Wild-type human coronaviruses prefer cell-surface TMPRSS2 to endosomal cathepsins for cell entry

Human coronaviruses (HCoVs) enter cells via two distinct pathways: the endosomal pathway using cathepsins to activate spike protein and the cell-surface or early endosome pathway using extracellular proteases such as transmembrane protease serine 2 (TMPRSS2). We previously reported that clinical iso...

Full description

Saved in:
Bibliographic Details
Published inVirology (New York, N.Y.) Vol. 517; pp. 9 - 15
Main Authors Shirato, Kazuya, Kawase, Miyuki, Matsuyama, Shutoku
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Human coronaviruses (HCoVs) enter cells via two distinct pathways: the endosomal pathway using cathepsins to activate spike protein and the cell-surface or early endosome pathway using extracellular proteases such as transmembrane protease serine 2 (TMPRSS2). We previously reported that clinical isolates of HCoV-229E preferred cell-surface TMPRSS2 to endosomal cathepsin for cell entry, and that they acquired the ability to use cathepsin L by repeated passage in cultured cells and were then able to enter cells via the endosomal pathway. Here, we show that clinical isolates of HCoV-OC43 and -HKU1 preferred the cell-surface TMRRSS2 to endosomal cathepsins for cell entry, similar to HCoV-229E. In addition, the cell-culture-adapted HCoV-OC43 lost the ability to infect and replicate in air-liquid interface cultures of human bronchial tracheal epithelial cells. These results suggest that circulating HCoVs in the field generally use cell-surface TMPRSS2 for cell entry, not endosomal cathepsins, in human airway epithelial cells. •Clinical isolates of HCoV-OC43 and -HKU1 were isolated from ALI-cultured HBTE cells.•Clinical isolates of HCoVs preferred the TMRRSS2 to cathepsins for cell entry.•Cell culture adapted HCoV-OC43 lost the ability to replicate in HBTE-ALI culture.
AbstractList Human coronaviruses (HCoVs) enter cells via two distinct pathways: the endosomal pathway using cathepsins to activate spike protein and the cell-surface or early endosome pathway using extracellular proteases such as transmembrane protease serine 2 (TMPRSS2). We previously reported that clinical isolates of HCoV-229E preferred cell-surface TMPRSS2 to endosomal cathepsin for cell entry, and that they acquired the ability to use cathepsin L by repeated passage in cultured cells and were then able to enter cells via the endosomal pathway. Here, we show that clinical isolates of HCoV-OC43 and -HKU1 preferred the cell-surface TMRRSS2 to endosomal cathepsins for cell entry, similar to HCoV-229E. In addition, the cell-culture-adapted HCoV-OC43 lost the ability to infect and replicate in air-liquid interface cultures of human bronchial tracheal epithelial cells. These results suggest that circulating HCoVs in the field generally use cell-surface TMPRSS2 for cell entry, not endosomal cathepsins, in human airway epithelial cells.
Human coronaviruses (HCoVs) enter cells via two distinct pathways: the endosomal pathway using cathepsins to activate spike protein and the cell-surface or early endosome pathway using extracellular proteases such as transmembrane protease serine 2 (TMPRSS2). We previously reported that clinical isolates of HCoV-229E preferred cell-surface TMPRSS2 to endosomal cathepsin for cell entry, and that they acquired the ability to use cathepsin L by repeated passage in cultured cells and were then able to enter cells via the endosomal pathway. Here, we show that clinical isolates of HCoV-OC43 and -HKU1 preferred the cell-surface TMRRSS2 to endosomal cathepsins for cell entry, similar to HCoV-229E. In addition, the cell-culture-adapted HCoV-OC43 lost the ability to infect and replicate in air-liquid interface cultures of human bronchial tracheal epithelial cells. These results suggest that circulating HCoVs in the field generally use cell-surface TMPRSS2 for cell entry, not endosomal cathepsins, in human airway epithelial cells. •Clinical isolates of HCoV-OC43 and -HKU1 were isolated from ALI-cultured HBTE cells.•Clinical isolates of HCoVs preferred the TMRRSS2 to cathepsins for cell entry.•Cell culture adapted HCoV-OC43 lost the ability to replicate in HBTE-ALI culture.
Human coronaviruses (HCoVs) enter cells via two distinct pathways: the endosomal pathway using cathepsins to activate spike protein and the cell-surface or early endosome pathway using extracellular proteases such as transmembrane protease serine 2 (TMPRSS2). We previously reported that clinical isolates of HCoV-229E preferred cell-surface TMPRSS2 to endosomal cathepsin for cell entry, and that they acquired the ability to use cathepsin L by repeated passage in cultured cells and were then able to enter cells via the endosomal pathway. Here, we show that clinical isolates of HCoV-OC43 and -HKU1 preferred the cell-surface TMRRSS2 to endosomal cathepsins for cell entry, similar to HCoV-229E. In addition, the cell-culture-adapted HCoV-OC43 lost the ability to infect and replicate in air-liquid interface cultures of human bronchial tracheal epithelial cells. These results suggest that circulating HCoVs in the field generally use cell-surface TMPRSS2 for cell entry, not endosomal cathepsins, in human airway epithelial cells. • Clinical isolates of HCoV-OC43 and -HKU1 were isolated from ALI-cultured HBTE cells. • Clinical isolates of HCoVs preferred the TMRRSS2 to cathepsins for cell entry. • Cell culture adapted HCoV-OC43 lost the ability to replicate in HBTE-ALI culture.
Human coronaviruses (HCoVs) enter cells via two distinct pathways: the endosomal pathway using cathepsins to activate spike protein and the cell-surface or early endosome pathway using extracellular proteases such as transmembrane protease serine 2 (TMPRSS2). We previously reported that clinical isolates of HCoV-229E preferred cell-surface TMPRSS2 to endosomal cathepsin for cell entry, and that they acquired the ability to use cathepsin L by repeated passage in cultured cells and were then able to enter cells via the endosomal pathway. Here, we show that clinical isolates of HCoV-OC43 and -HKU1 preferred the cell-surface TMRRSS2 to endosomal cathepsins for cell entry, similar to HCoV-229E. In addition, the cell-culture-adapted HCoV-OC43 lost the ability to infect and replicate in air-liquid interface cultures of human bronchial tracheal epithelial cells. These results suggest that circulating HCoVs in the field generally use cell-surface TMPRSS2 for cell entry, not endosomal cathepsins, in human airway epithelial cells.Human coronaviruses (HCoVs) enter cells via two distinct pathways: the endosomal pathway using cathepsins to activate spike protein and the cell-surface or early endosome pathway using extracellular proteases such as transmembrane protease serine 2 (TMPRSS2). We previously reported that clinical isolates of HCoV-229E preferred cell-surface TMPRSS2 to endosomal cathepsin for cell entry, and that they acquired the ability to use cathepsin L by repeated passage in cultured cells and were then able to enter cells via the endosomal pathway. Here, we show that clinical isolates of HCoV-OC43 and -HKU1 preferred the cell-surface TMRRSS2 to endosomal cathepsins for cell entry, similar to HCoV-229E. In addition, the cell-culture-adapted HCoV-OC43 lost the ability to infect and replicate in air-liquid interface cultures of human bronchial tracheal epithelial cells. These results suggest that circulating HCoVs in the field generally use cell-surface TMPRSS2 for cell entry, not endosomal cathepsins, in human airway epithelial cells.
Author Matsuyama, Shutoku
Kawase, Miyuki
Shirato, Kazuya
Author_xml – sequence: 1
  givenname: Kazuya
  surname: Shirato
  fullname: Shirato, Kazuya
  email: shirato@nih.go.jp
– sequence: 2
  givenname: Miyuki
  surname: Kawase
  fullname: Kawase, Miyuki
– sequence: 3
  givenname: Shutoku
  surname: Matsuyama
  fullname: Matsuyama, Shutoku
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29217279$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhS1URKeFX4CEsmST4Os8HAuBVFW8pCIQLWJpPM4N48Gxg52MNP8ehykVdDMry7rnO_dxzsiJ8w4JeQq0AArNi22xM8HbglHgBUBBgT0gK6CiyWlZwQlZUVqxvGkZOyVnMW5p-nNOH5FTJhhwxsWKfP9mbJdP-xGzzTwol2kfvFPJeY4YszFgjyHTaG0e59ArjdnNx89frq9ZNvkMXeejH5TNtJo2OEbjYtb7A5CqU9g_Jg97ZSM-uX3Pyde3b24u3-dXn959uLy4ynXd1FPepcGwFR0KDrSknKm618gZZV3b8r5tKdCGl9CXtOzFWjWIa1YxxTXvmOhFeU5eH3zHeT1gp5fmysoxmEGFvfTKyP8rzmzkD7-THCB1WQye3xoE_2vGOMnBxGUP5dDPUTLRNqzmtKJHpSB4TaGuoUrSZ_-OdTfP3wSSoDwIdPAxpnPfSYDKJWe5lX9ylkvOEkCmnBMl7lHaTGoyftnN2CPsqwOLKY6dwSCjNug0diagnmTnzRH-5T1eW-OMVvYn7o_SvwGDgdm4
CitedBy_id crossref_primary_10_1016_j_medntd_2020_100043
crossref_primary_10_1371_journal_ppat_1009233
crossref_primary_10_3390_v12121425
crossref_primary_10_3389_fphar_2021_718484
crossref_primary_10_1186_s13567_018_0551_9
crossref_primary_10_26508_lsa_202000786
crossref_primary_10_1038_s41598_018_25640_0
crossref_primary_10_1093_bib_bbaa288
crossref_primary_10_1128_JVI_01429_17
crossref_primary_10_15252_emmm_202013105
crossref_primary_10_2174_1381612826666201023143956
crossref_primary_10_7883_yoken_JJID_2019_400
crossref_primary_10_1097_MRM_0000000000000237
crossref_primary_10_1007_s11224_022_01991_3
crossref_primary_10_1016_j_bbrep_2021_100938
crossref_primary_10_1038_s41422_020_0305_x
crossref_primary_10_1128_JVI_00957_20
crossref_primary_10_7883_yoken_JJID_2020_776
crossref_primary_10_1371_journal_pcbi_1008461
crossref_primary_10_1371_journal_pbio_3001805
crossref_primary_10_7717_peerj_13721
crossref_primary_10_1371_journal_ppat_1009225
crossref_primary_10_33549_physiolres_934730
crossref_primary_10_1371_journal_ppat_1009743
crossref_primary_10_1128_CMR_00109_21
crossref_primary_10_3389_fimmu_2025_1533213
crossref_primary_10_1002_jmv_27019
crossref_primary_10_2174_1389557521666210805113231
crossref_primary_10_1515_hsz_2022_0323
crossref_primary_10_1016_j_bioorg_2024_107317
crossref_primary_10_1021_acs_jmedchem_0c00606
crossref_primary_10_21307_PM_2020_59_3_15
crossref_primary_10_1016_j_jbc_2021_100847
crossref_primary_10_3390_v16111798
crossref_primary_10_1136_jclinpath_2020_206867
crossref_primary_10_3389_fmicb_2023_1190463
crossref_primary_10_1371_journal_ppat_1009212
crossref_primary_10_3390_pathogens11070754
crossref_primary_10_1128_JVI_01751_20
crossref_primary_10_1016_j_mam_2022_101150
crossref_primary_10_1016_j_antiviral_2021_105015
crossref_primary_10_1186_s12916_020_01673_z
crossref_primary_10_1016_j_ejphar_2020_173634
crossref_primary_10_1002_rmv_2282
crossref_primary_10_1038_s41598_022_25399_5
crossref_primary_10_3389_fendo_2020_00530
crossref_primary_10_1002_jmv_28124
crossref_primary_10_1016_j_meegid_2021_104760
crossref_primary_10_1002_rmv_2207
crossref_primary_10_1016_j_biochi_2021_06_005
crossref_primary_10_1080_21645515_2020_1842683
crossref_primary_10_3390_molecules25215007
crossref_primary_10_1016_j_metop_2021_100103
crossref_primary_10_3390_v13112178
crossref_primary_10_1128_mbio_00445_22
crossref_primary_10_1016_j_antiviral_2023_105606
crossref_primary_10_1016_j_cell_2024_06_016
crossref_primary_10_3390_clinpract11040085
crossref_primary_10_1007_s10965_021_02548_4
crossref_primary_10_1073_pnas_2210361120
crossref_primary_10_1186_s12985_024_02298_x
crossref_primary_10_1002_2211_5463_12984
crossref_primary_10_3389_fgene_2020_00872
crossref_primary_10_3390_pathogens11030302
crossref_primary_10_1016_j_isci_2022_104594
crossref_primary_10_3390_ijms21176412
crossref_primary_10_1080_2314808X_2021_1995309
crossref_primary_10_1016_j_heliyon_2024_e28280
crossref_primary_10_1128_mSphere_00159_21
crossref_primary_10_1111_febs_15375
crossref_primary_10_3390_microorganisms9030525
crossref_primary_10_1080_14656566_2021_1898589
crossref_primary_10_3389_fphar_2020_01278
crossref_primary_10_7554_eLife_58716
crossref_primary_10_1186_s40001_021_00516_8
crossref_primary_10_1021_acsinfecdis_0c00456
crossref_primary_10_1007_s11224_022_01921_3
crossref_primary_10_1128_spectrum_01920_23
crossref_primary_10_7554_eLife_62522
crossref_primary_10_1126_sciadv_aav4580
crossref_primary_10_1128_mra_00529_22
crossref_primary_10_3389_fimmu_2022_1066456
crossref_primary_10_1128_mra_01027_21
crossref_primary_10_2222_jsv_70_155
crossref_primary_10_1038_s41586_023_06761_7
crossref_primary_10_1128_mBio_02492_20
crossref_primary_10_1016_j_prp_2021_153647
crossref_primary_10_3390_ijms23094576
crossref_primary_10_1007_s13365_020_00868_7
crossref_primary_10_1111_1348_0421_13204
crossref_primary_10_3390_v11040328
crossref_primary_10_1002_jcp_29868
crossref_primary_10_1038_s41467_022_34571_4
crossref_primary_10_1016_j_jdsr_2021_07_001
crossref_primary_10_1371_journal_ppat_1009820
crossref_primary_10_1016_j_ebiom_2021_103316
crossref_primary_10_1016_j_crmicr_2020_06_003
crossref_primary_10_1016_j_addr_2020_11_007
crossref_primary_10_1016_j_hjc_2020_05_007
crossref_primary_10_1128_JVI_00140_21
crossref_primary_10_1177_09636897221090259
crossref_primary_10_2222_jsv_69_61
crossref_primary_10_5812_jhgg_119384
crossref_primary_10_1128_spectrum_01164_24
crossref_primary_10_3390_biom14101232
crossref_primary_10_3390_ijms21165707
crossref_primary_10_1016_j_cell_2021_07_007
crossref_primary_10_1128_JVI_00635_20
crossref_primary_10_1128_CMR_00133_20
crossref_primary_10_3390_molecules26020448
crossref_primary_10_3390_w12061598
crossref_primary_10_1038_s41598_018_34859_w
crossref_primary_10_1371_journal_ppat_1009013
crossref_primary_10_1128_JVI_01815_18
crossref_primary_10_2174_0929867328666210526111318
crossref_primary_10_3389_fimmu_2020_552925
crossref_primary_10_3390_microorganisms8111704
crossref_primary_10_1051_medsci_2024034
crossref_primary_10_1128_mra_00411_22
crossref_primary_10_1016_j_cell_2020_02_052
crossref_primary_10_1016_j_virol_2023_109889
crossref_primary_10_1016_j_ajmo_2024_100068
crossref_primary_10_1139_gen_2020_0124
crossref_primary_10_3390_ijms232012260
crossref_primary_10_2174_1381612828666220506142117
crossref_primary_10_3390_v11030216
crossref_primary_10_1007_s43440_022_00388_7
crossref_primary_10_3390_pathogens11080877
crossref_primary_10_15252_embj_2021107821
crossref_primary_10_3390_ijms23031351
crossref_primary_10_1038_s41598_021_81451_w
crossref_primary_10_1126_scisignal_aba9902
crossref_primary_10_1016_j_virusres_2023_199078
crossref_primary_10_1016_j_bcp_2020_114225
crossref_primary_10_1038_s41586_020_2575_3
crossref_primary_10_2174_2666796701999200801023110
crossref_primary_10_1128_mBio_02220_21
crossref_primary_10_1136_gutjnl_2020_320953
crossref_primary_10_25259_JRHM_51_2020
crossref_primary_10_1080_07391102_2020_1819881
crossref_primary_10_3390_v15081744
crossref_primary_10_7883_yoken_JJID_2020_1079
crossref_primary_10_1016_j_ejphar_2020_173568
crossref_primary_10_2174_1566524021666210803154250
crossref_primary_10_1016_j_antiviral_2022_105343
crossref_primary_10_1016_j_biopha_2020_110493
crossref_primary_10_1016_j_jviromet_2023_114812
crossref_primary_10_7554_eLife_65962
crossref_primary_10_3390_encyclopedia2010007
crossref_primary_10_1126_scisignal_adn3785
crossref_primary_10_3233_TUB_211502
crossref_primary_10_7883_yoken_JJID_2023_353
crossref_primary_10_7883_yoken_JJID_2023_350
crossref_primary_10_7883_yoken_JJID_2020_324
crossref_primary_10_1096_fj_202000654R
crossref_primary_10_3390_ijms241512017
Cites_doi 10.3181/00379727-121-30734
10.1086/521308
10.1371/journal.ppat.1004048
10.7883/yoken.JJID.2016.106
10.1128/JVI.03368-12
10.1128/JVI.00094-12
10.1073/pnas.57.4.933
10.1128/JVI.00079-09
10.1099/vir.0.043117-0
10.1128/JVI.01387-16
10.11150/kansenshogakuzasshi.88.708
10.7883/yoken.67.469
10.1128/JVI.00947-10
10.7883/yoken.JJID.2015.292
10.1128/JVI.01933-08
10.1371/journal.pone.0154366
10.1128/JVI.03372-12
10.3181/00379727-135-35068
10.1128/JCM.00533-08
10.1073/pnas.58.6.2268
10.1073/pnas.1608147113
10.1086/381207
10.1038/nm1024
10.7883/yoken.JJID.2014.591
10.1128/JVI.01562-13
10.1128/JVI.01890-13
10.1371/journal.ppat.1003124
ContentType Journal Article
Copyright 2017 Elsevier Inc.
Copyright © 2017 Elsevier Inc. All rights reserved.
2017 Elsevier Inc. 2017 Elsevier Inc.
Copyright_xml – notice: 2017 Elsevier Inc.
– notice: Copyright © 2017 Elsevier Inc. All rights reserved.
– notice: 2017 Elsevier Inc. 2017 Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.virol.2017.11.012
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1096-0341
EndPage 15
ExternalDocumentID PMC7112029
29217279
10_1016_j_virol_2017_11_012
S0042682217303914
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.1-
.55
.FO
.GJ
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
29Q
3O-
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
AAAJQ
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABMZM
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADMUD
ADNMO
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEXQZ
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGEKW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
CJTIS
COF
CS3
DM4
DU5
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEJ
HMG
HMK
HMO
HVGLF
HX~
HZ~
H~9
IHE
IXB
J1W
KOM
LG5
LUGTX
LZ5
M29
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OD-
OHT
OK1
OO.
OZT
P-8
P-9
P2P
PC.
Q38
Q44
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SIN
SSH
SSI
SSZ
T5K
TN5
UAP
UQL
WH7
WUQ
X7M
XOL
XPP
Y6R
Z5R
ZGI
ZKB
ZMT
ZU3
~G-
~KM
6I.
AACTN
AAFTH
AAIAV
ABLVK
ABVKL
ABYKQ
AFCTW
AFDAS
AFKWA
AFMIJ
AHPSJ
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
NCXOZ
RIG
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c565t-d770e89de97103072a5fce7202d887f880106731f303f9ba6eeb242a7c7d29f93
IEDL.DBID .~1
ISSN 0042-6822
1096-0341
IngestDate Thu Aug 21 14:04:57 EDT 2025
Fri Jul 11 08:10:21 EDT 2025
Fri Jul 11 03:42:10 EDT 2025
Thu Apr 03 07:09:18 EDT 2025
Tue Jul 01 02:46:23 EDT 2025
Thu Apr 24 23:01:23 EDT 2025
Fri Feb 23 02:48:23 EST 2024
Tue Aug 26 17:14:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords DMEM
Entry
HCoV
S
Air-liquid interface culture
CatL
VHCR
Human bronchial tracheal epithelial cells
ATCC
Cam
Human coronavirus
Language English
License This article is made available under the Elsevier license.
Copyright © 2017 Elsevier Inc. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c565t-d770e89de97103072a5fce7202d887f880106731f303f9ba6eeb242a7c7d29f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0042682217303914
PMID 29217279
PQID 1975015514
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7112029
proquest_miscellaneous_2986257040
proquest_miscellaneous_1975015514
pubmed_primary_29217279
crossref_primary_10_1016_j_virol_2017_11_012
crossref_citationtrail_10_1016_j_virol_2017_11_012
elsevier_sciencedirect_doi_10_1016_j_virol_2017_11_012
elsevier_clinicalkey_doi_10_1016_j_virol_2017_11_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Virology (New York, N.Y.)
PublicationTitleAlternate Virology
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Dijkman, Jebbink, Koekkoek, Deijs, Jonsdottir, Molenkamp, Ieven, Goossens, Thiel, van der Hoek (bib6) 2013; 87
Hara, Takao (bib9) 2015; 68
Shirato, Kanou, Kawase, Matsuyama (bib26) 2017; 91
van der Hoek, Pyrc, Jebbink, Vermeulen-Oost, Berkhout, Wolthers, Wertheim-van Dillen, Kaandorp, Spaargaren, Berkhout (bib29) 2004; 10
Hirokawa, Watanabe, Kon, Tamura, Nishikawa (bib10) 2008; 29
Fulcher, Gabriel, Burns, Yankaskas, Randell (bib7) 2005; 107
Kawase, Shirato, van der Hoek, Taguchi, Matsuyama (bib13) 2012; 86
Bruckova, McIntosh, Kapikian, Chanock (bib2) 1970; 135
Shirato, Kawase, Watanabe, Hirokawa, Matsuyama, Nishimura, Taguchi (bib24) 2012; 93
Dijkman, Jebbink, El Idrissi, Pyrc, Muller, Kuijpers, Zaaijer, van der Hoek (bib5) 2008; 46
Matoba, Aoki, Tanaka, Yahagi, Katsushima, Katsushima, Sugawara, Matsuzaki, Mizuta (bib17) 2016; 69
McIntosh, Becker, Chanock (bib18) 1967; 58
Desai, Marin, Chin, Savidis, Brass, Melikyan (bib4) 2014; 10
Kawase, Shirato, Matsuyama, Taguchi (bib12) 2009; 83
Park, Li, Barlan, Fehr, Perlman, McCray, Gallagher (bib21) 2016; 113
Matoba, Aoki, Tanaka, Yahagi, Shimotai, Matsuzaki, Itagaki, Mizuta (bib16) 2015; 68
Tao, Hill, Morimoto, Peters, Ksiazek, Tseng (bib27) 2013; 87
van Elden, van Loon, van Alphen, Hendriksen, Hoepelman, van Kraaij, Oosterheert, Schipper, Schuurman, Nijhuis (bib30) 2004; 189
Bertram, Dijkman, Habjan, Heurich, Gierer, Glowacka, Welsch, Winkler, Schneider, Hofmann-Winkler, Thiel, Pohlmann (bib1) 2013; 87
Hamre, Procknow (bib8) 1966; 121
Pyrc, Sims, Dijkman, Jebbink, Long, Deming, Donaldson, Vabret, Baric, van der Hoek, Pickles (bib23) 2010; 84
Yano, Ochiai, Ihara (bib31) 2014; 88
Dare, Fry, Chittaganpitch, Sawanpanyalert, Olsen, Erdman (bib3) 2007; 196
Peiris, Poon (bib22) 2009
Shirato, Kawase, Matsuyama (bib25) 2013; 87
McIntosh, Dees, Becker, Kapikian, Chanock (bib19) 1967; 57
Kaida, Kubo, Takakura, Sekiguchi, Yamamoto, Kohdera, Togawa, Amo, Shiomi, Ohyama, Goto, Hase, Kageyama, Iritani (bib11) 2014; 67
Munoz-Moreno, Cuesta-Geijo, Martinez-Romero, Barrado-Gil, Galindo, Garcia-Sastre, Alonso (bib20) 2016; 11
Tyrrell, Myint (bib28) 1996
Li, Markosyan, Zheng, Golfetto, Bungart, Li, Ding, He, Liang, Lee, Gratton, Cohen, Liu (bib14) 2013; 9
Madu, Roth, Belouzard, Whittaker (bib15) 2009; 83
Yano (10.1016/j.virol.2017.11.012_bib31) 2014; 88
Dare (10.1016/j.virol.2017.11.012_bib3) 2007; 196
Shirato (10.1016/j.virol.2017.11.012_bib24) 2012; 93
Bertram (10.1016/j.virol.2017.11.012_bib1) 2013; 87
McIntosh (10.1016/j.virol.2017.11.012_bib19) 1967; 57
Munoz-Moreno (10.1016/j.virol.2017.11.012_bib20) 2016; 11
Park (10.1016/j.virol.2017.11.012_bib21) 2016; 113
Dijkman (10.1016/j.virol.2017.11.012_bib5) 2008; 46
Desai (10.1016/j.virol.2017.11.012_bib4) 2014; 10
Hara (10.1016/j.virol.2017.11.012_bib9) 2015; 68
Kawase (10.1016/j.virol.2017.11.012_bib13) 2012; 86
Dijkman (10.1016/j.virol.2017.11.012_bib6) 2013; 87
Madu (10.1016/j.virol.2017.11.012_bib15) 2009; 83
Shirato (10.1016/j.virol.2017.11.012_bib25) 2013; 87
Pyrc (10.1016/j.virol.2017.11.012_bib23) 2010; 84
Shirato (10.1016/j.virol.2017.11.012_bib26) 2017; 91
Li (10.1016/j.virol.2017.11.012_bib14) 2013; 9
Bruckova (10.1016/j.virol.2017.11.012_bib2) 1970; 135
Matoba (10.1016/j.virol.2017.11.012_bib17) 2016; 69
Tao (10.1016/j.virol.2017.11.012_bib27) 2013; 87
Fulcher (10.1016/j.virol.2017.11.012_bib7) 2005; 107
Kawase (10.1016/j.virol.2017.11.012_bib12) 2009; 83
McIntosh (10.1016/j.virol.2017.11.012_bib18) 1967; 58
van der Hoek (10.1016/j.virol.2017.11.012_bib29) 2004; 10
Hamre (10.1016/j.virol.2017.11.012_bib8) 1966; 121
Tyrrell (10.1016/j.virol.2017.11.012_bib28) 1996
Peiris (10.1016/j.virol.2017.11.012_bib22) 2009
van Elden (10.1016/j.virol.2017.11.012_bib30) 2004; 189
Kaida (10.1016/j.virol.2017.11.012_bib11) 2014; 67
Matoba (10.1016/j.virol.2017.11.012_bib16) 2015; 68
Hirokawa (10.1016/j.virol.2017.11.012_bib10) 2008; 29
References_xml – volume: 93
  start-page: 1908
  year: 2012
  end-page: 1917
  ident: bib24
  article-title: Differences in neutralizing antigenicity between laboratory and clinical isolates of HCoV-229E isolated in Japan in 2004–2008 depend on the S1 region sequence of the spike protein
  publication-title: J. Gen. Virol.
– volume: 83
  start-page: 712
  year: 2009
  end-page: 721
  ident: bib12
  article-title: Protease-mediated entry via the endosome of human coronavirus 229E
  publication-title: J. Virol.
– volume: 9
  start-page: e1003124
  year: 2013
  ident: bib14
  article-title: IFITM proteins restrict viral membrane hemifusion
  publication-title: PLoS Pathog.
– volume: 29
  start-page: 283
  year: 2008
  ident: bib10
  article-title: Isolation of a virus closely related to human coronavirus 229E from a case of pharyngitis, March 2008-Niigata
  publication-title: Infect. Agents Surveill. Rep.
– volume: 87
  start-page: 6081
  year: 2013
  end-page: 6090
  ident: bib6
  article-title: Isolation and characterization of current human coronavirus strains in primary human epithelial cell cultures reveal differences in target cell tropism
  publication-title: J. Virol.
– volume: 69
  start-page: 452
  year: 2016
  end-page: 454
  ident: bib17
  article-title: HeLa-ACE2-TMPRSS2 Cells Are Useful for the Isolation of Human Coronavirus 229E
  publication-title: Jpn. J. Infect. Dis.
– volume: 58
  start-page: 2268
  year: 1967
  end-page: 2273
  ident: bib18
  article-title: Growth in suckling-mouse brain of "IBV-like" viruses from patients with upper respiratory tract disease
  publication-title: Proc. Natl. Acad. Sci. USA
– year: 1996
  ident: bib28
  article-title: Coronaviruses
  publication-title: Medical Microbiology
– volume: 87
  start-page: 12552
  year: 2013
  end-page: 12561
  ident: bib25
  article-title: Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2
  publication-title: J. Virol.
– volume: 86
  start-page: 6537
  year: 2012
  end-page: 6545
  ident: bib13
  article-title: Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry
  publication-title: J. Virol.
– start-page: 511
  year: 2009
  end-page: 532
  ident: bib22
  article-title: Coronaviruses and Toroviruses
  publication-title: Principles and Practice of Clinical Virology
– volume: 189
  start-page: 652
  year: 2004
  end-page: 657
  ident: bib30
  article-title: Frequent detection of human coronaviruses in clinical specimens from patients with respiratory tract infection by use of a novel real-time reverse-transcriptase polymerase chain reaction
  publication-title: J. Infect. Dis.
– volume: 83
  start-page: 7411
  year: 2009
  end-page: 7421
  ident: bib15
  article-title: Characterization of a highly conserved domain within the severe acute respiratory syndrome coronavirus spike protein S2 domain with characteristics of a viral fusion peptide
  publication-title: J. Virol.
– volume: 67
  start-page: 469
  year: 2014
  end-page: 475
  ident: bib11
  article-title: Associations between co-detected respiratory viruses in children with acute respiratory infections
  publication-title: Jpn. J. Infect. Dis.
– volume: 10
  start-page: 368
  year: 2004
  end-page: 373
  ident: bib29
  article-title: Identification of a new human coronavirus
  publication-title: Nat. Med.
– volume: 87
  start-page: 9953
  year: 2013
  end-page: 9958
  ident: bib27
  article-title: Bilateral entry and release of Middle East respiratory syndrome coronavirus induces profound apoptosis of human bronchial epithelial cells
  publication-title: J. Virol.
– volume: 88
  start-page: 708
  year: 2014
  end-page: 710
  ident: bib31
  article-title: [Detection of human coronavirus OC43 in children with acute respiratory infections in Mie, Japan]
  publication-title: Kansenshogaku Zasshi
– volume: 91
  year: 2017
  ident: bib26
  article-title: Clinical Isolates of Human Coronavirus 229E Bypass the Endosome for Cell Entry
  publication-title: J. Virol.
– volume: 68
  start-page: 442
  year: 2015
  end-page: 445
  ident: bib16
  article-title: An Outbreak of Human Coronavirus OC43 during the 2014–2015 Influenza Season in Yamagata, Japan
  publication-title: Jpn. J. Infect. Dis.
– volume: 11
  start-page: e0154366
  year: 2016
  ident: bib20
  article-title: Antiviral Role of IFITM Proteins in African Swine Fever Virus Infection
  publication-title: PLoS One
– volume: 113
  start-page: 12262
  year: 2016
  end-page: 12267
  ident: bib21
  article-title: Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 135
  start-page: 431
  year: 1970
  end-page: 435
  ident: bib2
  article-title: The adaptation of two human coronavirus strains (OC38 and OC43) to growth in cell monolayers
  publication-title: Proc. Soc. Exp. Biol. Med
– volume: 57
  start-page: 933
  year: 1967
  end-page: 940
  ident: bib19
  article-title: Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 10
  start-page: e1004048
  year: 2014
  ident: bib4
  article-title: IFITM3 restricts influenza A virus entry by blocking the formation of fusion pores following virus-endosome hemifusion
  publication-title: PLoS Pathog.
– volume: 107
  start-page: 183
  year: 2005
  end-page: 206
  ident: bib7
  article-title: Well-differentiated human airway epithelial cell cultures
  publication-title: Methods Mol. Med.
– volume: 84
  start-page: 11255
  year: 2010
  end-page: 11263
  ident: bib23
  article-title: Culturing the unculturable: human coronavirus HKU1 infects, replicates, and produces progeny virions in human ciliated airway epithelial cell cultures
  publication-title: J. Virol.
– volume: 196
  start-page: 1321
  year: 2007
  end-page: 1328
  ident: bib3
  article-title: Human coronavirus infections in rural Thailand: a comprehensive study using real-time reverse-transcription polymerase chain reaction assays
  publication-title: J. Infect. Dis.
– volume: 68
  start-page: 523
  year: 2015
  end-page: 525
  ident: bib9
  article-title: Coronavirus Infections in Pediatric Outpatients with Febrile Respiratory Tract Infections in Hiroshima, Japan, over a 3-Year Period
  publication-title: Jpn. J. Infect. Dis.
– volume: 87
  start-page: 6150
  year: 2013
  end-page: 6160
  ident: bib1
  article-title: TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium
  publication-title: J. Virol.
– volume: 46
  start-page: 2368
  year: 2008
  end-page: 2373
  ident: bib5
  article-title: Human coronavirus NL63 and 229E seroconversion in children
  publication-title: J. Clin. Microbiol
– volume: 121
  start-page: 190
  year: 1966
  end-page: 193
  ident: bib8
  article-title: A new virus isolated from the human respiratory tract
  publication-title: Proc. Soc. Exp. Biol. Med.
– volume: 121
  start-page: 190
  year: 1966
  ident: 10.1016/j.virol.2017.11.012_bib8
  article-title: A new virus isolated from the human respiratory tract
  publication-title: Proc. Soc. Exp. Biol. Med.
  doi: 10.3181/00379727-121-30734
– volume: 196
  start-page: 1321
  year: 2007
  ident: 10.1016/j.virol.2017.11.012_bib3
  article-title: Human coronavirus infections in rural Thailand: a comprehensive study using real-time reverse-transcription polymerase chain reaction assays
  publication-title: J. Infect. Dis.
  doi: 10.1086/521308
– volume: 10
  start-page: e1004048
  year: 2014
  ident: 10.1016/j.virol.2017.11.012_bib4
  article-title: IFITM3 restricts influenza A virus entry by blocking the formation of fusion pores following virus-endosome hemifusion
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1004048
– volume: 69
  start-page: 452
  year: 2016
  ident: 10.1016/j.virol.2017.11.012_bib17
  article-title: HeLa-ACE2-TMPRSS2 Cells Are Useful for the Isolation of Human Coronavirus 229E
  publication-title: Jpn. J. Infect. Dis.
  doi: 10.7883/yoken.JJID.2016.106
– volume: 87
  start-page: 6081
  year: 2013
  ident: 10.1016/j.virol.2017.11.012_bib6
  article-title: Isolation and characterization of current human coronavirus strains in primary human epithelial cell cultures reveal differences in target cell tropism
  publication-title: J. Virol.
  doi: 10.1128/JVI.03368-12
– start-page: 511
  year: 2009
  ident: 10.1016/j.virol.2017.11.012_bib22
  article-title: Coronaviruses and Toroviruses
– volume: 86
  start-page: 6537
  year: 2012
  ident: 10.1016/j.virol.2017.11.012_bib13
  article-title: Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry
  publication-title: J. Virol.
  doi: 10.1128/JVI.00094-12
– volume: 57
  start-page: 933
  year: 1967
  ident: 10.1016/j.virol.2017.11.012_bib19
  article-title: Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.57.4.933
– volume: 83
  start-page: 7411
  year: 2009
  ident: 10.1016/j.virol.2017.11.012_bib15
  article-title: Characterization of a highly conserved domain within the severe acute respiratory syndrome coronavirus spike protein S2 domain with characteristics of a viral fusion peptide
  publication-title: J. Virol.
  doi: 10.1128/JVI.00079-09
– volume: 93
  start-page: 1908
  year: 2012
  ident: 10.1016/j.virol.2017.11.012_bib24
  article-title: Differences in neutralizing antigenicity between laboratory and clinical isolates of HCoV-229E isolated in Japan in 2004–2008 depend on the S1 region sequence of the spike protein
  publication-title: J. Gen. Virol.
  doi: 10.1099/vir.0.043117-0
– volume: 91
  year: 2017
  ident: 10.1016/j.virol.2017.11.012_bib26
  article-title: Clinical Isolates of Human Coronavirus 229E Bypass the Endosome for Cell Entry
  publication-title: J. Virol.
  doi: 10.1128/JVI.01387-16
– year: 1996
  ident: 10.1016/j.virol.2017.11.012_bib28
  article-title: Coronaviruses
– volume: 88
  start-page: 708
  year: 2014
  ident: 10.1016/j.virol.2017.11.012_bib31
  article-title: [Detection of human coronavirus OC43 in children with acute respiratory infections in Mie, Japan]
  publication-title: Kansenshogaku Zasshi
  doi: 10.11150/kansenshogakuzasshi.88.708
– volume: 67
  start-page: 469
  year: 2014
  ident: 10.1016/j.virol.2017.11.012_bib11
  article-title: Associations between co-detected respiratory viruses in children with acute respiratory infections
  publication-title: Jpn. J. Infect. Dis.
  doi: 10.7883/yoken.67.469
– volume: 29
  start-page: 283
  year: 2008
  ident: 10.1016/j.virol.2017.11.012_bib10
  article-title: Isolation of a virus closely related to human coronavirus 229E from a case of pharyngitis, March 2008-Niigata
  publication-title: Infect. Agents Surveill. Rep.
– volume: 84
  start-page: 11255
  year: 2010
  ident: 10.1016/j.virol.2017.11.012_bib23
  article-title: Culturing the unculturable: human coronavirus HKU1 infects, replicates, and produces progeny virions in human ciliated airway epithelial cell cultures
  publication-title: J. Virol.
  doi: 10.1128/JVI.00947-10
– volume: 68
  start-page: 442
  year: 2015
  ident: 10.1016/j.virol.2017.11.012_bib16
  article-title: An Outbreak of Human Coronavirus OC43 during the 2014–2015 Influenza Season in Yamagata, Japan
  publication-title: Jpn. J. Infect. Dis.
  doi: 10.7883/yoken.JJID.2015.292
– volume: 83
  start-page: 712
  year: 2009
  ident: 10.1016/j.virol.2017.11.012_bib12
  article-title: Protease-mediated entry via the endosome of human coronavirus 229E
  publication-title: J. Virol.
  doi: 10.1128/JVI.01933-08
– volume: 11
  start-page: e0154366
  year: 2016
  ident: 10.1016/j.virol.2017.11.012_bib20
  article-title: Antiviral Role of IFITM Proteins in African Swine Fever Virus Infection
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0154366
– volume: 87
  start-page: 6150
  year: 2013
  ident: 10.1016/j.virol.2017.11.012_bib1
  article-title: TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium
  publication-title: J. Virol.
  doi: 10.1128/JVI.03372-12
– volume: 135
  start-page: 431
  year: 1970
  ident: 10.1016/j.virol.2017.11.012_bib2
  article-title: The adaptation of two human coronavirus strains (OC38 and OC43) to growth in cell monolayers
  publication-title: Proc. Soc. Exp. Biol. Med
  doi: 10.3181/00379727-135-35068
– volume: 46
  start-page: 2368
  year: 2008
  ident: 10.1016/j.virol.2017.11.012_bib5
  article-title: Human coronavirus NL63 and 229E seroconversion in children
  publication-title: J. Clin. Microbiol
  doi: 10.1128/JCM.00533-08
– volume: 58
  start-page: 2268
  year: 1967
  ident: 10.1016/j.virol.2017.11.012_bib18
  article-title: Growth in suckling-mouse brain of "IBV-like" viruses from patients with upper respiratory tract disease
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.58.6.2268
– volume: 113
  start-page: 12262
  year: 2016
  ident: 10.1016/j.virol.2017.11.012_bib21
  article-title: Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1608147113
– volume: 189
  start-page: 652
  year: 2004
  ident: 10.1016/j.virol.2017.11.012_bib30
  article-title: Frequent detection of human coronaviruses in clinical specimens from patients with respiratory tract infection by use of a novel real-time reverse-transcriptase polymerase chain reaction
  publication-title: J. Infect. Dis.
  doi: 10.1086/381207
– volume: 10
  start-page: 368
  year: 2004
  ident: 10.1016/j.virol.2017.11.012_bib29
  article-title: Identification of a new human coronavirus
  publication-title: Nat. Med.
  doi: 10.1038/nm1024
– volume: 68
  start-page: 523
  year: 2015
  ident: 10.1016/j.virol.2017.11.012_bib9
  article-title: Coronavirus Infections in Pediatric Outpatients with Febrile Respiratory Tract Infections in Hiroshima, Japan, over a 3-Year Period
  publication-title: Jpn. J. Infect. Dis.
  doi: 10.7883/yoken.JJID.2014.591
– volume: 87
  start-page: 9953
  year: 2013
  ident: 10.1016/j.virol.2017.11.012_bib27
  article-title: Bilateral entry and release of Middle East respiratory syndrome coronavirus induces profound apoptosis of human bronchial epithelial cells
  publication-title: J. Virol.
  doi: 10.1128/JVI.01562-13
– volume: 87
  start-page: 12552
  year: 2013
  ident: 10.1016/j.virol.2017.11.012_bib25
  article-title: Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2
  publication-title: J. Virol.
  doi: 10.1128/JVI.01890-13
– volume: 107
  start-page: 183
  year: 2005
  ident: 10.1016/j.virol.2017.11.012_bib7
  article-title: Well-differentiated human airway epithelial cell cultures
  publication-title: Methods Mol. Med.
– volume: 9
  start-page: e1003124
  year: 2013
  ident: 10.1016/j.virol.2017.11.012_bib14
  article-title: IFITM proteins restrict viral membrane hemifusion
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1003124
SSID ssj0004770
Score 2.5986652
Snippet Human coronaviruses (HCoVs) enter cells via two distinct pathways: the endosomal pathway using cathepsins to activate spike protein and the cell-surface or...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9
SubjectTerms Air-liquid interface culture
Amino Acid Sequence
animal viruses
Betacoronavirus 1
Brief Communication
cathepsin L
Cathepsin L - genetics
Cathepsins
Cell Line
Coronavirus - physiology
cultured cells
Endosomes
Entry
epithelial cells
host-pathogen relationships
Human bronchial tracheal epithelial cells
Human coronavirus
Human coronavirus 229E
Human coronavirus HKU1
Humans
pathogenesis
RNA, Messenger - genetics
RNA, Messenger - metabolism
serine
Serine Endopeptidases - physiology
serine proteinases
Spike Glycoprotein, Coronavirus
Virus Internalization
Virus Replication - physiology
Title Wild-type human coronaviruses prefer cell-surface TMPRSS2 to endosomal cathepsins for cell entry
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0042682217303914
https://dx.doi.org/10.1016/j.virol.2017.11.012
https://www.ncbi.nlm.nih.gov/pubmed/29217279
https://www.proquest.com/docview/1975015514
https://www.proquest.com/docview/2986257040
https://pubmed.ncbi.nlm.nih.gov/PMC7112029
Volume 517
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5VRUhcUHmHQrVIHHEbr9ce77FUVCmoFaKtlNuy3ocaBHZUJwcu_HZm1g8IqEXi6GQnsmdmZ2adme9j7HXIhStzI5PUZVkiq8wmNJ6ZOOJ1KEywStGg8OlZMbuU7-f5fIsdDbMw1FbZx_4upsdo3X9y0GvzYLlY0IwvZhfMbyk6aaYimbWUQF6-_-NXm4cEGMdQaPWAPBR7vGiUjP5_SGGfoDxTcVN2-rv6_LOJ8resdLzD7vflJD_s7vgB2_L1Q3a3I5j8_oh9xk3vEnrNyiMZH7cEWGDwhtatb_kykoxwenmftOvrYKznF6cfP52fC75quK9d0zbf8PcjuOuyXdQtxyI3CvBISfKYXR6_uziaJT2nQmKxdFslDtXhS-W8AiIYA2HyYD2IKZqshIC7mTDlsjSgToOqTOHx6C2FAQtOqKCyJ2y7bmr_jPEKUlG4PAfhhAxgKiWnMoipsxJEHsoJE4Mute0Bx4n34qseOsu-6GgATQbAo4hGA0zYm1Fo2eFt3L5cDkbSwygpBj-N-eB2sWIU2_C2fwu-GjxB4z4kdZvaN-tWpwprr1h_3rxGKDw_5oBxc8Kedt4zPqRQRBUGasJgw6_GBYQDvvlNvbiKeOCANfNUqOf_-1C77B5elV0_0gu2vbpe-5dYaq2qvbiX9tidw5MPszO8Opm__QnXeSqB
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxLtbXkaCG2kTx8nEBw4IqLa0WyG6lXpzk9gWi2iyanaFeuFP8QeZcR6woBYJqdfEEzme8cw4mfk-xl64RJgsyWUQmTgOZBGXAbVnBoZ4HdLclUpRo_DkIB0fyQ_HyfEa-9H3wlBZZef7W5_uvXV3Zbtbze35bEY9vhhdML5FaKSximRXWblnz7_hua15vfsOlfxSiJ3307fjoKMWCErMYBaBAQhtpoxVQDxbIPLElRZEiDPPwKFRE7RaHDl8tFNFnlo8gUqRQwlGKEcITOj3r0l0F0SbsPX9V12JBBj6Xmh6PdSRLyqj3jX64RHBFmGHRuKicPh3uvtn1eZvYXDnNrvV5a_8TbtEd9iare6y6y2j5fk9doJexgT0XZd79j9eEkJCjhNaNrbhc89qwulvQdAsz1xeWj6dfPx0eCj4oua2MnVTn-LzPZrsvJlVDces2gtwz4Fynx1dyUo_YOtVXdkNxguIRGqSBIQR0kFeKBlKJ0JTShCJy0ZM9Gupyw7hnIg2vuq-lO2L9grQpAA8-2hUwIi9GoTmLcDH5cNlryTd966it9UYgC4XSwexFfP-t-Dz3hI0bnxa7ryy9bLRkcJkzye8F48RCg-sCaCjHrGHrfUMLykUcZOBGjFYsathAAGPr96pZp89ADlgkh4Ktfm_L_WM3RhPJ_t6f_dg7xG7iXeythjqMVtfnC3tE8zzFsVTv684O7nqjfwTPANj8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wild-type+human+coronaviruses+prefer+cell-surface+TMPRSS2+to+endosomal+cathepsins+for+cell+entry&rft.jtitle=Virology+%28New+York%2C+N.Y.%29&rft.au=Shirato%2C+Kazuya&rft.au=Kawase%2C+Miyuki&rft.au=Matsuyama%2C+Shutoku&rft.date=2018-04-01&rft.eissn=1096-0341&rft.volume=517&rft.spage=9&rft_id=info:doi/10.1016%2Fj.virol.2017.11.012&rft_id=info%3Apmid%2F29217279&rft.externalDocID=29217279
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0042-6822&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0042-6822&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0042-6822&client=summon