Wild-type human coronaviruses prefer cell-surface TMPRSS2 to endosomal cathepsins for cell entry
Human coronaviruses (HCoVs) enter cells via two distinct pathways: the endosomal pathway using cathepsins to activate spike protein and the cell-surface or early endosome pathway using extracellular proteases such as transmembrane protease serine 2 (TMPRSS2). We previously reported that clinical iso...
Saved in:
Published in | Virology (New York, N.Y.) Vol. 517; pp. 9 - 15 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Human coronaviruses (HCoVs) enter cells via two distinct pathways: the endosomal pathway using cathepsins to activate spike protein and the cell-surface or early endosome pathway using extracellular proteases such as transmembrane protease serine 2 (TMPRSS2). We previously reported that clinical isolates of HCoV-229E preferred cell-surface TMPRSS2 to endosomal cathepsin for cell entry, and that they acquired the ability to use cathepsin L by repeated passage in cultured cells and were then able to enter cells via the endosomal pathway. Here, we show that clinical isolates of HCoV-OC43 and -HKU1 preferred the cell-surface TMRRSS2 to endosomal cathepsins for cell entry, similar to HCoV-229E. In addition, the cell-culture-adapted HCoV-OC43 lost the ability to infect and replicate in air-liquid interface cultures of human bronchial tracheal epithelial cells. These results suggest that circulating HCoVs in the field generally use cell-surface TMPRSS2 for cell entry, not endosomal cathepsins, in human airway epithelial cells.
•Clinical isolates of HCoV-OC43 and -HKU1 were isolated from ALI-cultured HBTE cells.•Clinical isolates of HCoVs preferred the TMRRSS2 to cathepsins for cell entry.•Cell culture adapted HCoV-OC43 lost the ability to replicate in HBTE-ALI culture. |
---|---|
AbstractList | Human coronaviruses (HCoVs) enter cells via two distinct pathways: the endosomal pathway using cathepsins to activate spike protein and the cell-surface or early endosome pathway using extracellular proteases such as transmembrane protease serine 2 (TMPRSS2). We previously reported that clinical isolates of HCoV-229E preferred cell-surface TMPRSS2 to endosomal cathepsin for cell entry, and that they acquired the ability to use cathepsin L by repeated passage in cultured cells and were then able to enter cells via the endosomal pathway. Here, we show that clinical isolates of HCoV-OC43 and -HKU1 preferred the cell-surface TMRRSS2 to endosomal cathepsins for cell entry, similar to HCoV-229E. In addition, the cell-culture-adapted HCoV-OC43 lost the ability to infect and replicate in air-liquid interface cultures of human bronchial tracheal epithelial cells. These results suggest that circulating HCoVs in the field generally use cell-surface TMPRSS2 for cell entry, not endosomal cathepsins, in human airway epithelial cells. Human coronaviruses (HCoVs) enter cells via two distinct pathways: the endosomal pathway using cathepsins to activate spike protein and the cell-surface or early endosome pathway using extracellular proteases such as transmembrane protease serine 2 (TMPRSS2). We previously reported that clinical isolates of HCoV-229E preferred cell-surface TMPRSS2 to endosomal cathepsin for cell entry, and that they acquired the ability to use cathepsin L by repeated passage in cultured cells and were then able to enter cells via the endosomal pathway. Here, we show that clinical isolates of HCoV-OC43 and -HKU1 preferred the cell-surface TMRRSS2 to endosomal cathepsins for cell entry, similar to HCoV-229E. In addition, the cell-culture-adapted HCoV-OC43 lost the ability to infect and replicate in air-liquid interface cultures of human bronchial tracheal epithelial cells. These results suggest that circulating HCoVs in the field generally use cell-surface TMPRSS2 for cell entry, not endosomal cathepsins, in human airway epithelial cells. •Clinical isolates of HCoV-OC43 and -HKU1 were isolated from ALI-cultured HBTE cells.•Clinical isolates of HCoVs preferred the TMRRSS2 to cathepsins for cell entry.•Cell culture adapted HCoV-OC43 lost the ability to replicate in HBTE-ALI culture. Human coronaviruses (HCoVs) enter cells via two distinct pathways: the endosomal pathway using cathepsins to activate spike protein and the cell-surface or early endosome pathway using extracellular proteases such as transmembrane protease serine 2 (TMPRSS2). We previously reported that clinical isolates of HCoV-229E preferred cell-surface TMPRSS2 to endosomal cathepsin for cell entry, and that they acquired the ability to use cathepsin L by repeated passage in cultured cells and were then able to enter cells via the endosomal pathway. Here, we show that clinical isolates of HCoV-OC43 and -HKU1 preferred the cell-surface TMRRSS2 to endosomal cathepsins for cell entry, similar to HCoV-229E. In addition, the cell-culture-adapted HCoV-OC43 lost the ability to infect and replicate in air-liquid interface cultures of human bronchial tracheal epithelial cells. These results suggest that circulating HCoVs in the field generally use cell-surface TMPRSS2 for cell entry, not endosomal cathepsins, in human airway epithelial cells. • Clinical isolates of HCoV-OC43 and -HKU1 were isolated from ALI-cultured HBTE cells. • Clinical isolates of HCoVs preferred the TMRRSS2 to cathepsins for cell entry. • Cell culture adapted HCoV-OC43 lost the ability to replicate in HBTE-ALI culture. Human coronaviruses (HCoVs) enter cells via two distinct pathways: the endosomal pathway using cathepsins to activate spike protein and the cell-surface or early endosome pathway using extracellular proteases such as transmembrane protease serine 2 (TMPRSS2). We previously reported that clinical isolates of HCoV-229E preferred cell-surface TMPRSS2 to endosomal cathepsin for cell entry, and that they acquired the ability to use cathepsin L by repeated passage in cultured cells and were then able to enter cells via the endosomal pathway. Here, we show that clinical isolates of HCoV-OC43 and -HKU1 preferred the cell-surface TMRRSS2 to endosomal cathepsins for cell entry, similar to HCoV-229E. In addition, the cell-culture-adapted HCoV-OC43 lost the ability to infect and replicate in air-liquid interface cultures of human bronchial tracheal epithelial cells. These results suggest that circulating HCoVs in the field generally use cell-surface TMPRSS2 for cell entry, not endosomal cathepsins, in human airway epithelial cells.Human coronaviruses (HCoVs) enter cells via two distinct pathways: the endosomal pathway using cathepsins to activate spike protein and the cell-surface or early endosome pathway using extracellular proteases such as transmembrane protease serine 2 (TMPRSS2). We previously reported that clinical isolates of HCoV-229E preferred cell-surface TMPRSS2 to endosomal cathepsin for cell entry, and that they acquired the ability to use cathepsin L by repeated passage in cultured cells and were then able to enter cells via the endosomal pathway. Here, we show that clinical isolates of HCoV-OC43 and -HKU1 preferred the cell-surface TMRRSS2 to endosomal cathepsins for cell entry, similar to HCoV-229E. In addition, the cell-culture-adapted HCoV-OC43 lost the ability to infect and replicate in air-liquid interface cultures of human bronchial tracheal epithelial cells. These results suggest that circulating HCoVs in the field generally use cell-surface TMPRSS2 for cell entry, not endosomal cathepsins, in human airway epithelial cells. |
Author | Matsuyama, Shutoku Kawase, Miyuki Shirato, Kazuya |
Author_xml | – sequence: 1 givenname: Kazuya surname: Shirato fullname: Shirato, Kazuya email: shirato@nih.go.jp – sequence: 2 givenname: Miyuki surname: Kawase fullname: Kawase, Miyuki – sequence: 3 givenname: Shutoku surname: Matsuyama fullname: Matsuyama, Shutoku |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29217279$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAUhS1URKeFX4CEsmST4Os8HAuBVFW8pCIQLWJpPM4N48Gxg52MNP8ehykVdDMry7rnO_dxzsiJ8w4JeQq0AArNi22xM8HbglHgBUBBgT0gK6CiyWlZwQlZUVqxvGkZOyVnMW5p-nNOH5FTJhhwxsWKfP9mbJdP-xGzzTwol2kfvFPJeY4YszFgjyHTaG0e59ArjdnNx89frq9ZNvkMXeejH5TNtJo2OEbjYtb7A5CqU9g_Jg97ZSM-uX3Pyde3b24u3-dXn959uLy4ynXd1FPepcGwFR0KDrSknKm618gZZV3b8r5tKdCGl9CXtOzFWjWIa1YxxTXvmOhFeU5eH3zHeT1gp5fmysoxmEGFvfTKyP8rzmzkD7-THCB1WQye3xoE_2vGOMnBxGUP5dDPUTLRNqzmtKJHpSB4TaGuoUrSZ_-OdTfP3wSSoDwIdPAxpnPfSYDKJWe5lX9ylkvOEkCmnBMl7lHaTGoyftnN2CPsqwOLKY6dwSCjNug0diagnmTnzRH-5T1eW-OMVvYn7o_SvwGDgdm4 |
CitedBy_id | crossref_primary_10_1016_j_medntd_2020_100043 crossref_primary_10_1371_journal_ppat_1009233 crossref_primary_10_3390_v12121425 crossref_primary_10_3389_fphar_2021_718484 crossref_primary_10_1186_s13567_018_0551_9 crossref_primary_10_26508_lsa_202000786 crossref_primary_10_1038_s41598_018_25640_0 crossref_primary_10_1093_bib_bbaa288 crossref_primary_10_1128_JVI_01429_17 crossref_primary_10_15252_emmm_202013105 crossref_primary_10_2174_1381612826666201023143956 crossref_primary_10_7883_yoken_JJID_2019_400 crossref_primary_10_1097_MRM_0000000000000237 crossref_primary_10_1007_s11224_022_01991_3 crossref_primary_10_1016_j_bbrep_2021_100938 crossref_primary_10_1038_s41422_020_0305_x crossref_primary_10_1128_JVI_00957_20 crossref_primary_10_7883_yoken_JJID_2020_776 crossref_primary_10_1371_journal_pcbi_1008461 crossref_primary_10_1371_journal_pbio_3001805 crossref_primary_10_7717_peerj_13721 crossref_primary_10_1371_journal_ppat_1009225 crossref_primary_10_33549_physiolres_934730 crossref_primary_10_1371_journal_ppat_1009743 crossref_primary_10_1128_CMR_00109_21 crossref_primary_10_3389_fimmu_2025_1533213 crossref_primary_10_1002_jmv_27019 crossref_primary_10_2174_1389557521666210805113231 crossref_primary_10_1515_hsz_2022_0323 crossref_primary_10_1016_j_bioorg_2024_107317 crossref_primary_10_1021_acs_jmedchem_0c00606 crossref_primary_10_21307_PM_2020_59_3_15 crossref_primary_10_1016_j_jbc_2021_100847 crossref_primary_10_3390_v16111798 crossref_primary_10_1136_jclinpath_2020_206867 crossref_primary_10_3389_fmicb_2023_1190463 crossref_primary_10_1371_journal_ppat_1009212 crossref_primary_10_3390_pathogens11070754 crossref_primary_10_1128_JVI_01751_20 crossref_primary_10_1016_j_mam_2022_101150 crossref_primary_10_1016_j_antiviral_2021_105015 crossref_primary_10_1186_s12916_020_01673_z crossref_primary_10_1016_j_ejphar_2020_173634 crossref_primary_10_1002_rmv_2282 crossref_primary_10_1038_s41598_022_25399_5 crossref_primary_10_3389_fendo_2020_00530 crossref_primary_10_1002_jmv_28124 crossref_primary_10_1016_j_meegid_2021_104760 crossref_primary_10_1002_rmv_2207 crossref_primary_10_1016_j_biochi_2021_06_005 crossref_primary_10_1080_21645515_2020_1842683 crossref_primary_10_3390_molecules25215007 crossref_primary_10_1016_j_metop_2021_100103 crossref_primary_10_3390_v13112178 crossref_primary_10_1128_mbio_00445_22 crossref_primary_10_1016_j_antiviral_2023_105606 crossref_primary_10_1016_j_cell_2024_06_016 crossref_primary_10_3390_clinpract11040085 crossref_primary_10_1007_s10965_021_02548_4 crossref_primary_10_1073_pnas_2210361120 crossref_primary_10_1186_s12985_024_02298_x crossref_primary_10_1002_2211_5463_12984 crossref_primary_10_3389_fgene_2020_00872 crossref_primary_10_3390_pathogens11030302 crossref_primary_10_1016_j_isci_2022_104594 crossref_primary_10_3390_ijms21176412 crossref_primary_10_1080_2314808X_2021_1995309 crossref_primary_10_1016_j_heliyon_2024_e28280 crossref_primary_10_1128_mSphere_00159_21 crossref_primary_10_1111_febs_15375 crossref_primary_10_3390_microorganisms9030525 crossref_primary_10_1080_14656566_2021_1898589 crossref_primary_10_3389_fphar_2020_01278 crossref_primary_10_7554_eLife_58716 crossref_primary_10_1186_s40001_021_00516_8 crossref_primary_10_1021_acsinfecdis_0c00456 crossref_primary_10_1007_s11224_022_01921_3 crossref_primary_10_1128_spectrum_01920_23 crossref_primary_10_7554_eLife_62522 crossref_primary_10_1126_sciadv_aav4580 crossref_primary_10_1128_mra_00529_22 crossref_primary_10_3389_fimmu_2022_1066456 crossref_primary_10_1128_mra_01027_21 crossref_primary_10_2222_jsv_70_155 crossref_primary_10_1038_s41586_023_06761_7 crossref_primary_10_1128_mBio_02492_20 crossref_primary_10_1016_j_prp_2021_153647 crossref_primary_10_3390_ijms23094576 crossref_primary_10_1007_s13365_020_00868_7 crossref_primary_10_1111_1348_0421_13204 crossref_primary_10_3390_v11040328 crossref_primary_10_1002_jcp_29868 crossref_primary_10_1038_s41467_022_34571_4 crossref_primary_10_1016_j_jdsr_2021_07_001 crossref_primary_10_1371_journal_ppat_1009820 crossref_primary_10_1016_j_ebiom_2021_103316 crossref_primary_10_1016_j_crmicr_2020_06_003 crossref_primary_10_1016_j_addr_2020_11_007 crossref_primary_10_1016_j_hjc_2020_05_007 crossref_primary_10_1128_JVI_00140_21 crossref_primary_10_1177_09636897221090259 crossref_primary_10_2222_jsv_69_61 crossref_primary_10_5812_jhgg_119384 crossref_primary_10_1128_spectrum_01164_24 crossref_primary_10_3390_biom14101232 crossref_primary_10_3390_ijms21165707 crossref_primary_10_1016_j_cell_2021_07_007 crossref_primary_10_1128_JVI_00635_20 crossref_primary_10_1128_CMR_00133_20 crossref_primary_10_3390_molecules26020448 crossref_primary_10_3390_w12061598 crossref_primary_10_1038_s41598_018_34859_w crossref_primary_10_1371_journal_ppat_1009013 crossref_primary_10_1128_JVI_01815_18 crossref_primary_10_2174_0929867328666210526111318 crossref_primary_10_3389_fimmu_2020_552925 crossref_primary_10_3390_microorganisms8111704 crossref_primary_10_1051_medsci_2024034 crossref_primary_10_1128_mra_00411_22 crossref_primary_10_1016_j_cell_2020_02_052 crossref_primary_10_1016_j_virol_2023_109889 crossref_primary_10_1016_j_ajmo_2024_100068 crossref_primary_10_1139_gen_2020_0124 crossref_primary_10_3390_ijms232012260 crossref_primary_10_2174_1381612828666220506142117 crossref_primary_10_3390_v11030216 crossref_primary_10_1007_s43440_022_00388_7 crossref_primary_10_3390_pathogens11080877 crossref_primary_10_15252_embj_2021107821 crossref_primary_10_3390_ijms23031351 crossref_primary_10_1038_s41598_021_81451_w crossref_primary_10_1126_scisignal_aba9902 crossref_primary_10_1016_j_virusres_2023_199078 crossref_primary_10_1016_j_bcp_2020_114225 crossref_primary_10_1038_s41586_020_2575_3 crossref_primary_10_2174_2666796701999200801023110 crossref_primary_10_1128_mBio_02220_21 crossref_primary_10_1136_gutjnl_2020_320953 crossref_primary_10_25259_JRHM_51_2020 crossref_primary_10_1080_07391102_2020_1819881 crossref_primary_10_3390_v15081744 crossref_primary_10_7883_yoken_JJID_2020_1079 crossref_primary_10_1016_j_ejphar_2020_173568 crossref_primary_10_2174_1566524021666210803154250 crossref_primary_10_1016_j_antiviral_2022_105343 crossref_primary_10_1016_j_biopha_2020_110493 crossref_primary_10_1016_j_jviromet_2023_114812 crossref_primary_10_7554_eLife_65962 crossref_primary_10_3390_encyclopedia2010007 crossref_primary_10_1126_scisignal_adn3785 crossref_primary_10_3233_TUB_211502 crossref_primary_10_7883_yoken_JJID_2023_353 crossref_primary_10_7883_yoken_JJID_2023_350 crossref_primary_10_7883_yoken_JJID_2020_324 crossref_primary_10_1096_fj_202000654R crossref_primary_10_3390_ijms241512017 |
Cites_doi | 10.3181/00379727-121-30734 10.1086/521308 10.1371/journal.ppat.1004048 10.7883/yoken.JJID.2016.106 10.1128/JVI.03368-12 10.1128/JVI.00094-12 10.1073/pnas.57.4.933 10.1128/JVI.00079-09 10.1099/vir.0.043117-0 10.1128/JVI.01387-16 10.11150/kansenshogakuzasshi.88.708 10.7883/yoken.67.469 10.1128/JVI.00947-10 10.7883/yoken.JJID.2015.292 10.1128/JVI.01933-08 10.1371/journal.pone.0154366 10.1128/JVI.03372-12 10.3181/00379727-135-35068 10.1128/JCM.00533-08 10.1073/pnas.58.6.2268 10.1073/pnas.1608147113 10.1086/381207 10.1038/nm1024 10.7883/yoken.JJID.2014.591 10.1128/JVI.01562-13 10.1128/JVI.01890-13 10.1371/journal.ppat.1003124 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Inc. Copyright © 2017 Elsevier Inc. All rights reserved. 2017 Elsevier Inc. 2017 Elsevier Inc. |
Copyright_xml | – notice: 2017 Elsevier Inc. – notice: Copyright © 2017 Elsevier Inc. All rights reserved. – notice: 2017 Elsevier Inc. 2017 Elsevier Inc. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.virol.2017.11.012 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1096-0341 |
EndPage | 15 |
ExternalDocumentID | PMC7112029 29217279 10_1016_j_virol_2017_11_012 S0042682217303914 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -DZ -~X .1- .55 .FO .GJ .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29Q 3O- 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM AAAJQ AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AATTM AAXKI AAXUO AAYWO ABBQC ABEFU ABFNM ABFRF ABJNI ABMAC ABMZM ABXDB ACDAQ ACGFO ACGFS ACIEU ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADMUD ADNMO ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AEXQZ AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGEKW AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG CJTIS COF CS3 DM4 DU5 EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEJ HMG HMK HMO HVGLF HX~ HZ~ H~9 IHE IXB J1W KOM LG5 LUGTX LZ5 M29 M41 MO0 MVM N9A O-L O9- OAUVE OD- OHT OK1 OO. OZT P-8 P-9 P2P PC. Q38 Q44 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SIN SSH SSI SSZ T5K TN5 UAP UQL WH7 WUQ X7M XOL XPP Y6R Z5R ZGI ZKB ZMT ZU3 ~G- ~KM 6I. AACTN AAFTH AAIAV ABLVK ABVKL ABYKQ AFCTW AFDAS AFKWA AFMIJ AHPSJ AJBFU AJOXV AMFUW EFLBG LCYCR NCXOZ RIG AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c565t-d770e89de97103072a5fce7202d887f880106731f303f9ba6eeb242a7c7d29f93 |
IEDL.DBID | .~1 |
ISSN | 0042-6822 1096-0341 |
IngestDate | Thu Aug 21 14:04:57 EDT 2025 Fri Jul 11 08:10:21 EDT 2025 Fri Jul 11 03:42:10 EDT 2025 Thu Apr 03 07:09:18 EDT 2025 Tue Jul 01 02:46:23 EDT 2025 Thu Apr 24 23:01:23 EDT 2025 Fri Feb 23 02:48:23 EST 2024 Tue Aug 26 17:14:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | DMEM Entry HCoV S Air-liquid interface culture CatL VHCR Human bronchial tracheal epithelial cells ATCC Cam Human coronavirus |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2017 Elsevier Inc. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c565t-d770e89de97103072a5fce7202d887f880106731f303f9ba6eeb242a7c7d29f93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0042682217303914 |
PMID | 29217279 |
PQID | 1975015514 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7112029 proquest_miscellaneous_2986257040 proquest_miscellaneous_1975015514 pubmed_primary_29217279 crossref_primary_10_1016_j_virol_2017_11_012 crossref_citationtrail_10_1016_j_virol_2017_11_012 elsevier_sciencedirect_doi_10_1016_j_virol_2017_11_012 elsevier_clinicalkey_doi_10_1016_j_virol_2017_11_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-01 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Virology (New York, N.Y.) |
PublicationTitleAlternate | Virology |
PublicationYear | 2018 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Dijkman, Jebbink, Koekkoek, Deijs, Jonsdottir, Molenkamp, Ieven, Goossens, Thiel, van der Hoek (bib6) 2013; 87 Hara, Takao (bib9) 2015; 68 Shirato, Kanou, Kawase, Matsuyama (bib26) 2017; 91 van der Hoek, Pyrc, Jebbink, Vermeulen-Oost, Berkhout, Wolthers, Wertheim-van Dillen, Kaandorp, Spaargaren, Berkhout (bib29) 2004; 10 Hirokawa, Watanabe, Kon, Tamura, Nishikawa (bib10) 2008; 29 Fulcher, Gabriel, Burns, Yankaskas, Randell (bib7) 2005; 107 Kawase, Shirato, van der Hoek, Taguchi, Matsuyama (bib13) 2012; 86 Bruckova, McIntosh, Kapikian, Chanock (bib2) 1970; 135 Shirato, Kawase, Watanabe, Hirokawa, Matsuyama, Nishimura, Taguchi (bib24) 2012; 93 Dijkman, Jebbink, El Idrissi, Pyrc, Muller, Kuijpers, Zaaijer, van der Hoek (bib5) 2008; 46 Matoba, Aoki, Tanaka, Yahagi, Katsushima, Katsushima, Sugawara, Matsuzaki, Mizuta (bib17) 2016; 69 McIntosh, Becker, Chanock (bib18) 1967; 58 Desai, Marin, Chin, Savidis, Brass, Melikyan (bib4) 2014; 10 Kawase, Shirato, Matsuyama, Taguchi (bib12) 2009; 83 Park, Li, Barlan, Fehr, Perlman, McCray, Gallagher (bib21) 2016; 113 Matoba, Aoki, Tanaka, Yahagi, Shimotai, Matsuzaki, Itagaki, Mizuta (bib16) 2015; 68 Tao, Hill, Morimoto, Peters, Ksiazek, Tseng (bib27) 2013; 87 van Elden, van Loon, van Alphen, Hendriksen, Hoepelman, van Kraaij, Oosterheert, Schipper, Schuurman, Nijhuis (bib30) 2004; 189 Bertram, Dijkman, Habjan, Heurich, Gierer, Glowacka, Welsch, Winkler, Schneider, Hofmann-Winkler, Thiel, Pohlmann (bib1) 2013; 87 Hamre, Procknow (bib8) 1966; 121 Pyrc, Sims, Dijkman, Jebbink, Long, Deming, Donaldson, Vabret, Baric, van der Hoek, Pickles (bib23) 2010; 84 Yano, Ochiai, Ihara (bib31) 2014; 88 Dare, Fry, Chittaganpitch, Sawanpanyalert, Olsen, Erdman (bib3) 2007; 196 Peiris, Poon (bib22) 2009 Shirato, Kawase, Matsuyama (bib25) 2013; 87 McIntosh, Dees, Becker, Kapikian, Chanock (bib19) 1967; 57 Kaida, Kubo, Takakura, Sekiguchi, Yamamoto, Kohdera, Togawa, Amo, Shiomi, Ohyama, Goto, Hase, Kageyama, Iritani (bib11) 2014; 67 Munoz-Moreno, Cuesta-Geijo, Martinez-Romero, Barrado-Gil, Galindo, Garcia-Sastre, Alonso (bib20) 2016; 11 Tyrrell, Myint (bib28) 1996 Li, Markosyan, Zheng, Golfetto, Bungart, Li, Ding, He, Liang, Lee, Gratton, Cohen, Liu (bib14) 2013; 9 Madu, Roth, Belouzard, Whittaker (bib15) 2009; 83 Yano (10.1016/j.virol.2017.11.012_bib31) 2014; 88 Dare (10.1016/j.virol.2017.11.012_bib3) 2007; 196 Shirato (10.1016/j.virol.2017.11.012_bib24) 2012; 93 Bertram (10.1016/j.virol.2017.11.012_bib1) 2013; 87 McIntosh (10.1016/j.virol.2017.11.012_bib19) 1967; 57 Munoz-Moreno (10.1016/j.virol.2017.11.012_bib20) 2016; 11 Park (10.1016/j.virol.2017.11.012_bib21) 2016; 113 Dijkman (10.1016/j.virol.2017.11.012_bib5) 2008; 46 Desai (10.1016/j.virol.2017.11.012_bib4) 2014; 10 Hara (10.1016/j.virol.2017.11.012_bib9) 2015; 68 Kawase (10.1016/j.virol.2017.11.012_bib13) 2012; 86 Dijkman (10.1016/j.virol.2017.11.012_bib6) 2013; 87 Madu (10.1016/j.virol.2017.11.012_bib15) 2009; 83 Shirato (10.1016/j.virol.2017.11.012_bib25) 2013; 87 Pyrc (10.1016/j.virol.2017.11.012_bib23) 2010; 84 Shirato (10.1016/j.virol.2017.11.012_bib26) 2017; 91 Li (10.1016/j.virol.2017.11.012_bib14) 2013; 9 Bruckova (10.1016/j.virol.2017.11.012_bib2) 1970; 135 Matoba (10.1016/j.virol.2017.11.012_bib17) 2016; 69 Tao (10.1016/j.virol.2017.11.012_bib27) 2013; 87 Fulcher (10.1016/j.virol.2017.11.012_bib7) 2005; 107 Kawase (10.1016/j.virol.2017.11.012_bib12) 2009; 83 McIntosh (10.1016/j.virol.2017.11.012_bib18) 1967; 58 van der Hoek (10.1016/j.virol.2017.11.012_bib29) 2004; 10 Hamre (10.1016/j.virol.2017.11.012_bib8) 1966; 121 Tyrrell (10.1016/j.virol.2017.11.012_bib28) 1996 Peiris (10.1016/j.virol.2017.11.012_bib22) 2009 van Elden (10.1016/j.virol.2017.11.012_bib30) 2004; 189 Kaida (10.1016/j.virol.2017.11.012_bib11) 2014; 67 Matoba (10.1016/j.virol.2017.11.012_bib16) 2015; 68 Hirokawa (10.1016/j.virol.2017.11.012_bib10) 2008; 29 |
References_xml | – volume: 93 start-page: 1908 year: 2012 end-page: 1917 ident: bib24 article-title: Differences in neutralizing antigenicity between laboratory and clinical isolates of HCoV-229E isolated in Japan in 2004–2008 depend on the S1 region sequence of the spike protein publication-title: J. Gen. Virol. – volume: 83 start-page: 712 year: 2009 end-page: 721 ident: bib12 article-title: Protease-mediated entry via the endosome of human coronavirus 229E publication-title: J. Virol. – volume: 9 start-page: e1003124 year: 2013 ident: bib14 article-title: IFITM proteins restrict viral membrane hemifusion publication-title: PLoS Pathog. – volume: 29 start-page: 283 year: 2008 ident: bib10 article-title: Isolation of a virus closely related to human coronavirus 229E from a case of pharyngitis, March 2008-Niigata publication-title: Infect. Agents Surveill. Rep. – volume: 87 start-page: 6081 year: 2013 end-page: 6090 ident: bib6 article-title: Isolation and characterization of current human coronavirus strains in primary human epithelial cell cultures reveal differences in target cell tropism publication-title: J. Virol. – volume: 69 start-page: 452 year: 2016 end-page: 454 ident: bib17 article-title: HeLa-ACE2-TMPRSS2 Cells Are Useful for the Isolation of Human Coronavirus 229E publication-title: Jpn. J. Infect. Dis. – volume: 58 start-page: 2268 year: 1967 end-page: 2273 ident: bib18 article-title: Growth in suckling-mouse brain of "IBV-like" viruses from patients with upper respiratory tract disease publication-title: Proc. Natl. Acad. Sci. USA – year: 1996 ident: bib28 article-title: Coronaviruses publication-title: Medical Microbiology – volume: 87 start-page: 12552 year: 2013 end-page: 12561 ident: bib25 article-title: Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2 publication-title: J. Virol. – volume: 86 start-page: 6537 year: 2012 end-page: 6545 ident: bib13 article-title: Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry publication-title: J. Virol. – start-page: 511 year: 2009 end-page: 532 ident: bib22 article-title: Coronaviruses and Toroviruses publication-title: Principles and Practice of Clinical Virology – volume: 189 start-page: 652 year: 2004 end-page: 657 ident: bib30 article-title: Frequent detection of human coronaviruses in clinical specimens from patients with respiratory tract infection by use of a novel real-time reverse-transcriptase polymerase chain reaction publication-title: J. Infect. Dis. – volume: 83 start-page: 7411 year: 2009 end-page: 7421 ident: bib15 article-title: Characterization of a highly conserved domain within the severe acute respiratory syndrome coronavirus spike protein S2 domain with characteristics of a viral fusion peptide publication-title: J. Virol. – volume: 67 start-page: 469 year: 2014 end-page: 475 ident: bib11 article-title: Associations between co-detected respiratory viruses in children with acute respiratory infections publication-title: Jpn. J. Infect. Dis. – volume: 10 start-page: 368 year: 2004 end-page: 373 ident: bib29 article-title: Identification of a new human coronavirus publication-title: Nat. Med. – volume: 87 start-page: 9953 year: 2013 end-page: 9958 ident: bib27 article-title: Bilateral entry and release of Middle East respiratory syndrome coronavirus induces profound apoptosis of human bronchial epithelial cells publication-title: J. Virol. – volume: 88 start-page: 708 year: 2014 end-page: 710 ident: bib31 article-title: [Detection of human coronavirus OC43 in children with acute respiratory infections in Mie, Japan] publication-title: Kansenshogaku Zasshi – volume: 91 year: 2017 ident: bib26 article-title: Clinical Isolates of Human Coronavirus 229E Bypass the Endosome for Cell Entry publication-title: J. Virol. – volume: 68 start-page: 442 year: 2015 end-page: 445 ident: bib16 article-title: An Outbreak of Human Coronavirus OC43 during the 2014–2015 Influenza Season in Yamagata, Japan publication-title: Jpn. J. Infect. Dis. – volume: 11 start-page: e0154366 year: 2016 ident: bib20 article-title: Antiviral Role of IFITM Proteins in African Swine Fever Virus Infection publication-title: PLoS One – volume: 113 start-page: 12262 year: 2016 end-page: 12267 ident: bib21 article-title: Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism publication-title: Proc. Natl. Acad. Sci. USA – volume: 135 start-page: 431 year: 1970 end-page: 435 ident: bib2 article-title: The adaptation of two human coronavirus strains (OC38 and OC43) to growth in cell monolayers publication-title: Proc. Soc. Exp. Biol. Med – volume: 57 start-page: 933 year: 1967 end-page: 940 ident: bib19 article-title: Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease publication-title: Proc. Natl. Acad. Sci. USA – volume: 10 start-page: e1004048 year: 2014 ident: bib4 article-title: IFITM3 restricts influenza A virus entry by blocking the formation of fusion pores following virus-endosome hemifusion publication-title: PLoS Pathog. – volume: 107 start-page: 183 year: 2005 end-page: 206 ident: bib7 article-title: Well-differentiated human airway epithelial cell cultures publication-title: Methods Mol. Med. – volume: 84 start-page: 11255 year: 2010 end-page: 11263 ident: bib23 article-title: Culturing the unculturable: human coronavirus HKU1 infects, replicates, and produces progeny virions in human ciliated airway epithelial cell cultures publication-title: J. Virol. – volume: 196 start-page: 1321 year: 2007 end-page: 1328 ident: bib3 article-title: Human coronavirus infections in rural Thailand: a comprehensive study using real-time reverse-transcription polymerase chain reaction assays publication-title: J. Infect. Dis. – volume: 68 start-page: 523 year: 2015 end-page: 525 ident: bib9 article-title: Coronavirus Infections in Pediatric Outpatients with Febrile Respiratory Tract Infections in Hiroshima, Japan, over a 3-Year Period publication-title: Jpn. J. Infect. Dis. – volume: 87 start-page: 6150 year: 2013 end-page: 6160 ident: bib1 article-title: TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium publication-title: J. Virol. – volume: 46 start-page: 2368 year: 2008 end-page: 2373 ident: bib5 article-title: Human coronavirus NL63 and 229E seroconversion in children publication-title: J. Clin. Microbiol – volume: 121 start-page: 190 year: 1966 end-page: 193 ident: bib8 article-title: A new virus isolated from the human respiratory tract publication-title: Proc. Soc. Exp. Biol. Med. – volume: 121 start-page: 190 year: 1966 ident: 10.1016/j.virol.2017.11.012_bib8 article-title: A new virus isolated from the human respiratory tract publication-title: Proc. Soc. Exp. Biol. Med. doi: 10.3181/00379727-121-30734 – volume: 196 start-page: 1321 year: 2007 ident: 10.1016/j.virol.2017.11.012_bib3 article-title: Human coronavirus infections in rural Thailand: a comprehensive study using real-time reverse-transcription polymerase chain reaction assays publication-title: J. Infect. Dis. doi: 10.1086/521308 – volume: 10 start-page: e1004048 year: 2014 ident: 10.1016/j.virol.2017.11.012_bib4 article-title: IFITM3 restricts influenza A virus entry by blocking the formation of fusion pores following virus-endosome hemifusion publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1004048 – volume: 69 start-page: 452 year: 2016 ident: 10.1016/j.virol.2017.11.012_bib17 article-title: HeLa-ACE2-TMPRSS2 Cells Are Useful for the Isolation of Human Coronavirus 229E publication-title: Jpn. J. Infect. Dis. doi: 10.7883/yoken.JJID.2016.106 – volume: 87 start-page: 6081 year: 2013 ident: 10.1016/j.virol.2017.11.012_bib6 article-title: Isolation and characterization of current human coronavirus strains in primary human epithelial cell cultures reveal differences in target cell tropism publication-title: J. Virol. doi: 10.1128/JVI.03368-12 – start-page: 511 year: 2009 ident: 10.1016/j.virol.2017.11.012_bib22 article-title: Coronaviruses and Toroviruses – volume: 86 start-page: 6537 year: 2012 ident: 10.1016/j.virol.2017.11.012_bib13 article-title: Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry publication-title: J. Virol. doi: 10.1128/JVI.00094-12 – volume: 57 start-page: 933 year: 1967 ident: 10.1016/j.virol.2017.11.012_bib19 article-title: Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.57.4.933 – volume: 83 start-page: 7411 year: 2009 ident: 10.1016/j.virol.2017.11.012_bib15 article-title: Characterization of a highly conserved domain within the severe acute respiratory syndrome coronavirus spike protein S2 domain with characteristics of a viral fusion peptide publication-title: J. Virol. doi: 10.1128/JVI.00079-09 – volume: 93 start-page: 1908 year: 2012 ident: 10.1016/j.virol.2017.11.012_bib24 article-title: Differences in neutralizing antigenicity between laboratory and clinical isolates of HCoV-229E isolated in Japan in 2004–2008 depend on the S1 region sequence of the spike protein publication-title: J. Gen. Virol. doi: 10.1099/vir.0.043117-0 – volume: 91 year: 2017 ident: 10.1016/j.virol.2017.11.012_bib26 article-title: Clinical Isolates of Human Coronavirus 229E Bypass the Endosome for Cell Entry publication-title: J. Virol. doi: 10.1128/JVI.01387-16 – year: 1996 ident: 10.1016/j.virol.2017.11.012_bib28 article-title: Coronaviruses – volume: 88 start-page: 708 year: 2014 ident: 10.1016/j.virol.2017.11.012_bib31 article-title: [Detection of human coronavirus OC43 in children with acute respiratory infections in Mie, Japan] publication-title: Kansenshogaku Zasshi doi: 10.11150/kansenshogakuzasshi.88.708 – volume: 67 start-page: 469 year: 2014 ident: 10.1016/j.virol.2017.11.012_bib11 article-title: Associations between co-detected respiratory viruses in children with acute respiratory infections publication-title: Jpn. J. Infect. Dis. doi: 10.7883/yoken.67.469 – volume: 29 start-page: 283 year: 2008 ident: 10.1016/j.virol.2017.11.012_bib10 article-title: Isolation of a virus closely related to human coronavirus 229E from a case of pharyngitis, March 2008-Niigata publication-title: Infect. Agents Surveill. Rep. – volume: 84 start-page: 11255 year: 2010 ident: 10.1016/j.virol.2017.11.012_bib23 article-title: Culturing the unculturable: human coronavirus HKU1 infects, replicates, and produces progeny virions in human ciliated airway epithelial cell cultures publication-title: J. Virol. doi: 10.1128/JVI.00947-10 – volume: 68 start-page: 442 year: 2015 ident: 10.1016/j.virol.2017.11.012_bib16 article-title: An Outbreak of Human Coronavirus OC43 during the 2014–2015 Influenza Season in Yamagata, Japan publication-title: Jpn. J. Infect. Dis. doi: 10.7883/yoken.JJID.2015.292 – volume: 83 start-page: 712 year: 2009 ident: 10.1016/j.virol.2017.11.012_bib12 article-title: Protease-mediated entry via the endosome of human coronavirus 229E publication-title: J. Virol. doi: 10.1128/JVI.01933-08 – volume: 11 start-page: e0154366 year: 2016 ident: 10.1016/j.virol.2017.11.012_bib20 article-title: Antiviral Role of IFITM Proteins in African Swine Fever Virus Infection publication-title: PLoS One doi: 10.1371/journal.pone.0154366 – volume: 87 start-page: 6150 year: 2013 ident: 10.1016/j.virol.2017.11.012_bib1 article-title: TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium publication-title: J. Virol. doi: 10.1128/JVI.03372-12 – volume: 135 start-page: 431 year: 1970 ident: 10.1016/j.virol.2017.11.012_bib2 article-title: The adaptation of two human coronavirus strains (OC38 and OC43) to growth in cell monolayers publication-title: Proc. Soc. Exp. Biol. Med doi: 10.3181/00379727-135-35068 – volume: 46 start-page: 2368 year: 2008 ident: 10.1016/j.virol.2017.11.012_bib5 article-title: Human coronavirus NL63 and 229E seroconversion in children publication-title: J. Clin. Microbiol doi: 10.1128/JCM.00533-08 – volume: 58 start-page: 2268 year: 1967 ident: 10.1016/j.virol.2017.11.012_bib18 article-title: Growth in suckling-mouse brain of "IBV-like" viruses from patients with upper respiratory tract disease publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.58.6.2268 – volume: 113 start-page: 12262 year: 2016 ident: 10.1016/j.virol.2017.11.012_bib21 article-title: Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1608147113 – volume: 189 start-page: 652 year: 2004 ident: 10.1016/j.virol.2017.11.012_bib30 article-title: Frequent detection of human coronaviruses in clinical specimens from patients with respiratory tract infection by use of a novel real-time reverse-transcriptase polymerase chain reaction publication-title: J. Infect. Dis. doi: 10.1086/381207 – volume: 10 start-page: 368 year: 2004 ident: 10.1016/j.virol.2017.11.012_bib29 article-title: Identification of a new human coronavirus publication-title: Nat. Med. doi: 10.1038/nm1024 – volume: 68 start-page: 523 year: 2015 ident: 10.1016/j.virol.2017.11.012_bib9 article-title: Coronavirus Infections in Pediatric Outpatients with Febrile Respiratory Tract Infections in Hiroshima, Japan, over a 3-Year Period publication-title: Jpn. J. Infect. Dis. doi: 10.7883/yoken.JJID.2014.591 – volume: 87 start-page: 9953 year: 2013 ident: 10.1016/j.virol.2017.11.012_bib27 article-title: Bilateral entry and release of Middle East respiratory syndrome coronavirus induces profound apoptosis of human bronchial epithelial cells publication-title: J. Virol. doi: 10.1128/JVI.01562-13 – volume: 87 start-page: 12552 year: 2013 ident: 10.1016/j.virol.2017.11.012_bib25 article-title: Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2 publication-title: J. Virol. doi: 10.1128/JVI.01890-13 – volume: 107 start-page: 183 year: 2005 ident: 10.1016/j.virol.2017.11.012_bib7 article-title: Well-differentiated human airway epithelial cell cultures publication-title: Methods Mol. Med. – volume: 9 start-page: e1003124 year: 2013 ident: 10.1016/j.virol.2017.11.012_bib14 article-title: IFITM proteins restrict viral membrane hemifusion publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1003124 |
SSID | ssj0004770 |
Score | 2.5986652 |
Snippet | Human coronaviruses (HCoVs) enter cells via two distinct pathways: the endosomal pathway using cathepsins to activate spike protein and the cell-surface or... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9 |
SubjectTerms | Air-liquid interface culture Amino Acid Sequence animal viruses Betacoronavirus 1 Brief Communication cathepsin L Cathepsin L - genetics Cathepsins Cell Line Coronavirus - physiology cultured cells Endosomes Entry epithelial cells host-pathogen relationships Human bronchial tracheal epithelial cells Human coronavirus Human coronavirus 229E Human coronavirus HKU1 Humans pathogenesis RNA, Messenger - genetics RNA, Messenger - metabolism serine Serine Endopeptidases - physiology serine proteinases Spike Glycoprotein, Coronavirus Virus Internalization Virus Replication - physiology |
Title | Wild-type human coronaviruses prefer cell-surface TMPRSS2 to endosomal cathepsins for cell entry |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0042682217303914 https://dx.doi.org/10.1016/j.virol.2017.11.012 https://www.ncbi.nlm.nih.gov/pubmed/29217279 https://www.proquest.com/docview/1975015514 https://www.proquest.com/docview/2986257040 https://pubmed.ncbi.nlm.nih.gov/PMC7112029 |
Volume | 517 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5VRUhcUHmHQrVIHHEbr9ce77FUVCmoFaKtlNuy3ocaBHZUJwcu_HZm1g8IqEXi6GQnsmdmZ2adme9j7HXIhStzI5PUZVkiq8wmNJ6ZOOJ1KEywStGg8OlZMbuU7-f5fIsdDbMw1FbZx_4upsdo3X9y0GvzYLlY0IwvZhfMbyk6aaYimbWUQF6-_-NXm4cEGMdQaPWAPBR7vGiUjP5_SGGfoDxTcVN2-rv6_LOJ8resdLzD7vflJD_s7vgB2_L1Q3a3I5j8_oh9xk3vEnrNyiMZH7cEWGDwhtatb_kykoxwenmftOvrYKznF6cfP52fC75quK9d0zbf8PcjuOuyXdQtxyI3CvBISfKYXR6_uziaJT2nQmKxdFslDtXhS-W8AiIYA2HyYD2IKZqshIC7mTDlsjSgToOqTOHx6C2FAQtOqKCyJ2y7bmr_jPEKUlG4PAfhhAxgKiWnMoipsxJEHsoJE4Mute0Bx4n34qseOsu-6GgATQbAo4hGA0zYm1Fo2eFt3L5cDkbSwygpBj-N-eB2sWIU2_C2fwu-GjxB4z4kdZvaN-tWpwprr1h_3rxGKDw_5oBxc8Kedt4zPqRQRBUGasJgw6_GBYQDvvlNvbiKeOCANfNUqOf_-1C77B5elV0_0gu2vbpe-5dYaq2qvbiX9tidw5MPszO8Opm__QnXeSqB |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxLtbXkaCG2kTx8nEBw4IqLa0WyG6lXpzk9gWi2iyanaFeuFP8QeZcR6woBYJqdfEEzme8cw4mfk-xl64RJgsyWUQmTgOZBGXAbVnBoZ4HdLclUpRo_DkIB0fyQ_HyfEa-9H3wlBZZef7W5_uvXV3Zbtbze35bEY9vhhdML5FaKSximRXWblnz7_hua15vfsOlfxSiJ3307fjoKMWCErMYBaBAQhtpoxVQDxbIPLElRZEiDPPwKFRE7RaHDl8tFNFnlo8gUqRQwlGKEcITOj3r0l0F0SbsPX9V12JBBj6Xmh6PdSRLyqj3jX64RHBFmGHRuKicPh3uvtn1eZvYXDnNrvV5a_8TbtEd9iare6y6y2j5fk9doJexgT0XZd79j9eEkJCjhNaNrbhc89qwulvQdAsz1xeWj6dfPx0eCj4oua2MnVTn-LzPZrsvJlVDces2gtwz4Fynx1dyUo_YOtVXdkNxguIRGqSBIQR0kFeKBlKJ0JTShCJy0ZM9Gupyw7hnIg2vuq-lO2L9grQpAA8-2hUwIi9GoTmLcDH5cNlryTd966it9UYgC4XSwexFfP-t-Dz3hI0bnxa7ryy9bLRkcJkzye8F48RCg-sCaCjHrGHrfUMLykUcZOBGjFYsathAAGPr96pZp89ADlgkh4Ktfm_L_WM3RhPJ_t6f_dg7xG7iXeythjqMVtfnC3tE8zzFsVTv684O7nqjfwTPANj8Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wild-type+human+coronaviruses+prefer+cell-surface+TMPRSS2+to+endosomal+cathepsins+for+cell+entry&rft.jtitle=Virology+%28New+York%2C+N.Y.%29&rft.au=Shirato%2C+Kazuya&rft.au=Kawase%2C+Miyuki&rft.au=Matsuyama%2C+Shutoku&rft.date=2018-04-01&rft.eissn=1096-0341&rft.volume=517&rft.spage=9&rft_id=info:doi/10.1016%2Fj.virol.2017.11.012&rft_id=info%3Apmid%2F29217279&rft.externalDocID=29217279 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0042-6822&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0042-6822&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0042-6822&client=summon |