and BRCA1 associated protein 1 (BAP1) were significantly mutated in sarcomatoid elements and were mutually exclusive with TP53 and each other. These findings provide evidence that sarcomatoid elements arise from dedifferentiation of carcinomatous ccRCCs and implicate specific genes in this process. These findings have implications for the treatment of patients with these poor-prognosis cancers.
AbstractList The presence of sarcomatoid features in clear cell renal cell carcinoma (ccRCC) confers a poor prognosis and is of unknown pathogenesis. We performed exome sequencing of matched normal-carcinomatous-sarcomatoid specimens from 21 subjects. Two tumors had hypermutation consistent with mismatch repair deficiency. In the remainder, sarcomatoid and carcinomatous elements shared 42% of somatic single-nucleotide variants (SSNVs). Sarcomatoid elements had a higher overall SSNV burden (mean 90 vs. 63 SSNVs, P = 4.0 × 10−4), increased frequency of nonsynonymous SSNVs in Pan-Cancer genes (mean 1.4 vs. 0.26, P = 0.002), and increased frequency of loss of heterozygosity (LOH) across the genome (median 913 vs. 460 Mb in LOH, P < 0.05), with significant recurrent LOH on chromosomes 1p, 9, 10, 14, 17p, 18, and 22. The most frequent SSNVs shared by carcinomatous and sarcomatoid elements were in known ccRCC genes including von Hippel–Lindau tumor suppressor (VHL), polybromo 1 (PBRM1), SET domain containing 2 (SETD2), phosphatase and tensin homolog (PTEN). Most interestingly, sarcomatoid elements acquired biallelic tumor protein p53 (TP53) mutations in 32% of tumors (P = 5.47 × 10−17); TP53 mutations were absent in carcinomatous elements in nonhypermutated tumors and rare in previously studied ccRCCs. Mutations in known cancer drivers AT-rich interaction domain 1A (ARID1A) and BRCA1 associated protein 1 (BAP1) were significantly mutated in sarcomatoid elements and were mutually exclusive with TP53 and each other. These findings provide evidence that sarcomatoid elements arise from dedifferentiation of carcinomatous ccRCCs and implicate specific genes in this process. These findings have implications for the treatment of patients with these poor-prognosis cancers.
Parts of clear cell renal cell carcinomas (ccRCCs) sometimes have histologic features characteristic of a sarcoma. So-called sarcomatoid tumors are more aggressive, difficult to treat, and associated with a poor prognosis. Their pathogenesis has been uncertain. Through separate exome sequencing of carcinomatous and sarcomatoid components, we show that these components share many somatic mutations, including many in genes characteristic of ccRCC. Sarcomatoid elements had significantly more new somatic mutations, particularly in cancer driver genes, than carcinomatous components. In particular, tumor protein p53, AT-rich interaction domain 1A, and BRCA1 associated protein 1 had sarcomatoid-specific homozygous mutation in 10 tumors and were all mutually exclusive, implicating these genes in sarcomatoid degeneration. The presence of sarcomatoid features in clear cell renal cell carcinoma (ccRCC) confers a poor prognosis and is of unknown pathogenesis. We performed exome sequencing of matched normal-carcinomatous-sarcomatoid specimens from 21 subjects. Two tumors had hypermutation consistent with mismatch repair deficiency. In the remainder, sarcomatoid and carcinomatous elements shared 42% of somatic single-nucleotide variants (SSNVs). Sarcomatoid elements had a higher overall SSNV burden (mean 90 vs. 63 SSNVs, P = 4.0 × 10 −4 ), increased frequency of nonsynonymous SSNVs in Pan-Cancer genes (mean 1.4 vs. 0.26, P = 0.002), and increased frequency of loss of heterozygosity (LOH) across the genome (median 913 vs. 460 Mb in LOH, P < 0.05), with significant recurrent LOH on chromosomes 1p, 9, 10, 14, 17p, 18, and 22. The most frequent SSNVs shared by carcinomatous and sarcomatoid elements were in known ccRCC genes including von Hippel–Lindau tumor suppressor ( VHL ), polybromo 1 ( PBRM1 ), SET domain containing 2 ( SETD2 ), phosphatase and tensin homolog ( PTEN ). Most interestingly, sarcomatoid elements acquired biallelic tumor protein p53 ( TP53 ) mutations in 32% of tumors ( P = 5.47 × 10 −17 ); TP53 mutations were absent in carcinomatous elements in nonhypermutated tumors and rare in previously studied ccRCCs. Mutations in known cancer drivers AT-rich interaction domain 1A ( ARID1A ) and BRCA1 associated protein 1 ( BAP1 ) were significantly mutated in sarcomatoid elements and were mutually exclusive with TP53 and each other. These findings provide evidence that sarcomatoid elements arise from dedifferentiation of carcinomatous ccRCCs and implicate specific genes in this process. These findings have implications for the treatment of patients with these poor-prognosis cancers.
The presence of sarcomatoid features in clear cell renal cell carcinoma (ccRCC) confers a poor prognosis and is of unknown pathogenesis. We performed exome sequencing of matched normal-carcinomatous-sarcomatoid specimens from 21 subjects. Two tumors had hypermutation consistent with mismatch repair deficiency. In the remainder, sarcomatoid and carcinomatous elements shared 42% of somatic single-nucleotide variants (SSNVs). Sarcomatoid elements had a higher overall SSNV burden (mean 90 vs. 63 SSNVs, P = 4.0 × 10(-4)), increased frequency of nonsynonymous SSNVs in Pan-Cancer genes (mean 1.4 vs. 0.26, P = 0.002), and increased frequency of loss of heterozygosity (LOH) across the genome (median 913 vs. 460 Mb in LOH, P < 0.05), with significant recurrent LOH on chromosomes 1p, 9, 10, 14, 17p, 18, and 22. The most frequent SSNVs shared by carcinomatous and sarcomatoid elements were in known ccRCC genes including von Hippel-Lindau tumor suppressor (VHL), polybromo 1 (PBRM1), SET domain containing 2 (SETD2), phosphatase and tensin homolog (PTEN). Most interestingly, sarcomatoid elements acquired biallelic tumor protein p53 (TP53) mutations in 32% of tumors (P = 5.47 × 10(-17)); TP53 mutations were absent in carcinomatous elements in nonhypermutated tumors and rare in previously studied ccRCCs. Mutations in known cancer drivers AT-rich interaction domain 1A (ARID1A) and BRCA1 associated protein 1 (BAP1) were significantly mutated in sarcomatoid elements and were mutually exclusive with TP53 and each other. These findings provide evidence that sarcomatoid elements arise from dedifferentiation of carcinomatous ccRCCs and implicate specific genes in this process. These findings have implications for the treatment of patients with these poor-prognosis cancers.The presence of sarcomatoid features in clear cell renal cell carcinoma (ccRCC) confers a poor prognosis and is of unknown pathogenesis. We performed exome sequencing of matched normal-carcinomatous-sarcomatoid specimens from 21 subjects. Two tumors had hypermutation consistent with mismatch repair deficiency. In the remainder, sarcomatoid and carcinomatous elements shared 42% of somatic single-nucleotide variants (SSNVs). Sarcomatoid elements had a higher overall SSNV burden (mean 90 vs. 63 SSNVs, P = 4.0 × 10(-4)), increased frequency of nonsynonymous SSNVs in Pan-Cancer genes (mean 1.4 vs. 0.26, P = 0.002), and increased frequency of loss of heterozygosity (LOH) across the genome (median 913 vs. 460 Mb in LOH, P < 0.05), with significant recurrent LOH on chromosomes 1p, 9, 10, 14, 17p, 18, and 22. The most frequent SSNVs shared by carcinomatous and sarcomatoid elements were in known ccRCC genes including von Hippel-Lindau tumor suppressor (VHL), polybromo 1 (PBRM1), SET domain containing 2 (SETD2), phosphatase and tensin homolog (PTEN). Most interestingly, sarcomatoid elements acquired biallelic tumor protein p53 (TP53) mutations in 32% of tumors (P = 5.47 × 10(-17)); TP53 mutations were absent in carcinomatous elements in nonhypermutated tumors and rare in previously studied ccRCCs. Mutations in known cancer drivers AT-rich interaction domain 1A (ARID1A) and BRCA1 associated protein 1 (BAP1) were significantly mutated in sarcomatoid elements and were mutually exclusive with TP53 and each other. These findings provide evidence that sarcomatoid elements arise from dedifferentiation of carcinomatous ccRCCs and implicate specific genes in this process. These findings have implications for the treatment of patients with these poor-prognosis cancers.
The presence of sarcomatoid features in clear cell renal cell carcinoma (ccRCC) confers a poor prognosis and is of unknown pathogenesis. We performed exome sequencing of matched normal-carcinomatous-sarcomatoid specimens from 21 subjects. Two tumors had hypermutation consistent with mismatch repair deficiency. In the remainder, sarcomatoid and carcinomatous elements shared 42% of somatic single-nucleotide variants (SSNVs). Sarcomatoid elements had a higher overall SSNV burden (mean 90 vs. 63 SSNVs, P = 4.0 x 10...), increased frequency of nonsynonymous SSNVs in Pan-Cancer genes (mean 1.4 vs. 0.26, P = 0.002), and increased frequency of loss of heterozygosity (LOH) across the genome (median 913 vs. 460 Mb in LOH, P < 0.05), with significant recurrent LOH on chromosomes 1p, 9, 10, 14, 17p, 18, and 22. The most frequent SSNVs shared by carcinomatous and sarcomatoid elements were in known ccRCC genes including von Hippel-Lindau tumor suppressor (VHL), polybromo 1 (PBRM1), SET domain containing 2 (SETD2), phosphatase and tensin homolog (PTEN). Most interestingly, sarcomatoid elements acquired biallelic tumor protein p53 (TP53) mutations in 32% of tumors (P = 5.47 x 10...); TP53 mutations were absent in carcinomatous elements in nonhypermutated tumors and rare in previously studied ccRCCs. Mutations in known cancer drivers AT-rich interaction domain 1A (ARID1A) and BRCA1 associated protein 1 (BAP1) were significantly mutated in sarcomatoid elements and were mutually exclusive with TP53 and each other. These findings provide evidence that sarcomatoid elements arise from dedifferentiation of carcinomatous ccRCCs and implicate specific genes in this process. These findings have implications for the treatment of patients with these poor-prognosis cancers. (ProQuest: ... denotes formulae/symbols omitted.)
The presence of sarcomatoid features in clear cell renal cell carcinoma (ccRCC) confers a poor prognosis and is of unknown pathogenesis. We performed exome sequencing of matched normal-carcinomatous-sarcomatoid specimens from 21 subjects. Two tumors had hypermutation consistent with mismatch repair deficiency. In the remainder, sarcomatoid and carcinomatous elements shared 42% of somatic single-nucleotide variants (SSNVs). Sarcomatoid elements had a higher overall SSNV burden (mean 90 vs. 63 SSNVs, P = 4.0 × 10(-4)), increased frequency of nonsynonymous SSNVs in Pan-Cancer genes (mean 1.4 vs. 0.26, P = 0.002), and increased frequency of loss of heterozygosity (LOH) across the genome (median 913 vs. 460 Mb in LOH, P < 0.05), with significant recurrent LOH on chromosomes 1p, 9, 10, 14, 17p, 18, and 22. The most frequent SSNVs shared by carcinomatous and sarcomatoid elements were in known ccRCC genes including von Hippel-Lindau tumor suppressor (VHL), polybromo 1 (PBRM1), SET domain containing 2 (SETD2), phosphatase and tensin homolog (PTEN). Most interestingly, sarcomatoid elements acquired biallelic tumor protein p53 (TP53) mutations in 32% of tumors (P = 5.47 × 10(-17)); TP53 mutations were absent in carcinomatous elements in nonhypermutated tumors and rare in previously studied ccRCCs. Mutations in known cancer drivers AT-rich interaction domain 1A (ARID1A) and BRCA1 associated protein 1 (BAP1) were significantly mutated in sarcomatoid elements and were mutually exclusive with TP53 and each other. These findings provide evidence that sarcomatoid elements arise from dedifferentiation of carcinomatous ccRCCs and implicate specific genes in this process. These findings have implications for the treatment of patients with these poor-prognosis cancers.
Author Merino, Maria J.
Nawaf, Cayce B.
Shuch, Brian
Pantuck, Allan J.
Zhao, Siming
Lifton, Richard P.
Bi, Mark
Kluger, Harriet M.
Xie, Zuoquan
Bilgüvar, Kaya
Said, Jonathan W.
Choi, Jaehyuk
Belldegrun, Arie S.
Adeniran, Adebowale J.
Author_xml – sequence: 1
  givenname: Mark
  surname: Bi
  fullname: Bi, Mark
  organization: Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT 06511
– sequence: 2
  givenname: Siming
  surname: Zhao
  fullname: Zhao, Siming
  organization: Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT 06511
– sequence: 3
  givenname: Jonathan W.
  surname: Said
  fullname: Said, Jonathan W.
  organization: Department of Pathology, University of California, Los Angeles School of Medicine, Los Angeles, CA 90095
– sequence: 4
  givenname: Maria J.
  surname: Merino
  fullname: Merino, Maria J.
  organization: Translational Surgical Pathology Division, National Cancer Institute, Bethesda, MD 20850
– sequence: 5
  givenname: Adebowale J.
  surname: Adeniran
  fullname: Adeniran, Adebowale J.
  organization: Department of Pathology, Yale School of Medicine, New Haven, CT 06511
– sequence: 6
  givenname: Zuoquan
  surname: Xie
  fullname: Xie, Zuoquan
  organization: Department of Urology, Yale School of Medicine, New Haven, CT 06511
– sequence: 7
  givenname: Cayce B.
  surname: Nawaf
  fullname: Nawaf, Cayce B.
  organization: Department of Urology, Yale School of Medicine, New Haven, CT 06511
– sequence: 8
  givenname: Jaehyuk
  surname: Choi
  fullname: Choi, Jaehyuk
  organization: Department of Dermatology, Yale School of Medicine, New Haven, CT 06511
– sequence: 9
  givenname: Arie S.
  surname: Belldegrun
  fullname: Belldegrun, Arie S.
  organization: Department of Urology, University of California, Los Angeles School of Medicine, Los Angeles, CA 90095
– sequence: 10
  givenname: Allan J.
  surname: Pantuck
  fullname: Pantuck, Allan J.
  organization: Department of Urology, University of California, Los Angeles School of Medicine, Los Angeles, CA 90095
– sequence: 11
  givenname: Harriet M.
  surname: Kluger
  fullname: Kluger, Harriet M.
  organization: Department of Medicine, Division of Oncology, Yale School of Medicine, New Haven, CT 06511
– sequence: 12
  givenname: Kaya
  surname: Bilgüvar
  fullname: Bilgüvar, Kaya
  organization: Department of Genetics, Yale School of Medicine, New Haven, CT 06511
– sequence: 13
  givenname: Richard P.
  surname: Lifton
  fullname: Lifton, Richard P.
  organization: Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT 06511
– sequence: 14
  givenname: Brian
  surname: Shuch
  fullname: Shuch, Brian
  organization: Department of Pathology, University of California, Los Angeles School of Medicine, Los Angeles, CA 90095
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26864202$$D View this record in MEDLINE/PubMed
BookMark eNqNks1rFTEUxYNU7Gt17UoZcONm2ptkksxsBClahYIbXbgKdzKJzWMmeSbzCvrXm3H6ai0IrhK4v3M49-OEHIUYLCHPKZxRUPx8FzCfUcGE4oJS_ohsKHS0lk0HR2QDwFTdNqw5Jic5bwGgEy08IcdMtrJhwDbk66UNcfKmMteY0Mw2-Z84-xiq6KqMycQJ5-iHak4YsotpWqs-VGa0mCpjx7FKNuC4fk3R-GKJT8ljh2O2z27fU_Ll_bvPFx_qq0-XHy_eXtVGSDHXVoHpmFKIAl0v5OAcV4651gFniMha0TPZIw5ogffOKAlOoqCStWqwnJ-SN6vvbt9PdjA2lKij3iU_YfqhI3r9dyX4a_0t3uhGKdnIxeD1rUGK3_c2z3ryeekFg437rKlqQQATXPwHKlsqRcdoQV89QLdxn8qYFkqxRvCypEK9vB_-LvVhQQUQK2BSzDlZp42ff6-g9OJHTUEvh6CXQ9B_DqHozh_oDtb_VhyiLIU7mnLdakYVFODFCmzzHNO9qI1UbRnPL3Ydyt4
CitedBy_id crossref_primary_10_1053_j_semdp_2021_09_004
crossref_primary_10_1177_24684570241302546
crossref_primary_10_3389_fonc_2023_1239405
crossref_primary_10_1016_j_celrep_2019_04_048
crossref_primary_10_1038_s41585_022_00676_0
crossref_primary_10_1016_j_euf_2016_06_015
crossref_primary_10_1038_s41598_021_83271_4
crossref_primary_10_1016_j_clgc_2017_05_018
crossref_primary_10_1097_MOU_0000000000000307
crossref_primary_10_1158_1078_0432_CCR_20_3506
crossref_primary_10_3389_fonc_2020_591001
crossref_primary_10_1038_nrdp_2017_9
crossref_primary_10_1038_s41581_020_0301_x
crossref_primary_10_1097_RCT_0000000000001638
crossref_primary_10_1038_s41467_021_21068_9
crossref_primary_10_1016_j_critrevonc_2017_09_011
crossref_primary_10_1038_s41585_020_00382_9
crossref_primary_10_1016_j_cancergen_2016_07_002
crossref_primary_10_3390_cancers12010099
crossref_primary_10_1016_j_ctarc_2020_100172
crossref_primary_10_1111_cas_15170
crossref_primary_10_3389_fonc_2024_1477951
crossref_primary_10_1093_annonc_mdw689
crossref_primary_10_1007_s11864_018_0521_5
crossref_primary_10_1111_iju_14302
crossref_primary_10_1186_s12885_020_06733_4
crossref_primary_10_1016_j_urolonc_2017_12_012
crossref_primary_10_1016_j_yexmp_2020_104431
crossref_primary_10_1007_s00432_025_06146_5
crossref_primary_10_1111_pin_12704
crossref_primary_10_3390_medicines7080044
crossref_primary_10_1158_2159_8290_CD_17_0375
crossref_primary_10_1007_s00345_018_2355_y
crossref_primary_10_1038_s44276_025_00128_3
crossref_primary_10_1002_cncr_30937
crossref_primary_10_1097_MOU_0000000000000516
crossref_primary_10_1097_PAP_0000000000000185
crossref_primary_10_1186_s40644_023_00535_0
crossref_primary_10_3346_jkms_2020_35_e31
crossref_primary_10_1097_PAS_0000000000000787
crossref_primary_10_3389_fonc_2020_627025
crossref_primary_10_1002_mc_22699
crossref_primary_10_1007_s00432_016_2304_3
crossref_primary_10_12998_wjcc_v12_i28_6230
crossref_primary_10_1053_j_semdp_2017_11_010
crossref_primary_10_1186_s12882_018_0884_7
crossref_primary_10_3390_ijms24020902
crossref_primary_10_1016_j_cell_2016_07_005
crossref_primary_10_1016_j_humpath_2022_07_022
crossref_primary_10_1038_s41581_020_00359_2
crossref_primary_10_1007_s00432_020_03236_4
crossref_primary_10_3389_fsurg_2021_763271
crossref_primary_10_1002_mgg3_1853
crossref_primary_10_1200_JCO_2018_79_2531
crossref_primary_10_1080_2162402X_2019_1606639
crossref_primary_10_1093_annonc_mdw676
crossref_primary_10_1186_s12957_020_01902_y
crossref_primary_10_1016_j_humpath_2019_02_004
crossref_primary_10_3390_cancers12030729
crossref_primary_10_1038_s41467_022_28566_4
crossref_primary_10_1002_path_5022
crossref_primary_10_1097_PAS_0000000000002233
crossref_primary_10_1038_modpathol_2016_133
crossref_primary_10_1158_1078_0432_CCR_17_1057
crossref_primary_10_1186_s12864_017_3906_0
crossref_primary_10_1038_nrneph_2016_133
crossref_primary_10_1158_2159_8290_CD_18_0957
crossref_primary_10_1007_s00404_021_06094_8
crossref_primary_10_1177_03008916221077142
crossref_primary_10_1136_jclinpath_2016_203866
crossref_primary_10_1007_s00428_020_02839_z
crossref_primary_10_3390_ijms22126237
crossref_primary_10_1002_gcc_22537
crossref_primary_10_1016_j_celrep_2021_110055
crossref_primary_10_1016_j_jtho_2017_03_005
crossref_primary_10_1016_j_juro_2017_04_116
crossref_primary_10_1016_j_urolonc_2018_10_027
crossref_primary_10_3389_fsurg_2022_922150
crossref_primary_10_15252_emmm_202013631
crossref_primary_10_1007_s10637_019_00817_0
crossref_primary_10_1016_j_clgc_2017_03_004
crossref_primary_10_1038_s41585_023_00847_7
crossref_primary_10_1016_j_ajoms_2023_11_002
crossref_primary_10_1111_bju_15084
crossref_primary_10_3389_fonc_2020_592501
crossref_primary_10_1016_j_celrep_2024_114350
crossref_primary_10_1016_j_ctarc_2022_100640
crossref_primary_10_1016_j_cllc_2018_12_013
crossref_primary_10_3389_fonc_2023_941835
crossref_primary_10_3390_cancers14174303
crossref_primary_10_3390_cancers11030422
crossref_primary_10_1016_j_euros_2024_10_002
crossref_primary_10_1016_j_ctrv_2022_102374
crossref_primary_10_1038_s41598_020_57534_5
Cites_doi 10.1016/j.ccr.2008.10.016
10.1038/modpathol.2013.96
10.1158/1078-0432.CCR-10-0821
10.1126/science.aaa1348
10.1056/NEJMoa1500596
10.1097/PAS.0b013e318299f0fb
10.1038/nm.3799
10.1016/j.urolonc.2014.11.021
10.1038/nbt.2514
10.1002/cncr.21288
10.1002/cncr.20541
10.1038/nature12634
10.1038/ng.2538
10.1038/cdd.2010.94
10.1097/00000478-200103000-00001
10.3892/ijo.2012.1669
10.2174/1389450114666140106101412
10.1038/nature12477
10.1200/JCO.2008.18.0000
10.1158/1078-0432.CCR-07-4921
10.1038/sj.bjc.6605298
10.1073/pnas.1222577110
10.4161/cc.24305
10.1073/pnas.91.21.9700
10.1158/2326-6066.CIR-15-0150
10.1038/nature12222
10.1016/j.abb.2011.12.019
10.1038/nature11632
10.1158/2159-8290.CD-12-0095
10.1056/NEJMoa1113205
10.1002/jso.1082
10.1038/ng.2323
10.1093/annonc/mdt578
10.1002/1097-0142(19930401)71:7<2292::AID-CNCR2820710720>3.0.CO;2-3
10.1111/bju.12781
10.1016/S1470-2045(12)70584-3
10.1371/journal.pone.0109924
10.1016/j.prp.2013.12.005
10.1136/jclinpath-2011-200216
10.1002/1097-0142(196809)22:3<556::AID-CNCR2820220310>3.0.CO;2-N
10.1038/ng0594-85
10.1016/j.eururo.2014.04.029
10.1038/ng.2891
10.1097/00000478-200404000-00002
10.1002/jcb.21340
10.1038/srep08829
10.1093/emboj/cdf521
10.1080/003130299104945
10.1038/ng.2956
10.1038/ncb2173
10.1111/j.1464-410X.2011.10785.x
10.1038/ncomms5988
10.1002/cncr.24768
10.1016/j.ccr.2014.07.014
10.1158/0008-5472.CAN-11-1562
10.1093/bioinformatics/btp324
10.1634/theoncologist.2011-0227
10.3389/fonc.2013.00203
10.1016/j.juro.2009.07.049
10.1038/ng.2699
ContentType Journal Article
Copyright Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Feb 23, 2016
Copyright_xml – notice: Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Feb 23, 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1525735113
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE - Academic
Genetics Abstracts
MEDLINE
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Sarcomatoid transformation in clear cell RCC
EISSN 1091-6490
EndPage 2175
ExternalDocumentID PMC4776463
3982512351
26864202
10_1073_pnas_1525735113
113_8_2170
26467825
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: K24 CA172123
– fundername: Howard Hughes Medical Institute
– fundername: NIDDK NIH HHS
  grantid: P30 DK079310
– fundername: NCATS NIH HHS
  grantid: KL2 TR000140
– fundername: NCI NIH HHS
  grantid: P30 CA016042
– fundername: NCI NIH HHS
  grantid: K08-CA191019
– fundername: NCI NIH HHS
  grantid: K08 CA191019
– fundername: Howard Hughes Medical Institute (HHMI)
– fundername: HHS | NIH | National Cancer Institute (NCI)
  grantid: K08-CA191019
– fundername: HHS | NIH | National Cancer Institute (NCI)
  grantid: KL2 TR000140
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
AFOSN
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c565t-e70c9277aa5afb56dff37f2f8f032aaa285b26baadae03bfc760f6a516287de33
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:16:15 EDT 2025
Thu Jul 10 20:13:54 EDT 2025
Fri Jul 11 07:01:47 EDT 2025
Mon Jun 30 07:41:39 EDT 2025
Thu Apr 03 07:09:46 EDT 2025
Tue Jul 01 01:53:40 EDT 2025
Thu Apr 24 23:08:24 EDT 2025
Wed Nov 11 00:29:25 EST 2020
Sun Aug 24 12:10:52 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords kidney cancer
dedifferentiation
transformation
sarcomatoid
p53
Language English
License Freely available online through the PNAS open access option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c565t-e70c9277aa5afb56dff37f2f8f032aaa285b26baadae03bfc760f6a516287de33
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: R.P.L. and B.S. designed research; M.J.M., A.J.A., Z.X., C.B.N., K.B., R.P.L., and B.S. performed research; J.W.S., J.C., A.S.B., A.J.P., H.M.K., and B.S. contributed new reagents/analytic tools; M.B., S.Z., J.W.S., Z.X., J.C., R.P.L., and B.S. analyzed data; and M.B., R.P.L., and B.S. wrote the paper.
Reviewers: J.B., University of Texas Southwestern Medical Center; and D.A.H., Massachusetts General Hospital.
Contributed by Richard P. Lifton, December 31, 2015 (sent for review December 18, 2015; reviewed by James Brugarolas and Daniel A. Haber)
OpenAccessLink https://escholarship.org/content/qt4h49r436/qt4h49r436.pdf?t=ru0j73
PMID 26864202
PQID 1772453649
PQPubID 42026
PageCount 6
ParticipantIDs proquest_journals_1772453649
pubmed_primary_26864202
crossref_citationtrail_10_1073_pnas_1525735113
pnas_primary_113_8_2170
jstor_primary_26467825
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4776463
proquest_miscellaneous_1780502535
crossref_primary_10_1073_pnas_1525735113
proquest_miscellaneous_1768165921
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-02-23
PublicationDateYYYYMMDD 2016-02-23
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-23
  day: 23
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2016
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Davis CF (e_1_3_4_32_2) 2014; 26
Katoh M (e_1_3_4_52_2) 2012; 41
Goh G (e_1_3_4_22_2) 2014; 46
Guan B (e_1_3_4_33_2) 2011; 71
Gnarra JR (e_1_3_4_45_2) 1994; 7
Oda H (e_1_3_4_36_2) 1995; 55
Shuch B (e_1_3_4_20_2) 2010; 116
Pritchard CC (e_1_3_4_31_2) 2014; 5
Delahunt B (e_1_3_4_6_2) 2013; 37
Herman JG (e_1_3_4_46_2) 1994; 91
Furukawa T (e_1_3_4_50_2) 2015; 5
Conant JL (e_1_3_4_21_2) 2011; 64
Bitler BG (e_1_3_4_59_2) 2015; 21
Gordan JD (e_1_3_4_49_2) 2008; 14
Li HJ (e_1_3_4_57_2) 2007; 102
Gerlinger M (e_1_3_4_44_2) 2012; 366
Chang CJ (e_1_3_4_37_2) 2011; 13
Patard JJ (e_1_3_4_48_2) 2009; 101
Shuch B (e_1_3_4_4_2) 2012; 109
Nanus DM (e_1_3_4_12_2) 2004; 101
Peña-Llopis S (e_1_3_4_41_2) 2012; 44
Hong B (e_1_3_4_58_2) 2014; 15
Shuch B (e_1_3_4_1_2) 2009; 182
Delahunt B (e_1_3_4_16_2) 1999; 31
Zhao S (e_1_3_4_25_2) 2013; 110
e_1_3_4_11_2
e_1_3_4_13_2
Shuch B (e_1_3_4_3_2) 2015; 67
Martin SA (e_1_3_4_60_2) 2010; 16
Kapur P (e_1_3_4_42_2) 2013; 14
Rizvi NA (e_1_3_4_61_2) 2015; 348
Golshayan AR (e_1_3_4_10_2) 2009; 27
Kuroiwa K (e_1_3_4_19_2) 2001; 77
Oda H (e_1_3_4_18_2) 1993; 71
Li H (e_1_3_4_23_2) 2009; 25
Alexandrov LB (e_1_3_4_30_2) 2013; 500
Bosse T (e_1_3_4_34_2) 2013; 26
Joseph RW (e_1_3_4_63_2) 2015; 3
Cibulskis K (e_1_3_4_24_2) 2013; 31
Le DT (e_1_3_4_62_2) 2015; 372
Cerami E (e_1_3_4_29_2) 2012; 2
Maschietto M (e_1_3_4_40_2) 2014; 9
Merrill MM (e_1_3_4_8_2) 2015; 33
Sato Y (e_1_3_4_35_2) 2013; 45
Bardeesy N (e_1_3_4_39_2) 1995; 55
Cheville JC (e_1_3_4_7_2) 2004; 28
Anani W (e_1_3_4_14_2) 2014; 210
Cancer Genome Atlas Research Network (e_1_3_4_28_2) 2013; 499
Darai-Ramqvist E (e_1_3_4_15_2) 2013; 3
e_1_3_4_47_2
Hiroi N (e_1_3_4_56_2) 2002; 21
Peradziryi H (e_1_3_4_55_2) 2012; 524
Zhang BY (e_1_3_4_5_2) 2015; 115
Kogan-Sakin I (e_1_3_4_38_2) 2011; 18
Gerlinger M (e_1_3_4_43_2) 2014; 46
Morris LG (e_1_3_4_53_2) 2013; 45
Shuch B (e_1_3_4_9_2) 2012; 17
de Peralta-Venturina M (e_1_3_4_2_2) 2001; 25
Jones TD (e_1_3_4_17_2) 2005; 104
Feng GH (e_1_3_4_54_2) 2000; 60
Kandoth C (e_1_3_4_27_2) 2013; 502
Morris LG (e_1_3_4_51_2) 2013; 12
Abecasis GR (e_1_3_4_26_2) 2012; 491
References_xml – volume: 14
  start-page: 435
  year: 2008
  ident: e_1_3_4_49_2
  article-title: HIF-alpha effects on c-Myc distinguish two subtypes of sporadic VHL-deficient clear cell renal carcinoma
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2008.10.016
– volume: 26
  start-page: 1525
  year: 2013
  ident: e_1_3_4_34_2
  article-title: Loss of ARID1A expression and its relationship with PI3K-Akt pathway alterations, TP53 and microsatellite instability in endometrial cancer
  publication-title: Mod Pathol
  doi: 10.1038/modpathol.2013.96
– volume: 16
  start-page: 5107
  year: 2010
  ident: e_1_3_4_60_2
  article-title: Therapeutic targeting of the DNA mismatch repair pathway
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-10-0821
– volume: 348
  start-page: 124
  year: 2015
  ident: e_1_3_4_61_2
  article-title: Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer
  publication-title: Science
  doi: 10.1126/science.aaa1348
– volume: 372
  start-page: 2509
  year: 2015
  ident: e_1_3_4_62_2
  article-title: PD-1 blockade in tumors with mismatch-repair deficiency
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1500596
– volume: 37
  start-page: 1490
  year: 2013
  ident: e_1_3_4_6_2
  article-title: The International Society of Urological Pathology (ISUP) grading system for renal cell carcinoma and other prognostic parameters
  publication-title: Am J Surg Pathol
  doi: 10.1097/PAS.0b013e318299f0fb
– volume: 21
  start-page: 231
  year: 2015
  ident: e_1_3_4_59_2
  article-title: Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers
  publication-title: Nat Med
  doi: 10.1038/nm.3799
– volume: 33
  start-page: 166.e21
  year: 2015
  ident: e_1_3_4_8_2
  article-title: Clinically nonmetastatic renal cell carcinoma with sarcomatoid dedifferentiation: Natural history and outcomes after surgical resection with curative intent
  publication-title: Urol Oncol
  doi: 10.1016/j.urolonc.2014.11.021
– volume: 31
  start-page: 213
  year: 2013
  ident: e_1_3_4_24_2
  article-title: Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2514
– volume: 104
  start-page: 1195
  year: 2005
  ident: e_1_3_4_17_2
  article-title: Clonal divergence and genetic heterogeneity in clear cell renal cell carcinomas with sarcomatoid transformation
  publication-title: Cancer
  doi: 10.1002/cncr.21288
– volume: 55
  start-page: 658
  year: 1995
  ident: e_1_3_4_36_2
  article-title: Mutations of the p53 gene and p53 protein overexpression are associated with sarcomatoid transformation in renal cell carcinomas
  publication-title: Cancer Res
– volume: 101
  start-page: 1545
  year: 2004
  ident: e_1_3_4_12_2
  article-title: Active chemotherapy for sarcomatoid and rapidly progressing renal cell carcinoma
  publication-title: Cancer
  doi: 10.1002/cncr.20541
– volume: 502
  start-page: 333
  year: 2013
  ident: e_1_3_4_27_2
  article-title: Mutational landscape and significance across 12 major cancer types
  publication-title: Nature
  doi: 10.1038/nature12634
– volume: 45
  start-page: 253
  year: 2013
  ident: e_1_3_4_53_2
  article-title: Recurrent somatic mutation of FAT1 in multiple human cancers leads to aberrant Wnt activation
  publication-title: Nat Genet
  doi: 10.1038/ng.2538
– volume: 55
  start-page: 215
  year: 1995
  ident: e_1_3_4_39_2
  article-title: Clonal expansion and attenuated apoptosis in Wilms’ tumors are associated with p53 gene mutations
  publication-title: Cancer Res
– volume: 18
  start-page: 271
  year: 2011
  ident: e_1_3_4_38_2
  article-title: Mutant p53(R175H) upregulates Twist1 expression and promotes epithelial-mesenchymal transition in immortalized prostate cells
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2010.94
– volume: 25
  start-page: 275
  year: 2001
  ident: e_1_3_4_2_2
  article-title: Sarcomatoid differentiation in renal cell carcinoma: A study of 101 cases
  publication-title: Am J Surg Pathol
  doi: 10.1097/00000478-200103000-00001
– volume: 41
  start-page: 1913
  year: 2012
  ident: e_1_3_4_52_2
  article-title: Function and cancer genomics of FAT family genes (review)
  publication-title: Int J Oncol
  doi: 10.3892/ijo.2012.1669
– volume: 15
  start-page: 80
  year: 2014
  ident: e_1_3_4_58_2
  article-title: Targeting tumor suppressor p53 for cancer therapy: Strategies, challenges and opportunities
  publication-title: Curr Drug Targets
  doi: 10.2174/1389450114666140106101412
– volume: 500
  start-page: 415
  year: 2013
  ident: e_1_3_4_30_2
  article-title: Signatures of mutational processes in human cancer
  publication-title: Nature
  doi: 10.1038/nature12477
– volume: 27
  start-page: 235
  year: 2009
  ident: e_1_3_4_10_2
  article-title: Metastatic sarcomatoid renal cell carcinoma treated with vascular endothelial growth factor-targeted therapy
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2008.18.0000
– ident: e_1_3_4_47_2
  doi: 10.1158/1078-0432.CCR-07-4921
– volume: 101
  start-page: 1417
  year: 2009
  ident: e_1_3_4_48_2
  article-title: Absence of VHL gene alteration and high VEGF expression are associated with tumour aggressiveness and poor survival of renal-cell carcinoma
  publication-title: Br J Cancer
  doi: 10.1038/sj.bjc.6605298
– volume: 110
  start-page: 2916
  year: 2013
  ident: e_1_3_4_25_2
  article-title: Landscape of somatic single-nucleotide and copy-number mutations in uterine serous carcinoma
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1222577110
– volume: 12
  start-page: 1011
  year: 2013
  ident: e_1_3_4_51_2
  article-title: The FAT epidemic: A gene family frequently mutated across multiple human cancer types
  publication-title: Cell Cycle
  doi: 10.4161/cc.24305
– volume: 91
  start-page: 9700
  year: 1994
  ident: e_1_3_4_46_2
  article-title: Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.91.21.9700
– volume: 3
  start-page: 1303
  year: 2015
  ident: e_1_3_4_63_2
  article-title: PD-1 and PD-L1 expression in renal cell carcinoma with sarcomatoid differentiation
  publication-title: Cancer Immunol Res
  doi: 10.1158/2326-6066.CIR-15-0150
– volume: 499
  start-page: 43
  year: 2013
  ident: e_1_3_4_28_2
  article-title: Comprehensive molecular characterization of clear cell renal cell carcinoma
  publication-title: Nature
  doi: 10.1038/nature12222
– volume: 524
  start-page: 71
  year: 2012
  ident: e_1_3_4_55_2
  article-title: The many roles of PTK7: A versatile regulator of cell-cell communication
  publication-title: Arch Biochem Biophys
  doi: 10.1016/j.abb.2011.12.019
– volume: 60
  start-page: 1736
  year: 2000
  ident: e_1_3_4_54_2
  article-title: TSG101 protein steady-state level is regulated posttranslationally by an evolutionarily conserved COOH-terminal sequence
  publication-title: Cancer Res
– volume: 491
  start-page: 56
  year: 2012
  ident: e_1_3_4_26_2
  article-title: An integrated map of genetic variation from 1,092 human genomes
  publication-title: Nature
  doi: 10.1038/nature11632
– volume: 2
  start-page: 401
  year: 2012
  ident: e_1_3_4_29_2
  article-title: The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-12-0095
– volume: 366
  start-page: 883
  year: 2012
  ident: e_1_3_4_44_2
  article-title: Intratumor heterogeneity and branched evolution revealed by multiregion sequencing
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1113205
– volume: 77
  start-page: 123
  year: 2001
  ident: e_1_3_4_19_2
  article-title: Cell proliferative activity and expression of cell-cell adhesion factors (E-cadherin, alpha-, beta-, and gamma-catenin, and p120) in sarcomatoid renal cell carcinoma
  publication-title: J Surg Oncol
  doi: 10.1002/jso.1082
– volume: 44
  start-page: 751
  year: 2012
  ident: e_1_3_4_41_2
  article-title: BAP1 loss defines a new class of renal cell carcinoma
  publication-title: Nat Genet
  doi: 10.1038/ng.2323
– ident: e_1_3_4_11_2
  doi: 10.1093/annonc/mdt578
– volume: 71
  start-page: 2292
  year: 1993
  ident: e_1_3_4_18_2
  article-title: Sarcomatoid renal cell carcinoma. A study of its proliferative activity
  publication-title: Cancer
  doi: 10.1002/1097-0142(19930401)71:7<2292::AID-CNCR2820710720>3.0.CO;2-3
– volume: 115
  start-page: 405
  year: 2015
  ident: e_1_3_4_5_2
  article-title: A novel prognostic model for patients with sarcomatoid renal cell carcinoma
  publication-title: BJU Int
  doi: 10.1111/bju.12781
– volume: 14
  start-page: 159
  year: 2013
  ident: e_1_3_4_42_2
  article-title: Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: A retrospective analysis with independent validation
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(12)70584-3
– volume: 9
  start-page: e109924
  year: 2014
  ident: e_1_3_4_40_2
  article-title: TP53 mutational status is a potential marker for risk stratification in Wilms tumour with diffuse anaplasia
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0109924
– volume: 210
  start-page: 217
  year: 2014
  ident: e_1_3_4_14_2
  article-title: A series of collision tumors in the genitourinary tract with a review of the literature
  publication-title: Pathol Res Pract
  doi: 10.1016/j.prp.2013.12.005
– volume: 64
  start-page: 1088
  year: 2011
  ident: e_1_3_4_21_2
  article-title: Sarcomatoid renal cell carcinoma is an example of epithelial--mesenchymal transition
  publication-title: J Clin Pathol
  doi: 10.1136/jclinpath-2011-200216
– ident: e_1_3_4_13_2
  doi: 10.1002/1097-0142(196809)22:3<556::AID-CNCR2820220310>3.0.CO;2-N
– volume: 7
  start-page: 85
  year: 1994
  ident: e_1_3_4_45_2
  article-title: Mutations of the VHL tumour suppressor gene in renal carcinoma
  publication-title: Nat Genet
  doi: 10.1038/ng0594-85
– volume: 67
  start-page: 85
  year: 2015
  ident: e_1_3_4_3_2
  article-title: Understanding pathologic variants of renal cell carcinoma: Distilling therapeutic opportunities from biologic complexity
  publication-title: Eur Urol
  doi: 10.1016/j.eururo.2014.04.029
– volume: 46
  start-page: 225
  year: 2014
  ident: e_1_3_4_43_2
  article-title: Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing
  publication-title: Nat Genet
  doi: 10.1038/ng.2891
– volume: 28
  start-page: 435
  year: 2004
  ident: e_1_3_4_7_2
  article-title: Sarcomatoid renal cell carcinoma: An examination of underlying histologic subtype and an analysis of associations with patient outcome
  publication-title: Am J Surg Pathol
  doi: 10.1097/00000478-200404000-00002
– volume: 102
  start-page: 1021
  year: 2007
  ident: e_1_3_4_57_2
  article-title: RIF-1, a novel nuclear receptor corepressor that associates with the nuclear matrix
  publication-title: J Cell Biochem
  doi: 10.1002/jcb.21340
– volume: 5
  start-page: 8829
  year: 2015
  ident: e_1_3_4_50_2
  article-title: Whole exome sequencing reveals recurrent mutations in BRCA2 and FAT genes in acinar cell carcinomas of the pancreas
  publication-title: Sci Rep
  doi: 10.1038/srep08829
– volume: 21
  start-page: 5235
  year: 2002
  ident: e_1_3_4_56_2
  article-title: Mammalian Rcd1 is a novel transcriptional cofactor that mediates retinoic acid-induced cell differentiation
  publication-title: EMBO J
  doi: 10.1093/emboj/cdf521
– volume: 31
  start-page: 185
  year: 1999
  ident: e_1_3_4_16_2
  article-title: Sarcomatoid renal carcinoma: The final common dedifferentiation pathway of renal epithelial malignancies
  publication-title: Pathology
  doi: 10.1080/003130299104945
– volume: 46
  start-page: 613
  year: 2014
  ident: e_1_3_4_22_2
  article-title: Recurrent activating mutation in PRKACA in cortisol-producing adrenal tumors
  publication-title: Nat Genet
  doi: 10.1038/ng.2956
– volume: 13
  start-page: 317
  year: 2011
  ident: e_1_3_4_37_2
  article-title: p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb2173
– volume: 109
  start-page: 1600
  year: 2012
  ident: e_1_3_4_4_2
  article-title: Impact of pathological tumour characteristics in patients with sarcomatoid renal cell carcinoma
  publication-title: BJU Int
  doi: 10.1111/j.1464-410X.2011.10785.x
– volume: 5
  start-page: 4988
  year: 2014
  ident: e_1_3_4_31_2
  article-title: Complex MSH2 and MSH6 mutations in hypermutated microsatellite unstable advanced prostate cancer
  publication-title: Nat Commun
  doi: 10.1038/ncomms5988
– volume: 116
  start-page: 616
  year: 2010
  ident: e_1_3_4_20_2
  article-title: Histologic evaluation of metastases in renal cell carcinoma with sarcomatoid transformation and its implications for systemic therapy
  publication-title: Cancer
  doi: 10.1002/cncr.24768
– volume: 26
  start-page: 319
  year: 2014
  ident: e_1_3_4_32_2
  article-title: The somatic genomic landscape of chromophobe renal cell carcinoma
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2014.07.014
– volume: 71
  start-page: 6718
  year: 2011
  ident: e_1_3_4_33_2
  article-title: ARID1A, a factor that promotes formation of SWI/SNF-mediated chromatin remodeling, is a tumor suppressor in gynecologic cancers
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-11-1562
– volume: 25
  start-page: 1754
  year: 2009
  ident: e_1_3_4_23_2
  article-title: Fast and accurate short read alignment with Burrows-Wheeler transform
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp324
– volume: 17
  start-page: 46
  year: 2012
  ident: e_1_3_4_9_2
  article-title: Sarcomatoid renal cell carcinoma: A comprehensive review of the biology and current treatment strategies
  publication-title: Oncologist
  doi: 10.1634/theoncologist.2011-0227
– volume: 3
  start-page: 203
  year: 2013
  ident: e_1_3_4_15_2
  article-title: Microenvironment-dependent phenotypic changes in a SCID mouse model for malignant mesothelioma
  publication-title: Front Oncol
  doi: 10.3389/fonc.2013.00203
– volume: 182
  start-page: 2164
  year: 2009
  ident: e_1_3_4_1_2
  article-title: Cytoreductive nephrectomy for kidney cancer with sarcomatoid histology--is up-front resection indicated and, if not, is it avoidable?
  publication-title: J Urol
  doi: 10.1016/j.juro.2009.07.049
– volume: 45
  start-page: 860
  year: 2013
  ident: e_1_3_4_35_2
  article-title: Integrated molecular analysis of clear-cell renal cell carcinoma
  publication-title: Nat Genet
  doi: 10.1038/ng.2699
SSID ssj0009580
Score 2.510385
Snippet The presence of sarcomatoid features in clear cell renal cell carcinoma (ccRCC) confers a poor prognosis and is of unknown pathogenesis. We performed exome...
Parts of clear cell renal cell carcinomas (ccRCCs) sometimes have histologic features characteristic of a sarcoma. So-called sarcomatoid tumors are more...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2170
SubjectTerms Aged
Biological Sciences
Carcinoma, Renal Cell - classification
Carcinoma, Renal Cell - genetics
Carcinoma, Renal Cell - pathology
Cell Dedifferentiation - genetics
Chromosomes
DNA Mismatch Repair - genetics
Exome
Female
Genes
Genes, p53
Genomics
Humans
Kidney cancer
Kidney Neoplasms - classification
Kidney Neoplasms - genetics
Kidney Neoplasms - pathology
Loss of Heterozygosity
Male
Middle Aged
Mutation
Nuclear Proteins - genetics
Oncogenes
Polymorphism, Single Nucleotide
Prognosis
Transcription Factors - genetics
Tumor Suppressor Proteins - genetics
Tumors
Ubiquitin Thiolesterase - genetics
Title Genomic characterization of sarcomatoid transformation in clear cell renal cell carcinoma
URI https://www.jstor.org/stable/26467825
http://www.pnas.org/content/113/8/2170.abstract
https://www.ncbi.nlm.nih.gov/pubmed/26864202
https://www.proquest.com/docview/1772453649
https://www.proquest.com/docview/1768165921
https://www.proquest.com/docview/1780502535
https://pubmed.ncbi.nlm.nih.gov/PMC4776463
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuHBBDBgEBgoSh6EoJbETxzlOCDZNoprEJgqXyHHsLRJK0Npe9v_wf_L8ETetOgRcIjd5sRy_n997dt8HQm-xVIUAkRjLguVxJrCKGackhrVVFhgnvC51NPLnGT29zM7m-Xwy-TXyWlot66m43RlX8j9chXvAVx0l-w-c9Z3CDWgDf-EKHIbrX_H4RJqgYh2967Iu33oLcAEI7sEc7dtG14Hw1ql1bRS6WkSkT-2jG6kNUtMUurAQdMnHJuu5V3GLwaFgNpwgHq_jUZyQWERxdD4bVTdutyOCvl9zczz7RdcTu_InPLxtxqf50depx4KOUOxdNy2Pzqbjo4rUeDfbaOJxpu-dgxvLaAx6M7OR1VNpxTJYNTHNbGFRL7dtEKsDKNuQwrYYidPo8DPfqS1AvOkSxx1fmDJQhf5TlawVo3dXBKMRdDrO76H7GHYjulDGyTwd5XZmNtLJDXzIIFWQ91t9bxg_1v9VJ9UFol0bnG0_3ZHhc_EIPXQ7lvDYwm8fTWT3GO0PMxoeucTl756gbw6P4TYew16FIzyGm3gM2y40eAw1CEODR9v0eHyKLj99vPhwGrvSHbGAHcISVn4iSpgrznOu6pw2SpFCYcVUQjDnHLO8xrTmvOEyIbUSBU0U5XlKYQffSEIO0F7Xd_I5CjEtmaCJ4IkE61mUNcsVK0vFGqZ4xuoATYc5rYTLa6_Lq_yojH9FQSo9v9WaCQE68i_8tCld7iY9MEzydAMSAvTMkPr3U1KxSuMuQIcDIysnKqBHQE2WE0BwgN74xyDI9WTyTvYrTUNZqp0c0j_RsCSHXQoxAzDYGA2N0QwnOEDFBmo8gU4kv_mka69NQvmsKOC7yIu7vvYlerBezodob3mzkq_AFl_Wr81K-A2_5ODV
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genomic+characterization+of+sarcomatoid+transformation+in+clear+cell+renal+cell+carcinoma&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Bi%2C+Mark&rft.au=Zhao%2C+Siming&rft.au=Said%2C+Jonathan+W.&rft.au=Merino%2C+Maria+J.&rft.date=2016-02-23&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=113&rft.issue=8&rft.spage=2170&rft.epage=2175&rft_id=info:doi/10.1073%2Fpnas.1525735113&rft.externalDocID=26467825
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F113%2F8.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F113%2F8.cover.gif