Optimization of Quantitative Detection of Cytomegalovirus DNA in Plasma by Real-Time PCR
Article Usage Stats Services JCM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue JCM About JCM Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Com...
Saved in:
Published in | Journal of Clinical Microbiology Vol. 42; no. 3; pp. 1142 - 1148 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Society for Microbiology
01.03.2004
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Article Usage Stats
Services
JCM
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit
StumbleUpon
Twitter
current issue
JCM
About
JCM
Subscribers
Authors
Reviewers
Advertisers
Inquiries from the Press
Permissions & Commercial Reprints
ASM Journals Public Access Policy
JCM
RSS Feeds
1752 N Street N.W. • Washington DC 20036
202.737.3600 • 202.942.9355 fax • journals@asmusa.org
Print ISSN:
0095-1137
Online ISSN:
1098-660X
Copyright © 2014
by the
American Society for Microbiology.
For an alternate route to
JCM
.asm.org, visit:
JCM
|
---|---|
AbstractList | Article Usage Stats
Services
JCM
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit
StumbleUpon
Twitter
current issue
JCM
About
JCM
Subscribers
Authors
Reviewers
Advertisers
Inquiries from the Press
Permissions & Commercial Reprints
ASM Journals Public Access Policy
JCM
RSS Feeds
1752 N Street N.W. • Washington DC 20036
202.737.3600 • 202.942.9355 fax • journals@asmusa.org
Print ISSN:
0095-1137
Online ISSN:
1098-660X
Copyright © 2014
by the
American Society for Microbiology.
For an alternate route to
JCM
.asm.org, visit:
JCM
Previous studies have shown that detection of cytomegalovirus (CMV) DNA in plasma is less sensitive than the antigenemia assay for CMV surveillance in blood. In 1,983 blood samples, plasma PCR assays with three different primer sets (UL125 alone, UL126 alone, and UL55/UL123-exon 4) were compared to the pp65 antigenemia assay and blood cultures. Plasma PCR detected CMV more frequently in blood specimens than either the antigenemia assay or cultures, but of the three PCR assays, the double-primer assay (UL55/UL123-exon 4) performed best with regard to sensitivity, specificity, and predictive values compared to antigenemia: 122 of 151 antigenemia-positive samples were detected (sensitivity, 80.1%), and there were 122 samples that were PCR positive-antigenemia negative (specificity, 93%). Samples with discrepant results had a low viral load (median, 0.5 cells per slide; 1,150 copies per ml) and were often obtained from patients receiving antiviral therapy. CMV could be detected by other methods in 15 of 29 antigenemia positive-PCR negative samples compared to 121 of 122 PCR positive-antigenemia negative samples ( P < 0.001). On a per-subject basis, 21 of 25 patients (antigenemia positive-PCR negative) and all 57 (PCR positive-antigenemia negative) could be confirmed at different time points during follow-up. The higher sensitivity of the double-primer assay resulted in earlier detection compared to antigenemia in a time-to-event analysis of 42 CMV-seropositive stem cell transplant recipients, and two of three patients with CMV disease who were antigenemia negative were detected by plasma PCR prior to the onset of disease. Interassay variability was low, and the dynamic range was >5 log 10 . Automated DNA extraction resulted in high reproducibility, accurate CMV quantitation ( R = 0.87, P < 0.001), improved sensitivity, and increased speed of sample processing. Thus, primer optimization and improved DNA extraction techniques resulted in a plasma-based PCR assay that is significantly more sensitive than pp65 antigenemia and blood cultures for detection of CMV in blood specimens. Previous studies have shown that detection of cytomegalovirus (CMV) DNA in plasma is less sensitive than the antigenemia assay for CMV surveillance in blood. In 1,983 blood samples, plasma PCR assays with three different primer sets (UL125 alone, UL126 alone, and UL55/UL123-exon 4) were compared to the pp65 antigenemia assay and blood cultures. Plasma PCR detected CMV more frequently in blood specimens than either the antigenemia assay or cultures, but of the three PCR assays, the double-primer assay (UL55/UL123-exon 4) performed best with regard to sensitivity, specificity, and predictive values compared to antigenemia: 122 of 151 antigenemia-positive samples were detected (sensitivity, 80.1%), and there were 122 samples that were PCR positive-antigenemia negative (specificity, 93%). Samples with discrepant results had a low viral load (median, 0.5 cells per slide; 1,150 copies per ml) and were often obtained from patients receiving antiviral therapy. CMV could be detected by other methods in 15 of 29 antigenemia positive-PCR negative samples compared to 121 of 122 PCR positive-antigenemia negative samples (P < 0.001). On a per-subject basis, 21 of 25 patients (antigenemia positive-PCR negative) and all 57 (PCR positive-antigenemia negative) could be confirmed at different time points during follow-up. The higher sensitivity of the double-primer assay resulted in earlier detection compared to antigenemia in a time-to-event analysis of 42 CMV-seropositive stem cell transplant recipients, and two of three patients with CMV disease who were antigenemia negative were detected by plasma PCR prior to the onset of disease. Interassay variability was low, and the dynamic range was >5 log(10). Automated DNA extraction resulted in high reproducibility, accurate CMV quantitation (R = 0.87, P < 0.001), improved sensitivity, and increased speed of sample processing. Thus, primer optimization and improved DNA extraction techniques resulted in a plasma-based PCR assay that is significantly more sensitive than pp65 antigenemia and blood cultures for detection of CMV in blood specimens.Previous studies have shown that detection of cytomegalovirus (CMV) DNA in plasma is less sensitive than the antigenemia assay for CMV surveillance in blood. In 1,983 blood samples, plasma PCR assays with three different primer sets (UL125 alone, UL126 alone, and UL55/UL123-exon 4) were compared to the pp65 antigenemia assay and blood cultures. Plasma PCR detected CMV more frequently in blood specimens than either the antigenemia assay or cultures, but of the three PCR assays, the double-primer assay (UL55/UL123-exon 4) performed best with regard to sensitivity, specificity, and predictive values compared to antigenemia: 122 of 151 antigenemia-positive samples were detected (sensitivity, 80.1%), and there were 122 samples that were PCR positive-antigenemia negative (specificity, 93%). Samples with discrepant results had a low viral load (median, 0.5 cells per slide; 1,150 copies per ml) and were often obtained from patients receiving antiviral therapy. CMV could be detected by other methods in 15 of 29 antigenemia positive-PCR negative samples compared to 121 of 122 PCR positive-antigenemia negative samples (P < 0.001). On a per-subject basis, 21 of 25 patients (antigenemia positive-PCR negative) and all 57 (PCR positive-antigenemia negative) could be confirmed at different time points during follow-up. The higher sensitivity of the double-primer assay resulted in earlier detection compared to antigenemia in a time-to-event analysis of 42 CMV-seropositive stem cell transplant recipients, and two of three patients with CMV disease who were antigenemia negative were detected by plasma PCR prior to the onset of disease. Interassay variability was low, and the dynamic range was >5 log(10). Automated DNA extraction resulted in high reproducibility, accurate CMV quantitation (R = 0.87, P < 0.001), improved sensitivity, and increased speed of sample processing. Thus, primer optimization and improved DNA extraction techniques resulted in a plasma-based PCR assay that is significantly more sensitive than pp65 antigenemia and blood cultures for detection of CMV in blood specimens. Previous studies have shown that detection of cytomegalovirus (CMV) DNA in plasma is less sensitive than the antigenemia assay for CMV surveillance in blood. In 1,983 blood samples, plasma PCR assays with three different primer sets (UL125 alone, UL126 alone, and UL55/UL123-exon 4) were compared to the pp65 antigenemia assay and blood cultures. Plasma PCR detected CMV more frequently in blood specimens than either the antigenemia assay or cultures, but of the three PCR assays, the double-primer assay (UL55/UL123-exon 4) performed best with regard to sensitivity, specificity, and predictive values compared to antigenemia: 122 of 151 antigenemia-positive samples were detected (sensitivity, 80.1%), and there were 122 samples that were PCR positive-antigenemia negative (specificity, 93%). Samples with discrepant results had a low viral load (median, 0.5 cells per slide; 1,150 copies per ml) and were often obtained from patients receiving antiviral therapy. CMV could be detected by other methods in 15 of 29 antigenemia positive-PCR negative samples compared to 121 of 122 PCR positive-antigenemia negative samples (P < 0.001). On a per-subject basis, 21 of 25 patients (antigenemia positive-PCR negative) and all 57 (PCR positive-antigenemia negative) could be confirmed at different time points during follow-up. The higher sensitivity of the double-primer assay resulted in earlier detection compared to antigenemia in a time-to-event analysis of 42 CMV-seropositive stem cell transplant recipients, and two of three patients with CMV disease who were antigenemia negative were detected by plasma PCR prior to the onset of disease. Interassay variability was low, and the dynamic range was >5 log(10). Automated DNA extraction resulted in high reproducibility, accurate CMV quantitation (R = 0.87, P < 0.001), improved sensitivity, and increased speed of sample processing. Thus, primer optimization and improved DNA extraction techniques resulted in a plasma-based PCR assay that is significantly more sensitive than pp65 antigenemia and blood cultures for detection of CMV in blood specimens. Previous studies have shown that detection of cytomegalovirus (CMV) DNA in plasma is less sensitive than the antigenemia assay for CMV surveillance in blood. In 1,983 blood samples, plasma PCR assays with three different primer sets (UL125 alone, UL126 alone, and UL55/UL123-exon 4) were compared to the pp65 antigenemia assay and blood cultures. Plasma PCR detected CMV more frequently in blood specimens than either the antigenemia assay or cultures, but of the three PCR assays, the double-primer assay (UL55/UL123-exon 4) performed best with regard to sensitivity, specificity, and predictive values compared to antigenemia: 122 of 151 antigenemia-positive samples were detected (sensitivity, 80.1%), and there were 122 samples that were PCR positive-antigenemia negative (specificity, 93%). Samples with discrepant results had a low viral load (median, 0.5 cells per slide; 1,150 copies per ml) and were often obtained from patients receiving antiviral therapy. CMV could be detected by other methods in 15 of 29 antigenemia positive-PCR negative samples compared to 121 of 122 PCR positive-antigenemia negative samples (P < 0.001). On a per-subject basis, 21 of 25 patients (antigenemia positive-PCR negative) and all 57 (PCR positive- antigenemia negative) could be confirmed at different time points during follow- up. The higher sensitivity of the double-primer assay resulted in earlier detection compared to antigenemia in a time-to-event analysis of 42 CMV- seropositive stem cell transplant recipients, and two of three patients with CMV disease who were antigenemia negative were detected by plasma PCR prior to the onset of disease. Interassay variability was low, and the dynamic range was >5 log sub(10). Automated DNA extraction resulted in high reproducibility, accurate CMV quantitation (R = 0.87, P < 0.001), improved sensitivity, and increased speed of sample processing. Thus, primer optimization and improved DNA extraction techniques resulted in a plasma-based PCR assay that is significantly more sensitive than pp65 antigenemia and blood cultures for detection of CMV in blood specimens. |
Author | Terry Stevens-Ayers MeeiLi Huang James Ferrenberg Michael Boeckh Lawrence Corey W. Garrett Nichols Laurence Stensland |
AuthorAffiliation | Fred Hutchinson Cancer Research Center and the University of Washington, Seattle, Washington 98109-1024 |
AuthorAffiliation_xml | – name: Fred Hutchinson Cancer Research Center and the University of Washington, Seattle, Washington 98109-1024 |
Author_xml | – sequence: 1 givenname: Michael surname: Boeckh fullname: Boeckh, Michael organization: Fred Hutchinson Cancer Research Center and the University of Washington, Seattle, Washington 98109-1024 – sequence: 2 givenname: MeeiLi surname: Huang fullname: Huang, MeeiLi organization: Fred Hutchinson Cancer Research Center and the University of Washington, Seattle, Washington 98109-1024 – sequence: 3 givenname: James surname: Ferrenberg fullname: Ferrenberg, James organization: Fred Hutchinson Cancer Research Center and the University of Washington, Seattle, Washington 98109-1024 – sequence: 4 givenname: Terry surname: Stevens-Ayers fullname: Stevens-Ayers, Terry organization: Fred Hutchinson Cancer Research Center and the University of Washington, Seattle, Washington 98109-1024 – sequence: 5 givenname: Laurence surname: Stensland fullname: Stensland, Laurence organization: Fred Hutchinson Cancer Research Center and the University of Washington, Seattle, Washington 98109-1024 – sequence: 6 givenname: W. Garrett surname: Nichols fullname: Nichols, W. Garrett organization: Fred Hutchinson Cancer Research Center and the University of Washington, Seattle, Washington 98109-1024 – sequence: 7 givenname: Lawrence surname: Corey fullname: Corey, Lawrence organization: Fred Hutchinson Cancer Research Center and the University of Washington, Seattle, Washington 98109-1024 |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15595196$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15004066$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1v1DAQhi1URLeFvwDhALds7fgrOXCoUihUhZaqSL1ZjmPvukrire0sWn59Hbr9gEsvtsbzvPaM590DO4MbNADvEJwjVJQHJ_X3OSnmOEWkyNNSzgsIyQswQ7Aqc8bg1Q6YQVjRlMR8F-yFcA0hIoTSV2AX0QRDxmbg6mwVbW__yGjdkDmT_RzlEG1M8VpnRzpqdZ-pN9H1eiE7t7Z-DNnRj8PMDtl5J0Mvs2aTXWjZ5Ze219l5ffEavDSyC_rNdt8Hv758vqy_5qdnx9_qw9NcUUZj3raNwabFSkHKG4SRaqkkkmhUKM4a1SqjiDEUI8Yr2BpasbJoaNUYkw54i_fBp7t7V2PT61bpIXrZiZW3vfQb4aQV_2YGuxQLtxaYshIVSf9xq_fuZtQhit4GpbtODtqNQXDEYYkJfRZEvKww5TyBb59W9FDK_acn4MMWkEHJzng5KBuecLSiqGKPrSnvQvDaCPV3MG5qxHYCQTGZQSQzCFIILCYzTEspJjMkPf9P__DEs8r3d8qlXSx_W69FmrG4Vv0jjW8BGifFAQ |
CODEN | JCMIDW |
CitedBy_id | crossref_primary_10_1016_j_antiviral_2011_03_184 crossref_primary_10_1097_QAD_0b013e328326ca62 crossref_primary_10_1182_blood_2008_10_143560 crossref_primary_10_1128_msystems_01079_20 crossref_primary_10_1093_cid_cix259 crossref_primary_10_1093_infdis_jiaa697 crossref_primary_10_1111_1756_185X_13467 crossref_primary_10_1016_j_vaccine_2015_11_056 crossref_primary_10_3109_09537104_2010_485659 crossref_primary_10_1126_scitranslmed_abg8070 crossref_primary_10_1172_JCI133960 crossref_primary_10_1111_tid_13789 crossref_primary_10_1016_j_diagmicrobio_2025_116746 crossref_primary_10_1111_apa_12207 crossref_primary_10_1093_infdis_jiz373 crossref_primary_10_1097_CCM_0000000000000969 crossref_primary_10_1016_j_jviromet_2012_04_010 crossref_primary_10_1111_j_1348_0421_2010_00236_x crossref_primary_10_1002_jmv_23733 crossref_primary_10_1016_j_bea_2021_100006 crossref_primary_10_1586_erv_09_58 crossref_primary_10_1128_JVI_05749_11 crossref_primary_10_1016_j_clim_2019_108329 crossref_primary_10_1016_j_jcv_2007_08_014 crossref_primary_10_3390_v12020171 crossref_primary_10_1111_tid_12468 crossref_primary_10_1097_01_mph_0000174242_80167_9d crossref_primary_10_1097_ICO_0b013e318283c887 crossref_primary_10_1016_j_transproceed_2010_02_040 crossref_primary_10_1128_JCM_01403_07 crossref_primary_10_1016_j_ajo_2013_03_020 crossref_primary_10_1080_00325481_2019_1667211 crossref_primary_10_1097_QAI_0b013e3182928eea crossref_primary_10_1016_j_jviromet_2005_12_007 crossref_primary_10_1086_587106 crossref_primary_10_1016_j_ijid_2022_09_038 crossref_primary_10_1097_TP_0000000000000816 crossref_primary_10_1097_INF_0000000000001572 crossref_primary_10_1002_jmv_21214 crossref_primary_10_1002_jmv_21334 crossref_primary_10_1016_j_jcv_2005_07_001 crossref_primary_10_1093_infdis_jiw442 crossref_primary_10_1016_j_jcv_2018_04_013 crossref_primary_10_1111_j_1432_2277_2011_01285_x crossref_primary_10_1371_journal_pone_0167097 crossref_primary_10_1002_jmv_25386 crossref_primary_10_1016_S2352_3026_15_00289_6 crossref_primary_10_1039_b808880b crossref_primary_10_1128_JCM_06800_11 crossref_primary_10_1016_j_transproceed_2007_01_088 crossref_primary_10_1016_j_jviromet_2005_09_008 crossref_primary_10_1111_j_1398_2265_2004_00183_x crossref_primary_10_1186_1471_2334_13_528 crossref_primary_10_3390_dna4040037 crossref_primary_10_1111_cei_13558 crossref_primary_10_1016_j_placenta_2017_03_011 crossref_primary_10_1586_14787210_2014_870887 crossref_primary_10_2217_fvl_14_102 crossref_primary_10_1007_s00417_011_1813_7 crossref_primary_10_5145_ACM_2013_16_1_19 crossref_primary_10_6061_clinics_2015_07_09 crossref_primary_10_1373_clinchem_2013_211045 crossref_primary_10_1212_WNL_0b013e3181b1644d crossref_primary_10_1007_s00705_013_1609_7 crossref_primary_10_1038_sj_bmt_1705593 crossref_primary_10_1016_j_bbmt_2012_02_008 crossref_primary_10_1016_j_idc_2019_02_008 crossref_primary_10_1186_1743_422X_8_40 crossref_primary_10_1016_j_jviromet_2005_05_003 crossref_primary_10_1128_JCM_42_3_1296_1297_2004 crossref_primary_10_1371_journal_pone_0287516 crossref_primary_10_1016_j_biomaterials_2021_120876 crossref_primary_10_3324_haematol_2020_248187 crossref_primary_10_1016_j_jcv_2007_01_003 crossref_primary_10_1016_j_jviromet_2007_10_006 crossref_primary_10_1016_j_bbmt_2012_03_013 crossref_primary_10_1016_j_bbmt_2016_05_020 crossref_primary_10_1093_cid_civ215 crossref_primary_10_1016_j_jcv_2013_06_008 crossref_primary_10_1099_jmm_0_010587_0 crossref_primary_10_1007_s00431_010_1176_9 crossref_primary_10_1111_tid_12238 crossref_primary_10_1111_j_1600_6143_2008_02513_x crossref_primary_10_1007_s12250_017_4055_y crossref_primary_10_1093_infdis_jiac307 crossref_primary_10_1016_j_ajo_2007_12_015 crossref_primary_10_1016_j_ajo_2011_03_003 crossref_primary_10_1086_428060 crossref_primary_10_1371_journal_ppat_1004999 crossref_primary_10_1002_jmv_22232 crossref_primary_10_1021_ac0520689 crossref_primary_10_1016_j_bjid_2020_04_015 crossref_primary_10_1111_j_1365_2036_2008_03595_x crossref_primary_10_1097_QAD_0000000000004000 crossref_primary_10_1016_j_ajo_2008_09_001 crossref_primary_10_1016_j_idc_2010_01_008 crossref_primary_10_3947_ic_2008_40_3_167 crossref_primary_10_1016_j_ekir_2020_09_005 crossref_primary_10_1182_blood_2011_06_361618 crossref_primary_10_1182_blood_2016_10_748426 crossref_primary_10_1097_TXD_0000000000000787 crossref_primary_10_1128_JVI_01092_16 crossref_primary_10_1016_j_isci_2022_104007 crossref_primary_10_1128_CMR_00003_14 crossref_primary_10_1002_jmv_24420 crossref_primary_10_1016_j_bbmt_2018_05_017 crossref_primary_10_3346_jkms_2009_24_4_571 crossref_primary_10_1016_j_bbmt_2009_02_009 crossref_primary_10_1097_QCO_0b013e328259c33b crossref_primary_10_1038_s41372_021_01129_z crossref_primary_10_1097_TP_0b013e3181a60b4e crossref_primary_10_1016_j_diagmicrobio_2012_10_009 crossref_primary_10_2353_jmoldx_2009_080097 crossref_primary_10_1097_TXD_0000000000001083 crossref_primary_10_1016_j_trim_2009_07_003 crossref_primary_10_1002_jmv_24303 crossref_primary_10_1128_JCM_00316_13 crossref_primary_10_1016_j_ijmmb_2023_100521 crossref_primary_10_1128_JCM_00803_14 crossref_primary_10_1681_ASN_2009111188 crossref_primary_10_1586_14737159_2014_910456 crossref_primary_10_1086_588820 crossref_primary_10_2217_fvl_09_64 crossref_primary_10_1017_S0950268815002708 crossref_primary_10_1016_j_transproceed_2007_08_040 crossref_primary_10_1111_j_1399_3062_2012_00760_x crossref_primary_10_1016_j_snb_2016_09_188 crossref_primary_10_1016_j_bbmt_2014_05_023 crossref_primary_10_1016_S1083_8791_03_00287_8 crossref_primary_10_1021_ja901368m crossref_primary_10_1097_MPH_0000000000000298 crossref_primary_10_1016_j_jaad_2016_08_034 crossref_primary_10_1093_ofid_ofy080 crossref_primary_10_1128_JCM_01109_06 crossref_primary_10_1371_journal_pone_0025571 crossref_primary_10_1016_j_jcv_2015_12_003 crossref_primary_10_1016_j_survophthal_2016_12_005 crossref_primary_10_3816_CLM_2006_n_049 crossref_primary_10_1007_s13337_021_00728_w crossref_primary_10_1016_j_jcv_2022_105186 crossref_primary_10_3390_v13112292 crossref_primary_10_1053_j_gastro_2016_11_002 crossref_primary_10_1016_j_hoc_2010_11_011 crossref_primary_10_1128_CMR_00015_13 crossref_primary_10_1007_s15010_012_0292_z crossref_primary_10_1056_NEJMoa0804749 crossref_primary_10_1016_j_jcv_2009_05_009 crossref_primary_10_1016_j_bbmt_2018_05_008 crossref_primary_10_1016_j_transproceed_2005_10_074 crossref_primary_10_1093_infdis_jir707 crossref_primary_10_1056_NEJMoa1004383 crossref_primary_10_1016_j_bbmt_2004_11_016 crossref_primary_10_1111_tid_12405 crossref_primary_10_1128_JCM_02206_10 crossref_primary_10_4103_0255_0857_167351 crossref_primary_10_1111_j_1399_3062_2011_00624_x crossref_primary_10_1186_1471_2334_6_167 crossref_primary_10_1515_JPM_2009_012 crossref_primary_10_5606_fng_btd_2021_55 crossref_primary_10_1016_j_jcv_2020_104337 crossref_primary_10_3389_fped_2018_00096 crossref_primary_10_1111_tid_12531 crossref_primary_10_1080_17476348_2017_1317596 crossref_primary_10_1002_jmv_21996 crossref_primary_10_1016_j_bjid_2016_08_007 crossref_primary_10_1128_JCM_00526_07 crossref_primary_10_1038_bmt_2010_136 crossref_primary_10_1620_tjem_210_125 crossref_primary_10_1128_CMR_19_1_165_256_2006 crossref_primary_10_1038_s41591_019_0472_9 crossref_primary_10_1038_s41598_017_12994_0 crossref_primary_10_1093_cid_ciw370 crossref_primary_10_1093_infdis_jiad255 crossref_primary_10_1128_JCM_00797_08 crossref_primary_10_3109_07357907_2014_919301 crossref_primary_10_1128_JVI_01952_10 crossref_primary_10_1002_jmv_22056 crossref_primary_10_1111_tid_12542 crossref_primary_10_1016_j_ajo_2025_02_011 crossref_primary_10_1016_j_diagmicrobio_2009_05_016 crossref_primary_10_1007_s00417_014_2743_y crossref_primary_10_3389_fimmu_2021_703256 crossref_primary_10_1086_426140 crossref_primary_10_1093_infdis_jix048 crossref_primary_10_1093_infdis_jiw076 crossref_primary_10_1016_j_diagmicrobio_2014_09_004 crossref_primary_10_1016_j_diagmicrobio_2009_01_003 crossref_primary_10_3390_v15122326 crossref_primary_10_1128_JVI_01292_09 crossref_primary_10_1128_microbiolspec_DMIH2_0022_2015 crossref_primary_10_1016_j_bbmt_2012_05_015 crossref_primary_10_1080_17474086_2016_1242406 crossref_primary_10_1097_01_TP_0000438025_96334_eb crossref_primary_10_1128_JVI_00380_17 crossref_primary_10_1093_infdis_jiz596 crossref_primary_10_1016_S1166_8598_08_41673_3 crossref_primary_10_7326_M13_2729 crossref_primary_10_1097_QAD_0b013e32830184f2 crossref_primary_10_1128_JVI_79_21_13769_13777_2005 crossref_primary_10_1016_j_bbmt_2011_08_014 crossref_primary_10_1038_s41409_018_0200_y crossref_primary_10_1200_JCO_2005_04_569 crossref_primary_10_1016_j_jmoldx_2012_09_007 crossref_primary_10_1016_j_trim_2010_03_005 |
Cites_doi | 10.1016/S0166-0934(00)00151-8 10.1128/jcm.32.3.832-834.1994 10.1086/514190 10.1128/JCM.39.12.4472-4476.2001 10.1016/S0166-0934(00)00232-9 10.1097/00007890-199707150-00020 10.1182/blood.V99.6.1978 10.1084/jem.190.2.177 10.1128/JCM.40.11.4251-4255.2002 10.1128/jcm.35.3.741-744.1997 10.1086/318089 10.1016/S0140-6736(00)02350-3 10.1128/jcm.32.11.2709-2717.1994 10.1128/jcm.34.5.1337-1339.1996 10.1128/JVI.73.8.7027-7030.1999 10.1159/000024912 10.1128/CMR.11.3.533 10.1002/(SICI)1096-9071(200004)60:4<455::AID-JMV14>3.0.CO;2-Q 10.1097/00007890-200203270-00025 10.1002/jcla.1014 10.1128/JCM.40.11.4105-4113.2002 10.1128/JCM.39.12.4362-4369.2001 10.1128/JCM.39.2.772-775.2001 10.1182/blood-2002-03-0993 |
ContentType | Journal Article |
Copyright | 2004 INIST-CNRS Copyright © 2004, American Society for Microbiology 2004 |
Copyright_xml | – notice: 2004 INIST-CNRS – notice: Copyright © 2004, American Society for Microbiology 2004 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7U9 H94 7X8 5PM |
DOI | 10.1128/JCM.42.3.1142-1148.2004 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Virology and AIDS Abstracts AIDS and Cancer Research Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts Virology and AIDS Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1098-660X |
EndPage | 1148 |
ExternalDocumentID | PMC356812 15004066 15595196 10_1128_JCM_42_3_1142_1148_2004 jcm_42_3_1142 |
Genre | Research Support, U.S. Gov't, P.H.S Journal Article Comparative Study |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: AI41754 – fundername: NICHD NIH HHS grantid: P01 HD040540 – fundername: NCI NIH HHS grantid: P30 CA015704 – fundername: NCI NIH HHS grantid: P01 CA018029 – fundername: NIAID NIH HHS grantid: AI01839-01 – fundername: NIAID NIH HHS grantid: K23 AI001839 – fundername: NCI NIH HHS grantid: CA15704 – fundername: NCI NIH HHS grantid: CA18029 – fundername: NICHD NIH HHS grantid: HD40540 |
GroupedDBID | --- .55 .GJ 0R~ 18M 29K 2WC 39C 3O- 4.4 41~ 53G 5GY 5RE 5VS AAGFI AAYOK AAYXX ABOCM ABPPZ ACGFO ADBBV AENEX AGCDD AGVNZ AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 D-I DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HF~ HYE HZ~ H~9 KQ8 L7B O9- OHT OK1 P2P P6G RHI RNS RPM RSF TR2 VH1 W8F WHG WOQ X7M ZCA ZGI ZXP ~KM IQODW CGR CUY CVF ECM EIF NPM PKN RHF UCJ YIF 7U9 H94 7X8 5PM |
ID | FETCH-LOGICAL-c565t-ddbf3fd3cc057b131cd5a4a4e12c76bcdcfc4ff5316790df59682b59bff6797d3 |
ISSN | 0095-1137 |
IngestDate | Thu Aug 21 13:52:59 EDT 2025 Fri Jul 11 16:11:04 EDT 2025 Fri Jul 11 11:29:47 EDT 2025 Wed Feb 19 02:33:39 EST 2025 Mon Jul 21 09:14:42 EDT 2025 Tue Jul 01 01:10:44 EDT 2025 Thu Apr 24 23:02:38 EDT 2025 Wed May 18 15:27:17 EDT 2016 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Virus Polymerase chain reaction Cytomegalovirus Microbiology Herpesviridae Detection Real time Betaherpesvirinae Optimization Quantitative analysis |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c565t-ddbf3fd3cc057b131cd5a4a4e12c76bcdcfc4ff5316790df59682b59bff6797d3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 Corresponding author. Mailing address: Fred Hutchinson Cancer Research Center, Program in Infectious Diseases, 1100 Fairview Ave., N., P.O. Box 19024, Seattle, WA 98109-1024. Phone: (206) 667-6702. Fax: (206) 667-4411. E-mail: mboeckh@FHCRC.org. |
OpenAccessLink | http://doi.org/10.1128/JCM.42.3.1142-1148.2004 |
PMID | 15004066 |
PQID | 17893577 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | pubmed_primary_15004066 highwire_asm_jcm_42_3_1142 proquest_miscellaneous_71708345 crossref_citationtrail_10_1128_JCM_42_3_1142_1148_2004 pubmedcentral_primary_oai_pubmedcentral_nih_gov_356812 proquest_miscellaneous_17893577 crossref_primary_10_1128_JCM_42_3_1142_1148_2004 pascalfrancis_primary_15595196 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004-03-01 |
PublicationDateYYYYMMDD | 2004-03-01 |
PublicationDate_xml | – month: 03 year: 2004 text: 2004-03-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Journal of Clinical Microbiology |
PublicationTitleAlternate | J Clin Microbiol |
PublicationYear | 2004 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_19_2 e_1_3_2_10_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_2_2 e_1_3_2_14_2 (e_1_3_2_26_2) 2000; 69 |
References_xml | – ident: e_1_3_2_25_2 doi: 10.1016/S0166-0934(00)00151-8 – ident: e_1_3_2_6_2 doi: 10.1128/jcm.32.3.832-834.1994 – ident: e_1_3_2_7_2 doi: 10.1086/514190 – ident: e_1_3_2_19_2 doi: 10.1128/JCM.39.12.4472-4476.2001 – ident: e_1_3_2_9_2 doi: 10.1016/S0166-0934(00)00232-9 – ident: e_1_3_2_4_2 doi: 10.1097/00007890-199707150-00020 – ident: e_1_3_2_15_2 doi: 10.1182/blood.V99.6.1978 – ident: e_1_3_2_10_2 doi: 10.1084/jem.190.2.177 – ident: e_1_3_2_16_2 doi: 10.1128/JCM.40.11.4251-4255.2002 – ident: e_1_3_2_22_2 doi: 10.1128/jcm.35.3.741-744.1997 – ident: e_1_3_2_18_2 doi: 10.1086/318089 – ident: e_1_3_2_11_2 doi: 10.1016/S0140-6736(00)02350-3 – ident: e_1_3_2_13_2 doi: 10.1128/jcm.32.11.2709-2717.1994 – ident: e_1_3_2_17_2 doi: 10.1128/jcm.34.5.1337-1339.1996 – ident: e_1_3_2_23_2 doi: 10.1128/JVI.73.8.7027-7030.1999 – volume: 69 start-page: 1733 year: 2000 ident: e_1_3_2_26_2 publication-title: Transplantation – ident: e_1_3_2_2_2 doi: 10.1159/000024912 – ident: e_1_3_2_3_2 doi: 10.1128/CMR.11.3.533 – ident: e_1_3_2_24_2 doi: 10.1002/(SICI)1096-9071(200004)60:4<455::AID-JMV14>3.0.CO;2-Q – ident: e_1_3_2_20_2 doi: 10.1097/00007890-200203270-00025 – ident: e_1_3_2_21_2 doi: 10.1002/jcla.1014 – ident: e_1_3_2_8_2 doi: 10.1128/JCM.40.11.4105-4113.2002 – ident: e_1_3_2_14_2 doi: 10.1128/JCM.39.12.4362-4369.2001 – ident: e_1_3_2_12_2 doi: 10.1128/JCM.39.2.772-775.2001 – ident: e_1_3_2_5_2 doi: 10.1182/blood-2002-03-0993 |
SSID | ssj0014455 |
Score | 2.25919 |
Snippet | Article Usage Stats
Services
JCM
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley... Previous studies have shown that detection of cytomegalovirus (CMV) DNA in plasma is less sensitive than the antigenemia assay for CMV surveillance in blood.... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1142 |
SubjectTerms | Antigens, Viral - blood Antigens, Viral - genetics Antiviral Agents - therapeutic use Base Sequence Biological and medical sciences Bronchoalveolar Lavage Fluid - virology Cytomegalovirus - genetics Cytomegalovirus - isolation & purification Cytomegalovirus Infections - diagnosis Cytomegalovirus Infections - drug therapy Cytomegalovirus Infections - etiology DNA Primers DNA, Viral - blood DNA, Viral - genetics DNA, Viral - isolation & purification Enzyme-Linked Immunosorbent Assay Fundamental and applied biological sciences. Psychology Human cytomegalovirus Humans Infectious diseases Medical sciences Microbiology Miscellaneous Phosphoproteins - blood Phosphoproteins - genetics Polymerase Chain Reaction - methods Predictive Value of Tests Reproducibility of Results Sensitivity and Specificity Stem Cell Transplantation - adverse effects Viral Load Viral Matrix Proteins - blood Viral Matrix Proteins - genetics Virology |
Title | Optimization of Quantitative Detection of Cytomegalovirus DNA in Plasma by Real-Time PCR |
URI | http://jcm.asm.org/content/42/3/1142.abstract https://www.ncbi.nlm.nih.gov/pubmed/15004066 https://www.proquest.com/docview/17893577 https://www.proquest.com/docview/71708345 https://pubmed.ncbi.nlm.nih.gov/PMC356812 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIhAXBOWVAsUHbpFDvA_bOUYBVFWkFJRKuVne9a7qgm2UOEjhJ_ErmfE7IVUpFyvyrlex5_PszPibGULeSqZC5Rlqq0i6NteOtsGIVbYfgm8gWYRVz5FtceaeXPDThVj0er87rKV1Lofq1968kv-RKpwDuWKW7C0k2ywKJ-A3yBeOIGE4_pOMP8P7nlSJlGj1fVmHaZE0VtKBcq3qkekmzxINu0H2M16uV4P3ZxOMdJyD7ZyEaIJ-BYPRxnyQwXnFxP3bYm2yKJO4Ld_U-POZVt8ud5n4BWCqkPRM6_hT3AlgL1t2WUHWbaI9Rae1lT2pGlIM5jB3sxWf4C1Bq9a5Y2E7TlnaZahLNYtVTF13tOjqYU47eGMdpYrpvp0NGj24_cqfYkLD6XQ25HTIsAoytXFyEQVo97v6G__ONtiQEwu3iPoBLBRwGjBM3KZ48LFnJ79D7lJwSVgdGaq-WHEuym4Z1d1WXEJY6N01_2jbEqqrUyM5N1yBLE3ZWGWf57NL4O1YRPNH5GEFDGtS4vIx6en0kNwrm5tuDsn9WUXbeEIWXaBambG6QLUaoOLIDlAtAKoVp1YJVEturAaoFgD1Kbn4-GE-PbGrlh62As8ht6NIGmYiphT4CdJhjopEyEPQEVR5rlSRMoobI7A-w3gUGTF2fSrFWBoDJ7yIPSMHaZbqF8QSDEx_o32hBOVGgt1NqTNiauzD5dqnfeLWjzdQVb17bLvyPbhBwH0yai78UZZ8ufmSo1p-ATyO4Eol7bQ-Od6SaLsoePPgQLl98qYWcQDKHb_YhanO1qvA8eC2hOddP8NzPHCiuOiT5yUkOqvjBu3C6u4WWJoJWFh-eySNL4sC86yoSnh0--fwkjxoVcArcpAv1_o1GO25PC7elj-DvOaD |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+Quantitative+Detection+of+Cytomegalovirus+DNA+in+Plasma+by+Real-Time+PCR&rft.jtitle=Journal+of+clinical+microbiology&rft.au=Boeckh%2C+Michael&rft.au=Huang%2C+MeeiLi&rft.au=Ferrenberg%2C+James&rft.au=Stevens-Ayers%2C+Terry&rft.date=2004-03-01&rft.issn=0095-1137&rft.eissn=1098-660X&rft.volume=42&rft.issue=3&rft.spage=1142&rft.epage=1148&rft_id=info:doi/10.1128%2FJCM.42.3.1142-1148.2004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_JCM_42_3_1142_1148_2004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0095-1137&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0095-1137&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0095-1137&client=summon |